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Abstract: In this paper, an accurate fractional physical information neural network with an adaptive 

learning rate (adaptive-fPINN-PQI) was first proposed for solving fractional partial differential 

equations. First, piecewise quadratic interpolation (PQI) in the sense of the Hadamard finite-part 

integral was introduced in the neural network to discretize the time-fractional derivative in the Caputo 

sense. Second, the adaptive learning rate residual network was constructed to keep the network from 

being stuck in the locally optimal solution, which automatically adjusts the weights of different loss 

terms, significantly balancing their gradients. Additionally, different from the traditional physical 

information neural networks, this neural network employs a new composite activation function based 

on the principle of Fourier transform instead of a single activation function, which significantly 

enhances the network’s accuracy. Finally, numerous time-fractional diffusion and time-fractional 

phase-field equations were solved using the proposed adaptive-fPINN-PQI to demonstrate its high 

precision and efficiency. 

Keywords: adaptive learning rate; time-fractional partial differential equations; physical information 
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1. Introduction  

In recent years, the search for high-precision numerical solutions of differential equations has 

been the focus of scholars’ research [1–3]. The non-locality and memory of fractional calculus make 

it better to describe complex practical problems; so, many scholars have done a lot of research on the 

problem and applied it to various practical mathematical physics problems [4–9]. Since obtaining 

analytical solutions of fractional differential equations is a challenging task, numerical methods for 

solving fractional differential equations have drawn extensive attention. At present, a series of effective 

numerical methods have been developed for solving fractional differential equations, such as the finite 

difference method [10,11], the finite element method [12,13], the spectral method [14,15], and the 

meshfree methods (MFMs) [20–22]. In [16], it was introduced the finite difference method to deal 

with time and space problems. A first-order finite difference (L1) of the time discretization scheme 

was presented by Langlands and Henry [17]. Lin et al. [18] introduced an improved numerical method 

that uses a finite difference scheme for time discretization and the Legendre spectral method for space 

discretization. Deng [19] studied the finite element method (FEM) of fractional Fokker–Planck 

equation. In recent years, MFMs have become increasingly popular in solving practical engineering 

problems by reducing the dependence on grids [20–22]. Recently, Li et al. [23] proposed a new meshless 

numerical method called the finite integral method (FIM) to approximate one-dimensional problems. 

The FIM of Hadamard fractional derivative has received extensive attention [24]. Li et al. [25] proved 

that the FIM has high stability, efficiency, and accuracy when solving multi-dimensional problems. 

Deep learning has grown in popularity as a numerical technique for solving integer-order partial 

differential equations. Numerous models based on data-driven deep neural networks (DNNs) have 

been proposed for partial differential equations [26–32], which only utilize information from observed 

data. Wang et al. [33] combined the residual neural network with the data-driven method to solve the 

high-dimensional problem efficiently. Yohai et al. [34] introduced a data-driven discretization scheme 

that uses neural networks to estimate spatial derivatives and perform end-to-end optimization of spatial 

derivatives. However, data-driven networks are unable to solve the issue with only physical constraints 

since they need a large amount of labeled data. Given the limitations of data-driven networks, one kind 

of neural network incorporating physical information has been developed. The networks have 

demonstrated powerful capabilities in solving partial differential equations and have received 

extensive attention [35–40]. At present, neural network technologies for solving classical partial 

differential equations are developing and showing promising results in practical applications [41–48]. 

Lin and Chen [49] proposed two physics-informed neural network (PINN) schemes based on the Miura 

transform. They introduced Miura transform constraints into neural networks to solve nonlinear partial 

differential equations and achieve unsupervised learning. Pu and Chen [50] obtained the data-driven 

vector local waves of the Manakov system with initial and boundary conditions by improving the 

output function and the number of physical constraints of the physical information neural network and 

using the local adaptive activation function of neurons and the slope recovery term. Because the 

automatic differentiation function used in the PINNs cannot be implemented for solving fractional-order 

problems, the construction of a stable and efficient neural network for solving fractional-order partial 

differential equations has become a hot research topic in deep learning. Fractional PINNs (fPINNs) [51] 

used the L1 scheme to discretize the time-fractional derivative. Rostami [52] implemented a series 

expansion as a substitute solution, enabling more accurate resolutions of high-order linear fractional 

partial differential equations (FPDEs). Wang et al. [53] combined fractional-order physical information 
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with the nonlinear function of neural networks to improve the modeling and solving effect of temporal 

fractional-order phase-field models. 

The classical first-order finite difference (L1) scheme for discretizing the fractional derivative 

exhibited good stability and numerical accuracy. However, due to its low convergence order, it may 

require more grid nodes to obtain the same numerical precision as higher-order difference schemes. 

The piecewise quadratic interpolation (PQI) in the sense of the Hadamard finite partial integral 

proposed by Li et al. [54] has higher convergence, which can improve the precision of the predicted 

solutions and enhance the efficiency of the model. 

