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Abstract: This paper investigates both the local and global stability of a system of rational difference
equations and its connection to co-balancing numbers. The study delves into the intricate dynamics
of mathematical models and their stability properties, emphasizing the broader implications of global
stability. Additionally, the investigation extends to the role of co-balancing numbers, elucidating their
significance in achieving equilibrium within the solutions of the rational difference equations. The in-
terplay between global stability and co-balancing numbers forms a foundational aspect of the analysis.
The findings contribute to a deeper understanding of the mathematical structures underlying dynamic
systems and offer insights into the factors influencing their stability and equilibrium. This article serves
as a valuable resource for mathematicians, researchers, and scholars interested in the intersection of
global stability and co-balancing sequences in the realm of rational difference equations. Moreover, the
presented examples and figures consistently demonstrate the global asymptotic stability of the equilib-
rium point throughout the paper.

Keywords: system of difference equations; global stability; balancing sequence; co-balancing
sequence; rational difference equations

1. Introduction

The exploration of dynamic systems through mathematical models, particularly within the frame-
work of Caputo-Fabrizio fractional-order models, has garnered significant attention in recent years due
to its relevance to attractivity, stability, and periodic chaos in discrete dynamical systems. Through a
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series of research endeavors, including investigations into Caputo-Fabrizio fractional-order fuzzy com-
petitive neural networks (CF-FCNNs, [1]), almost automorphic fuzzy neural networks [2], multi-delay
fractional-order differential equations [3], and stochastic inertial neural networks with spatial diffu-
sions [4], researchers have made strides in understanding the dynamics and convergence properties of
these systems. These works have contributed new theories, methods, and computational techniques,
shedding light on the existence of unique bounded asymptotically almost periodic solutions, global
exponential stability, synchronization phenomena, and random periodicity. Collectively, these find-
ings offer valuable insights into the behavior of difference equation systems and their applications
across various scientific and engineering domains. Moreover, within the broader realm of mathemat-
ical frameworks, rational difference equations and systems emerge as powerful tools for capturing
the evolution of discrete dynamical systems. Recently, there has been a noteworthy surge in mathe-
maticians’ interest in the intricate dynamics exhibited by rational difference equations and systems of
difference equations. This research area has proven exceptionally fruitful, significantly contributing to
the foundational theory surrounding the qualitative behavior of nonlinear rational difference equations
and systems. Studying rational difference equations and systems is essential for several reasons. First,
these equations serve as powerful tools for modeling dynamic systems across various fields, includ-
ing electrical networks, biology genetics, sociology, probability theory, statistical analyses, stochastic
time series, finance, economics, and more. Notably, references such as Ghezal et al. [5–8] offer in-
sights into asymmetric time series models, while Ghezal et al. [9–11] provide valuable contributions
to stochastic volatility time series models. Additionally, Ghezal et al. [12–16], as well as works by
Elaydi [17], Grove and Ladas [18], Kocic and Ladas [19], and Kulenovic and Ladas [20], serve as
exemplary references showcasing the diverse applications of these equations across various fields. By
understanding the behavior of rational difference equations and systems, researchers can gain valuable
insights into the underlying mechanisms governing complex phenomena observed in real-world sys-
tems. Second, rational difference equations and systems offer a versatile framework that can capture
nonlinear interactions, delays, and other intricate dynamics present in many practical scenarios. This
flexibility allows for the development of mathematical models that accurately represent the complex-
ities of dynamic systems. Moreover, the study of rational difference equations and systems presents
both theoretical challenges and practical applications. Analyzing the asymptotic stability and long-
term behavior of solutions to rational difference equations and systems can be particularly challenging
but is also rewarding in terms of understanding system behavior and making predictions. Additionally,
advancements in the theory of rational difference equations and systems contribute to the advance-
ment of mathematical knowledge and its applications. By developing new methods and techniques for
analyzing rational difference equations and systems, researchers can expand the boundaries of mathe-
matical theory and enhance our ability to model and predict the behavior of complex systems.

This paper rigorously explores and analyzes the qualitative behaviors of solutions, placing particular
emphasis on both local and global stability within a specific form of a system of rational difference
equations, outlined as follows:

∀n ≥ 0, ξn+1 =
1

7 − ψn−s (7 − ξn−2s−1)
, ψn+1 =

1
7 − ξn−s (7 − ψn−2s−1)

, (1.1)

where s is a fixed positive integer. The system is initialized with conditions denoted as ξ−v, and ψ−v,
v ∈ {0, 1, . . . , 2s + 1}, and it is crucial that these initial conditions are real and nonzero.
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Understanding the stability of dynamic systems is not only about unraveling intricate behaviors but
also discerning the fundamental elements governing their equilibrium. Interestingly, the solution form
of some solvable type difference equations and systems can even be expressed in terms of well-known
integer sequences such as Fibonacci numbers, Lucas numbers, generalized Fibonacci numbers, etc.
Our aim in this paper is to show that system (1.1) is solvable by deriving its closed-form formulas
elegantly and to describe the behavior and periodicity of well-defined solutions to system (1.1). One of
the reasons that makes this study interesting is that the solution of system (1.1) is expressed in terms of
co-balancing numbers. This investigation delves into the fascinating interplay between global stability
and co-balancing numbers within the solutions of rational difference equations. As mathematical struc-
tures intimately linked to equilibrium states, co-balancing numbers offer a unique lens through which
we can interpret and analyze the stability of the system. The specific number 7 holds significance
in our study due to its relevance to the underlying mathematical framework and the properties of the
system under investigation. However, we acknowledge that the rationale behind the selection of this
particular number is that the solution of system (1.1) is expressed in terms of co-balancing numbers,
enabling us to obtain real, non-complex solutions. Numerous researchers have dedicated their efforts
to unraveling the qualitative nuances of solutions to rational difference equations, exploring aspects
such as global attractivity, boundedness, and periodicity, shedding light on the rich and multifaceted
nature of nonlinear mathematical models. For instance, Ghezal [21] investigated the convergence of
positive solutions to a rational system of 4(k + 1)−order difference equations given by:

∀n ≥ 0, ξn+1 =
ξn−(4k+3)

1 + ψn−kψn−(2k+1)ψn−(3k+2)
, ψn+1 =

ψn−(4k+3)

1 + ξn−kξn−(2k+1)ξn−(3k+2)
,

where k is a fixed positive integer. El-sayed [22] contributed to the exploration by investigating the
behavior of solutions to the nonlinear difference equation:

∀n ≥ 0, ξn+1 = αξn−1 +
βξnξn−1

γξn + δξn−1
.

In [23], Ghezal et al. explored the solvability of a bilinear system of difference equations with coeffi-
cients dependent on the Jacobsthal sequence. They studied the local stability of the positive solutions.
Simşek et al. [24] investigated the solution of the following difference equation

∀n ≥ 0, ξn+1 =
ξn−17

1 + ξn−5ξn−11
.

In [25], the solution forms for the following nonlinear difference equations were elucidated:

∀n ≥ 0, ξn+1 =
1

±1 + ξn
.

Additionally, Zhang et al. [26] conducted an examination on the boundedness and global asymptotic
stability of positive solutions within the system of nonlinear difference equations

∀n ≥ 0, ξn+1 = α +
1

ψn+1−p
, ψn+1 = α +

ψn

ξn+1−rψn+1−s
,
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where s is a fixed positive integer. Furthermore, Zhang et al. [27] delved into the dynamics of a system
governed by the nonlinear difference equations

∀n ≥ 0, ξn+1 =
ξn−2

β + ψnψn−1ψn−2
, ψn+1 =

ψn−2

α + ξnξn−1ξn−2
.

