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Abstract: Graph clustering is one of the fundamental tasks in graph data mining, with significant
applications in social networks and recommendation systems. Traditional methods for clustering
heterogeneous graphs typically involve obtaining node representations as a preliminary step, followed
by the application of clustering algorithms to achieve the final clustering results. However, this
two-step approach leads to a disconnection between the optimization of node representation and the
clustering process, making it challenging to achieve optimal results. In this paper, we propose a graph
clustering approach specifically designed for heterogeneous graphs that unifies the optimization of
node representation and the clustering process for nodes in a heterogeneous graph. We assume that
the relationships between different meta-paths in the heterogeneous graph are mutually independent.
By maximizing the joint probability of meta-paths and nodes, we derive the optimization objective
through variational methods. Finally, we employ backpropagation and reparameterization techniques
to optimize this objective and thereby achieve the desired clustering results. Experiments conducted on
multiple real heterogeneous datasets demonstrate that the proposed method is competitive with existing
methods.

Keywords: heterogeneous graph; graph cluster; variational graph autoencoder; graph neural network

1. Introduction

Graph clustering is a fundamental task in graph data mining, with the aim of grouping all nodes
in a graph into clusters. Clustering usually results in a high similarity of nodes within clusters
and a low similarity between clusters. It is often applied in recommendation systems and social
network analysis. By performing graph clustering on social networks, potential associations and
similarities between users can be discovered. These associations can be utilized to improve the
performance of recommendation systems, increasing the accuracy of understanding of user interests
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and thus enhancing the personalization of recommendations. However, many existing graph clustering
algorithms suffer from shortcomings, since they typically follow a two-step process. They first obtain
node embeddings in a graph, and then use algorithms such as K-means and Gaussian mixture models
for clustering. However, such a two-step approach often results in suboptimal performance, mainly
because of node embeddings not being cluster-oriented, i.e., designed for a specific clustering task.
There exists a gap between node embeddings and clustering [1–3].

Heterogeneous graph structures are widely used to model complex relationships between entities
in different domains, such as social networks [4–6], and other domains [7–10]. Figure 1 illustrates a
heterogeneous graph composed of three node types (author, paper, conference), three types of edges
(red = author wrote a paper, green = conference included the paper, blue = two papers cited each other),
and two types of meta-paths (Author–Paper–Author = two authors who wrote are co-authors, Paper–
Conference–Paper = two papers included in the same conference). Owing to the diverse types of nodes
and edges, complex semantic relationships, etc., attempts to apply many existing graph clustering
algorithms directly to heterogeneous graphs face challenges [11–15].

Addressing the complex characteristics of heterogeneous graphs and the shortcomings of two-
step clustering, we propose a one-step clustering method for heterogeneous graphs. First, this
method utilizes meta-paths to extract semantic relationships in heterogeneous graphs and assumes
independence between each meta-path to decompose the complexity of the heterogeneous graph.
Second, it maximizes the joint probability of meta-paths and nodes and derives an optimization
objective, namely, the evidence lower bound (ELBO), using variational methods. Finally, it
continuously optimizes its own parameters using backpropagation and reparameterization techniques
to minimize the optimization objective and achieve clustering effects. Experiments on multiple real
heterogeneous datasets demonstrate that the proposed method is competitive with existing methods.

Figure 1. Academic heterogeneous network containing three types of nodes and three types
of edges. Different combinations of nodes and edges constitute different meta-paths on the
right side, each representing a different meaning.
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2. Related work

2.1. Graph clustering method based on homogeneous graphs

Homogeneous graphs contain only one type of nodes and edges, and most early graph clustering
methods were developed for homogeneous graphs. For example, early walk-based methods [16, 17]
captured structural similarities by walking and then learning node embedding by language models.
They had scalability, but could not exploit the properties of nodes. With the development of deep
learning in recent years, graph neural networks have also developed rapidly [18–20]. There have
been many studies of graph neural networks with a framework of auto-encoders. For example, graph
auto-encoders are widely used in various fields, since they extend auto-encoders to graph structures,
which achieve graph embedding by reconstructing the graph structure. Variational graph auto-encoders
represent a further improvement by introducing hidden embedding to obtain node embedding by
optimizing the ELBO [21]. Salehi and Davulcu [22] reconstructed the node features and graph structure
by stacking multiple encoders with attention while reversing the encoders in the decoding phase. Graph
contrastive learning is a typical approach to learning graph embedding by maximizing the mutual
information between the graph-level representation and the node representation [23]. However, all the
above methods first obtain the node embedding and then perform clustering using traditional algorithms
such as K-means, and thus they are not clustering-oriented. Many current studies have been concerned
with joint optimization of the learning graph embedding and graph clustering [2,24,25] by reducing the
distance between the constructed auxiliary distributions. However, in a recent study [26], it was found
that with such a self-supervised strategy, the problem of distribution drift arose, leading to performance
degradation.

