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Abstract: With the continuous evolution of the coronavirus, the Omicron variant has gradually re-
placed the Delta variant as the prevalent strain. Their inducing epidemics last longer, have a higher
number of asymptomatic cases, and are more serious. In this article, we proposed a nonautonomous
time-delayed susceptible-infected-removed (NATD-SIR) model to predict them in different regions of
China. We obtained the maximum and its time of current infected persons, the final size, and the end
time of COVID-19 epidemics from January 2022 in China. The method of the fifth-order moving av-
erage was used to preprocess the time series of the numbers of current infected and removed cases to
obtain more accurate parameter estimations. We found that usually the transmission rate β(t) was a
piecewise exponential decay function, but due to multiple bounces in Shanghai City, β(t) was approxi-
mately a piecewise quadratic function. In most regions, the removed rate γ(t) was approximately equal
to a piecewise linear increasing function of (a*t+b)*H(t-k), but in a few areas, γ(t) displayed an expo-
nential increasing trend. For cases where the removed rate cannot be obtained, we proposed a method
for setting the removed rate, which has a good approximation. Using the numerical solution, we ob-
tained the prediction results of the epidemics. By analyzing those important indicators of COVID-19,
we provided valuable suggestions for epidemic prevention and control and the resumption of work
and production.
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1. Introduction

The Omicron variant is a mutated form of the Delta variant, characterized by its greater transmissi-
bility, shorter incubation period, higher viral load, and increased ability to evade the immune system.
As a result, the rate of severe illness is on the decrease and most infected individuals are asymptomatic.
Some old people infected by the Omicron variant are in danger due to poor immune systems and other
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previous diseases. The surge in the number of infected people can overwhelm medical resources, re-
sulting in inadequate care and increased mortality rates. Additionally, the workforce may be impacted,
leading to disruptions in various sectors. China detected the Omicron virus in individuals entering
the country as early as December 2021. On January 8th, 2022, China’s first confirmed case was re-
ported in Tianjin, where the number of accumulative infected cases reached 406 after 12 days. The
transmission of the virus occurred when a university student studying in Tianjin returned to Anyang in
Henan Province, causing widespread transmission in Anyang City and Tangyin County. Up to January
19th, 2022, the number of infected cases in Tangyin County had exceeded 400. The first Omicron case
was detected in Beijing on January 15th, 2022. He was infected via international mail. On March
1st, Yanbian Prefecture in Jilin Province, Qingdao City in Shandong Province, and Putuo District in
Shanghai reported their first confirmed cases on the same day. Then, in Shandong, Guangdong, Hebei,
Yunnan Provinces, Shanghai City and other places, the Omicron variant spread rapidly, and the number
of infected people increased sharply. The epidemic situation worsened rapidly.

Some genetic mutations occurred in the important genetic locus of the Omicron variant, which made
the COVID-19 vaccine more difficult to defend against the Omicron [1–3]. In the 1920s, Kermack and
McKendrick [4] proposed the original SIR (Susceptible-Infected-Removed) model, from which many
variants of the SIR model were derived. In 1979, the time-delayed epidemic model was proposed [5].
Guglielmi et al. [6] introduced the delay differential equation epidemic model and conducted some
experiments. The time-delayed SIR model was used to study the COVID-19 epidemic in Italy [7].
Rahimi et al. [8] detailedly introduced some models and algorithms used for COVID-19 prediction. Lv
et al. [9] proposed the time-delayed SAIR (Susceptible-Asymptomatic-Infected-Recovered) model to
study the time of the booster vaccination against COVID-19, and found 6 months to be the best time.
Mohamadou et al. [10] introduced artificial intelligence, datasets, and mathematical modeling of the
COVID-19 epidemic. Inverse problem solving methods were used to solve for transmission and re-
moved rates, which are functions of time [11]. The numerical solution and systems theory was applied
to study the transmission rate [12]. The parameter calibration of the SIR model was discussed [13].
Cooper et al. [14] applied a SIR model to analyze the developments of COVID-19 epidemics in some
communities and provide some valuable viewpoints on epidemic prevention and control. Inverse re-
liability approach and the differential evolution algorithm were used to estimate the parameters of
the SIRD (Susceptible-Infectious-Recovery-Dead) model [15]. The Levenberg–Marquardt algorithm
and Tikhonov regularization were applied to estimate the parameters of the SIRD model [16]. The
influence of uncertainty in the design variables was considered [17]. Nonautonomous delayed SIR
and SIRD models can be used for making long-term predictions in China [18–20]. Jahanshahi et
al. [21] adopted a fractional-order SIRD model based on the Caputo derivative for incorporating the
memory effects to analyze the developments of the COVID-19 epidemic. Anastassopoulou et al. [22]
evaluated the mortality and cure rates based on the previous data and then used the SIRD model to
predict the COVID-19 epidemic in Wuhan City, China. Some scholars applied the SEIR (Susceptible-
Exposed-Infected-Removed) model to the early prediction of COVID-19 and obtained some meaning-
ful results [23–28]. Fan and Li [29] considered the environmental transmission model to analyze the
COVID-19 epidemic. The eSIR (extended susceptible-infected-removed) model with Markov Chain
Monte Carlo methods was applied to predict the trend in Italy and Hunan Province, China [30]. Based
on the weak immunity provided by the vaccine, Turkyilmazoglu [31] proposed an extension of the SIR
model to the SIRVI (S-Susceptible, I-Infected I, V-Vaccinated, and R-Removed/Recovered) model.
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The Boosted Random Forest algorithm was adopted to predict the COVID-19 epidemic [32]. Machine
learning combined with artificial intelligence algorithms has been widely employed to forecast various
indexes of COVID-19 epidemics [33–36]. Salgotra et al. [37] proposed GEP (Genetic Evolutionary
Programming) based models to analyze the possible impact of the COVID-19 epidemic and predict
future cases in India. Abbasimehr and Paki [38] combined multi-head attention, LSTM (Long Short-
Term Memory), and CNN (Convolutional Neural Network) with the Bayesian optimization algorithm
to forecast the COVID-19 epidemic. Turkyilmazoglu [39] studied the peak formula of the traditional
SIR model without numerical simulation, which can reduce the computational time and cost. Turky-
ilmazoglu [40] further optimized the peak formula to obtain a more accurate and simpler formula and
addressed some shortcomings. Some experimental results are presented in [40].