In a demonstration by Okumuş [28], it was shown that the following two-dimensional system of dif-
ference equations can be successfully solved:

∀n ≥ 0, ξn+1 =
±1

1 + ψn (±1 + ξn−1)
, ψn+1 =

±1
1 + ξn (±1 − ψn−1)

.

Our paper provides a comprehensive investigation into the local and global stability of a system
of rational difference equations, elucidating its connection to co-balancing numbers. This work dis-
tinguishes itself through its thorough exploration of the intricate dynamics of mathematical models
and their stability properties, with a particular emphasis on the broader implications of global stabil-
ity. By delving into the role of co-balancing numbers, the paper reveals their significance in achieving
equilibrium within the solutions of rational difference equations, thereby enriching our understanding
of dynamic systems. In comparison to existing works such as [28] which focus on investigating the
solutions, stability characteristics, and asymptotic behavior of rational difference equations associated
with Tribonacci numbers, our paper broadens the scope to examine the broader implications of global
stability and its connection to co-balancing numbers. This broader perspective offers a more com-
prehensive understanding of the dynamics and equilibrium properties of dynamic systems. Moreover,
while [26, 27] concentrate on studying the behavior and stability of specific systems of rational differ-
ence equations, our paper extends this analysis to explore the broader concept of global stability and
its relationship with co-balancing numbers. Additionally, while [25] and [23] delve into the solutions
and local stability of specific types of difference equations associated with Fibonacci and Jacobsthal
sequences, respectively, our paper broadens the scope to examine the broader implications of global
stability and its connection to co-balancing numbers. This extension enhances our understanding of
the stability properties of rational difference equations and offers valuable insights into the factors
influencing their equilibrium behavior.

Recent advancements in computational methods for solving nonlinear evolution equations and par-
tial differential equations (PDEs) have led to the development of innovative techniques such as the
bilinear residual network method and the bilinear neural network method. While these methods pri-
marily focus on obtaining exact analytical solutions for nonlinear PDEs, their underlying principles
and computational frameworks share similarities with approaches used to solve systems of difference
equations. Both systems of difference equations and PDEs describe the evolution of dynamic systems
over discrete or continuous domains, respectively, and often exhibit nonlinear behavior. The compu-
tational methods proposed in the referenced works [29–32] leverage neural network architectures and
advanced mathematical techniques to tackle the complexities inherent in solving nonlinear equations.
Although the specific applications discussed in these references pertain to PDEs, the principles and
methodologies underlying these methods can be adapted and extended to address systems of difference
equations. By leveraging the flexibility and efficiency of neural networks and tensor-based approaches,
researchers can explore new avenues for solving systems of difference equations, advancing our un-
derstanding of discrete dynamical systems and their behaviors. Therefore, while the referenced works
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focus on PDEs, their methodologies and computational frameworks hold promise for addressing chal-
lenges in systems of difference equations and related areas of research.

This paper not only contributes to the academic understanding of mathematical modeling but
also provides valuable insights for practitioners in fields where dynamic systems play a crucial role.
Through a synthesis of theoretical exploration and illustrative examples, we aim to elucidate the pro-
found implications of global stability and co-balancing numbers in the realm of rational difference
equations. For further insights into the system of rational difference equations and related results, re-
searchers can explore the extensive body of work referenced in Abo-Zeid [33], Elsayed et al. [34–36],
Kara [37], Berkal and Abo-Zeid [38], as well as the contributions by Ghezal and Zemmouri [39–41].
These references offer valuable insights into various aspects of rational difference equations, including
global behavior, solution structures, periodicity, and stability properties. Additionally, Kara’s inves-
tigation [37] provides further exploration into the dynamics of exponential-form difference equation
systems.

2. Preliminaries

We begin by recalling co-balancing numbers as defined in [42, 43], which will be instrumental in
our analysis of the solution to the system of difference equations (1.1).

Definition 2.1. A positive integer n is termed a balancing number if

1 + 2 + · · · + (n − 1) = (n + 1) + (n + 2) + · · · + (n + r), (2.1)

for some r ∈ N. Here, r is referred to as the balancer corresponding to the balancing number n. [44]
demonstrated in a joint study that the balancing numbers satisfy the following recurrence relation:

Bn+1 = 6Bn − Bn−1, n ≥ 1,

with B0 = 0 and B1 = 1. The Binet formula is Bn = (τn − κn)/ (τ − κ) for all n ≥ 0, where κ =
3 − 2

√
2 and τ = 3 + 2

√
2.

Definition 2.2. The quotient of two consecutive terms of balancing numbers tends to a, that is,
lim Bn+1/Bn = τ.

Definition 2.3. After a slight modification to (2.1), we call a natural number n a co-balancing number
if it satisfies:

1 + 2 + · · · + n = (n + 1) + (n + 2) + · · · + (n + r), (2.2)

and if the pair (n, r) ∈ N is a solution to (2.2), then n is called the co-balancing number and r is termed
the co-balancer associated with n.

Definition 2.4. The co-balancing sequence is defined by (bn) for n ∈ N, where

bn+1 = 6bn − bn−1 + 2, n ≥ 2,

with b1 = 0 and b2 = 2. The Binet formula for bn is given by bn = −1/2 +
(
τn−1/2 − κn−1/2

)/
(τ − κ) for

all n ≥ 0.
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3. Dynamics of the system of difference equations (1.1)

Our exploration of the solutions for system (1.1) involves a nuanced analysis of two distinct cases:
one where s = 0, and another where s > 0.

3.1. Second-order: s = 0

When s = 0, system (1.1) takes on the following form

∀n ≥ 0, ξn+1 =
1

7 − ψn (7 − ξn−1)
, ψn+1 =

1
7 − ξn (7 − ψn−1)

. (3.1)

In this context, we endeavor to derive closed-form solutions for system (3.1). To achieve this, we
utilize the following change of variables, denoted by

∀n, ξn =
vn−1

un
, ψn =

un−1

vn
, (3.2)

which transforms system (3.1) into its equivalent counterpart:

∀n ≥ 0,


(

vn

un+1

)−1

= 7 −
un−1

vn

(
7 −

vn−2

un−1

)
(

un

vn+1

)−1

= 7 −
vn−1

un

(
7 −

un−2

vn−1

)
⇕

∀n ≥ 0, un+1 = 7vn − 7un−1 + vn−2, vn+1 = 7un − 7vn−1 + un−2. (3.3)

To further simplify the last system, we sum and subtract the two equations and introduce a new variable
transformation:

∀n, xn+1 = un+1 + vn+1 and yn+1 = un+1 − vn+1. (3.4)

Therefore, we arrive at an equivalent system given by: ∀n ≥ 0,

xn+1 = 7xn − 7xn−1 + xn−2, (3.5)

yn+1 = −7yn − 7yn−1 − yn−2. (3.6)

Through this, we can deduce closed-form expressions as outlined in the following three Lemmas.