2.2. Graph clustering method based on heterogeneous graphs

Heterogeneous graphs have multiple types of nodes and edges, containing rich structural and
semantic information. Early approaches to heterogeneous graph clustering captured semantic
information through meta-path walking [11, 27, 28]. In the context of graph neural networks, many
heterogeneous graph clustering studies have been based on meta-paths [29–31]. Fu et al. [30] added
virtual edges based on meta paths directly to the original graph to capture latent semantic information.
Zheng et al. [31] showed that previous studies on heterogeneous graphs, in which the direct fusion of
individual meta-paths ignored the incompatibility of different meta-paths, made it difficult to reflect the
true relationship between nodes. However, meta-paths are a priori knowledge and need to be selected
by experts, which will consume a considerable amount of human resources. With the development
of graph contrastive learning, there have been a number of attempts to apply this to heterogeneous
graphs [32–34], with the node embedding being obtained by maximizing the mutual information
between the graph-level representation and the node representation. Again, most of these methods
require clustering using classical algorithms. Perossi et al. [16] combined variational and contrastive
modules to learn clustering-oriented node embedding from heterogeneous graphs. However, this
method is parameter-sensitive and requires time-consuming pretraining.
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2.3. Limitations of previous methods and the contributions of our proposed method

Graph clustering methods have been extensively studied in both homogeneous and heterogeneous
graph settings, each of which has its own unique challenges and limitations. The most significant
limitation is the lack of direct optimization methods for the clustering process, particularly in the
case of heterogeneous graphs with complex heterogeneous relationships. In our proposed method, we
are able to jointly learn the representations of nodes and optimize the clustering process directly for
heterogeneous graphs, rather than splitting them into two separate steps. This approach eliminates the
gap between the two processes.

3. Preliminaries

This section introduces some definitions and notation used in the rest of the paper.

Definition 1. Heterogeneous graph. A heterogeneous graph is defined as G = (V, E, A,R, ϕ, β), where
V and E are the sets of nodes and edges, respectively, A and R are the sets of node-types and edge-
types, respectively, ϕ : V → A is a node-type mapping function, β : E → R is a edge-type mapping
function, and the inequality |A| + |R| > 2 is satisfied.

Definition 2. Meta-path. A meta-path of length m is usually defined as the following sequence of

forms: A1
R1
−→ A2

R2
−→ · · ·

Rm−1
−→ Am, where Ai ∈ A and Ri ∈ R. It describes the combinatorial relation

R1 ◦ R2 ◦ · · · ◦ Rm−1 from A1 to Am, where ◦ denotes the constituent operation or relation.

For example, Figure 1(c) contains two kinds of meta-paths

Author
Write
−→ Paper

Write−1

−→ Author (APA),

Paper
Publish
−→ Conference

Publish−1

−→ Paper (PCP).

Different meta-paths contain different semantic relations, and in our later sections we will use these
meta-paths to encode node embedding. In this paper, Mm denotes the mth meta-path, and Mm

i j represents
the connection relationship between node i and node j of the mth meta-path. X and Em denote the input
features of the nodes and the edge sets of the mth meta-path.

4. Our method

This section details our proposed method. In Section 4.1, we derive the objective function (4.12) by
maximizing log p(M, X), for which several assumptions will be utilized. In Sections 4.2 and 4.3, we
focus on presenting the specific implementations of each component of the objective function (4.12).
For instance, we employ graph neural networks to realize the expression zm

i ∼ q(zm
i |X,M), and provide

a concrete implementation of the use of a discrete uniform distribution as the distribution of p(ci).

