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Abstract: Point-of-interest (POI) recommendation has attracted great attention in the field of 

recommender systems over the past decade. Various techniques, such as those based on matrix 

factorization and deep neural networks, have demonstrated outstanding performance. However, these 

methods are susceptible to the impact of data sparsity. Data sparsity is a significant characteristic of 

POI recommendation, where some POIs have limited interaction records and, in extreme cases, 

become cold-start POIs with no interaction history. To alleviate the influence of data sparsity on 

model performance, this paper introduced FAGRec, a POI-recommendation model based on the 

feature-aware graph. The key idea was to construct an interaction graph between POIs and their 

initial features. This allows the transformation of POI features into a weighted aggregation of initial 

features. Different POIs can share the learned representations of initial features, thereby mitigating 

the issue of data sparsity. Furthermore, we proposed attention-based graph neural networks and a 

user preference estimation method based on delayed time factors for learning representations of POIs 

and users, contributing to the generation of recommendations. Experimental results on two 

real-world datasets demonstrate the effectiveness of FAGRec in the task of POI recommendation. 

Keywords: POI recommendation; data sparsity; cold-start POI; feature-aware graph; graph neural 

network 

 

1. Introduction  

Point-of-interest (POI) recommendation [1] is one of the most important applications in 
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location-based social networks [2]. The goal of POI recommendation [3,4] is to recommend POIs to 

users based on their historical visits and interests. Understanding users’ interest preferences and 

implementing precise recommendation [5] services can greatly enhance the user experience on social 

platforms, bringing substantial economic value to the platform. Therefore, in the past decade, many 

researchers have devoted themselves to constructing powerful models for POI recommendation. 

Unlike traditional recommendation tasks [6], in POI recommendation, user behavior is heavily 

influenced by the contextual environment. For example, users often go to restaurants during 

mealtime, so recommending a restaurant during these times is highly likely to meet their needs. 

Additionally, a POI recommendation needs to consider the practical cost of a user’s actual visit, 

namely the distance traveled. Recommending POIs that are too far from the current location is 

meaningless because users cannot realistically reach those recommended locations. Therefore, 

existing POI-recommendation methods focus on modeling user preference features from the intricate 

contextual environment. 

Popular techniques include topic models, graph embedding models, and graph neural networks. 

The key idea of topic model-based methods is to map users’ historical visitation behaviors into a 

topic space, enabling a better understanding and prediction of user interests. These techniques 

capture the semantic information hidden behind user behaviors, thus enhancing the accuracy of POI 

recommendations. On the other hand, graph embedding or graph neural network–based methods aim 

to learn representations of users and POIs from the constructed graph. Since the check-in records of 

users could be naturally transformed into graph-like data, graph-based methods have achieved 

remarkable performance for the POI-recommendation tasks. 

Despite the impressive performance of existing recommendation models, they require a 

substantial amount of data for training model parameters. However, this may be challenging to fulfill 

in practical application scenarios, as user behavior records are often extremely sparse in real-world 

situations. This poses a significant challenge known as the data sparsity problem in recommendation 

systems. Additionally, due to the particularities of the POI-recommendation scenario, user check-in 

records may become even sparser due to privacy concerns and other overhead issues. This implies 

that POI recommendation faces a more severe issue of data sparsity. In extreme cases, this can lead 

to the cold-start problem, which involves recommending a new POI where there is limited or no 

historical data available. 

Traditional approaches to this challenge primarily involve content-based methods or generative 

models such as generative adversarial networks (GANs). For example, Chen et al. [7] introduced 

ColdGAN, a method that utilizes GANs’ data generation prowess to handle uncertain data effectively. 

However, the reliance on generative model-based methods necessitates the incorporation of extra 

architectural components, leading to an inevitable increase in model complexity. This situation 

prompts the question: Is it possible to tackle the cold-start problem for POIs without resorting to 

additional models? 

To tackle this question, in this paper, we propose a novel approach, the feature-aware graph 

attention network for POI recommendation (FAGRec). The core idea of this method is to construct a 

feature-aware graph, which connects POIs to features. In other words, we view the representations of 

POIs as weighted combinations of various features. This allows the learning of user and POI 

representations to be transformed into the learning of feature representations. Based on the 

constructed graphs, we introduce an attention-based graph neural network. Since the constructed 

graphs are of the bipartite type, the aggregation process of the proposed graph neural network is 
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unidirectional and aggregates features only from the odd-hop neighborhoods. This characteristic 

ensures that the model can adequately learn the feature representations of users and POIs from the 

constructed graphs. Moreover, we develop a time-delay-based approach to capture dynamic user 

preferences. The main advantage of FAGRec is that it does not require additional auxiliary models to 

increase the training effect. 