Lemma 3.1. Consider the linear difference equation (3.5) with initial values x−2, x−1, and x0 ∈ R. The
general solution {xn, n ≥ −2} is delineated by the following expression:

∀n, (κ − 1)2 xn = −κ (x−2 + x0) +
(
κ2 + 1

)
x−1

+ κ2
(

1
κ + 1

(x−2 + κx0) − x−1

)
Bn+1

+

(
1 − κ
κ + 1

x−2 + (κ − τ) x−1 +
τ − κ2

κ + 1
x0

)
Bn

−

(
1

κ + 1
(κx−2 + x0) − x−1

)
Bn−1,

where (Bn, n ≥ 1) represents the sequence of balancing numbers.
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Proof. We commence the proof by employing the characteristic polynomial of Eq (3.5):

λ3 − 7λ2 + 7λ − 1 = (λ − 1) (λ − κ) (λ − τ) = 0.

The roots of this equation are λ1 = 1, λ2 = κ, λ3 = τ. Consequently, the closed form of the general
solution for difference equation (3.5) is expressed as:

∀n ≥ −2, xn = θ1 + θ2κ
n + θ3τ

n.

Here, x−2, x−1, and x0 denote initial values satisfying:

x0 = θ1 + θ2 + θ3, x−1 = θ1 + τθ2 + κθ3, x−2 = θ1 + τ
2θ2 + κ

2θ3.

By solving the standard system and conducting subsequent calculations, we obtain:

(κ − 1)2 θ1 = −κ (x−2 + x0) +
(
κ2 + 1

)
x−1,

(κ − 1)2 θ2 =
κ2

κ + 1
(x−2 + κx0) − κ2x−1,

(κ − 1)2 θ3 =
1

κ + 1
(κx−2 + x0) − x−1.

Hence, we derive the following expression:

∀n, (κ − 1)2 xn = −κ (x−2 + x0) +
(
κ2 + 1

)
x−1

+ κ2
(

1
κ + 1

(x−2 + κx0) − x−1

)
κn

+

(
1

κ + 1
(κx−2 + x0) − x−1

)
τn,

and after further calculations and simplification, we arrive at:

∀n, (κ − 1)2 xn = −κ (x−2 + x0) +
(
κ2 + 1

)
x−1

+ κ2
(

1
κ + 1

(x−2 + κx0) − x−1

)
Bn+1

+

(
1 − κ
κ + 1

x−2 + (κ − τ) x−1 +
τ − κ2

κ + 1
x0

)
Bn

−

(
1

κ + 1
(κx−2 + x0) − x−1

)
Bn−1.

The lemma is thereby proven.

Lemma 3.2. Consider the linear difference equation (3.6) with initial values y−2, y−1, and y0 ∈ R. The
general solution {yn, n ≥ −2} can be succinctly expressed as:

∀n, (κ − 1)2 (−1)n yn = −κ (y−2 + y0) −
(
κ2 + 1

)
y−1

+ κ2
(

1
κ + 1

(y−2 + κy0) + y−1

)
Bn+1
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+

(
1 − κ
κ + 1

y−2 + (τ − κ) y−1 +
τ − κ2

κ + 1
y0

)
Bn

−

(
1

κ + 1
(κy−2 + y0) + y−1

)
Bn−1.

Proof. To establish the solution for the difference equation (3.5), we begin by utilizing its characteristic
polynomial:

λ3 + 7λ2 + 7λ + 1 = (λ + 1) (λ + κ) (λ + τ) = 0.

The roots of this polynomial are denoted as λ1 = −1, λ2 = −κ, λ3 = −τ, then the closed form of the
general solution for this difference equation is expressed as:

∀n ≥ −2, (−1)n yn = ϑ1 + ϑ2κ
n + ϑ3τ

n.

Here, y−2, y−1, and y0 are defined by the standard system:

y0 = ϑ1 + ϑ2 + ϑ3, y−1 = −ϑ1 − τϑ2 − κϑ3, y−2 = ϑ1 + τ
2ϑ2 + κ

2ϑ3.

Upon solving the standard system and conducting subsequent calculations, the coefficients ϑ1, ϑ2 and
ϑ3 are determined as follows:

(κ − 1)2 ϑ1 = −κ (y−2 + y0) −
(
κ2 + 1

)
y−1.

(κ − 1)2 ϑ2 =
κ2

κ + 1
(y−2 + κy0) + κ2y−1.

(κ − 1)2 ϑ3 =
1

κ + 1
(κy−2 + y0) + y−1.

Consequently, the final expression for yn is given by:

∀n, (κ − 1)2 (−1)n yn = −κ (y−2 + y0) −
(
κ2 + 1

)
y−1

+ κ2
(

1
κ + 1

(y−2 + κy0) + y−1

)
κn

+

(
1

κ + 1
(κy−2 + y0) + y−1

)
τn.

Further simplification yields the key result:

∀n, (κ − 1)2 (−1)n yn = −κ (y−2 + y0) −
(
κ2 + 1

)
y−1

+ κ2
(

1
κ + 1

(y−2 + κy0) + y−1

)
Bn+1

+

(
1 − κ
κ + 1

y−2 + (τ − κ) y−1 +
τ − κ2

κ + 1
y0

)
Bn

−

(
1

κ + 1
(κy−2 + y0) + y−1

)
Bn−1.

Thus, the lemma is effectively proven.
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Lemma 3.3. Consider the system of linear difference equations (3.3) with initial values u−2, u−1, u0,

v−2, v−1, and v0 ∈ R. The general solution {(un, vn) , n ≥ −2} can be succinctly expressed as:

∀n, (κ − 1)2 u2n = −κ (u−2 + u0) +
(
κ2 + 1

)
v−1 + κ

2
(

1
κ + 1

(u−2 + κu0) − v−1

)
B2n+1

+

(
1 − κ
κ + 1

u−2 + (κ − τ) v−1 +
τ − κ2

κ + 1
u0

)
B2n −

(
1

κ + 1
(κu−2 + u0) − v−1

)
B2n−1,

∀n, (κ − 1)2 u2n+1 = −κ (v−2 + v0) +
(
κ2 + 1

)
u−1 + κ

2
(

1
κ + 1

(v−2 + κv0) − u−1

)
B2n+2

+

(
1 − κ
κ + 1

v−2 + (κ − τ) u−1 +
τ − κ2

κ + 1
v0

)
B2n+1 −

(
1

κ + 1
(κv−2 + v0) − u−1

)
B2n,

∀n, (κ − 1)2 v2n = −κ (v−2 + v0) +
(
κ2 + 1

)
u−1 + κ

2
(

1
κ + 1

(v−2 + κv0) − u−1

)
B2n+1

+

(
1 − κ
κ + 1

v−2 + (κ − τ) u−1 +
τ − κ2

κ + 1
v0

)
B2n −

(
1

κ + 1
(κv−2 + v0) − u−1

)
B2n−1,

∀n, (κ − 1)2 v2n+1 = −κ (u−2 + u0) +
(
κ2 + 1

)
v−1 + κ

2
(

1
κ + 1

(u−2 + κu0) − v−1

)
B2n+2

+

(
1 − κ
κ + 1

u−2 + (κ − τ) v−1 +
τ − κ2

κ + 1
u0

)
B2n+1 −

(
1

κ + 1
(κu−2 + u0) − v−1

)
B2n.