4.1. Derivation of the objective function

The random variables zi and ci denote the latent embedding and cluster assignment, respectively, of
node xi, and zi is constituted by zm

i in each meta-path. A node xi corresponds to a continuous latent
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embedding zi and a discrete cluster ci, where the latent embedding zi is related to the latent embedding
in the m meta-paths, i.e., zi = [z1

i , z
2
i , . . . , z

m
i ]. The maximum log-likelihood of M and X is given by

log p(M, X) = log
∫ ∑

c

p(X,M,Z, c) dZ, (4.1)

where Z = [z1, z2, . . . , zN], c = [c1, c2, . . . , cN]. Equation (4.1) indicates that the data distribution in
higher dimensions can be handled by Z and c. To solve for this log-likelihood, we use the variational
posterior q(Z, c | X,M) to automatically learn the latent embeddings Z and c. Then, we use Jason’s
inequality:

log p(M, X) = log
∫ ∑

c

p(X,M,Z, c)
q(Z, c | X,M)

q(Z, c | X,M) dZ

= log
[
Eq(Z,c|X,M)

p(X,M,Z, c)
q(Z, c | X,M)

]
≥ Eq(Z,c|X,M) log

[
p(X,M,Z, c)
q(Z, c | X,M)

]
= Llow(M, X). (4.2)

After the ELBO has been obtained, a Bayesian approach will be used to factorize it:

p(X,M,Z, c) = p(c)p(Z | c)p(X,M | Z, c). (4.3)

This represents a generative process, picking a clustering c from the distribution P(c), sampling the
latent embedding Z by c, and then reconstructing the node features and the connection relationship
between nodes. Meanwhile, q(Z, c | X,M) is decomposed into q(Z | X,M)q(c | Z) to obtain the ELBO:

Llow(M, X) = − Eq(Z|M,X)[DKL(q(c | Z) ∥ p(c))]
− Eq(c|Z)[DKL(q(Z | M, X) ∥ p(Z | c))]
+ Eq(Z,c|M,X)[log p(X,M | Z, c)]. (4.4)

To decompose this equation, we make several assumptions:

1) The variables zm
i | ci are i.i.d.

2) The variables ci are also i.i.d.
3) p(X,M | Z, c) satisfies a mean field distribution and can therefore be decomposed into p(X,M |

Z, c) = p(M | Z, c)p(X | Z, c), where p(X | Z, c) = p(X | Z).
4) Each meta-path Mm is independent of the others, and the generation of Mm

i j is related to zm
i , zm

j ,
ci, c j. That is, the reconstruction of the mth meta-path is related to the latent embedding and the
clustering under the meta-path.

Under these four assumptions and the decomposition process corresponding to Eq (4.3) is as follows:

p(c) =
N∏

i=1

p(ci), (4.5)

Electronic Research Archive Volume 32, Issue 4, 2772–2788.



2777

p(Z | c) =
N∏

i=1

p(z1
i , z

2
i , . . . , z

m
i | ci) =

N∏
i=1

∏
m

p(zm
i | ci), (4.6)

p(M | Z, c) =
∏

m

∏
(i, j)∈Em

p(Mm
i j | z

m
i , z

m
j , ci, c j), (4.7)

p(X | Z) =
N∏

i=1

p(xi | zi). (4.8)

The nodes in different meta-paths are independent, and the latent embedding zm
i of each meta-path

satisfies a Gaussian distribution. We need to determine the parameters of the posterior distribution
q(zm

i | X,M):

q(Z | X,M) =
N∏

i=1

q(zi | X,M), (4.9)

q(zi | X,M) =
∏

m

q(zm
i | X,M), (4.10)

q(zm
i | X,M) = N

(
zm

i | µ
m
i , diag(δm,2

i )
)
. (4.11)

The parameters µm
i and δm

i are the mean and variance of the Gaussian distribution of the node vi in the
mth meta-path. They can be obtained by using any suitable graph neural network, such as RGCN [35]
or HGAT [36].

By decomposing Eq (4.4) using Eqs (4.5)–(4.11), we finally arrive at the following objective
function, which is the ELBO:

Llow(M, X) ≈ −
N∑

i=1

DKL
(
q(ci | zi) ∥ p(ci)

)
−

N∑
i=1

∑
m

DKL
(
q(zm

i | X,M) ∥ p(zm
i | ci)

)
+
∑

m

∑
(i, j)∈Em

log p(Mm
i j | z

m
i , z

m
j , ci, c j)

+

N∑
i=1

log p(xi | zi). (4.12)

The ELBO contains four parts. The first part ensures that the predicted distribution approximates the
prior distribution p(c), which can be specified by a human. The second part ensures that zm

i aligns
with the distribution of ci, and has a clustering effect. The third part ensures that the reconstruction of
the connection relationship of meta-paths by nodes and clusters preserves as much information about
the graph as possible. The fourth part corresponds to the reconstruction of the initial nodes’ features
through the nodes.