In this paper, the fractional derivative of time is discretized using PQI rather than L1 as in fPINN. 

The higher-order discretization scheme causes the residual loss of the governing equation to decrease 

rapidly, resulting in a more accurate solution. In order to address the gradient imbalance of different 

loss terms in PINN and fPINN, the adaptive learning rate is proposed in the loss function, which can 

effectively keep the network from failing in the local optimal solution and significantly enhance its 

trainability, convergence, and accuracy. Furthermore, a new composite activation function is designed, 

greatly improving the precision of the destruction solution. 

The rest of the paper is organized as follows. In Section 2, the precise format of the fractional 

differential equation is given, including the governing equation, initial condition, and boundary 

conditions. In Section 3, the techniques used to construct the proposed adaptive-fPINN-PQI 

framework are introduced in detail, including the formula of PQI discretization scheme, the principle 

and formula of the adaptive learning rate, the architecture of the network, and the components of the 

composite activation function. In Section 4, intensive numerical examples are conducted to 

demonstrate the excellent performance in accuracy and efficiency of the adaptive-fPINN-PQI. Some 

conclusions about the adaptive-fPINN-PQI are drawn in Section 5. 

2. Time-fractional equation 

In this paper, we consider the following form of time-fractional partial differential equation: 

0 ( , ) ( , ) ( , ), , [0,T],C

tD u t Lu t f t t − =                            (2.1) 

where ( )0 ,C

tD u t  is the fractional derivative of ( ),u t  with respect to time t under the Caputo 

definition,   is the order of the derivative,  0,1  . L  represents a differential operator. 

The initial condition can be written as 

1( ,0) ( ), ,u g=                                      (2.2) 

where 1( )g  is a given function of the space. 

The boundary condition can be expressed in detail as follows 

2( , ) ( ), , [0,T],u t g t=                                  (2.3) 

where    is the boundary of    and 2 ( )g   is given for the well-posed time-fractional partial 

differential equations. 
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3. Methodology 

Physics-informed neural networks (PINNs) [35] incorporate the partial difference equations into 

the loss function as a penalty term, enabling the network to learn the hidden information in the physical 

equations. However, for partial difference equations, any order derivative of space and time can be 

easily derived using automatic differentiation of networks, whereas the fractional derivative is not 

feasible in calculation. Therefore, a variety of difference schemes are tried in PINNs to approximate 

the time-fractional differential operators. 

 

Figure 1. Network structure of PINNs [35]. 

3.1. Time discretization 

The fractional derivative is defined in Caputo sense by [58] 

'

0
0

1
( ) ( ) ( ) , 0 1, 0,

(1 )

t
c

tD f t t x f t dx t  


  


            (3.1) 

where Γ represents the Gamma function and α is the time-fractional derivative. 

The interval [0, T] is divided uniformly into nodes 0 = t0 < t1 < t2 < ... <t2s < t2s+1 < ... < 2 =
TNt T , 

in which s and NT denote position integer. When t = t2s, according to the first-order finite difference 

method in the sense of the Caputo fractional derivative, the fractional derivative can be evaluated as 

follows: 
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where if  represents ( )if t , t  is the size of time step, and 

1 1

,2

1
[( 1) ]

(2 )
i s i i 



− −= + −
 −

 

For time dependent 
2

ˆ ( , ) d

sf t  , Eq (3.2) can be further written as: 

2

0 2 ,2 2

0

ˆ ˆ( , ) ( , ),
s

c

t s k s s k

k

D f t t f t  −

−

=

=                        (3.3) 

where ,2 k s  is evaluated using 

0,2

,2 ,2 1,2

0,0

,

, 2

2,

s

k s k s k s

k = 0,

0 < k < s,

k = s.


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

−



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


 

In the piecewise quadratic form, the Riemann-Liouville fractional derivative [58] is first used 

0
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t
c d
Df t t x f t dx t
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 


   


              (3.4) 

and in the sense of Hadamard finite-part integral, the fractional-order integral discretization scheme 

within the interval [a, b] can be defined [55] 
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in which 
1
( , )

 −
R t a  is evaluated using 

1
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 is the Hadamard finite-part integral and    is the maximum operator. In Hadamard finite-part 

integral sense, the Riemann-Liouville fractional derivative in Eq (3.1) becomes [55]: 
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( ) ( ) ( ) .

( )
tD f t t x f t dx 


                       (3.6) 

Based on the PQI polynomial on Eq (3.2), we have 
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  , (3)f̂  is the third derivative, and C is a finite constant. The 

weights ,2k s , k = 0, 1, 2, ..., 2s, s = 1, 2, ..., NT have the form of 

,2

,2 , 1, 2,..., 2 ,
(3 )

k s

k s k s


= =
 −

                          (3.8) 

where 

2

2

0

,2 1

2 0

2 (2 ), for 0,

2 ( ), for 1,

1
(2) (2 ) , for 2,

2

( ), for 2 1, 2,3,..., ,

1
( ( ) ( 1)), for 2 , 2,3,..