In the above papers, several excellent models and methods for forecasting the COVID-19 epidemic
were presented. However, some scholars did not take into account the impact of incubation, which is
a crucial factor affecting the accuracy of COVID-19 predictions. Therefore, in this article, we propose
a NATD-SIR (nonautonomous time-delayed) model for COVID-19 epidemics prediction during the
transmission of the Omicron variant. Compared with [18], we have made several improvements to
better predict the COVID-19 epidemic during the transmission of the Omicron variant. To improve
the accuracy of predictions, we adopt the fifth-order moving average method to preprocess the data,
which helps to smooth the data, avoiding the interference of extreme values and enhancing prediction
accuracy. Through the finite difference method, we find that β(t) is approximately equal to an expo-
nential decay function in most epidemics induced by the Omicron variant. However, due to the highly
contagious nature of the Omicron variant, the COVID-19 epidemic situation becomes more compli-
cated. The transmission rates in the initial days exhibit significant variation, which adversely affects
the estimation of overall transmission rates. Hence, we adopt a piecewise exponential decay function
to estimate the transmission rates. Through our experiments, the transmission rate of the piecewise
exponential decay function greatly improves the prediction accuracy for the epidemic induced by the
Omicron variant compared to the transmission rate of the exponential decay function. Specifically, in
Shanghai City, where multiple bounces occurred in the COVID-19 epidemic, the transmission rate is
modeled as a piecewise quadratic function rather than an exponential decay function. In addition, γ(t)
is approximately (a*t+b)*H(t-k) (a>0), but γ(t) is approximately c*exp(dt)*H(t-k) (c>0, d>0) in a few
epidemics induced by the Omicron variant. In addition, [18] does not do a good job of explaining
how the removed rates are set when the removed persons are zero in the data we use for parameter
estimation. In practice, there will be no removed persons in the first few days, so we need to solve this
problem in order to predict the COVID-19 epidemic earlier and more accurately. The first removed
case appears at different time, roughly the 18th day. When we estimate the parameters of transmission
and removed rates by using data from the initial few days, the number of removed persons is some-
times too small or even zero, making it challenging to estimate the parameters accurately. We need
to set removed rates, which refers to the removed rates in [18], where the removed rates of epidemics
induced by the Delta variant in Putian with a small population of 3.2107 million people and Harbin
City with a large population of 10.0099 million people are (0.003t+0.01)*H(t-14) and (H(t-14))*(0.005
*t+0.02), respectively. In [18], the numbers of accumulative infected persons in Putian and Harbin are
204 and 88. In the regions whose population is close to Putian or Harbin cities, in that the accumula-
tive number of infected persons is far more than that in Putian or Harbin, we set the removed rates as
(H(t-18))*(0.002 t+0.01) or (H(t-18))*(0.004 t+0.02), respectively. We bring the parameters of trans-
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mission and removed rates estimated by the first ten days or more into the model to make long-term
predictions. The predicted results are consistent with the actual results. We obtain the maximum num-
ber of current infected persons, the time at which it occurs, the final size of the COVID-19 epidemic,
and the end time of the epidemic. Based on these predictions, we can provide the governments with
effective epidemic control measures.
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Figure 1. Transmission rates and removed rates in Binzhou City (1a-1b), Quanzhou City(1c-
1d), Qingdao City (1e-1f), Harbin City 1(1g-1h), Yanbian Prefecture 1(1i-1j), and Shanghai
City (1k-1l).

This article has the following structure. An NATD-SIR model is introduced in Section 2. In Sec-
tion 3, we present the sources of COVID-19 data of the relevant regions. In Section 4, predictions
of small-scale COVID-19 epidemics during the transmission of the Omicron variant are presented.
In Section 5, predictions of large-scale COVID-19 epidemics during the transmission of the Omicron
variant are presented. In Section 6, we present the conclusions and discussion.