4.2. Implementation of zm
i ∼ q(zm

i | X,M)

In this subsection, we provide a suitable graph neural network for specific implementation. Given
the connection relation Mm

i j between nodes vi and v j of the meta-path, to use this information more
efficiently, we construct a series of neural networks f m(X,M) ∈ f (X,M) for each meta-path.
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4.2.1. The graph neural network f m(X,M) corresponding to q(zm
i | X,M)

The neural network f m(X,M) embeds high-dimensional data into low-dimensional data. Inspired
by [29], for f m(X,M), we use node-level encoders taking account of the heterogeneous graph G. We
suppose that the input features xm

i , x
m
j ∈ Rdin of node vi and v j and the output features hm

i , h
m
j ∈ Rdout .

The correlation between nodes vi and v j at the mth path Mm is given by

em
i j = σ(Vm

s Wmxm
i + Vm

r Wmxm
j ), (4.13)

where Wm ∈ Rdout×din , Vm
r ∈ Rdout , and Vm

s ∈ Rdout are the trainable parameters at the node-level encoder.
Note that the correlation between node v j and node vi is different, and the node-level attention preserves
the asymmetry of the heterogeneous graph. To normalize em

i j, we use the softmax function as the
normalization function:

αm
i j =

exp(em
i j)∑

l∈Nm
i

exp(em
il )
, (4.14)

where Nm
i denotes the neighboring nodes of node vi in the meta-path Mm, including itself. For the

meta-path Mm, the latent embedding of node vi generated by the encoder f m(X,M) is as follows:

hm
i =
∑
j∈Nm

i

αm
i jW

mxm
j . (4.15)

This encoder is able to capture the semantic information of the corresponding meta-path. So far, we
have used a node attention-based graph neural network structure to embed the high-dimensional node
information of each meta-path into the continuous feature space.

4.2.2. Obtaining zm
i with f m(X,M)

With this graph neural network f m(X,M), the mean µm
i and variance δm

i of the Gaussian distribution
can be calculated. In other words, we utilize f m(X,M) to obtain µm

i and δm
i . We then obtain zm

i using
the following reparameterization trick:

zm
i = µ

m
i + δ

m
i ∗ ϵ, µm

i , δ
m,2
i ∼ f m(X,M), (4.16)

where ϵ is sampled from the standard Gaussian distribution.

4.3. Determining the distribution

For each term in Llow(X,M), we need to determine the distribution in order to calculate the value.

4.3.1. Distribution of p(ci), q(ci | zi)

We choose the discrete uniform distribution as the distribution of p(ci). For the posterior distribution
q(ci | zi), we first sum z1

i , z
2
i , . . . , z

m
i to obtain zi, and we then use the softmax function to obtain the

distribution. In inference, we use q(ci | zi) to obtain the cluster assignment of node vi:

q(ci | zi) = softmax(zT
i W + b), (4.17)

zi = mean(z1
i , z

2
i , . . . , z

m
i ), (4.18)

where W ∈ Rdout×K and b ∈ RK are the learnable parameters, and K is the size of the clustering.
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4.3.2. Distribution of p(zm
i | ci)

Given the number of clusters K, we introduce the clustering embedding {gm
1 , g

m
2 , . . . , g

m
K}, g

m
K ∈ Rdout .

We choose p(zm
i | ci = k) to be a Gaussian distribution with mean gm

k and variance 1:

p(zm | ci = k) = N(zm
i | g

m
k , 1). (4.19)

4.3.3. Distribution of p(Mm
i j | z

m
i , z

m
j , ci, c j)

p(Mm
i j | zm

i , z
m
j , ci, c j) is a Bernoulli distribution that is modeled to maximize the probability of

reconstructing the mth meta-path connectivity relationship. It is related to the latent embedding of the
current node z and the cluster c:

p(Mm
i j | z

m
i , z

m
j , ci = L, c j = R) = Ber(µm

i j), (4.20)

µm
i j =
σ
(
(gm

L )T zm
j
)
+ σ
(
(gm

R )T zm
j
)

2
. (4.21)

The reconstruction function makes similar nodes more similar, and σ is the sigmoid function.