Proof. Through the equivalent linear systems (3.5) and (3.6) and by employing the conversely de-
fined change of variables (3.4) , un+1 is represented as (xn+1 + yn+1)/ 2 and vn+1 is represented as
(xn+1 − yn+1)/ 2. The subsequent application of Lemmas 3.1 and 3.2 allows us to deduce the closed-
form solution for system (3.3) as:

∀n, 2 (κ − 1)2 un = −κ ((x−2 + (−1)n y−2) + (x0 + (−1)n y0)) +
(
κ2 + 1

) (
x−1 + (−1)n+1 y−1

)
+ κ2

(
1

κ + 1
((x−2 + (−1)n y−2) + κ (x0 + (−1)n y0)) − (x−1 − (−1)n y−1)

)
Bn+1

+

(
1 − κ
κ + 1

(x−2 + (−1)n y−2) + (κ − τ) (x−1 − (−1)n y−1) +
τ − κ2

κ + 1
(x0 + (−1)n y0)

)
Bn

−

(
1

κ + 1
(κ (x−2 + (−1)n y−2) + (x0 + (−1)n y0)) −

(
x−1 + (−1)n+1 y−1

))
Bn−1,

∀n, 2 (κ − 1)2 vn = κ (((−1)n y−2 − x−2) + ((−1)n y0 − x0)) +
(
κ2 + 1

)
(x−1 + (−1)n y−1)

+ κ2
(

1
κ + 1

((
(−1)n+1 y−2 + x−2

)
+ κ

(
(−1)n+1 y0 + x0

))
+

(
(−1)n+1 y−1 − x−1

))
Bn+1

+

(
1 − κ
κ + 1

(
x−2 + (−1)n+1 y−2

)
+ (κ − τ)

(
x−1 − (−1)n+1 y−1

)
+
τ − κ2

κ + 1

(
x0 + (−1)n+1 y0

))
Bn

Electronic Research Archive Volume 32, Issue 3, 2137–2159.



2146

+

(
1

κ + 1
(κ ((−1)n y−2 − x−2) + ((−1)n y0 − x0)) + (x−1 + (−1)n y−1)

)
Bn−1.

By applying the variable substitution defined in (3.4) once again, the desired results can be obtained.
Hence, the lemma is effectively demonstrated.

Below, we derive a main result specific to this subsection and present it in the form of a theorem.

Theorem 3.1. Consider the system of nonlinear difference equations (3.1) with initial values ξ−1, ξ0,
ψ−1, and ψ0 ∈ R. The general solution {(ξn, ψn) , n ≥ −1} can be succinctly expressed as:

∀n, ξ2n =

 −κ (ξ0ψ−1 + 1) +
(
κ2 + 1

)
ξ0 + κ

2
(

1
κ+1 (ξ0ψ−1 + κ) − ξ0

)
B2n

+
(

1−κ
κ+1ξ0ψ−1 + (κ − τ) ξ0 +

τ−κ2

κ+1

)
B2n−1 −

(
1
κ+1 (κξ0ψ−1 + 1) − ξ0

)
B2n−2


×

 −κ (ξ0ψ−1 + 1) +
(
κ2 + 1

)
ξ0 + κ

2
(

1
κ+1 (ξ0ψ−1 + κ) − ξ0

)
B2n+1

+
(

1−κ
κ+1ξ0ψ−1 + (κ − τ) ξ0 +

τ−κ2

κ+1

)
B2n −

(
1
κ+1 (κξ0ψ−1 + 1) − ξ0

)
B2n−1


−1

,

∀n, ξ2n+1 =

 −κ (ψ0ξ−1 + 1) +
(
κ2 + 1

)
ψ0 + κ

2
(

1
κ+1 (ψ0ξ−1 + κ) − ψ0

)
B2n+1

+
(

1−κ
κ+1ψ0ξ−1 + (κ − τ)ψ0 +

τ−κ2

κ+1

)
B2n −

(
1
κ+1 (κψ0ξ−1 + 1) − ψ0

)
B2n−1


×

 −κ (ψ0ξ−1 + 1) +
(
κ2 + 1

)
ψ0 + κ

2
(

1
κ+1 (ψ0ξ−1 + κ) − ψ0

)
B2n+2

+
(

1−κ
κ+1ψ0ξ−1 + (κ − τ)ψ0 +

τ−κ2

κ+1

)
B2n+1 −

(
1
κ+1 (κψ0ξ−1 + 1) − ψ0

)
B2n


−1

,

∀n, ψ2n =

 −κ (ψ0ξ−1 + 1) +
(
κ2 + 1

)
ψ0 + κ

2
(

1
κ+1 (ψ0ξ−1 + κ) − ψ0

)
B2n

+
(

1−κ
κ+1ψ0ξ−1 + (κ − τ)ψ0 +

τ−κ2

κ+1

)
B2n−1 −

(
1
κ+1 (κψ0ξ−1 + 1) − ψ0

)
B2n−2


×

 −κ (ψ0ξ−1 + 1) +
(
κ2 + 1

)
ψ0 + κ

2
(

1
κ+1 (ψ0ξ−1 + κ) − ψ0

)
B2n+1

+
(

1−κ
κ+1ψ0ξ−1 + (κ − τ)ψ0 +

τ−κ2

κ+1

)
B2n −

(
1
κ+1 (κψ0ξ−1 + 1) − ψ0

)
B2n−1


−1

,

∀n, ψ2n+1 =

 −κ (ξ0ψ−1 + 1) +
(
κ2 + 1

)
ξ0 + κ

2
(

1
κ+1 (ξ0ψ−1 + κ) − ξ0

)
B2n+1

+
(

1−κ
κ+1ξ0ψ−1 + (κ − τ) ξ0 +

τ−κ2

κ+1

)
B2n −

(
1
κ+1 (κξ0ψ−1 + 1) − ξ0

)
B2n−1


×

 −κ (ξ0ψ−1 + 1) +
(
κ2 + 1

)
ξ0 + κ

2
(

1
κ+1 (ξ0ψ−1 + κ) − ξ0

)
B2n+2

+
(

1−κ
κ+1ξ0ψ−1 + (κ − τ) ξ0 +

τ−κ2

κ+1

)
B2n+1 −

(
1
κ+1 (κξ0ψ−1 + 1) − ξ0

)
B2n


−1

.

Proof. The proof of this theorem relies on Lemma 3.2 and employs the change of variables (3.2).
Consequently, we establish the following relationships denoted as

∀n, ξ2n =
v2n−1

u2n
, ξ2n+1 =

v2n

u2n+1
, ψ2n =

u2n−1

v2n
, ψ2n+1 =

u2n

v2n+1
,

then, for all n,

∀n, ξ2n =

 −κ (u−2 + u0) +
(
κ2 + 1

)
v−1 + κ

2
(

1
κ+1 (u−2 + κu0) − v−1

)
B2n

+
(

1−κ
κ+1u−2 + (κ − τ) v−1 +

τ−κ2

κ+1 u0

)
B2n−1 −

(
1
κ+1 (κu−2 + u0) − v−1

)
B2n−2
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×

 −κ (u−2 + u0) +
(
κ2 + 1

)
v−1 + κ

2
(

1
κ+1 (u−2 + κu0) − v−1

)
B2n+1

+
(

1−κ
κ+1u−2 + (κ − τ) v−1 +

τ−κ2

κ+1 u0

)
B2n −

(
1
κ+1 (κu−2 + u0) − v−1

)
B2n−1


−1

=

 −κ (ξ0ψ−1 + 1) +
(
κ2 + 1

)
ξ0 + κ

2
(

1
κ+1 (ξ0ψ−1 + κ) − ξ0

)
B2n

+
(

1−κ
κ+1ξ0ψ−1 + (κ − τ) ξ0 +

τ−κ2

κ+1

)
B2n−1 −

(
1
κ+1 (κξ0ψ−1 + 1) − ξ0

)
B2n−2


×

 −κ (ξ0ψ−1 + 1) +
(
κ2 + 1

)
ξ0 + κ

2
(

1
κ+1 (ξ0ψ−1 + κ) − ξ0

)
B2n+1

+
(

1−κ
κ+1ξ0ψ−1 + (κ − τ) ξ0 +

τ−κ2

κ+1

)
B2n −

(
1
κ+1 (κξ0ψ−1 + 1) − ξ0

)
B2n−1


−1

.