The contributions are summarized as follows: 

• We develop a new method, FAGRec, to address the data sparsity problem in the field of 

POI-recommendation tasks without additional auxiliary models. 

• FAGRec introduces a novel feature-aware graph to describe the relations of POIs and initial 

features, which is beneficial for learning representations for other POIs that share similar features. 

• We conduct extensive experiments on two real-world datasets. The experimental results 

show the effectiveness of our proposed method on the POI-recommendation task. 

2. Related work 

In this paper, we review recent studies from two perspectives: methods for POI 

recommendation and methods for cold-start issue. 

2.1. Methods for POI recommendation 

Recently, various techniques have been developed to improve the performance of the 

POI-recommendation task. Zhang et al. [8] proposed context-enhanced probabilistic diffusion, which 

integrates contextual information into a probabilistic diffusion process to generate effective POI 

recommendations in sparse data environments. Rahmani et al. [9] emphasized the importance of 

appropriately selecting and combining various contextual factors that can significantly impact POI 

recommendation performance, quantifying the impact of different contextual information. Ji et al. [10] 

introduced a probabilistic generative model, STARec, which focuses on activities. STARec defines 

users’ social preferences separately from individual interests, combining both to accurately depict user 

preferences and model the inconsistency between social preferences and decisions. Sun et al. [11] 

proposed the STSP with category- and location-aware encoders for users, enhancing the next POI 

prediction by fusing rich context features.  

Besides these efforts, Chen et al. [12] proposed a POI-recommendation method to incorporate 

time and distance irregularities and dynamic weight decay values in the learning process. The 

awareness weights provide an interpretable way to understand the emphasis on each context in the 

prediction. Sey et al. [13] incorporated social, geographical, and temporal information into the matrix 

factorization (MF) model to overcome data sparsity. Liu et al. [14] employed a spatial-temporal 

heterogeneous information network (HIN) to jointly model various context features, including 

spatiotemporal effects, POI types, and social relations. HIN defines a spatial-temporal effects entity 

(St) and utilizes a four-way neural interaction model to effectively mine information from 

meta-path-based context and spatiotemporal effects, resulting in improved recommendation 

performance. Liu et al. [15] introduced a novel ensemble learning framework called PG-PRE, which 

constructs multiple similar user groups using a roulette selection–based sampling method, improves 

diversity, and combines recommendations using a Gaussian mixture–based approach. Wang et al. [16] 

proposed VirHpoi, a heterogeneous hypergraph embedding method for POI recommendation that 
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leverages the hypergraph to capture complex interactions and learns the hypergraph by preserving 

homophily and interaction attribute affinity. Qin et al. [17] introduced a disentangled representation 

learning method that employs a geo-constrained negative sampling strategy to find reliable negative 

samples and a geo-enhanced soft-weighted loss function to quantify the trade-off between 

geographical and user interest factors. 

Different from previous POI methods, our proposed method introduces a new concept named 

feature-aware graph, which captures the interactions between POIs and features. This merit allows 

the proposed method to alleviate the impact of the cold-start issue. 

2.2. Methods for cold-start issue 

Here, we also introduce recent efforts for addressing the cold-start issue in the field of 

recommender systems. Puthiya et al. [18] proposed a novel soft-cluster embeddings approach that 

represents items as soft-cluster embeddings in the space defined by associated side information. Li et 

al. [19] proposed the conversational Thompson sampling model, which aims to address this 

limitation by unifying attributes and items in the same arm space, automatically achieving 

exploration-exploitation trade-offs using Thompson sampling. Qian et al. [20] developed an 

attribute-graph neural network framework that leverages the attribute graph instead of the interaction 

graph, allowing it to learn embeddings for strict cold-start users or items. Zhang et al. [21] proposed 

a FINI framework that incorporates a global-local context attention mechanism for dynamic feature 

importance and a mixed interaction mechanism to enhance weighted neighbor interactions. The key 

idea of FINI is to strengthen the expressive capability of user/item embeddings and improve the 

quality of the mapping function for cold-start scenarios. Wu et al. [22] proposed a new method called 

