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Abstract: In recent years, a truncated nuclear norm regularization (TNNR) method has obtained much 
attention from researchers in machine learning and image processing areas, because it is much more 
accurate on matrices with missing data than other traditional methods based on nuclear norm. However, 
the TNNR method is reported to be very slow, due to its large number of singular value decomposition 
(SVD) iterations. In this paper, a truncated 𝑳𝟐,𝟏 norm minimization method was presented for fast 
and accurate matrix completion, which is abbreviated as TLNM. In the proposed TLNM method, the 
truncated nuclear norm minimization model of TNNR was improved to a truncated 𝑳𝟐,𝟏  norm 
minimization model that aimed to optimize the truncated 𝑳𝟐,𝟏 Norm and a weighted noisy matrix 
simultaneously for improving the accuracy of TLNM. Using Qatar Riyal (QR) decomposition to 
calculate the orthogonal bases for reconstructing recovery results, the proposed TLNM method is much 
faster than the TNNR method. Adequate results for color images validate the effectiveness and 
efficiency of TLNM comparing with TNNR and other competing methods. 

Keywords: matrix completion; non-nuclear norm; truncated L2,1 norm; low-rank matrix; data 
recovery; image processing 
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1. Introduction 

Low rank matrix completion, which is a method of estimating the missing values in a matrix, is 
becoming more and more important for the research areas that includes image processing [1,2], 
machine learning [3,4], information theory [5,6], wireless communications [7,8], radar target 
localization [9,10], etc. Since most real-world data matrices may have low-rank structures, the 
unobserved values in a matrix 𝑀ሺ𝑀 ∈ ℝ௠ൈ௡ , 0 ൏ 𝑚 ൑ 𝑛ሻ  can be recovered accurately by 
optimizing the following rank minimization problem, 

min
௑

 𝑟𝑎𝑛𝑘ሺ𝑋ሻ, s. t.  𝑋ஐ ൌ 𝑀ஐ,                      (1) 

where 𝑋 ∈ 𝑅௠ൈ௡  is a low rank matrix whose rank is 𝑟  and 0 ൏ 𝑟 ≪ min ሺ𝑚, 𝑛ሻ . Ω  is the 
collection of positions of observations in 𝑀  and 𝑋 . 𝑀ஐ  is a matrix whose values of unobserved 
entries are initialized to zeros. Since the matrix rank is discrete and not convex, the problem in Eq (1) 
is difficult to optimize [11]. The most widely used matrix completion methods include nuclear norm 
minimization methods, fast methods based on matrix factorization, and weighted nuclear norm 
minimization methods, where the nuclear norm of a matrix is the summation of its singular values [12].  

The nuclear norm minimization methods include singular value thresholding (SVT) [13], fixed 
point continuation with approximating singular value decomposition (FPCA) [14], approximated 
proximal gradient (APG) [15], and feature matrix based nuclear norm minimization (FNNM) [34], etc. 
Since the nuclear norm is the tightest convex relaxation of matrix rank, these nuclear norm 
minimization methods can converge accurately on synthetic data-sets that have strict low rank 
structures with a theoretical guarantee [16]. However, it has been reported that these nuclear norm 
minimization methods are very slow on large scale matrices, because of the full SVD iterations in their 
updating steps. Another disadvantage of these methods is that they are not accurate when dealing with 
matrices of complex structures in some real-world applications [17]. 

The fast matrix completion methods proposed in recent years include matrix bi-factorization 
(MBF) [18], fast tri-factorization (FTF) [19], and low rank matrix fitting (LMaFit) [20], whose common 
purpose is to reduce the computational costs of traditional methods using SVD. These fast methods 
suppose that the incomplete matrix containing missing values can be decomposed into the multiplication 
of two or three small scale sub-matrices at first. Then, they recover the missing values in an incomplete 
matrix using QR decomposition to calculate the variables for reducing their computational costs. 
Sufficient experimental results show that these fast methods based on matrix factorization are faster 
than the nuclear norm optimization methods, i.e., SVT [13], FPCA [14], APG [15], and so on. However, 
these fast methods have been reported to be not accurate especially on test matrices with full rank 
structures in some real applications [17]. 