The remaining details are straightforward and omitted for brevity.

Example 3.1. Consider the system (3.1) with initial values ξ−1 = 1.50, ξ0 = −1.20, ψ−1 = −1.10, and
ψ0 = 1.20. Figure 1 presents a graphical depiction of the sustained dynamics within this system.

Figure 1. The behavior of a specific solution of the system (3.1).

3.2. 2 (s + 1)-order: s > 0

For a 2 (s + 1)-order system with s > 0, our aim is to deduce closed-form solutions for system (1.1).
This system is viewed as an extension of system (3.1), represented as follows for all n ≥ 0:

ξ(s+1)(n+1)−m =
1

7 − ψ(s+1)n−m
(
7 − ξ(s+1)(n−1)−m

) , ψ(s+1)(n+1)−m =
1

7 − ξ(s+1)n−m
(
7 − ψ(s+1)(n−1)−m

) ,
for m ∈ {0, 1, . . . , s} and n ∈ N. Introducing the notations: Φ(s)

n (m) = ξ(s+1)n−m, Ψ
(s)
n (m) = ψ(s+1)n−m, for

m ∈ {0, 1, . . . , s} and n ≥ 0, we can derive (s + 1)−systems analogous to system (3.1),

∀n ≥ 0, Φ(s)
n+1 (m) =

1

7 − Ψ(s)
n (m)

(
7 − Φ(s)

n−1 (m)
) , Ψ(s)

n+1 (m) =
1

7 − Φ(s)
n (m)

(
7 − Ψ(s)

n−1 (m)
) ,

for m ∈ {0, 1, . . . , s} . Based on this discussion, we present the first main result.
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Theorem 3.2. Consider the system of nonlinear difference equations (1.1) with initial values ξ−v ∈ R

and ψ−v ∈ R, v ∈ {0, 1, . . . , 2s + 1}. The general solution {(ξn, ψn) , n} can be succinctly expressed as:
for m ∈ {0, 1, . . . , s} ,

∀n, ξ(s+1)(2n)−m =


−κ

(
ξ−mψ−(s+1)−m + 1

)
+

(
κ2 + 1

)
ξ−m

+κ2
(

1
κ+1

(
ξ−mψ−(s+1)−m + κ

)
− ξ−m

)
B2n

+
(

1−κ
κ+1ξ−mψ−(s+1)−m + (κ − τ) ξ−m +

τ−κ2

κ+1

)
B2n−1

−
(

1
κ+1

(
κξ−mψ−(s+1)−m + 1

)
− ξ−m

)
B2n−2


×


−κ

(
ξ−mψ−(s+1)−m + 1

)
+

(
κ2 + 1

)
ξ−m

+κ2
(

1
κ+1

(
ξ−mψ−(s+1)−m + κ

)
− ξ−m

)
B2n+1

+
(

1−κ
κ+1ξ−mψ−(s+1)−m + (κ − τ) ξ−m +

τ−κ2

κ+1

)
B2n

−
(

1
κ+1

(
κξ−mψ−(s+1)−m + 1

)
− ξ−m

)
B2n−1



−1

,

∀n, ξ(s+1)(2n+1)−m =


−κ

(
ψ−mξ−(s+1)−m + 1

)
+

(
κ2 + 1

)
ψ−m

+κ2
(

1
κ+1

(
ψ−mξ−(s+1)−m + κ

)
− ψ−m

)
B2n+1

+
(

1−κ
κ+1ψ−mξ−(s+1)−m + (κ − τ)ψ−m +

τ−κ2

κ+1

)
B2n

−
(

1
κ+1

(
κψ−mξ−(s+1)−m + 1

)
− ψ−m

)
B2n−1


×


−κ

(
ψ−mξ−(s+1)−m + 1

)
+

(
κ2 + 1

)
ψ−m

+κ2
(

1
κ+1

(
ψ−mξ−(s+1)−m + κ

)
− ψ−m

)
B2n+2

+
(

1−κ
κ+1ψ−mξ−(s+1)−m + (κ − τ)ψ−m +

τ−κ2

κ+1

)
B2n+1

−
(

1
κ+1

(
κψ−mξ−(s+1)−m + 1

)
− ψ−m

)
B2n



−1

,

∀n, ψ(s+1)(2n)−m =


−κ

(
ψ−mξ−(s+1)−m + 1

)
+

(
κ2 + 1

)
ψ−m

+κ2
(

1
κ+1

(
ψ−mξ−(s+1)−m + κ

)
− ψ−m

)
B2n

+
(

1−κ
κ+1ψ−mξ−(s+1)−m + (κ − τ)ψ−m +

τ−κ2

κ+1

)
B2n−1

−
(

1
κ+1

(
κψ−mξ−(s+1)−m + 1

)
− ψ−m

)
B2n−2


×


−κ

(
ψ−mξ−(s+1)−m + 1

)
+

(
κ2 + 1

)
ψ−m

+κ2
(

1
κ+1

(
ψ−mξ−(s+1)−m + κ

)
− ψ−m

)
B2n+1

+
(

1−κ
κ+1ψ−mξ−(s+1)−m + (κ − τ)ψ−m +

τ−κ2

κ+1

)
B2n

−
(

1
κ+1

(
κψ−mξ−(s+1)−m + 1

)
− ψ−m

)
B2n−1



−1

,

∀n, ψ(s+1)(2n+1)−m =


−κ

(
ξ−mψ−(s+1)−m + 1

)
+

(
κ2 + 1

)
ξ−m

+κ2
(

1
κ+1

(
ξ−mψ−(s+1)−m + κ

)
− ξ−m

)
B2n+1

+
(

1−κ
κ+1ξ−mψ−(s+1)−m + (κ − τ) ξ−m +

τ−κ2

κ+1

)
B2n

−
(

1
κ+1

(
κξ−mψ−(s+1)−m + 1

)
− ξ−m

)
B2n−1
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×


−κ

(
ξ−mψ−(s+1)−m + 1

)
+

(
κ2 + 1

)
ξ−m

+κ2
(

1
κ+1

(
ξ−mψ−(s+1)−m + κ

)
− ξ−m

)
B2n+2

+
(

1−κ
κ+1ξ−mψ−(s+1)−m + (κ − τ) ξ−m +

τ−κ2

κ+1

)
B2n+1

−
(

1
κ+1

(
κξ−mψ−(s+1)−m + 1

)
− ξ−m

)
B2n



−1

.