UIMA, which addresses this problem using zero-shot learning principles. UIMA includes two 

auto-encoders for learning user and item embeddings and a matching network to explore the 

relationship between these embeddings. Cai et al. [23] developed the IHGNN model, which converts 

new users, items, and associated multimodal information into a modality-aware heterogeneous graph, 

preserving rich and heterogeneous relationship information. Rehman et al. [24] proposed CAML, 

which leverages meta-learning and incorporates contextual features to enhance tasks’ adaptation 

capabilities. The key idea of CAML is to introduce a data augmentation unit that uses a hybrid 

similarity to augment data samples from similar neighbors. 

Though many efforts have been undertaken for the cold-start problem, they have rarely been 

designed for POI recommendation. In this paper, we develop a novel solution for overcoming the 

cold-start issues in the field of POI-recommendation tasks. 

3. Preliminaries 

In this section, we introduce the notations and basic neural networks used in this paper. 

3.1. Notations 

Here, we first introduce several definitions of this paper.  

Definition 1. (POI) A POI represents a place with a certain function, such as a restaurant for 

food and a cinema for movies. Here, we use y to represent a POI and use Y  to represent the POI 
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set. Each POI has the location information, which is represented by ly in this paper. 

Definition 2. (Check-in record) A check-in record represents one user’s check-in behavior. We 

use ( , , )uc y l t=  to represent a check-in record of user u , where y denotes the checked POI, l  

denotes the location, and t  denotes the check-in timestamp. Also, we use uC that denotes all 

check-in records of user u . 

Definition 3. (Cold-start POI) A cold-start POI means the corresponding item has very less or 

no interactions. In this paper, we regard a number of interactions less than five as the cold-start POI. 

Definition 4. (POI latent graph) A POI latent graph ( , )y y yG V E=  represents the latent graph 

of POIs. vG  is a bipartite graph where | | | | | |v

vV Y D= + . | |Y  denotes the POI set and | |vD  

denotes the dimensions of the POI features. The goal of vG  is to model the interactions between 

POIs and features. vG  treats each dimension of the POI features as the independent node. This way, 

the POI features can be regarded as the combination of a series of feature nodes. 

Definition 5. (Top- k POI recommendation) Given the check-in history of a user uC , the goal 

of the Top- k  POI recommendation is to generate a POI-recommendation list 
1{ ,..., }R

kY Y Y=  that 

the target user may have interest to check in. 

Notations are summarized in Table 1. 

Table 1. Summarization of notations. 

Notations Description 

y, Y a POI, a POI set 

ly the location of POI y 

u, U a user, a user set 

t the check-in timestamp 

Cu all check-in records of user 

Gy the POI latent graph 

XY
i the initial features of POI 

HY, HU the representations of POIs and users 

3.2. Graph attention network 

Graph attention network (GAT) is a popular architecture of graph neural networks. GAT 

leverages the attention mechanism to learn the aggregation weights and aggregate the information 

from the neighbor nodes. The calculation of the aggregation weights in GAT is as follows: 

                       
exp(( || ) )

exp(( || ) )
k i

a

i j

ij a

i j

v N

a



=


H H W

H H W
,                                  (1) 

where ,i jH H  are the representations of the corresponding nodes. ||  denotes the vector 

concatenation operation. 
a

W  is the learnable parameter matrix. 
ija  denotes the aggregation 

weights. Then, GAT adopts the following aggregation operation to collect information from 
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neighbors: 

        
j i

out

i ij j

v N

a


= H  H ,                              (2) 

where out

iH  denotes the output of the node i . 

4. Methodology 

In this section, we introduce the detailed designs of the proposed method FAGRec. Specifically, 

we first introduce how to construct the POI latent graphs according to the known information. Then, 

we introduce the GAT-based neural network, which could effectively learn the representations of 

users and POIs. Finally, we introduce how to use the proposed method to generate the 

POI-recommendation list. 

4.1. Latent graph construction 

The key problem of cold-start POI recommendation is to calculate the representations of POIs 

even with no interactions with users. So, the crucial step is to establish the connections between known 

POIs and cold-start POIs. In this paper, we address this problem by designing a POI latent graph.  