4.3.4. Distribution of p(xi | zi)

The variable xi | zi satisfies a Gaussian distribution whose mean is related to zi and whose variance
is a constant. The zi = [z1

i , z
2
i , . . . , z

m
i ] and zm

i of different meta-paths are independent of each other, and
so

p(xi | zi) = N
(
xi | µi, diag(δ2

i )
)
, (4.22)

µi =
∑

m

∑
j∈Nm

i

αm
i j(W

m)T zm
i , (4.23)

δ2
i = C, (4.24)

where C is a constant, and αm
i j and Wm are the attention score and parameter matrix, respectively, of

f m(X,M).
Finally, in order to make our proposed method more accessible to readers, we have added the

Pseudocode Algorithm 1 for Eq (4.12).

5. Experiments

In this section, we validate our model with three public datasets and compare it with other methods.
The experimental results show the superiority of our method.

5.1. Datasets

The following datasets are used:

• ACM: This dataset collects papers (P), authors (A), and subjects (S) from KDD, SIGMOD,
SIGCOMM, MobiCOMM, and VLDB as nodes. The keywords of the paper are taken as its
feature and the research area as its label, such as data-mining, database, and wireless. We use
meta-paths PAP and PSP in the model.
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Algorithm 1 Algorithm to implement Eq (4.12)
Input: node features matrix X, set of adjacency matrices corresponding to m meta-paths M =

[M1,M2, . . . ,Mm], set of edges of m meta-paths E = [E1, E2, . . . , Em]
Output: loss used for training Loss

1: Initialize z← [01, . . . , 0m] ▷ initialize m 0 to store the result of q(zm | M, X).
2: Initialize temp kls← [01, . . . , 0m]
3: Initialize αs← [01, . . . , 0m] ▷ store the attention scores of f m(M, X).
4: Initialize graph encoders f 1(X,M), f 2(X,M), . . . , f m(X,M)
5: Initialize structure loss← 0
6: Initialize trainable parameters W f , Wc, bc, uy ▷ uy is the randomly initialized embedding of cluster

centers, which will be optimized during training.
7: for k in 1, 2, . . . ,m do
8: µk, δk,2, αk ← f k(M,X)
9: zk ← µk ∗ ϵ + δk, ϵ ∼ N(0, 1)

10: temp kl← −1
2 log δk,2 + 1

2∥z
k − uy∥2

11: update the 0k in z to zk

12: update the 0k in temp kls to temp kl
13: update the 0k in αs to αk

14: end for
15: f eature loss← MSE

(∑m
k=1
∑

j∈Nk
i
αk

i j(W
k
f )

T zk
i ,X
)

▷ to calculate log p(xi | zi) in Eq (4.12)
16: y← softmax

(
(Wc)T z + bc

)
▷ implement q(ci | zi) in Eq (4.17)

17: cat loss← reduce mean
(
y ∗ log(y)

)
▷ to calculate DKL

(
q(ci | zi) ∥ p(ci)

)
in Eq (4.12)

18: kl loss← reduce mean(y ∗ temp kls) ▷ to calculate DKL
(
q(zm

i | X,M) ∥ p(zm
i | ci)

)
in Eq (4.12)

19: for k in 1, 2, . . . ,m do
20: for connected nodes (i, j) in Ek do
21: obtain prediction results L and R for i and j through y.
22: obtain clustering center embeddings gk

L and gk
R for L and R through uy.

23: obtain embedding representations zk
i and zk

j for i and j through z.

24: structure loss+ =
σ
(
(gk

L)T zk
j
)
+ σ
(
(gk

R)T zk
j
)

2
▷ to calculate log p(Mm

i j | z
m
i , z

m
j , ci, c j) in

Eq (4.12)
25: end for
26: end for
27: Loss = cat loss + kl loss − structure loss + f eature loss
28: Back-propagate Loss to update parameters in graph encoders, W f , Wc, bc and uy.

• DBLP: This dataset contains papers (P), conferences (C), and authors (A) in several fields of
computer science. Researchers are labeled into four fields: database, data mining, machine
learning, and information retrieval. Authors are featured as their keywords. We use meta-paths
APC and APCPA in the model.
• FreeBase:This dataset contains four types of nodes: movie (M), actor (A), director (D), and

producer (P). The movie genres are classified as Action, Comedy, and Drama, which are also
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used as the labels. We use meta-paths MAM and MDM in the model.