2. Description of an NATD-SIR model

In this article, we adopt an NATD-SIR model to predict the current susceptible, infected, and re-
moved persons in COVID-19 epidemics during the transmission of the Omicron variant. It is based on
the following assumptions. First, we don’t take into account the demographic dynamics, i.e., birth and
death rates. Second, the whole population is a constant, i.e., S (t)+ I(t)+R(t) ≡ N. The following sym-
bols represent the numbers of the current susceptible persons, infected persons, and the accumulative
removed persons:

S(t): The current susceptible persons, standing for the number of the group who is not infected but
is at risk of infection at time t.

I(t): The current infected persons, standing for the number of confirmed and asymptomatic infected
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patients at time t.
R(t): The accumulative removed persons, standing for the accumulative number of the recovered

persons, the asymptomatic persons who are released from observation, and dead persons at time t.
There are some highlights in this model.
First, we take into account the impact of the incubation period of the Omicron variant. The incuba-

tion period refers to the period during which pathogens enter into the body but no clinical symptom ap-
pears. If typical symptoms appear, the individual will take a nucleic acid test and become a confirmed
case. We assume the incubation period of τ days. In mainland China, asymptomatic persons also
take τ days to be detected and become asymptomatic infected patients due to nucleic acid testing and
quarantine measures for close contacts. The average incubation period is not consistent for different
COVID-19 viruses. [41] showed that the mean incubation period of 3.4 days for the Omicron variant
was shorter than 3.8 days for the Delta variant. We rounded up the value of the mean incubation period.
We set the mean incubation period for the Delta variant to be 4 days and for the Omicron variant to be 3
days. For COVID-19 epidemics prediction, the influence of the incubation period on the accuracy of
predicted results is significant. Second, based on COVID-19 data released by regional health commit-
tees, we find that transmission and removed rates are functions of time t. The transmission rates of the
first few days in the target places except for Shanghai City roughly conform to the exponential decay
function, but roughly fluctuate greatly. Therefore, the transmission rates from the first few days are not
suitable for long-term prediction. To reduce the interference of the previous transmission rates, we set
β(t) as a piecewise exponential decay function, which is a∗exp(b∗ t)∗H(k− t)+c∗exp(d ∗ t)∗H(t−k).
As the epidemics fluctuate and bounce back in Shanghai City, we set β(t) as a piecewise quadratic
function, which is (k1t2 + k2t + k3) ∗ H(a1 − t) + (k4t2 + k5t + k6) ∗ heavisde(t − a1) ∗ H(a2 − t). In
most regions, γ(t) is approximately (a*t+b)*H(t-k) (a>0), but in a few areas, γ(t) is approximately
c ∗ exp(d ∗ t) ∗ H(t − k) (c>0, d>0).

In our research, the NATD-SIR model is presented as follows:

dS
dt
= −β(t)S (t − τ)I(t − τ),

dI
dt
= β(t)S (t − τ)I(t − τ) − γ(t)I(t),

dR
dt
= γ(t)I(t), (2.1)

where γ(t) stands for the removed rate from infected persons to removed persons and β(t) stands for
the transmission rate from susceptible persons to infected persons. By applying the finite difference
method [19] to Eq (2.1), we can get the expressions of β(t) and γ(t) as follows:

β(t) ≈
S (t) − S (t + 1)
S (t − τ)I(t − τ)

,

γ(t) ≈
R(t + 1) − R(t)

I(t)
. (2.2)

Transmission and removed rates in Binzhou City, Quanzhou City, Qingdao City, Shanghai City,
Harbin City 1, and Yanbian Prefecture 1 are presented in Figure 1. Figure 1 indicates that transmission
and removed rates are consistent with our analysis.
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Table 1. Parameter estimations for Binzhou City, Quanzhou City, Qingdao City, Harbin
City 1, and Yanbian Prefecture 1.

β(t) γ(t)
Binzhou City (H(8 − t)) ∗ 0.00000344240 (H(t − 19)) ∗ (0.00597965516t

∗ exp(−0.40880512899t)+ −0.09611988790)
(H(t − 8)) ∗ 0.00004049586
∗ exp(−0.53292537370t)

Quanzhou City (H(7 − t)) ∗ 0.00000087653 (H(t − 12)) ∗ (0.01076807306t
∗ exp(−0.30279555184t)+ −0.15633186938)
(H(t − 7)) ∗ 0.00000035354
∗ exp(−0.25078571150t)

Qingdao City (H(5 − t)) ∗ 0.00000074476 (H(t − 15)) ∗ (0.01686286913t
∗ exp(−0.41361481767t) −0.24732814186)
+(H(t − 5)) ∗ 0.00000584764
∗ exp(−0.49240975914t)

Harbin City 1 (H(4 − t)) ∗ 0.00000022532 (H(t − 18)) ∗ (0.00748215344t
∗ exp(−0.0196120217t) −0.07271696079)
+(H(t − 4)) ∗ 0.00000090747
∗ exp(−0.26163353282t)