Suppose a POI iy with the associated feature vector 1 d

i

X  that has d-dimensional features; 

we attempt to generate a graph to reflect the relations of the target POI and the corresponding 

features. In practice, we obtain the initial features of the nodes through random initialization. Hence, 

we construct vG  for this purpose. For a POI iy , we treat a POI and each dimension of the feature 

vector as nodes on vG . This way, we have d + 1 nodes on the graph. Further, we generate d edges 

between the POI node and each feature node. Then, for the POI node 
iyv and the feature node 

jdv , 

the weight of the edge between the above nodes is 
ij

X , which denotes the relevance of the target 

POI to the specific feature. For the feature nodes, we generate the corresponding feature matrix to 

represent their hidden features 
'F d dX . In this way, the hidden feature can be calculated as 

follows: 

j i

Y F

i ij j

v N

w


= X  X                                 (3) 

where 
ijw  denotes the edge weight between POI node and the corresponding feature node. Y

iX

denotes the hidden feature of POI iy  calculated by the associated feature vectors. 
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Figure 1. The toy example of constructing the latent graph. 

The advantage of transforming into the graph-style data is that it allows us to calculate the 

features of POIs based on the associative relationships between POIs and the initial features. This 

requires training only the representation vectors of the feature nodes. For the representation vector of 

a POI node, it can be calculated through weighted aggregation. This way, for a cold-start POI, it is 

only necessary to identify its initial features, and its representation vector can be quickly computed 

from the constructed graph, thereby addressing the POI cold-start problem. 

4.2. Attention-based graph neural network 

After constructing the graph, we need to design a neural network module to learn the 

representations of POIs from the constructed graph. In this paper, we build a graph neural network 

framework based on GAT for the constructed graph. Its key idea is to utilize information from 

odd-order neighborhoods to learn the representation of POIs. 

Specifically, we first utilize Eq (3) to obtain the initial feature vectors of POIs. Then, we design 

the following attention-based neural network to learn the representations of POIs: 

2 1

1
k

j i

Y F

i ij j

v N
k


 +

=  H  H                               (4) 

where Y

iH and F

jH  are the hidden representations of POI node i and the feature node j. In practice, 

we use two linear layers to obtain the above representations based on the initial features of the POI 

node and the feature node. k denotes the neighborhood range. 1
k

 denotes topology-aware 

aggregation weights, which means that nodes in a large range of the neighborhood will contribute 

less to the final representations than those in the local neighborhood. Hence, the proposed method 

can effectively preserve the topology information during the aggregation process. 
ij  is learnable 

aggregation weight, which is calculated as follows: 
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tanh(( || ) )Y F a

ij i j = H H W .                              (5) 

Similar to the calculation of GAT shown in Eq (1), we also adopt the projection layer to learn 

the aggregation weights between nodes. However, different from the attention mechanism in GAT, 

we utilize the tanh( )  function to generate the attention weights between nodes. The advantage of 

this strategy is that tanh( )  can generate signed attention weights. Since neighbors in the large-range 

neighborhood can contain irrelevant feature nodes for POI nodes, the generated signed attention 

weights can help the model to learn distinguishable representations from these irrelevant nodes. 

4.3. User representation generator 

After obtaining representations of POIs via the developed attention-based graph neural network, 

we need to estimate the representation of users. In real-world scenarios, user preferences change over 

time. Aggregating the representations of POIs that a user has visited directly through summation is 

insufficient to capture the dynamic changes in user preferences. Therefore, we employ a 

time-delay-based approach to estimate the user preferences.  

The key idea of the time-delay-based approach is to define the time-delay coefficients that are 

used to estimate the dynamic user preference. In this paper, we develop the following strategy to 

calculate the user preference via the checked POIs based on the time-delay coefficients: 

0

( , )

exp( ( ))
q

i i

U Y

q i i

y t C

t t


= − − H  H ,                            (6) 

where it  denotes the check-in timestamp of POI iy by the user q. 0t  is the current timestamp. 

0exp( ( ))it t− −  is the time-delay coefficient, which means that the impact of POI on user preferences 

diminishes as the check-in records for the POIs become more distant, while the influence increases 

for more recent check-in records. 

By calculating time-delay coefficients based on user check-in times, we ultimately compute the 

user’s representation using a weighted sum method depicted in Eq (6). 