The weighted nuclear norm minimization methods include weighted nuclear norm minimization 
(WNNM) [21], truncated Schatten-p norm minimization [22], Schatten capped p norm minimization 
(SCPN) [23], truncated nuclear norm regularization (TNNR) [17], truncated quadratic norm 
minimization [44], and so on. In the WNNM method [21], different singular values are assigned with 
different weights by a decreasing function, i.e., a large singular value can be assigned with a small 
weight. The main reason is that the useful information of a matrix can be reconstructed by the large 
singular values and singular vectors. It has been reported that WNNM can generate more accurate 
results than the nuclear norm minimization methods can. The truncated Schatten-p norm minimization 
method and SCPN method proposed two improved weighted functions for singular values and can 
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optimize their non-convex minimization model efficiently by an alternating direction method of 
multipliers. They can converge much faster than the WNNM method. 

The TNNR method [17] proposed a novel truncated nuclear norm, which is the summation of the 
smallest 𝑟 െ 𝑡 singular values, where 𝑡 is the number of subtracted singular values and 𝑟 is the rank 
of incomplete matrix. In the TNNR method, the largest 𝑡 singular values are not optimized, which 
leads to a fact that the main useful information of tested matrix is retained. Hence, TNNR is much 
more accurate than the SVT, APG, WNNM, SCPN, FTF, and MBF methods. However, it has been 
reported that the TNNR method converges more slowly than the SVT method does. In order to reduce 
the number of iterations of TNNR, a modified TNNR method based on weighted residual error 
(TNNR-WRE) [24] has been proposed. In the TNNR-WRE method, the rows with less missing values 
are recovered prior to the rest ones by optimizing a weighted residual error matrix. Sufficient 
experimental results show that the modified TNNR-WRE method is much faster than the TNNR 
method, because the number of SVD iterations of the former is much smaller than that of the latter. 
However, the TNNR-WRE method uses SVD decomposition to calculate the singular values of 
matrices, which leads to a fact that the computation cost of TNNR-WRE is as large as that of TNNR. 
Consequently, the TNNR-WRE method may become slow when dealing with real world images. In the 
truncated quadratic norm minimization method [44], a truncated quadratic norm has been proposed as 
a better relaxation function of matrix rank than nuclear norm. Experimental results show that this 
method performs well in terms of convergence accuracy. However, it is much slower than the fast 
methods using QR, such as LMaFit and FTF. 

In recent years, the robustness of matrix completion methods and the balance between speed and 
convergence accuracy have received increasing attention. On one side, some robust matrix completion 
methods have been proposed, such as the robust matrix completion methods based on 𝑙௣  norm 
minimization [25,26], the robust M-estimation based matrix completion method [27], the robust 
matrix completion based on half-quadratic optimization [28], and some robust methods based on 𝑙଴ 
norm [29] or 𝑙ଵ  norm [30], or 𝑙ଶ  norm [31]. Compared with the traditional matrix completion 
methods, this class of methods have better performances on parameter robustness and resistance to 
non-Gauss noises. On the other side, some fast and accurate matrix completion methods based on 
matrix factorization and 𝐿ଶ,ଵ norm minimization (the sum of Frobenius norms of rows in 𝑋) have 
been investigated, such as an iteratively reweighted 𝐿ଶ,ଵ norm minimization method (IRLNM) [32], 
a modified fast matrix bi-factorization (FMBF) [33] method, and so on. Since the IRLNM method 
replaces the SVD decomposition with a less computationally intensive QR decomposition to calculate 
the eigenvectors, it is faster than the methods requiring SVD. The recently proposed FMBF method is 
faster than the IRLNM method, because the former just performing one time of QR decomposition in 
its each iteration, while the latter performs two times of QR decompositions. 