Yanbian Prefecture 1 0.00000043822 (H(t − 18)) ∗ 0.00869453706
∗ exp(−0.15906181835t) −0.12337982446)

According to the nonlinear least square method and the solution of the delayed differential equation,
we get the parameter estimations of the transmission and the removed rates in Table 1, and the fitting
curves of the epidemics induced by the Omicron variant in Binzhou City, Quanzhou City, Qingdao
City, Harbin City 1, and Yanbian Prefecture 1. Because the number of susceptible persons is in the
millions or more, the rate of transmission is very small. Also, as the nonlinear dynamical system,
the delayed SIR model is sensitive to small changes in parameters. We need to keep as many bits as
possible to ensure accurate parameters and further accurate predictions. The fitting curves in Figure 2
are close to the actual data. By our method, if the estimated parameters by the epidemic data of the
first few days are consistent with those by the fitting of the total epidemic data, then we can accurately
predict the rest of the epidemic. The reason is that since we have obtained the accurate functional
forms of the total transmission and removed rates empirically, and by the few initial data, we can get
these accurate rates, so after substituting them and the initial data into and simulating these delayed
SIR models, we can get their accurate long-term evolution. The paramteres are more accurate, and
the numerical solutions of the delayed differential equations will be more accurate. Actually, it is a
question of parameters eastimation and numerical simulation for delayed differential equations, so our
main work is to estimate the accurate transmission and removed rates from the initial period of the
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epidemic. The model can be used to predict the COVID-19 epidemic. The experimental process of
this study is shown in Figure 3.
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Figure 2. The fitting results of COVID-19 epidemics in Binzhou City (2a–2c), Quanzhou
City (2d–2f), Qingdao City (2g–2i), Harbin City 1(2j–2l), and Yanbian Prefecture 1(2m–2o).

Figure 3. Flowchart.
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3. Data sources

The collected data on COVID-19 comes from each regional health commission, which publishes
daily local COVID-19 data. These datasets are objective and realistic. We collect data from the
following website. Quanzhou City: https://wjw.fujian.gov.cn/ztzl/gzbufk/yqtb/; Qingdao City:
http://wsjkw.qingdao.gov.cn/ztzl/xgfyyqfk/yqxx; Jilin City: http://www.jl.gov.cn/szfzt/jlzxd/yqtb/;
Siping City: http://www.siping.gov.cn/zw/zt/yqfk/yqdt; Yanbian Prefecture: http://www.yanbian.go
v.cn/zw/zt/yqfk/index 28.html; Hohhot City: http://wjw.huhhot.gov.cn/zwdt/yqfkdt/index 26.html;
Binzhou City: http://wjw.binzhou.gov.cn/col/col164815/index.html; Shanghai City: https://wsjkw.sh
.gov.cn/yqtb/index.html; Harbin City: http://wsjkw.hlj.gov.cn/wsjkw/c109116/zfxxgk.shtml; National
Health Commission: http://www.nhc.gov.cn/xcs/yqtb/list gzbd.shtml.

4. Predictions of small-scale COVID-19 epidemics during the transmission of the Omicron
variant in China

Table 2. Start times and end times for the COVID-19 epidemics in Yanbian Prefecture and
Sping, Harbin, and Hohhot cities.

Siping City Yanbian
Prefecture
1

Yanbian
Prefecture
2

Harbin
City 1

Harbin
City 2

Hohhot
City

Start time March
12th, 2022

March 1st,
2022

April 15th,
2022

March 8th,
2022

April 13th,
2022

February
15th, 2022

End time April 18th,
2022

March
24th, 2022

April 28th,
2022

April 8th,
2022

May 7th,
2022

March
11th, 2022

Epidemic Strain Omicron
Variant

Omicron
Variant

Omicron
Variant

Omicron
Variant

Omicron
Variant

Delta Vari-
ant

Epidemics induced by the Omicron variant tend to last longer due to its increased infectiousness.
The most critical factor for accurate epidemic prediction is accurate estimation of transmission and
removed rates. The small amount of initial data will make it difficult to estimate accurate transmission
and removed rates. Therefore, we need more data to be able to estimate accurate transmission and
removed rates for long-term prediction. In individual regions, the first wave of epidemics came to
an end, only to experience a sudden rebound and trigger a second wave. The transmission rate is an
exponential decay function that gradually tends to zero over time. Toward the end of the first wave, the
number of susceptible people was no longer decreasing. We should predict the two waves separately.
For the second wave, we take into account the impact of the first wave. Therefore, we need to predict
these two waves separately. We select Siping City, Yanbian Prefecture, and Harbin City to predict
sporadic epidemics induced by the Omicron variant. Our methods and procedures go as follows.