4.4. POI-recommendation generator 

After obtaining the representations of the user and the POI, the final step of RAGRec is to 

generate POI recommendations for users based on the learned representations. The key step of 

generating the POI-recommendation list is to estimate the recommendation scores of POIs for the 

target user. Traditional strategies directly calculate the similarity scores of POIs and the target user 

via the learned hidden representations. However, these strategies ignore the influence of the 

geographical factor. One of the biggest differences between POI recommendation and traditional 

item recommendation is that the user must afford the cost of visiting the recommended POI. Hence, 

recommending faraway POIs to the target user is unadvisable and unreasonable. This situation 

motivates us to consider the geographical factor in estimating the recommendation scores of POIs. In 

this paper, we introduce the geographical information to generate the recommendation score. For the 

target user q, the recommendation score of POI iy  is calculated as follows: 
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max ( )
i

i

u U Y

y q i

y

d
s

d

=   H H ,                              (7) 

where 
i

u

ys  denotes the recommendation score of POI iy  for the user q. 
iyd  denotes the distance 

between the POI and the current location of the user. maxd  is the threshold of the geographical 

distance. Considering the actual circumstances, we have set maxd  to 60 km, which happens to be a 

one-hour drive. max

iy

d

d
 is the geographical factor, which controls the influence of the geographical 

distance on the recommendation suggestions. If the distance between the target user and the POI is 

larger than maxd , the geographical factor will weaken the recommendation score of the POI.  

4.5. Model parameter learning 

As for model parameter learning, we adopt the widely used BPR loss function in the field of 

recommender systems. For applying BPR loss to learn the model parameters, we construct the 

training samples, which contain three elements ( , , )i jq y y . ,i jy y  denotes the POIs that appear and 

do not appear in the check-in history of user q . Following this strategy, we can construct the set of 

training samples tD . Then, the loss function of FAGRec is as follows: 

2

FAGRec

( , , )

ln( ( )) || ||
t

i j

U Y U Y

q i q j

q y y D

Loss    



= −  −  + H H H H ,              (8) 

where ( )   denotes the nonlinear activation function.   is the regularization coefficient and   

denotes the model parameters. By minimizing Eq (8), the SGD technique can be used for learning 

the model parameters. As for the computational complexity, the main training cost of FAGRec is 

learning representations of POIs from the feature-aware graph. Suppose the number of edges in the 

generated graph is | |E , and the total computational cost is (| | )O E d , where d  is the dimension of 

the representations. The overall framework of FAGRec is shown in Figure 2. 

 

Figure 2. Overall framework of FAGRec. 
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5. Experiment 

In this section, we first present the experimental setup of this paper including datasets, baselines, 

and parameter configurations. Then, we report the experimental results, containing model 

performance comparisons, sparsity analysis, parameter sensitivity analysis, and ablation studies. 

5.1. Dataset 

Here, we adopt two widely used datasets extracted from real-world applications: Gowalla and 

Foursquare. Each dataset contains the check-in records of all users. We reorder all check-in records 

of users according to the check-in timestamp. Each check-in record in the dataset contains four 

elements: the user, the POI, the location information, and the check-in timestamp. We choose the 

early 80% check-in records as the training set, the next 10% as the validation set, and the last 10% as 

the test set. Detailed information of the above datasets is reported in Table 2. 

Table 2. Statistics of datasets. 

Dataset #users #POIs #records density 

Gowalla 3,318 33,665 635,600 0.3% 

Foursquare 10,180 16,561 867,107 0.15% 

5.2. Baselines 

In this paper, we adopt the following seven representative baselines for comparison: 

POI2Vec [25]: POI2Vec is a latent representation model based on knowledge graph, which 

hierarchically divides POIs into various regions, employing a binary tree structure to capture 

check-in sequences along with location and temporal information. 

TMCA [26]: TMCA is a framework employing an LSTM-based encoder-decoder architecture 

that integrates multi-level contextual factors, incorporating temporal information. 

STAN [27]: STAN is a method based on attention mechanisms, which explicitly incorporates 

spatial-temporal correlations within a trajectory. 

SAE-NAD [28]: SAE-NAD is the autoencoder-based method that comprises a self-attentive 

encoder and a neighbor-aware decoder. 

STACP [29]: STACP utilizes the matrix factorization to model user preferences on geographical 

and temporal factors. 