For further improving the speed and convergence accuracy of TNNR, a truncated 𝐿ଶ,ଵ  norm 
minimization method is proposed, which can be abbreviated as TLNM. The major contributions of our 
proposed TLNM can be concluded as follows, 

 A novel truncated 𝐿ଶ,ଵ Norm is designed for low rank matrix recovery. Since the truncated 
𝐿ଶ,ଵ Norm is a better relaxation of rank function than the truncated nuclear norm, the proposed TLNM 
method is much more accurate than the TNNR method and other state-of-arts methods. 

 The proposed truncated 𝐿ଶ,ଵ Norm minimization model for matrix completion can be solved 
extremely fast by QR decomposition, which indicates that the proposed TLNM method should be 
much faster than the TNNR method. 



2102 

Electronic Research Archive  Volume x, Issue x, 1-X Page. 

The proposed truncated 𝐿ଶ,ଵ  norm and the optimization model in this paper will have a 
significant impact on relevant research areas, such as low rank matrix representation [42], background 
modeling [43], sparse signal recovery [45], and so on. 

2. Related works 

TNNR is a widely used matrix completion method, which has received widespread attention 
in many research fields, such as signal processing [35–37], image processing [38,39], neural 
networks [40,41], and so on. However, it seems to become slow in some real applications. Hence, a 
modified TNNR method based on truncated 𝐿ଶ,ଵ norm is investigated to increase the speed of TNNR. 

Before introducing our proposed TLNM method, the optimization model of TNNR, and some related 
works should be introduced in section. 

2.1. The TNNR method [17] 

Suppose 𝑋ሺ𝑋 ∈ ℝ௠ൈ௡ሻ is a low rank matrix corresponding to a partially observed matrix and 
its SVD decomposition is that 𝑋 ൌ 𝑈𝑆𝑉், where 𝑈ሺ𝑈 ∈ ℝ௠ൈ௠ሻ and 𝑉ሺ𝑉 ∈ ℝ௡ൈ௡ሻ are orthogonal 
matrices, 𝑆ሺ𝑆 ∈ ℝ௠ൈ௡ሻ is a diagonal matrix whose diagonal entries are the singular values of 𝑋. The 
truncated nuclear norm of 𝑋 is defined as follows, 

‖𝑋‖௧ ൌ ∑ 𝜎௜,௠
௜ୀ௧ାଵ                                (2) 

where 𝜎௜ ൌ 𝑆௜,௜ and the singular values are arranged in decreasing order, i.e., 𝜎௜ ൒ 𝜎௝ ሺ0 ൏ 𝑖 ൏ 𝑗 ൑
𝑚ሻ. The parameter 𝑡 ሺ0 ൑ 𝑡 ൏ 𝑚ሻ stands for the number of subtracted singular values. 

In the TNNR method, the truncated nuclear norm is rewritten as follows, 

‖𝑋‖௧ ൌ ‖𝑋‖∗ െ  ∑ 𝜎௜
௧
௜ୀଵ ,                            (3) 

where ‖𝑋‖∗ is the nuclear norm of 𝑋, i.e., ‖𝑋‖∗ ൌ ∑ 𝜎௜
௠
௜ୀଵ . According to the Von Neumann’s trace 

inequality, it is not difficult to see that 

‖𝑋‖௧ ൌ ‖𝑋‖∗ െ max
஺,஻

𝑇𝑟ሺ𝐴𝑋𝐵்ሻ,                        (4) 

where 𝐴 ሺ𝐴 ∈ ℝ௧ൈ௠ሻ and 𝐵 ሺ𝐵 ∈ ℝ௧ൈ௡ሻ are row orthogonal matrices. 𝑇𝑟ሺ𝑋ሻ stands for the trace 
function of matrix 𝑋, i.e., the summation of diagonal entries of 𝑋. 