Proof. Utilizing the (s + 1)−systems analogous to system (3.1) and applying Theorem 3.1, we con-
clude the proof of Theorem 3.2.

In the preceding outcome, the solutions of system (1.1) were represented using a balancing se-
quence, whereas the next result was articulated using a co-balancing sequence.

Corollary 3.1. Consider the system of nonlinear difference equations (1.1) with initial values ξ−v ∈ R,
and ψ−v ∈ R, v ∈ {0, 1, . . . , 2s + 1}. The general solution {(ξn, ψn) , n} can be succinctly expressed as:
for m ∈ {0, 1, . . . , s} ,

∀n, ξ(s+1)(2n)−m =



−2κ
(
ξ−mψ−(s+1)−m + 1

)
+ 2

(
κ2 + 1

)
ξ−m

+κ2
(

1
κ+1

(
ξ−mψ−(s+1)−m + κ

)
− ξ−m

)
b2n+1

+
(

1−κ−κ2

κ+1 ξ−mψ−(s+1)−m +
(
κ2 + κ − τ

)
ξ−m +

τ−κ2−κ3

κ+1

)
b2n

−
(

1
κ+1ξ−mψ−(s+1)−m + (κ − τ − 1) ξ−m +

τ−κ2+1
κ+1

)
b2n−1

+
(

1
κ+1

(
κξ−mψ−(s+1)−m + 1

)
− ξ−m

)
b2n−2



×



−2κ
(
ξ−mψ−(s+1)−m + 1

)
+ 2

(
κ2 + 1

)
ξ−m

+κ2
(

1
κ+1

(
ξ−mψ−(s+1)−m + κ

)
− ξ−m

)
b2n+2

+
(

1−κ−κ2

κ+1 ξ−mψ−(s+1)−m +
(
κ2 + κ − τ

)
ξ−m +

τ−κ2−κ3

κ+1

)
b2n+1

−
(

1
κ+1ξ−mψ−(s+1)−m + (κ − τ − 1) ξ−m +

τ−κ2+1
κ+1

)
b2n

+
(

1
κ+1

(
κξ−mψ−(s+1)−m + 1

)
− ξ−m

)
b2n−1



−1

,

∀n, ξ(s+1)(2n+1)−m =



−2κ
(
ψ−mξ−(s+1)−m + 1

)
+ 2

(
κ2 + 1

)
ψ−m

+κ2
(

1
κ+1

(
ψ−mξ−(s+1)−m + κ

)
− ψ−m

)
b2n+2

+
(

1−κ−κ2

κ+1 ψ−mξ−(s+1)−m +
(
κ2 + κ − τ

)
ψ−m +

τ−κ2−κ3

κ+1

)
b2n+1

−
(

1
κ+1ψ−mξ−(s+1)−m + (κ − τ − 1)ψ−m +

τ−κ2+1
κ+1

)
b2n

+
(

1
κ+1

(
κψ−mξ−(s+1)−m + 1

)
− ψ−m

)
b2n−1



×



−2κ
(
ψ−mξ−(s+1)−m + 1

)
+ 2

(
κ2 + 1

)
ψ−m

+κ2
(

1
κ+1

(
ψ−mξ−(s+1)−m + κ

)
− ψ−m

)
b2n+3

+
(

1−κ−κ2

κ+1 ψ−mξ−(s+1)−m +
(
κ2 + κ − τ

)
ψ−m +

τ−κ2−κ3

κ+1

)
b2n+2

−
(

1
κ+1ψ−mξ−(s+1)−m + (κ − τ − 1)ψ−m +

τ−κ2+1
κ+1

)
b2n+1

+
(

1
κ+1

(
κψ−mξ−(s+1)−m + 1

)
− ψ−m

)
b2n



−1

,
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∀n, ψ(s+1)(2n)−m =



−2κ
(
ψ−mξ−(s+1)−m + 1

)
+ 2

(
κ2 + 1

)
ψ−m

+κ2
(

1
κ+1

(
ψ−mξ−(s+1)−m + κ

)
− ψ−m

)
b2n+1

+
(

1−κ−κ2

κ+1 ψ−mξ−(s+1)−m +
(
κ2 + κ − τ

)
ψ−m +

τ−κ2−κ3

κ+1

)
b2n

−
(

1
κ+1ψ−mξ−(s+1)−m + (κ − τ − 1)ψ−m +

τ−κ2+1
κ+1

)
b2n−1

+
(

1
κ+1

(
κψ−mξ−(s+1)−m + 1

)
− ψ−m

)
b2n−2



×



−2κ
(
ψ−mξ−(s+1)−m + 1

)
+ 2

(
κ2 + 1

)
ψ−m

+κ2
(

1
κ+1

(
ψ−mξ−(s+1)−m + κ

)
− ψ−m

)
b2n+2

+
(

1−κ−κ2

κ+1 ψ−mξ−(s+1)−m +
(
κ2 + κ − τ

)
ψ−m +

τ−κ2−κ3

κ+1

)
b2n+1

−
(

1
κ+1ψ−mξ−(s+1)−m + (κ − τ − 1)ψ−m +

τ−κ2+1
κ+1

)
b2n

+
(

1
κ+1

(
κψ−mξ−(s+1)−m + 1

)
− ψ−m

)
b2n−1



−1

,

∀n, ψ(s+1)(2n+1)−m =



−2κ
(
ξ−mψ−(s+1)−m + 1

)
+ 2

(
κ2 + 1

)
ξ−m

+κ2
(

1
κ+1

(
ξ−mψ−(s+1)−m + κ

)
− ξ−m

)
b2n+2

+
(

1−κ−κ2

κ+1 ξ−mψ−(s+1)−m +
(
κ2 + κ − τ

)
ξ−m +

τ−κ2−κ3

κ+1

)
b2n+1

−
(

1
κ+1ξ−mψ−(s+1)−m + (κ − τ − 1) ξ−m +

τ−κ2+1
κ+1

)
b2n

+
(

1
κ+1

(
κξ−mψ−(s+1)−m + 1

)
− ξ−m

)
b2n−1



×



−2κ
(
ξ−mψ−(s+1)−m + 1

)
+ 2

(
κ2 + 1

)
ξ−m

+κ2
(

1
κ+1

(
ξ−mψ−(s+1)−m + κ

)
− ξ−m

)
b2n+3

+
(

1−κ−κ2

κ+1 ξ−mψ−(s+1)−m +
(
κ2 + κ − τ

)
ξ−m +

τ−κ2−κ3

κ+1

)
b2n+2

−
(

1
κ+1ξ−mψ−(s+1)−m + (κ − τ − 1) ξ−m +

τ−κ2+1
κ+1

)
b2n+1

+
(

1
κ+1

(
κξ−mψ−(s+1)−m + 1

)
− ξ−m

)
b2n



−1

,

where (bn, n ≥ 1) represents the sequence of co-balancing numbers.

Proof. The proof of this corollary establishes the following relation between balancing and co-
balancing numbers: 2Bn = bn+1 − bn. Further details have been omitted.

Remark 3.1. The general solution to the system of nonlinear difference equations (1.1) with initial
values ξ−v ∈ R and ψ−v ∈ R, v ∈ {0, 1, . . . , 2s + 1} is of paramount importance. The general solution
{(ξn, ψn) , n} can be succinctly expressed as follows: for m ∈ {0, 1, . . . , s}, for every n, ξ(s+1)(2n)−m,
ξ(s+1)(2n+1)−m, ψ(s+1)(2n)−m, and ψ(s+1)(2n+1)−m can be expressed using the proposed formulas, where (Bn)
and (bn) represent balancing and cobalancing numbers. This remark illustrates the method by which
solutions to the complex system of difference equations can be accurately expressed, highlighting the
importance of employing co-balancing numbers in this context.