2

k s

k

k

W k

W m k m m s

W m W m k m m













−

−

−

−                    =

−                      =

+         =

= −                          = − =

+ +    = =

2

., 1,

1
( ), for 2 .

2

s

W s k s








    

 −


                          =


 

in which ( )iW k  and ( , )iV k  are evaluated separately using 
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When T is set as 1, we have 2

2

2
s

T T

s s
t

N N
= = . The Riemann-Liouville fractional derivative is 

transformed into the fractional derivative in Caputo sense. 
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3.2. The adaptive learning rate 

In our work, the time-fractional differential operators are approximated using the PQI discrete 

form, which is then integrated into the loss function of fPINNs [51], whose network structure is shown 

in Figure 2. 

 

Figure 2. Schematic of fPINNs proposed in [51]. 

The PQI scheme is used to discretize the fractional derivative, which can be written as: 

2

2 ,2 2

0

( , ) ( , ),
s

t s k s s k

k

D u t u t  −

=

=                           (3.10) 

where   can be calculated using Eq (3.9).  

Then, by substituting Eq (3.10) into Eq (2.1), we obtain 

 
2

,2 2

0

( , ) ( , .) ( , ), 0,
s

k s s k

k

tu t Lu t f t −

=

  =+                     (3.11) 

Hence, the loss function is defined as the mean-squared error (MSE) of the residual loss term, 

boundary loss term, and initial loss term. 
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where λb and λi represent the adaptive learning rate of the boundary loss term and the initial loss term, 

respectively, and θ is the network parameters including the weights and biases, which are updated and 

iterated using the gradient descent method: 

1 ( ) ( ( ) ( ) ( )),
i bn n n r u uL L L L           + = −  = −  +  +             (3.13) 

where η is the learning rate, ( ), ( ), ( )
i br u uL L L        denotes the gradient value of the residual 

loss term, boundary loss term, and initial loss item. 

The coefficients of different loss terms for both standard PINNs and fPINNs are often fixed at 1, 

as shown in Figures 1 and 2. However, due to the gradient imbalance of different loss terms, the 

network easily falls into the local optimum because it pays too much attention to the boundary 

condition, initial condition, or governing equation. To illustrate the issue, we conduct a two-

dimensional time-fractional diffusion equation given in Example 2 as an example, which is solved by 

the fPINNs. The loss function of the network is shown in Figure 3(a), where the loss value of the initial 

loss term decreases greatly, while the loss values of the boundary loss and residual loss terms remain 

steady, which results in sluggish convergence or deviation from the optimal solution due to the fixed 

learning rate. 

  

(a) (b) 

Figure 3. (a) Two-dimensional time-fractional diffusion equation in Example 2 is solved 

by fPINNs with the fixed weights of different loss terms: Lr represents residual loss and 

Lbcs and Lics indicate boundary loss and initial loss, respectively; (b) two-dimensional time-

fractional diffusion equation in Example 2 is solved by fPINNs with the weights with 

adaptive learning rates of different loss terms. 
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Hence, we introduce an adaptive weight parameter to mitigate the gradient imbalance between 

( )rL  , ( )
iuL  and ( )

buL  , which is defined as 

0,| ( ) ( ) ( ) |
i i b br u u u uL L L           −  −                     (3.14) 

and 

| ( ) | | ( ) |
,

| ( ) | | ( ) |i b

i b

r r
u u

u u

L L

L L

 
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 
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 
=   =

 
                        (3.15) 

where | ( ) |, | ( ) |   
ir uL L   and | ( ) |

buL    denote the gradient mean of residual loss term, 

boundary loss term, and initial loss term with respect to parameters θ, respectively. When 

max | ( ) |

| ( ) |i

i

r
u

u

L

L











=


 and 

max | ( ) |

| ( ) |b

b

r
u

u

L

L











=


, it is more conducive to training. 

Dynamic weights are assigned to the boundary loss term and initial loss term adaptively according 

to gradient statistics, so they can alleviate the imbalance gradient of these terms to ensure that the 

network pays attention to all the loss terms in backpropagation. We introduce the idea of adaptive 

learning rate into fPINNs and apply it to solve the 2D time-fractional diffusion equation, as shown in 

Figure 3(b). Through the comparison between Figure 3(a),(b), it is evident that the loss value of the 

boundary loss item decreases obviously due to the adaptive learning rate. 

3.3. The composite activation function 

Tanh activation function is widely used by neural networks to solve partial differential equations, 

and its effectiveness has been proved in many experiments. In the experiments of this paper, we find 

that the swish activation function also has excellent performance in solving partial differential 

equations. Using Example 2 of 2D time-fractional diffusion equation as an example, a different 

activation function is imposed in the neural network, whose results are recorded in Table 1 and Figure 

4. Swish activation function has more accuracy than the other three activation functions, the second 

being tanh(x). 