5.2. Baselines

We compare common cluster methods on graphs:

• KMeans [35]: This is awidely used clustering algorithm. In this paper, we use node features as
its input.
• MetaPath2Vec [11]: This method obtains the embedding of a node by randomly walking the

specified meta-path on a heterogeneous graph and then making the neighboring nodes more
similar by using a language model.
• GAE [21]: This method is an auto-encoder on the graph, which obtains node embedding by

reconstructing the adjacency matrix of the graph.
• VGAE [21]: The method is a variational auto-encoder on the graph, where the embedding

of the nodes is obtained by introducing the maximum log-likelihood of the latent embedding
optimization.
• HGATE [29]: This method models the relationship between meta-paths and nodes by introducing

an attention mechanism and reconstructing node features to obtain embeddings of nodes.
• HDGI [32]: This is an extension of contrastive learning on heterogeneous graphs, which

decreases the similarity of negative sample pairs and increases that of positive sample pairs to
obtain the embedding of nodes.
• HeCo [36]: This extracts node embedding from the network structure and meta-path perspectives

on the basis of traditional graph contrastive learning.
• VACA-HINE [3]: This also involves joint learning of clustering with contrastive learning.

However, it mainly focuses on learning embeddings.

5.3. Experimental setup and metrics

For the models in the baseline, we perform several experiments and take the best results on each
dataset. Our model sets the hidden layer dimension 100 on the DBLP dataset and 128 on the ACM
and FreeBase datasets, while setting the learning rate to 0.01, 0.03, and 0.01 respectively. The Adam
optimizer is used for optimization. Similar to VAE and VGAE, our method also suffers from posterior
collapse. Therefore, to avoid this, we add batch normalization to the model to increase its stability [37].
Compared with other one-step heterogeneous graph clustering methods [16, 38], our method does not
require any pretraining, which increases its range of applicability. The overall code is implemented
using the DGL framework.

We use several commonly used clustering metrics to validate our results on the datasets: accuracy
(ACC), normalized mutual information (NMI), F-score (F1), and adjusted Rand index (ARI).
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(a) (b) (c)
Figure 2. Iterations of objective function, accuracy, and NMI values of our model on three
datasets: (a) ACM; (b) DBLP; (c) FreeBase. At the beginning, the values fluctuate, but as
the training proceeds, they become smoother until convergence is attained.

Table 1. Experimental results.

K-means MP2Vec GAE VGAE HGATE HDGI HeCo VaCA Our

DBLP

ACC 0.381 0.920 0.794 0.878 0.874 0.860 0.892 0.923 0.925
NMI 0.111 0.758 0.523 0.680 0.676 0.650 0.701 0.764 0.765
ARI 0.670 0.806 0.529 0.714 0.714 0.691 0.751 0.806 0.820
F1 0.313 0.915 0.788 0.870 0.838 0.846 0.882 0.916 0.920

ACM

ACC 0.562 0.648 0.847 0.730 0.830 0.767 0.856 0.855 0.857
NMI 0.281 0.378 0.588 0.475 0.600 0.480 0.597 0.604 0.577
ARI 0.219 0.302 0.585 0.389 0.547 0.433 0.606 0.608 0.610
F1 0.582 0.663 0.854 0.754 0.841 0.781 0.851 0.855 0.860

FreeBase

ACC 0.443 0.539 0.523 0.479 0.540 0.518 0.544 0.629 0.631
NMI 0.001 0.185 0.141 0.114 0.188 0.126 0.185 0.188 0.190
ARI 0.001 0.149 0.135 0.105 0.144 0.136 0.201 0.215 0.218
F1 0.205 0.424 0.505 0.453 0.407 0.495 0.449 0.507 0.497