For epidemics prediction in Siping City, we select data from the first seventeen days for parameter
estimations. β(t) is set as a piecewise exponential decay function, which is a ∗ exp(b ∗ t) ∗ (H(14 −
t))+ c ∗ exp(d ∗ t) ∗ (H(t − 14)). Since the first removed person occurred on the 11th day and there was
no removed person for the next two days, the number of removed persons within the first 17 days was
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limited. The estimated removed rate based on Siping epidemics is only suitable for the next few days
and is not suitable for long-term prediction. We need to set the removed rate for long-term prediction.
The population of Siping City is similar to that of Putian City, and the accumulative number of infected
cases in this epidemic is close to that of Putian City. According to the introduction in Section 1, we
can refer to the removed rate of Putian City as 0.003*t+0.01. To sum up, we set the removed rate γ(t)
of Siping City as ((a ∗ t + b) ∗ (H(19 − t) ∗ H(t − 11)) + (0.003 ∗ t + 0.01) ∗ H(t − 19)).

Yanbian Prefecture experienced two COVID-19 epidemics in a short period. For the first wave of
COVID-19 epidemics, we use data from the first ten days for parameter estimations in the first wave.
Since there are no removed persons in the first ten days, we set the removed rate according to the
method described in Section 1. Since the population and the accumulative number of infected cases in
Yanbian Prefecture are close to those in Putian City, we set the removed rate γ(t) to (0.003t+0.01)*H(t-
18). In addition, we set the transmission rate as an exponential decay function. In the second wave, we
take the fifth-order moving average of the number of current infected and removed cases in the first 12
days and select the data of the first 11 days as parameter estimations. We set the transmission rate as a
piecewise exponential decay function and the removed rate as an exponential increasing function.

The first wave of COVID-19 epidemics induced by the Omicron variant in Harbin City started on
March 8th, 2022 and ended on April 8th, 2022. However, on April 13th, 2022, a new wave of COVID-
19 epidemics occurred and ended on May 7th, 2022. We select data from the first twelve days for
parameter estimations. Since there are few and irregular current removed persons in the first 12 days,
we set the removed rate as H(t-18)*(0.005*t+0.02), according to the method introduced in Section 1.
Prediction for the second wave of COVID-19 is influenced by the first wave. We can observe that
the removed rate is an exponential decay function for the first eleven days and a linear increasing
function after that time through the finite difference method. Consequently, the removed rate γ(t) is
a ∗ exp(b ∗ t) ∗ H(11 − t) + (c ∗ t + d) ∗ H(t − 11).

When the above three places are hit by the Omicron variant, Hohhot City was struck by the Delta
variant. In order to test the validity of our model for epidemics induced by the Delta variant, we analyze
the epidemic in Hohhot City. The only difference is that we set the average incubation period as 4
days. We use the method of the fifth-order moving average to process the accumulative number of the
removed persons in the first 14 days and select the data of the first 13 days for parameter estimations.
Estimated transmission and removed rates for Yanbian Prefecture and Siping, Harbin, and Hohhot
cities are listed in Table 3. Because the number of susceptible persons is in the millions or more, the
rate of transmission is very small. The model is sensitive to small changes in parameters. We need
to keep as many bits as possible to ensure accurate parameters. Through strict epidemic prevention
and control, the transmission rates gradually approach zero and the epidemic will be well controlled.
The choice of the interval point for the transmission rate varies for different epidemics. For COVID-19
epidemics induced by the Omicron variant, the removed rate sometimes shows an exponential increase
function, which is related to the fact that most of the infected people are asymptomatic. In some
epidemics, the first removed person occurred late, and according to our introduction, it is an effective
method to refer to the removed rate induced by the Delta variant. Strict epidemic prevention and control
is an effective way to control the epidemic. Predictions of small-scale COVID-19 epidemics during the
transmission of the Omicron variant in Yanbian Prefecture and Siping, Harbin, and Hohhot cities are
presented in Figure 4.
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Table 3. Parameter estimations for Yanbian Prefecture and Sping, Harbin, and Hohhot cities.

β(t) γ(t)
Siping City (H(14 − t)) ∗ 0.00000271999 (H(19-t)H(t-11))

∗ exp(−0.38782697366t)+ *(0.00132502090t-0.00997290728)
(H(t − 14)) ∗ 0.00000017517 +(0.003t+0.01)*H(t-19)
∗ exp(−0.13023081804t)

Yanbian Prefecture 1 0.0000004722 exp(−0.16740135964t) (H(t-18))*(0.003*t+0.01)

Yanbian Prefecture 2 (H(6 − t)) ∗ 0.00000073127 (H(t-10))*0.00844930836
∗ exp(−0.07792978146t) ∗ exp(0.18757787171t)
+(H(t − 6)) ∗ 0.00000345277
∗ exp(−0.43643698716t)

Harbin City 1 (H(4 − t)) ∗ 0.00000013172 (H(t-18))*(0.005t+0.02)
∗ exp(−0.62452452759t)
+(H(t − 4)) ∗ 0.00000336186
∗ exp(−0.35459855439t)

Harbin City 2 (H(9 − t)) ∗ 0.00000005269 (H(11-t))*0.30985780310
∗ exp(0.02195607929t) ∗ exp(−0.45512588013t)
+(H(t − 9)) ∗ 0.00000017064 +(H(t-11))
∗ exp(−0.26120283487t) *(0.01822215239t-0.21821698940)