Table 1. Comparison of the relative errors of the prediction solutions solved by the 

adaptive fPINN based on PQI with various traditional activation functions. 

  sigmoid tanh softplus swish 

Relative 

error 

2.04×10-3 4.78×10-4 6.78×10-4 5.18×10-5 

Considering the excellent performance of swish activation function, we combine it with a novel 

triangular activation function proposed by authors in [56], which is defined as follows 

( ) (sin cos )x m x x =  +                               (3.16) 

where ( )0 1 ，m  is used to adjust the output range. Through numerous numerical examples, m=0.5 

has proven to be the most effective. 



2708 

Electronic Research Archive  Volume 32, Issue 4, 2699-2727. 

 

Figure 4. Relative errors of the network solutions under traditional activation functions 

for solving the 2D time-fractional diffusion equation. 

The well-known Fourier series expansion is that any periodic function can be decomposed into a 

combination of simple sin and cos functions with different frequencies and amplitudes. Therefore, the 

neural network ( )x  can be considered as a function of a series of triangular function expansion and 

combination, namely 

1

( ) ( ; ) ( ; )
N

n

n

x a x B x 
=

 =                              (3.17) 

( ; )nB x   represents triangular functions that served as the activation function for the first hidden layer, 

and ( ; )a x   represents a set of Fourier coefficients derived from the remaining hidden layers. For the 

neural network, the simpler the learning content, the better the learning impact. The novel triangular 

activation function simplifies a complex function to facilitate machine learning by functioning as the 

Fourier transform. 

We create a composite activation function by combining the newly proposed triangular activation 

function with the typical activation function, allowing the benefits of different activation functions to 

be fully utilized. It is evident from the results in Table 1 that tanh and swish perform better than the 

others. Therefore, the composite activation function employs the proposed triangular activation 

function in the first hidden layer and tanh activation function or swish activation function in the 

remaining hidden layers. 

In this activation function setting, the 2D time-fractional diffusion equation is also conducted to 

compare the efficiency of the composite function activation along with the single triangular activation 

function. Each group of experiments was calculated 10 times in a 3-200-200-200-200-200-200-1 

neural network. The number of iterations for each operation was 60,000 times. The experimental 

results come from the average of 10 test results, which are shown in Table 2. The best combination is 

the triangular activation function and the swish activation function, which is chosen for the following 

numerical examples. 
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Table 2. Comparison of the relative errors of the prediction solutions solved by the 

adaptive fPINN based on PQI using different activation function combinations. 

  tanh tanh+triangular swish swish+triangular 

Relative 

error 

4.78×10-4 1.18×10-4 5.18×10-5 1.94×10-5 

3.4. The architecture of adaptive-fPINN-PQI 

ResNet structure [57], shown in Figure 5, can efficiently resolve the problem of gradient 

disappearance in the traditional fully connected neural network (DNN) used in PINNs. In this paper, 

the ResNet block replaces DNN beginning with the second hidden layer to guarantee the 

backpropagation efficiently. 

 

Figure 5. Architecture of ResNet block. 

In conclusion, an adaptive-fPINN-PQI algorithm is put forward that makes use of PQI scheme 

and the composite activation function, together with the Resnet blocks, whose principle is shown in 

Figure 6 and flowchart is shown in Algorithm 1. 

Algorithm 1 Adaptive fPINN neural network with residual blocks (adaptive-fPINN-PQI) 

Input: Space and time variables of PDEs. 

Output: The latent solution u . 

1: discretization: The fractional derivative is discretized into piecewise quadratic 

interpolation scheme. 

2: initialization: Initialize the parameters θ. Then, through the K step of the gradient 

descent algorithm, the parameters are updated as: 

3: for n = 1, 2, 3, ..., K do 

4:   i: Read the loss function L (θ). 

5:   ii: Computer
max {| ( ) |}

, 1, 2,..., .
| ( ) |

r n
i

i n

L
i M

L

 









= =


 

6: iii: Update the parameters λi using a weighted average of the form (1 )i i i   = − +  , The hyper-

parameter is set as α = 0.9. 

7:   iv: Updating the parameters θ with adaptive-fPINN-PQI. 

8: end for 
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Figure 6. Architecture of adaptive-fPINN-PQI for time-fractional equations. 

4. Numerical examples and results 

In this section, intensive time-fractional diffusion equations and time-fractional AC equations are 

conducted to verify the effectiveness of adaptive-fPINN-PQI. In order to evaluate the performance of 

our method, we consider the absolute error 1|| - ||u u , and the relative error is expressed as 2

2

|| - ||

|| ||

u u

u
, 

where u and u  denote the approximated and the exact solutions, respectively. 