5.4. Experimental results

Figure 2 shows the iterations of the objective function, accuracy, and NMI values during the training
process. As the number of iterations increases, our method positively influences the embedding space
to enable embedding and clustering to be closely linked. Table 1 gives the experimental results of the
different model methods on three public heterogeneous graph datasets. For both two-step methods, we
use the K-means algorithm as the final clustering method. From the table, we can see that our method
is superior in most of the metrics, while noting that the heterogeneous graph algorithm is generally
better than the homogeneous graph algorithm. For the ACM dataset, MetaPath2Vec performs poorly,
with drops of 20.9%, 19.9%, 30.8%, and 19.7% in the metrics compared with our model. This is
because node features have a stronger influence in the ACM dataset, while metapath2vec only utilizes
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the structural features of the graph. At the same time, our method considers the structural features of
the graph and the node features, thus giving it an advantage. The results on the FreeBase dataset show
that our method significantly outperforms the suboptimal methods in terms of ACC, NMI, and ARI by
8.7%,0.2%, and 6.9%, respectively, which confirms the effectiveness of our method. Compared with
the GAE, VGAE, and HGATE models, which aim at reconstructing features, our method outperforms
GAE and VGAE on several datasets because (1) it uses the semantic information of meta-paths and (2)
it uses an attention mechanism to capture the correlation between nodes. Our method performs better
than HGATE with respect to most metrics, mainly because we jointly optimize the cluster process
and representation learning, which improves the clustering performance. From an analysis of HeCo
and HDGI based on contrastive learning, it is found that the main difference is that HeCo completes
contrastive learning from two perspectives, namely, that of the heterogeneous graph network structure
and that of the meta-path, whereas HDGI only uses the meta-path perspective. The results show that
HeCo outperforms HDGI on all datasets, which proves that the network structure information of the
heterogeneous graph is beneficial to obtaining the representation of nodes to complete the clustering
task. All of the above methods are two-step clustering methods, whereas our proposed method is able
to jointly learn node representation and clustering. The benefit of this is that our model learns the
node representation in a clustering-oriented way and thus gives better results than the other methods in
clustering tasks. Figure 2 demonstrates the ability of our method to converge in the clustering task.

Figure 3. ARI values of different encoders.

Figure 4. NMI values of different encoders.
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Figure 5. DBLP data clustering process.

(a) Kmeans (b) GAE

(c) VaCA-HINE (d) Our Method

Figure 6. Visualization of nodes using different methods.

5.5. Performance of different encoders

In this paper, zm
i is obtained through f m(X,M), and different models can be chosen for implementing

f m(X,M). We compare GCN, GAT, GraphSAGE, and our method. From Figures 3 and 4, it can
be observed that in terms of the ARI and NMI clustering metrics, the scores of GCN, GAT, and
GraphSAGE are all lower than those of our method, owing to its ability to preserve the asymmetry
of heterogeneous graphs. The performance of the GCN model is only slightly lower than that of our
method, which may be because the distribution of node features in this dataset may be more suitable
for GCN’s linear feature aggregation approach. If the relationships between node features are linear,
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GCN can more effectively capture these relationships, leading to better performance. However, if the
relationships between node features are nonlinear, GAT might be more suitable, owing to its more
flexible mechanism for nonlinear feature aggregation. GraphSAGE is designed specifically for large-
scale graph structures, incorporating node sampling. However, when dealing with smaller graphs,
node sampling can lead to information loss. Therefore, on the three datasets, the performance of the
GraphSAGE model is comparatively inferior.

5.6. Visualization

To obtain an intuitive understanding of how our method correctly groups nodes into the appropriate
clusters, we visualize the clustering process of our method. Figure 5 shows a scatter plot on the DBLP
dataset after we have used principal component analysis (PCA) to reduce the dimensionality, with
different colors representing different clusters. From Epoch 0, it can be seen that the data points are
cluttered when the clustering process has not yet been run. With training, the data points in different
colors are gradually separated. From Epoch 20, data of different clusters have separated and moved far
apart. Data points of the same color are denser, indicating that the clustering process clusters the data
to a good state. Figure 6 illustrates the final clustering results from several methods. It can be observed
that our method yields the best clustering results, with distinct separation between different clusters
and closer proximity within the same cluster. On the other hand, the results of the other methods
exhibit overlapping nodes from different clusters, a phenomenon less prevalent in our method. This
visualization further validates the superiority of our approach.

6. Conclusions

In this paper, we have proposed a one-step clustering method for heterogeneous graphs to address
their complex features and the shortcomings of two-step clustering. First, this method extracts
semantic relationships from a heterogeneous graph using meta-paths and assumes independence
between each meta-path to decompose the complexity of the graph. Second, it maximizes the joint
probability of meta-paths and nodes and derives an optimization objective, namely, the evidence
lower bound (ELBO), using variational methods. Finally, it continuously optimizes its parameters
using backpropagation and reparameterization techniques to minimize the optimization objective and
achieve clustering effects. Experiments on multiple real heterogeneous datasets demonstrate the
competitiveness of the proposed method compared with existing methods. In the future, we will
explore a one-step heterogeneous graph clustering method that does not require meta-paths.
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