Hohhot City (H(7 − t)) ∗ 0.00000407509 (H(t-9))*0.00449537680
∗ exp(−0.39425001193t) ∗ exp(0.17026037510t)
+(H(t − 7)) ∗ 0.00000202093
∗ exp(−0.34439849316t)

According to Table 4, we can obtain the following results. The predicted end times are the same as
the actual end times in the first wave of the Harbin City epidemics and the Siping and Hohhot cities
epidemics. In the second wave of epidemics in Harbin City, the predicted end time is 4 days away from
the actual end time. In addition, the predicted end times of the first and second waves of the epidemics
in Yanbian Prefecture are 16 days and 5 days away from the actual end times, respectively. For the
maximum of current infected persons, the maximal relative error is only −6.82% in the first wave of
COVID-19 in Yanbian Prefecture. The minimal relative error reaches −1.33% in Siping City. The
relative errors of the epidemic in Hohhot City and the first wave of epidemics in Harbin City are 2.48%
and 5.86%, respectively. Since the number of days of data used for parameter estimations exceeds the
actual maximum time of current infected persons in the second waves of the epidemics in Yanbian
Prefecture and Harbin City, we cannot estimate the maximum and its time of current infected persons.
The predicted maximum times of current infected persons differ from the actual maximum times of
current infected persons by the minimum of only one day in the first wave of epidemics in Harbin City
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and the maximum of only four days in Siping City. The predicted maximum times of current infected
persons differ from the actual maximum times of current infected persons by 2 days and 3 days in the
epidemics in Hohhot City and the first wave of COVID-19 in Yanbian Prefecture, respectively. For
the final size, there are very small relative errors of 0.66%, −0.35%, and 0.94%, respectively in the
second wave of Harbin City epidemics and the Siping and Hohhot cities epidemics. The relative errors
are 3.05% and −2.73% in the first and second waves of epidemics in Yanbian Prefecture, respectively.
There is a large relative error of −10.22% due to the rebound at the end of the first epidemic in Harbin
City.

The results indicate that the predicted indicators are very close to the actual indicators, implying
that this model can be used to predict COVID-19 induced by not only the original strains and Delta
strain, but also the Omicron strain very well.

Table 4. Comparisons of the predicted and actual maximum and maximum time of current
infected persons, end time, and final size for Yanbian Prefecture and Siping, Harbin, and
Hohhot cities, respectively.

Siping
City

Yanbian
Pre-
fecture
1

Yanbian
Pre-
fecture
2

Harbin
City 1

Harbin
City 2

Hohhot
City

predicted end time 2022.4.18 2022.4.9 2022.5.3 2022.4.8 2022.5.11 2022.3.11
actual end time 2022.4.18 2022.3.24 2022.4.28 2022.4.8 2022.5.7 2022.3.11
predicted maximum 223 164 - 470 - 331
of current infected persons
actual maximum 226 176 92 444 639 323
of current infected persons
predicted maximum time 2022.3.30 2022.3.18 - 2022.3.25 - 2022.2.28
of current infected persons
actual maximum time 2022.4.3 2022.3.21 2022.4.24 2022.3.26 2022.4.26 2022.2.26
of current infected persons
predicted final size 281 203 107 536 764 431
actual final size 282 197 110 597 759 427
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Figure 4. Predictions of small-scale COVID-19 epidemics during the transmission of the
Omicron variant in Siping City (4a–4c), Yanbian Prefecture (4d–4i), Harbin City (4j–4o),
and Hohhot City (4p–4r), where the green star represents the real data used for parameter
estimation, the red star represents real data used for comparison with numerical simulations,
and the solid line represents numerical simulations.
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5. Predictions of large-scale COVID-19 epidemics during the transmission of the Omicron
variant in China

Table 5. Start times and end times for epidemics in Jilin, Qingdao, Quanzhou, Binzhou, and
Shanghai cities.

Jilin City Qingdao City Quanzhou
City

Binzhou City Shanghai City

Start time March 3rd,
2022

March 1st,
2022

March 13th,
2022

March 11th,
2022

May 26th,
2022

End time May 11th,
2022

April 17th,
2022

April 15th,
2022

April 2nd,
2022

June 26th,
2022

Epidemic Strain Omicron
Variant

Omicron
Variant

Omicron
Variant

Omicron
Variant

Omicron
Variant

We predict large-scale epidemics in Jilin, Qingdao, Binzhou, and Quanzhou cities and fit the com-
plex epidemic in Shanghai City. For the epidemic prediction in Jilin City, we select the data of the
first 24 days for parameter estimations. Since the first removed person appeared on Day 21, we could
not obtain accurate parameter estimations of the removed rate. Following the method proposed in
Section 1, we set γ(t), which is (a*t+b)*(H(27-t)*H(t-20))+(H(t-27))*(0.002*t+0.01).

For the epidemic prediction in Qingdao City, we select the data of the first 10 days for parameter
estimations. Since there are no removed persons in the first ten days, we set the removed rate γ(t),
which is (0.005 ∗ t + 0.02) ∗ H(t − 18), according to the method described in Section 1.

For the epidemic prediction in Quanzhou City, we use the method of the fifth-order moving average
to process the accumulative number of the current infected and removed cases in the first 16 days and
select the data of the first 16 days for parameter estimations.