All numerical experiments in this paper are carried out on AMD Ryzen 9 5900HS with Radeon 

Graphics 3.30 GHz, RTX3060, memory 16.0 GB, and Windows 11 system. TensorFlow (version 2.13.0) 

is applied for programming utilizing its automatic distinguishing property, and the Adam algorithm is 

used to optimize the loss function. Xavier is employed for the initialization. The learning rate, the 

number of hidden layers, the number of neurons, and the number of iterations of the neural network 

are fixed at 1×10−3, 5200, and 6×104, respectively. In the numerical examples, we will compare the 

results of the proposed adaptive-fPINN-PQI with other models. To objectively quantify the accuracy 

and stability of the neural networks, each model is calculated 10 times and the mean of the errors is 

then obtained. The models involved in all numerical studies are presented in the following. 

•fPINN[51]: fPINNs are an improvement of PINNs, using the mathematical discrete method of 

fractional derivatives to make up for the technical problem that PINNs cannot calculate fractional 

derivatives by automatic differentiation. The loss function in the fPINNs consists of residual loss, 

boundary loss, and initial loss, in which their weights are set at 1. The fractional derivative is 

discretized using the first-order finite difference scheme. Tanh is used as the activation function. 

•adaptive-fPINN: This model introduces Resnet structure and assigns dynamic weights to 

different loss terms in the loss function according to the gradient statistics to alleviate the gradient 

imbalance. The activation function is also changed from a single tanh to a coincidence activation 

function. The first layer of this composite activation function is a triangular activation function 

( 0.5(sin cos )x x+ ), and the remaining layers are swish functions. The other settings are the same as 

the fPINN model. 
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• fPINN-PQI: In this model, the PQI is introduced for the time-fractional derivative. The 

activation function uses the same composite activation function as the adaptive fPINN. The rest of the 

configuration is the same as the fPINN model. 

•adaptive-fPINN-PQI: Compared with the adaptive-fPINN model, the only adjustment of this 

model is that the PQI scheme replaces the L1 scheme as the discretization method of the time-fractional 

derivative. 

4.1. Time-fractional diffusion equations 

( )  

 

0

1

2

, ( , ) ( , ), , 0, ,

( ,0) ( ), ,

( , ) ( ), 0, ,

C

tD u t u t f t t

u g

u t g t

 −  =          

                       =        

                        =          

                    (4.1) 

where   represents the Laplacian operator,  0,1
d

 =  , 1,2,3d =  and    is the boundary of 

 , T is set as 1. 

4.1.1. Example 1. 1D time-fractional diffusion equation 

Consider a 1D time-fractional diffusion equation having the form of Eq (4.1) with the fabricated 

analytical solution 4 2( , ) ( )u x t t x x= − . We can derive the forcing term formula with the form: 

4 2 4(5)
( , ) ( ) 2

(5 )
if x t t x x t



−
= − −

 −
                          (4.2) 

First, Table 3 examines the relative errors of the solutions obtained by different neural networks 

under different α with the time interval of 0.01. It is obviously shown that 1) in general, the proposed 

adaptive model produces more accurate results than other counterparts using the same settings; 2) 

when α is 0.8, the accuracy of the networks using PQI scheme is higher than that of the networks using 

L1 scheme whether adaptive learning rate is employed or not; and 3) when α is 0.2, the accuracy of 

the L1 networks is superior to that of the PQI networks. 

Figure 7(a) displays the distributions of the solutions obtained by the fPINN, adaptive-fPINN, 

fPINN-PQI, and the proposed adaptive-fPINN-PQI when α is 0.8, t  is 0.01, and T is 1. It is clearly 

found that the predicted solutions of the networks utilizing the PQI discretization format accurately 

are in better agreement with the exact solution compared to the L1 discretization format. Figure 7(b) 

is the box diagram of the relative errors of these predicted solutions, which further shows the 

performance of these neural networks. It is obvious that the new model clearly outperforms both in 

terms of convergence and accuracy. 

Then, the evolution process of the loss function in adaptive-fPINN-PQI, as well as those of the 

other models, is analyzed in Figure 8. When comparing Figure 8(a),(c), it is not difficult to find that 

the residual loss under the PQI discrete scheme decreases significantly, which is probably reduced by 

three orders of magnitude. This phenomenon is consistent with the theory of the higher order difference 

property of the PQI scheme, which provides effective experimental evidence and theoretical basis for 

the higher accuracy of our model. In addition, the initial loss term in adaptive-fPINN has a clear 

decreasing trend due to the prominent advantage of adaptive learning rate, observed in Figure 8(a),(b). 
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(a) (b) 

Figure 7. (a) Exact solution and the predicted solutions obtained by various neural models 

for 1D time-fractional diffusion equation at T = 1 after 60,000 iterations; (b) box diagram 

of the relative errors of the solutions by various neural models at 0.8 = . 