LGLMF [30]: LGLMF leverages matrix factorization techniques that utilize geographical 

information to harness a user’s personal geographic profile. 

CPIR [31]: CPIR also is a matrix factorization–based method that adopts the matrix 

factorization strategy to calculate the similarity of users and POIs. 

SLS-REC [32]: SLS-REC utilizes the hypergraph neural network to learn user preferences 

based on users’ check-in behaviors in short-term dynamic interests. 

SGM-GCN [33]: STACP constructs various subgraphs to capture the influence of different 

contextual factors and further leverages graph neural networks to learn user preferences.  
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5.3. Parameter settings 

Here, we detail the parameter settings of experiments. For each baseline, we adopt the official 

implementation in their homepage. For our proposed FAGRec, we try the dimension of the hidden 

representation in {64,128,256}, and the learning rate in {0.01,0.005,0.001}. Moreover, we leverage 

the grid search to determine the optimal values of hyperparameters. The implementation is based on 

Python 3.6. All experiments are conducted on a personal computer with one Intel 13900K CPU, 64 

G RAM. 

5.4. Performance comparison 

In this paper, we adopt two popular metrics, @Hits k  and MRR , to evaluate the performances 

of all methods. @Hits k  is used to measure whether the recommended POI appears in the target 

user’s check-in records. MRR  is used to represent the average reciprocal rank of positive examples, 

serving as a metric that indicates the model’s overall ranking ability. The calculation of each 

evaluation metric is as follows: 

                          
# @

@
| |test

Hit k
Hits k

D
=                              (9) 

                        
| |

1

1 1

| | ( )

testD

test
i i

MRR
D rank Y=

=                          (10) 

where @Hit k  denotes the true checked POI appearing in the recommendation list. ( )irank Y  

denotes the rank of the checked POI in the recommendation list. testD  denotes the test set. 

We run each model five times with different random seeds and report the average values of each 

metric on two datasets. The results are shown in Tables 3 and 4. 

Table 3. Performances (%) of all methods on the Gowalla dataset. 

Methods Hits@5 Hits@10 Hits@20 MRR 

SAE-NAD 10.52 11.34 12.12 8.25 

STACP 11.68 15.61 16.68 9.98 

LGLMF 12.14 15.75 16.79 10.21 

CPIR 13.54 17.96 21.15 11.28 

POI2Vec 15.63 18.96 23.65 12.75 

TMCA 17.85 21.11 24.14 13.52 

STAN 18.68 22.86 28.34 14.65 

SLS-REC 18.24 21.58 25.68 13.74 

SGM-GCN 18.52 22.49 26.95 14.21 

FAGRec 20.01 24.85 31.21 16.13 

From the experimental results in the table, we have the following observations: First, methods 

based on matrix factorization perform the worst. This is because matrix factorization is highly 

sensitive to data sparsity, and in real-world scenarios, data sparsity is high, making it challenging to 

adequately support the operations of matrix factorization. Second, our proposed method achieves the 
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best performance under various evaluation metrics on both datasets, especially compared to the 

advanced graph-based POI-recommendation approaches SLS-REC and SGM-GCN. This experiment 

validates the effectiveness of our proposed approach in real-world application scenarios. Third, it is 

worth noting that all methods exhibit weaker results on Foursquare compared with Gowalla. This is 

attributed to the higher sparsity of the Foursquare dataset, as evident from statistical analyses of the 

datasets. This further confirms that data sparsity significantly influences the model’s performance.  

Table 4. Performances (%) of all methods on the Foursquare dataset. 

Methods Hits@5 Hits@10 Hits@20 MRR 

SAE-NAD 11.28 12.35 13.84 9.15 

STACP 12.74 13.54 15.68 9.65 

LGLMF 13.52 15.24 18.01 10.41 

CPIR 13.98 16.52 19.24 10.68 

POI2Vec 15.03 17.55 21.35 12.01 

TMCA 16.85 18.72 22.36 12.62 

STAN 18.21 21.32 24.67 14.65 

SLS-REC 17.34 20.67 23.96 13.85 

SGM-GCN 18.36 21.54 25.12 14.96 

FAGRec 19.32 23.21 26.75 15.68 

5.5. Study of data sparsity  

To verify the model’s performance in the face of adversarial data sparsity, we adjusted the 

number of cold-start POIs in the dataset. Specifically, for each dataset, we randomly selected a 

certain proportion of nodes in the test set, deleted their associated records with users, and then 

observed the performance of each method on these datasets. The experimental results are shown in 

Figures 3 and 4. 