For the epidemic prediction in Binzhou City, we use the method of the fifth-order moving average
to process the accumulative number of infected persons in the first 14 days and select the data of the
first 14 days for parameter estimations. Since there are no removed persons in the first 14 days, we set
γ(t), which is (0.002 ∗ t + 0.01) ∗ H(t − 18), according to the method described in Section 1.

In Shanghai City, large-scale epidemic occurred in early March 2022. However, the statistics were
not accurate enough due to poor monitoring for the epidemic. After the meeting of the Political Bureau
of the Central Committee of the Communist Party of China on May 5th, 2022, strict controls were
implemented in Shanghai City, and the statistics were realistic. Therefore, we started the statistics from
that meeting onward. Additionally, the number of the current infected persons only includes confirmed
cases and does not take into account asymptomatic cases, due to inaccurate statistics on asymptomatic
infections. We choose May 26th, 2022 as the starting time of the epidemic and June 26th, 2022 as the
end time. Due to the multiple rebounds in the epidemic, predicted results are undesirable. We only
fit the epidemic. We use the method of the fifth-order moving average to process the number of the
current accumulative infected and removed cases in the entire epidemic. Through the finite difference
method, we can observe that β(t) is no longer an exponential decay function but a piecewise quadratic
function, which is (k1t2 + k2t + k3) ∗ H(13 − t) + (k4t2 + k5t + k6) ∗ H(t − 13) ∗ H(33 − t), and that
γ(t) is (k7 ∗ exp(k8t)) ∗ H(15 − t) + k9 ∗ H(t − 15). The initial parameters k1, k2, k3, · · · , k6 are obtained
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by quadratic polynomial fitting. The initial parameters k7, k8 are obtained by nonlinear fitting. The
fitting results for Shanghai City are listed in Figure 5m–5o. Estimated transmission rates and removed
rates for Jilin, Qingdao, Quanzhou, Binzhou, and Shanghai cities are listed in Table 6. Predictions
of large-scale COVID-19 epidemics during the transmission of the Omicron variant in Jilin, Qingdao,
Quanzhou, and Binzhou cities and fitting results for Shanghai City are presented in Figure 5.
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Figure 5. Predictions of large-scale COVID-19 epidemics during the transmission of the
Omicron variant in Qingdao City (5a–5c), Jilin City (5d–5f), Binzhou City (5g–5i), and
Quanzhou City (5j–5l) and fitting results for Shanghai City (5m–5o), where the green star
represents the real data used for parameter estimation, the red star represents real data used
for comparison with numerical simulations, and the solid line represents numerical simula-
tions.
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Table 6. Parameter estimations for Jilin, Qingdao, Quanzhou, Binzhou, and Shanghai cities.

β(t) γ(t)
Jilin City (H(13 − t)) ∗ 0.00000058058 (0.00000013933t+0.02271890187)

∗ exp(−0.02228400895t) *(H(27-t)H(t-20))
+(H(t − 13)) ∗ 0.00000053499 +(0.002t+0.01)*H(t-27)
∗ exp(−0.14857366023t)

Qingdao City (H(5 − t)) ∗ 0.00000029747 (0.005*t+0.02)*H(t-18)
∗ exp(−0.18153338923t)
+(H(t − 5)) ∗ 0.00001162660
∗ exp(−0.52972652027t)

Quanzhou City (H(7 − t)) ∗ 0.00000101521 (0.00523610709t-0.06006439954)
∗ exp(−0.34959309604t) *H(t-12)
+(H(t − 7)) ∗ 0.00000034370
∗ exp(−0.25079426027t)

Binzhou City (H(8 − t)) ∗ 0.00000106470 (0.002t+0.01)*H(t-18)
∗ exp(−0.03528409187t)
+(H(t − 8)) ∗ 0.00003572880
∗ exp(−0.52897238030t)

Shanghai City (5.8 ∗ 10−12t2 − 1.017 ∗ 10−10t 0.065 ∗ exp(0.0949t)
+5.945 ∗ 10−10) ∗ H(13 − t) ∗H(15 − t)
+(−1.2 ∗ 10−11t2 + 5.38 ∗ 10−10t +0.12852764455 ∗ H(t − 15)
−4.66 ∗ 10−9) ∗ H(t − 13)
∗H(33 − t)

Electronic Research Archive Volume 32, Issue 3, 2203–2228.



2223

Table 7. Comparisons of actual and predicted maximum and its time of current infected per-
sons, end time, and final size for Jilin, Qingdao, Quanzhou, and Binzhou cities, respectively.