  

(a) fPINN (b) adaptive-fPINN 

  

(c) fPINN-PQI (d) adaptive-fPINN-PQI 

Figure 8. Evolution process of the loss function in fPINN, adaptive-fPINN, fPINN-PQI, 

and adaptive-fPINN-PQI. 
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Table 3. The relative error between the predicted and exact solutions obtained using fPINN, 

adaptive-fPINN, fPINN-PQI, and adaptive fPINN-PQI for the 1D time-fractional diffusion 

equation at t = 1. 

  fPINN adaptive-fPINN fPINN-PQI adaptive-fPINN-

PQI 

0.2 1.71×10−3 1.33×10−3 2.30×10−3 1.90×10−3 

0.5 1.79×10−3 1.23×10−3 1.16×10−4 6.73×10−5 

0.8 1.78×10−3 1.15×10−3 1.06×10−5 1.57×10−6 

4.1.2. Example 2. 2D time-fractional diffusion equation 

Consider a 2D time-fractional diffusion equation defined in Eq (4.1) with the fabricated solution 
4 2 2( , , ) ( )( )u x y t t x x y y= − − . The forcing term formula can be deduced as follows: 

4 2 2 4 2 4 2(5)
( , ) ( )( ) 2 ( ) 2 ( )

(5 )
if x t t x x y y t y y t x x



−
= − − − − − −

 −
            (4.3) 

First, the solution error obtained using the proposed neural frame, together with those of the other 

three models for the 2D time-fractional diffusion equation, is listed in Table 4. It is seen that the 

adaptive-fPINN-PQI model stands out clearly, where the PQI discrete format also has a significant 

impact on the solution accuracy for this problem. 

Table 4. Relative error between the predicted and the exact solutions obtained using fPINN, 

adaptive-fPINN, fPINN-PQI, and adaptive-fPINN-PQI for the 2D time-fractional 

diffusion equation at t = 1. 

  fPINN adaptive-fPINN fPINN-PQI adaptive-fPINN-

PQI 

0.2 2.16×10−3 3.76×10−4 2.81×10−3 2.18×10−3 

0.5 2.18×10−3 4.70×10−4 8.43×10−5 2.39×10−5 

0.8 2.02×10−3 3.24×10−4 6.61×10−5 1.94×10−5 

To more intuitively reflect the performance of each model, the abstract point-wise error 

distributions of the four models are plotted in Figure 9. We can observe that the abstract point-wise 

error of the proposed network is the smallest among the four networks. In the problem domain, the 

proposed adaptive-fPINN-PQI agrees well with the exact solution, and its abstract error is clearly 

controlled below 10−7 in contrast to the other models, which perform poorly and have large errors 

distributed throughout the region. On the boundary of the problem domain, the abstract error of our 

model is still controlled in 10−6, despite the fact that its accuracy has decreased, whereas those of some 

other models even approach 10−4. 
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Figure 9. Point-wise error between the exact and predicted solutions of the various neural 

networks under the condition of 0.8 = . 

We also investigated the convergence performance of four models in Figure 10. The maximum 

and minimum values from the 10 experiments are represented by the shadow boundaries, while the 

average is represented by the solid line. It demonstrates that the accuracy of adaptive-fPINN-PQI is 

better than that of the other models. After 30,000 iterations, the shadow width of these models 

gradually decreases, indicating that the network prediction is more and more stable. 

  

Figure 10. Relative errors of the solutions obtained using the four neural networks. 

 

Figure 11. Relative error of adaptive-fPINN-PQI model under various activation functions. 

Finally, the effectiveness of the newly proposed composite activation function is discussed for 
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the 2D time-fractional diffusion equation. Figure 11 plots the relative error of adaptive-fPINN-PQI 

utilizing various activation functions. In comparison to the two traditional activation functions, tanh 

and swish, the proposed composite triangular activation function has a significant impact on enhancing 

the calculation accuracy. Although the result using the suggested composite activation function 

exhibits some fluctuation in error, the maximum error remains one or two orders smaller than its 

counterparts, and the fluctuation becomes less pronounced as the number of iterations increases. 

4.1.3. Example 3. 3D time-fractional diffusion equation 

Consider a 3D time-fractional diffusion equation defined in Eq (4.1) with the fabricated exact 

solution 
4 2 2 2( , y, , ) ( )( )( )u x z t t x x y y z z= − − −  and the forcing term can be written as follows: 

4 2 2 2 4 2 2

4 2 2 4 2 2

(5)
( , ) ( )( )( ) 2 ( )( )

(5 )

2 ( )( ) 2 ( )( )

if x t t x x y y z z t y y z z

t x x z z t x x y y





−
= − − − − − −

 −

               − − − − − −

            (4.4) 

Table 5 presents the relative error of the adaptive-fPINN-PQI for the 3D time-fractional diffusion 

equation defined above, in comparison with the other three models. Among these neural frameworks, 

adaptive-fPINN-PQI turns out to be the most accurate, proving once more how well the proposed 

model performs in terms of precision. 