 

Figure 3. Performance of each model under different ratios of cold-start POIs on Gowalla. 
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Figure 4. Performance of each model under different ratios of cold-start POIs on Foursquare. 

The experimental results from two datasets indicate that our approach exhibits better 

performance in addressing adversarial data sparsity issues. This is attributed to our utilization of 

graph-structured features to depict the associative relationships between interest points and features. 

The data in the form of this graph structure is more adept at capturing the latent representations of 

POIs, leading to improved performance when confronted with data sparsity challenges. 

5.6. Parameter sensitive analysis 

In this section, we explore the impact of propagation steps on the model’s performance. 

Propagation steps determine the range of aggregated neighborhood information. A larger propagation 

step implies aggregating information from a larger neighborhood. While obtaining more crucial 

information, it also introduces more noise. To investigate the influence of propagation steps on the 

model’s performance, we conducted a performance analysis for different propagation step values, 

and the results are depicted in Figures 5 and 6. We observe that, on both datasets, a larger 

propagation step leads to a significant decrease in the model’s performance, aligning with our initial 

hypothesis. Additionally, we note that the optimal propagation step required on Gowalla is smaller 

than that on Foursquare, which is attributed to the denser nature of the Gowalla dataset. 

 

Figure 5. Performance of FAGRec under different propagation steps on Gowalla. 
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Figure 6. Performance of FAGRec under different propagation steps on Foursquare. 

5.7. Ablation study 

Here, we develop experiments to analyze the gains of the time-delay-based approach used in 

learning user performance. Specifically, we develop a variant of FAGRec, named FAGRec-m, which 

uses the average aggregation strategy to calculate user preferences. Then, we run two models on all 

datasets, and the results are shown in Tables 5 and 6. 

The experimental results reveal that the performance of FAGRec-m is inferior to FAGRec on 

both datasets, validating the effectiveness of our design. Additionally, it is evident that the impact of 

this design is more pronounced on the Foursquare dataset. This is attributed to it being sparser than 

Gowalla, with fewer check-in records per user. Consequently, it exhibits higher sensitivity to the time 

factor. Our proposed method excels at incorporating temporal factors to calculate user preferences, 

making it more advantageous on the Foursquare dataset. 

Table 5. Performances (%) of FAGRec and its variant on Gowalla. 

Methods Hits@5 Hits@10 Hits@20 MRR 

FAGRec-m 18.69 23.15 29.98 15.23 

FAGRec 20.01 24.85 31.21 16.13 

Table 6. Performances (%) of FAGRec and its variant on Foursquare. 

Methods Hits@5 Hits@10 Hits@20 MRR 

FAGRec-m 17.39 20.96 23.15 13.65 

FAGRec 19.32 23.21 26.75 15.68 

6. Conclusions 

In this paper, we propose the FAGRec model to alleviate the impact of data sparsity on 

POI-recommendation models. Specifically, the FAGRec model constructs a feature-aware graph to 

model the relationships between POIs and each feature. This enables the effective representation of 

the association between POI representations and initial features. Through the constructed graph, the 

representation of POIs can be viewed as a weighted sum of initial features. Thus, for newly emerging 
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POIs, their latent features can be well represented based on the distribution of initial features. 

Furthermore, we introduce an attention-based graph neural network model to learn the 

representations of POIs and initial features from the constructed graph. In terms of learning node 

representations, we employ a time-delayed computation method to capture dynamic changes in user 

preferences. We conducted extensive experiments on two real datasets, and the results demonstrate 

the effectiveness of our approach in POI-recommendation tasks.  

As mentioned before, the main advantage of FAGRec is that it deeply captures the interactions 

between POIs and their semantic features. This allows the model to alleviate the impact of the 

cold-start issue, since the representations of new POIs can be learned according to the relations of 

features via the feature-aware graph. The main limitation of FAGRec is that it only leverages the 

naïve graph neural network architecture, which may be inefficient in learning complex relations 

between POIs and feature elements. Hence, the promising way to enhance the FAGRec is to 

introduce advanced GNNs to learning informative representations from the constructed 

feature-aware graph. 
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