Corollary 3.2. Consider the following nonlinear difference equation

∀n ≥ 0, ξn+1 =
1

7 − ξn−s (7 − ξn−2s−1)
,
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where s is a fixed positive integer with initial values ξ−v ∈ R, v ∈ {0, 1, . . . , 2s + 1}. The general
solution {ξn, n} can be succinctly expressed as: for m ∈ {0, 1, . . . , s} ,

∀n, ξ(s+1)(2n)−m =


−κ

(
ξ−mξ−(s+1)−m + 1

)
+

(
κ2 + 1

)
ξ−m

+κ2
(

1
κ+1

(
ξ−mξ−(s+1)−m + κ

)
− ξ−m

)
B2n

+
(

1−κ
κ+1ξ−mξ−(s+1)−m + (κ − τ) ξ−m +

τ−κ2

κ+1

)
B2n−1

−
(

1
κ+1

(
κξ−mξ−(s+1)−m + 1

)
− ξ−m

)
B2n−2


×


−κ

(
ξ−mξ−(s+1)−m + 1

)
+

(
κ2 + 1

)
ξ−m

+κ2
(

1
κ+1

(
ξ−mξ−(s+1)−m + κ

)
− ξ−m

)
B2n+1

+
(

1−κ
κ+1ξ−mξ−(s+1)−m + (κ − τ) ξ−m +

τ−κ2

κ+1

)
B2n

−
(

1
κ+1

(
κξ−mξ−(s+1)−m + 1

)
− ξ−m

)
B2n−1



−1

,

∀n, ξ(s+1)(2n+1)−m =


−κ

(
ξ−mξ−(s+1)−m + 1

)
+

(
κ2 + 1

)
ξ−m

+κ2
(

1
κ+1

(
ξ−mξ−(s+1)−m + κ

)
− ξ−m

)
B2n+1

+
(

1−κ
κ+1ξ−mξ−(s+1)−m + (κ − τ) ξ−m +

τ−κ2

κ+1

)
B2n

−
(

1
κ+1

(
κξ−mξ−(s+1)−m + 1

)
− ξ−m

)
B2n−1


×


−κ

(
ξ−mξ−(s+1)−m + 1

)
+

(
κ2 + 1

)
ξ−m

+κ2
(

1
κ+1

(
ξ−mξ−(s+1)−m + κ

)
− ξ−m

)
B2n+2

+
(

1−κ
κ+1ξ−mξ−(s+1)−m + (κ − τ) ξ−m +

τ−κ2

κ+1

)
B2n+1

−
(

1
κ+1

(
κξ−mξ−(s+1)−m + 1

)
− ξ−m

)
B2n



−1

.

Proof. The proof of the general solution for the nonlinear difference equation is derived from Theorem
3.2 when ξ−v = ψ−v for v ∈ {0, 1, . . . , 2s + 1}.

Example 3.2. Consider the system (1.1) with s = 1 and initial values ξ−4 = 1.50, ξ−3 = 1.20, ξ−2 =

0.30, ξ−1 = 0.40, ξ0 = 0.50, ψ−4 = −1.10, ψ−3 = −1.20, ψ−2 = −1.30, ψ−1 = −1.40, and ψ0 = −1.50.
Figure 2 presents a graphical depiction of the sustained dynamics within this system.
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Figure 2. The behavior of a specific solution of the system (1.1) with s = 1.

Example 3.3. Consider the system (1.1) with s = 2 and initial values ξ−v = 1 −
√

v and ψ−v =

−1.2 exp (v) + 2, v ∈ {0, 1, . . . , 6}. Figure 3 presents a graphical depiction of the sustained dynamics
within this system.

Figure 3. The behavior of a specific solution of the system (1.1) with s = 2.
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3.3. Stability of system (1.1)

In this subsection, we first determine the equilibrium points and then proceed to analyze the local
and global stability of the solutions of system (1.1). The system has three positive equilibrium points:

Λ1 =
(
ξ1, ψ1

)
= (1, 1) , Λ2 =

(
ξ2, ψ2

)
= κ (1, 1) and Λ3 =

(
ξ3, ψ3

)
= τ (1, 1) ,

which are solutions to the standard system:

ξ =
1

7 − ψ
(
7 − ξ

) , ψ =
1

7 − ξ
(
7 − ψ

) .
The following theorem provides information on the local stability of the equilibrium pointΛ2 of system
(1.1).

Theorem 3.3. The positive equilibrium point Λ2 of system (1.1) is locally asymptotically stable.

Proof. In order to analyze the local stability of system (1.1) around the equilibrium point Λ2, we em-
ploy linearized equations. Let ∀n ≥ 0, ξ

n+1
= Γ

(
ξ

n

)
, where ξ

n
:=

(
x′n, y

′

n

)′
, xn =

(
x(1)

n , x(2)
n , . . . , x(2s+2)

n

)′
,

y
n
=

(
y(1)

n , y(2)
n , . . . , y(2s+2)

n

)′
,

{
x(1)

n = ξn, x
(2)
n = ξn−1, . . . , x

(2l+2)
n = ξn−2s−1

y(1)
n = ψn, y

(2)
n = ψn−1, . . . , y

(2l+2)
n = ψn−2s−1

.

The mapping Γ is defined as:

Γ : [0,+∞)4(s+1)
−→ [0,+∞)4(s+1)

Z =
(
x(1), . . . , x(2s+2), y(1), . . . , y(2s+2)

)
7−→ Γ (Z) =

(
Γ1 (Z) , x(2), . . . , x(2s+2),Γ2 (Z) , y(2), . . . , y(2s+2)

)
where

Γ1 (Z) =
1

7 − y(s+1) (7 − x(2s+2)) , Γ2 (Z) =
1

7 − x(s+1) (7 − y(2s+2)) .
The partial derivatives of Γ1 (.) (resp., Γ2 (.)) with respect to its components are given by:

∂

∂y(s+1)Γ1 (Z) =
7 − x(2s+2)(

7 − y(s+1) (7 − x(2s+2)))2 ,
∂

∂x(2s+2)Γ1 (Z) =
y(s+1)(

7 − y(s+1) (7 − x(2s+2)))2

∂

∂x(s+1)Γ2 (Z) =
7 − y(2s+2)(

7 − x(s+1) (7 − y(2s+2)))2 ,
∂

∂y(2s+2)Γ2 (Z) =
x(s+1)(

7 − x(s+1) (7 − y(2s+2)))2

.

Given the symbols introduced earlier, we can express the linearized system around the equilibrium
point Λ2 as: Γ

(
ξ

n

)
= χsξn

, where χs is the stability matrix defined as:
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χs =



0 0 · · · 0 0 0 · · · 0
κ(

κ2 − 7κ + 7
)2

1 0 · · · 0 0 0 · · · 0 0
0 1 · · · 0 0 0 · · · 0 0
...

...
. . .

. . .
. . .

. . .
. . .

...
...

0 0 · · · 0 0 0 · · · 1 0

0 0 · · · 0
7 − κ(

κ2 − 7κ + 7
)2 0 · · · 0 0

0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0
...