Table 5. Relative error between the predicted and exact solutions obtained using fPINN, 

adaptive-fPINN, fPINN-PQI, and adaptive-fPINN-PQI for the 3D time-fractional 

diffusion equation at t = 1. 

  fPINN adaptive-fPINN fPINN-PQI adaptive-fPINN-

PQI 

0.2 5.45×10−3 3.19×10−4 6.74×10−4 6.6×10−4 

0.5 3.24×10−3 8.49×10−4 2.34×10−4 9.51×10−5 

0.8 3.13×10−3 2.17×10−4 1.52×10−4 7.35×10−5 

Next, Figure 12 displays the distributions of the abstract errors obtained using the four models 

with α fixed at 0.8. A graph shows that the accuracy of the adaptive-fPINN-PQI model surpasses that 

of the competition models. Positions where the accuracy of these learning models is poor have one 

thing in common: the error is concentrated around the boundary, which is consistent with the way 

numerical computations work. However, the suggested approach is still effective in reducing the 

boundary error and narrowing the error range. 
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Figure 12. Distribution of the absolute errors of four distinct models for the 3D time-

fractional diffusion equation. 

To investigate the learning capability of adaptive-fPINN-PQI, we plot its loss function against the 

number of iterations in Figure 13, along with those of the other models. Generally, all four algorithms 

demonstrate excellent learning efficiency when forecasting the solution of the 3D time-fractional 

diffusion equation. When compared to L1 and PQI schemes, it is clear that the neural network using 

PQI significantly reduces the residual loss. Besides, the adaptive learning rate obviously balances the 

gradient differences of various loss terms, which come from the narrowed shadow width in Figure 

13(b),(d). 

Furthermore, we conducted a comparative analysis of the activation function for the 3D time-

fractional diffusion equation, which is displayed in Figure 14. Among various activation functions, we 

noted that our composite activation functions exhibited superior convergence and stability. Especially 

after 5000 iterations, the conclusion becomes clearer. 
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(a) fPINN (b) adaptive-fPINN 

  

(c) fPINN-PQI (d) adaptive-fPINN-PQI 

Figure 13. Evolution process of the loss function in fPINN, adaptive-fPINN, fPINN-PQI, 

and adaptive-fPINN-PQI for the 3D time-fractional diffusion equation. 

 

Figure 14. Relative error of adaptive-fPINN-PQI model under various activation functions 

for the 3D time-fractional diffusion equation. 
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4.2. Time-fractional AC equation 

 

 

2

1

2

3 0, ,

( ,0) ( ), ,

( , ) ( ), , 0, .

( , ) ( , ),tD u t

u g

u t t

u t g

u u f

t

 − 

 

 − + =      

                            =      

                            =        

                   (4.5) 

where   represents the Laplacian operator,  0,1
d

 = , 1,2d =  and   is the boundary of  , 

besides we fix 1, 1 =  = . 

4.2.1. Example 1. 1D time-fractional AC equation 

Consider the 1D time-fractional AC equation having the form of Eq (4.5) with the fabricated exact 

solution 
2( , ) (1 )sin(2 )u x t t x= +  and the forcing term 

2 2 2

2 2 3

(3)
( , ) sin(2 ) 4 (1 )sin(2 )

(3 )

(1 )sin(2 ) [(1 )sin(2 )]

f x t t x t x

t x t x

   


 

−
= + +

 −

              − + + +

                   (4.6) 

A comparative investigation on the accuracy of four neural models solving the 1D time-fractional 

AC equation is summarized in Table 6. We observed that the accuracy of adaptive-fPINN-PQI and 

fPINN-PQI is one to two orders of magnitude higher than the accuracy of fPINN and adaptive-fPINN, 

which is attributed to the higher-order discrete format. Additionally, the adaptive learning rate in loss 

function causes an order of magnitude increase in the precision of adaptive-fPINN-PQI. 

Table 6. Comparison of the relative errors of the prediction solutions using four networks 

for the 1D time-fractional AC equation when t = 1. 

  fPINN adaptive-fPINN fPINN-PQI adaptive-fPINN-

PQI 

0.2 5.95×10−3 2.36×10−4 1.65×10−4 4.34×10−5 

0.5 3.94×10−3 2.46×10−4 6.85×10−5 7.26×10−6 

0.8 3.85×10−3 2.38×10−4 7.14×10−5 4.32×10−6 

The accuracy and stability of the prediction solutions of the four deep learning networks are 

examined in Figure 15, where the distribution of the solutions is plotted in Figure 15(a) and its box 

diagram is plotted in Figure 15(b). In terms of precision, the adaptive-fPINN-PQI model exhibits the 

best agreement with the exact solution, followed by fPINN-PQI, and fPINN and adaptive-fPINN 

perform worse. It can be observed from the box diagram that the adaptive-fPINN-PQI model has the 

shortest box length among its competitors, indicating that the proposed network is the most stable. 

Experiments are then carried out for the 1D time-fractional AC equation to verify the effectiveness 

of the composite activation function proposed in our study. The results are presented in Figure 16, 

which shows that the composite activation function offers superior prediction accuracy, better 

convergence, and greater stability than the other competitors. 
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(a) (b) 

Figure 15. (a) Difference between the exact solution and the predicted solution of the 1D 

time-fractional AC equation obtained by various models at t = 1 after 60,000 iterations; (b) 

box diagram of the relative errors of the solutions by various models at 0.8 = . 