Jilin City Qingdao City Quanzhou City Binzhou City
predicted end time 2022.5.12 2022.3.24 2022.4.20 2022.4.4
actual end time 2022.5.11 2022.4.17 2022.4.15 2022.4.2
predicted maximum 19,521 1821 2585 1813
of current infected persons
actual maximum 18,933 1808 2653 1829
of current infected persons
predicted maximum time 2022.3.29 2022.3.18 2022.3.30 2022.3.28
of current infected persons
actual maximum time 2022.3.31 2022.3.17 2022.3.31 2022.3.29
of current infected persons
predicted final size 26,609 1849 3182 1846
actual final size 27,499 1920 3180 1857

According to Table 7, we can obtain the following results. The predicted end time is only one
day away from the actual end time in Jilin City, which is the best result. The predicted end times
of the epidemics in Binzhou and Quanzhou cities are 2 days and 5 days away from the actual end
times, respectively. The predicted end time is 24 days away from the real end time, as sporadic cases
continued to appear in Qingdao City near the end of the epidemic. For the maximum of current infected
persons, there are very small relative errors of −0.87% and 0.72% in Binzhou and Qingdao cities. In
Jilin and Quanzhou cites, the relative errors are 3.11% and −2.56%, respectively. For the maximum
time of current infected persons, predicted results are excellent. The predicted maximum times of
current infected persons differ from the actual maximum times of current infected persons by no more
than two days in these four cities. For the final size, the perfect result is a difference of two persons in
Quanzhou City. There is a very small relative error of −0.59% in Binzhou City. The relative errors are
−3.70% and −3.24% in Qingdao and Jilin cities.

All in all, the indicators we predict are very close to the actual ones. For the predictions of large-
scale COVID-19 epidemics, our approach remains simple but effective.

6. Conclusions and discussion

This paper contributes to the prediction of COVID-19 epidemics induced by the Omicron variant.
It verifies the effectiveness of the time-delayed SIR model for COVID-19 epidemics induced by the
Omicron variant. We apply a NATD-SIR model to make predictions of the present susceptible, in-
fected, and removed persons in COVID-19 epidemics during the transmission of the Omicron variant
and obtain good prediction results. We develop an accurate prediction method for complex COVID-19
epidemics during the transmission of the Omicron variant. Accurate fitting methods are established
for very complex large-scale COVID-19 epidemics induced by the Omicron variant. The incubation
period of the Omicron variant is shorter than that of the Delta variant. We set the average incubation
period for the Delta variant to be 4 days and for the Omicron variant to be 3 days.
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The innovations of this paper are the following:

• By the finite difference method, it has been observed that β(t) is approximately an exponential
decay function. In Shanghai City, β(t) is approximately a piecewise quadratic function. Since
the epidemic induced by the Omicron variant lasts longer, it is necessary to choose more initial
days for parameter estimations. Instead of using a simple exponential decay function, a piece-
wise exponential decay function is chosen to estimate the transmission rates. By this way, we
can get more accurate parameter estimations of transmission rates in the epidemic induced by
the Omicron variant. γ(t) is approximately (a*t+b)*H(t-k) (a>0). In a few epidemics, γ(t) is
approximately equal to an exponential increasing function.
• In addition, we analyze removed rates of COVID-19 epidemics induced by the Delta variant

and the Omicron variant in different regions. It is found that the removed rates of epidemics
may be similar in regions with similar populations and final sizes no matter whether they are
induced by the Delta variant or the Omicron variant. If two regions have similar populations, the
region with a higher number of infected persons may have a lower removed rate. Sometimes,
we cannot estimate parameters of removed rates since there are no removed persons or too few
removed persons in the initial days in some regions. We can refer to the removed rates of COVID-
19 epidemics induced by the Delta variant in [18]. In this way, we can predict the COVID-19
epidemics with less data.
• The daily number of newly-increased infected and removed persons can sometimes vary greatly.

This can lead to larger or smaller parameter estimations of transmission and removed rates. To
mitigate this, we take the fifth-order moving average to preprocess the number of the current
accumulative infected or removed persons. By this way, we can obtain more accurate parameter
estimations. Our predicted indicators are close to the actual ones for the maximum and its time
of current infected persons, end time, and final size. Based on these indicators, we can provide
valuable references and suggestions for epidemic prevention and control, resumption of work,
production, and school.

The reason for the inadequate prediction of the COVID-19 epidemic in some regions is related to the
characteristics of the Omicron epidemic: highly contagious, spreading quickly, and more concealed. In
addition, some published epidemic data is inaccurate. They greatly increase the difficulty of epidemic
prediction. There are some shortcomings here. Because we need to estimate accurate transmission and
removed rates, we often choose more epidemic data, sometimes exceeding the time of the peak, which
will reduce the effect of practical application. Additionally, the relationship between removed rates
across the epidemic still needs to be explored. If there is a rebound in the epidemic, the forecast of the
overall epidemic will be biased.

In the future, we have some plans in the following:

• We can consider the time-delay of removed persons, since it takes an amount of time for an
infected person to become a removed person.
• For data preprocessing, we just perform a simple fifth-order moving average. Other processing

methods can also be tried.
• Many machine learning methods can be used for COVID-19 prediction. Machine learning can be

studied to make accurate short-term predictions, adding the results of the predictions to the data
used for parameter estimation and, therefore, obtaining more accurate parameters estimation with
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fewer data.
• We compare the transmission rates of different epidemics and found no significant relationship

between transmission rates and regional population, duration, or number of infected cases. We
still need to explore this aspect.
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