...
. . .

. . .
. . .

. . .
. . .

...
...

0 0 · · · 0 0 0 · · · 0 0

0 0 · · · 0
7 − κ(

κ2 − 7κ + 7
)2 0 · · · 0 0

0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0
...

...
. . .

. . .
. . .

. . .
. . .

...
...

0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0

κ(
κ2 − 7κ + 7

)2

1 0 · · · 0 0 0 · · · 0 0
0 1 · · · 0 0 0 · · · 0 0
...

...
. . .

. . .
. . .

. . .
. . .

...
...

0 0 · · · 0 0 0 · · · 1 0



.

Upon performing initial computations, we find that the characteristic polynomial of χs is given by:

Pχs (λ) =
∣∣∣χs − λI4(s+1)×4(s+1)

∣∣∣ = (
λ2s+2

)2
−

(7 − κ)2(
κ2 − 7κ + 7

)4λ
2s+2 −

κ2(
κ2 − 7κ + 7

)4 ,

where I4(s+1)×4(s+1) is the identity matrix of size 4 (s + 1) × 4 (s + 1). By analyzing the characteristic
polynomial, we can determine the eigenvalues of χs. After conducting meticulous calculations, we
ascertain that the roots of χs satisfy λ2s+2 =

(√
17 − 4

) (
70
√

2 − 99
)

or λ2s+2 =
(√

17 + 4
) (

99 − 70
√

2
)
.

This implies that all the moduli of every eigenvalue of χs are less than one. Therefore, the positive
equilibrium point Λ2 of system (1.1) is concluded to be locally asymptotically stable.

Theorem 3.4. Consider the system of nonlinear difference equations (1.1) with initial values ξ−v ∈ R,
and ψ−v ∈ R, v ∈ {0, 1, . . . , 2s + 1}.

1) Every positive solution {(ξn, ψn) , n} of this system converges to the equilibrium pointΛ2 as n −→ ∞.

2) The positive equilibrium point Λ2 of system (1.1) is globally asymptotically stable.

Proof. (i) Let {(ξn, ψn) , n} be a positive solution of system (1.1). We are interested in calculating
the limit of the sequences

(
ξ(s+1)(2n)−m

)
,
(
ξ(s+1)(2n+1)−m

)
,
(
ψ(s+1)(2n)−m

)
, and

(
ψ(s+1)(2n+1)−m

)
, for m ∈
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{0, 1, . . . , s}. To proceed with this calculation, let’s start by analyzing the behavior of ξ(s+1)(2n)−m

as n approaches infinity.

lim
n
ξ(s+1)(2n)−m = lim

n



(
−κ

(
ξ−mψ−(s+1)−m + 1

)
+

(
κ2 + 1

)
ξ−m

) 1
B2n+1

+κ2
(

1
κ+1

(
ξ−mψ−(s+1)−m + κ

)
− ξ−m

) B2n

B2n+1

+
(

1−κ
κ+1ξ−mψ−(s+1)−m + (κ − τ) ξ−m +

τ−κ2

κ+1

) B2n−1

B2n+1

−
(

1
κ+1

(
κξ−mψ−(s+1)−m + 1

)
− ξ−m

) B2n−2

B2n+1



×



(
−κ

(
ξ−mψ−(s+1)−m + 1

)
+

(
κ2 + 1

)
ξ−m

) 1
B2n+1

+κ2
(

1
κ+1

(
ξ−mψ−(s+1)−m + κ

)
− ξ−m

)
+

(
1−κ
κ+1ξ−mψ−(s+1)−m + (κ − τ) ξ−m +

τ−κ2

κ+1

) B2n

B2n+1

−
(

1
κ+1

(
κξ−mψ−(s+1)−m + 1

)
− ξ−m

) B2n−1

B2n+1



−1

.

From the given limits: limn
B2n

B2n+1
= κ, limn

B2n−1

B2n+1
= κ2, limn

B2n−2

B2n+1
= κ3, and limn

1
B2n+1

= 0, we
get

lim
n
ξ(s+1)(2n)−m =


κ3

(
1
κ+1

(
ξ−mψ−(s+1)−m + κ

)
− ξ−m

)
+κ2

(
1−κ
κ+1ξ−mψ−(s+1)−m + (κ − τ) ξ−m +

τ−κ2

κ+1

)
−κ3

(
1
κ+1

(
κξ−mψ−(s+1)−m + 1

)
− ξ−m

)


×


κ2

(
1
κ+1

(
ξ−mψ−(s+1)−m + κ

)
− ξ−m

)
+κ

(
1−κ
κ+1ξ−mψ−(s+1)−m + (κ − τ) ξ−m +

τ−κ2

κ+1

)
−κ2

(
1
κ+1

(
κξ−mψ−(s+1)−m + 1

)
− ξ−m

)

−1

= κ,

for m ∈ {0, 1, . . . , s} . The same approach can be applied to
(
ξ(s+1)(2n+1)−m

)
,

(
ψ(s+1)(2n)−m

)
,

and
(
ψ(s+1)(2n+1)−m

)
, for m ∈ {0, 1, . . . , s} .

(ii) The proof of the second assertion follows directly from Theorem 3.3 and the first assertion.

Remark 3.2. Throughout the examples in this paper, Figures 1–3 demonstrate that the equilibrium
point Λ2 of system (1.1) is globally asymptotically stable.

4. Conclusions

This study provided a comprehensive exploration of the dynamics of a system of rational difference
equations, investigating both local and global stability aspects. The findings underscored the intricate
relationship between stability properties and co-balancing numbers, revealing their significant impact
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on achieving equilibrium within the solutions of rational difference equations. By examining the role of
co-balancing numbers, we gained insights into the interplay between global stability and co-balancing
numbers, enhancing our understanding of dynamic systems’ mathematical structures. Moreover, this
article serves as a valuable resource for mathematicians, researchers, and scholars interested in the
intersection of global stability and co-balancing sequences within rational difference equations. The
consistently demonstrated global asymptotic stability of the equilibrium point, supported by examples
and figures throughout the paper, underscores the significance of the findings. Further research in this
direction holds promise for uncovering additional nuances in the intricate relationship between stability
and co-balancing numbers within mathematical modeling.

In the realm of integrable systems, the quest for analytical solutions to nonlinear PDEs has long
been a challenge due to the absence of a universal method. However, recent breakthroughs in symbolic
computation, particularly through the application of neural networks proposed by Zhang et al. [45–
48], have opened a new avenue for the analytical treatment of nonlinear PDEs. These innovative
approaches pave the way for symbolic computation to tackle the complexities of nonlinear PDEs,
laying the groundwork for a universal method for obtaining analytical expressions. While the focus
of these works is primarily on obtaining exact solutions for PDEs, the underlying methodologies and
principles can inspire new ideas for future work. A potential open problem that arises from this research
is the exploration of applying similar computational techniques to systems of difference equations. By
adapting the neural network architectures and symbolic computation methods employed in solving
nonlinear PDEs, researchers can investigate the feasibility of obtaining analytical solutions for systems
of difference equations, thus advancing our understanding of discrete dynamical systems and their
behaviors. This interdisciplinary approach holds promise for addressing longstanding challenges in
the field and opens avenues for further exploration at the intersection of computational mathematics
and dynamical systems theory.
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