 

Figure 16. Relative error of adaptive-fPINN-PQI model using various activation functions 

for the 1D time-fractional AC equation. 

4.2.2. Example 2. 2D time-fractional AC equation 

Consider a 2D time-fractional AC equation having the form of Eq (4.5) with the fabricated exact 

solution 
2( , ) (1 )sin(2 )sin(2 )u x t t x y = + , the force term ( , , )if x y t  can be obtained: 

2 2 2

2 2 3

(3)
( , , ) sin(2 )sin(2 ) 8 (1 )sin(2 )sin(2 )

(3 )

(1 )sin(2 )sin(2 ) [(1 )sin(2 )sin(2 )]

−
= + +

 −

                   − + + +

f x y t t x y t x y

t x y t x y

     


   

       (4.7) 

The relative errors of the different neural networks’ solutions are summarized in Table 7. It shows 

clearly that adaptive-fPINN-PQI produces much more accurate solutions, which are one or two orders 
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of magnitude higher than other methods. 

   

(a) fPINN 

   

(b) adaptive-fPINN 

   

(c) fPINN-PQI 

   

(d) adaptive-fPINN-PQI 

Figure 17. Exact solution versus the predicted solution by training different algorithm 

models after 60,000 iterations of gradient descent under the condition of t = 1 for the 2D 

time-fractional AC equation. 
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Table 7. Comparison of the relative errors of the solutions obtained using four neural 

networks for the 2D time-fractional AC equation after 60,000 iterations. 

  fPINN adaptive-fPINN fPINN-PQI adaptive-fPINN-

PQI 

0.2 1.04×10−3 1.65×10-4 3.22×10-4 6.20×10-5 

0.5 8.84×10-4 1.60×10-4 3.31×10-4 2.91×10-5 

0.8 1.25×10−3 1.53×10-4 3.21×10-4 1.85×10-5 

Then, the distributions of the predicated solutions are plotted in Figure 17 to further validate the 

performance of our neural network. In terms of the error in accuracy and distribution, the solution of 

adaptive-fPINN-PQI is the best, followed closely by that of adaptive-fPINN. 

Figure 18 shows the trend of the loss values during the training process of four neural networks. 

We can find that the PQI discrete scheme has a significant effect on reducing the residual loss terms. 

In addition, the PQI format accelerates the convergence of the loss function compared to the format of 

L1, allowing the neural network to learn the governing equation and boundary information more 

thoroughly, thereby improving the predictive accuracy. 

  

(a) fPINN (b) adaptive-fPINN 

  
(c) fPINN-PQI (d) adaptive-fPINN-PQI 

Figure 18. Loss function versus training iterations using different networks with the 

network frame 3-200-200- 200-200-200-1 for the 2D time-fractional AC equation. 

A shadow graph of the relative error of 10 experimental results versus the number of iterations 
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for the 2D fractional AC equation is depicted in Figure 19. The suggested adaptive-fPINN-PQI model 

outperforms the other three models regardless of α value. The PQI discrete scheme overcomes the 

issue in which the residual loss term does not decrease, and the adaptive learning rate balances the 

gradient of different loss terms, resulting in the high precision of adaptive-fPINN-PQI. 

  

Figure 19. Relative errors of the solutions obtained by different models. 

5. Conclusions 

In this paper, an adaptive-fPINN-PQI network is built for solving time-fractional partial 

differential equations. The adaptive learning rate balances the interaction of different loss terms in 

order to solve the local optimal problem in the classical PINN and fPINN. The L1 scheme in fPINN is 

replaced by the higher-order scheme of PQI in our neural network, substantially reducing the residual 

loss term. Additionally, a composite function made up of the triangular activation function and swish 

activation function is more efficient than the tanh function. The numerical examples of time-fractional 

diffusion equations and time-fractional AC equations lead to the following conclusions: 

 The proposed neural network outperforms fPINN in terms of precision, with a potential 

improvement of 1–2 orders of magnitude.  

 The accuracy of the prediction solutions remains steady with the increase of the dimension of 

the problems.  

 Adaptive-fPINN-PQI performs effectively with various time-fractional partial differential 

equations. 

However, the model proposed in this paper is not as effective as the traditional fPINN model for 

the diffusion problem when the α value is small, while this issue does not arise for the phase-field 

problem. Therefore, it is the common goal of researchers to find a model with wider applicability and 

higher accuracy. 

In future work, we will further research the fractional derivatives under different definitions, 

especially to solve the Hadamard-type fractional problems. A breakthrough for fractional-order 

problems is to find a higher-order convergent discrete format, which is a challenge for many 

mathematical researchers. In addition, developing a more widely applicable machine learning model 

for solving fractional-order problems is the focus of our future work. 
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