According to Eq (4), the optimization model of TNNR can be formulated as follows, 

min  
௑

‖𝑋‖∗ െ max
஺,஻

𝑇𝑟ሺ𝐴𝑋𝐵்ሻ, s. t.  𝑋ஐ ൌ 𝑀ஐ.                 (5) 

The variables in Eq (5) can be optimized alternatively using an alternating direction method of 
multipliers. The readers are suggested to see more details about the optimization process in [17]. 

Sufficient experimental results show that the TNNR method converges more accurately than the 
SVT, APG, MBF and FTF methods do. However, it has been reported that the TNNR method is not 
fast on images with full rank structures, because of its large number of singular value decomposition 
updating iterations. 
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2.2. The MBF method [18] 

In order to improve the speed of matrix completion, a fast matrix completion method based on 
MBF has been proposed recently by Liu [18]. In the MBF method, the underlying matrix 𝑋 that needs 
recovering is decomposed as follows, 

𝑋 ൌ 𝐶𝐷,                                   (6) 

where the variable 𝐶 ∈ ℝ௠ൈ௥  is a column orthogonal matrix, 𝐷 ∈ ℝ௥ൈ௡  is a real matrix. 𝑟  is a 
positive integer and 𝑟 ∈ ሺ0, 𝑚ሿ. 

Then, a nuclear norm minimization problem is formulated for fast matrix completion as follows, 

min
஼,஽

‖𝐷‖∗, s. t.  𝑋 ൌ 𝐶𝐷,  𝑋ஐ ൌ 𝑀ஐ.                      (7) 

The nuclear norm minimization problem in Eq (7) can be solved using an alternation direction 
method efficiently. Since the size of variable 𝐷 is 𝑟 ൈ 𝑛 and 𝑟 ≪ 𝑛, the computation cost of SVD 
on 𝐷 is much smaller than that of SVD on 𝑋. Hence, the speed of MBF is faster than TNNR, SCPN, 
FNNM, SVT, etc. 

However, the accuracy of the MBF method is not as large as the recently proposed methods, such 
as TNNR, SCPN, and FNNM. The explanation is that the variable 𝐷 should be updated by a singular 
value thresholding operator [13], which results in a convergence accuracy of MBF that is almost equal 
to those of SVT and APG. Moreover, the MBF method may become not fast when it deals with matrices 
of full rank. It may be because that the parameter 𝑟, i.e., the row number of sub-matrix 𝐷, should be 
arranged with a large value and the computation cost of SVD decomposition on matrix 𝐷 will become 
large obviously in such case. 

3. Our proposed method 

In an attempt to increase the speed and convergence accuracy of TNNR, a truncated 𝐿ଶ,ଵ norm 
minimization method using QR decomposition for fast and accurate matrix completion is proposed in 
this section. 

3.1. The truncated 𝑳𝟐,𝟏 norm 

Suppose that the optimal matrix 𝑋 for incomplete matrix 𝑀 is decomposed as that 

𝑋 ൌ 𝐶𝐷 ൅ 𝐸,                                 (8) 

where the definitions of 𝐶 and 𝐷 are the same as those of 𝐶 and 𝐷 in Eq (6), respectively. 𝐸 is a 
noise matrix in size of 𝑚 ൈ 𝑛. Then, the 𝐿ଶ,ଵ norm of 𝐷 is formulated as follows, 

‖𝐷‖ଶ,ଵ ൌ ∑ ‖𝐷௜∙‖ி
௥
௜ୀଵ ,                            (9) 

where 𝐷௜∙ stands for the 𝑖௧௛ row of 𝐷 and ‖𝐷௜∙‖ி is the Frobenius norm of 𝐷௜∙, i.e., 

‖𝐷௜∙‖ி ൌ ට∑ 𝐷௜,௝
௡
௝ୀଵ .                            (10) 
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In fact, the 𝐿ଶ,ଵ norm of 𝐷 shown in Eq (9) can be reformulated as follows, 

‖𝐷‖ଶ,ଵ ൌ 𝑇𝑟ሺ𝐶்𝑋𝐻ାሻ,                           (11) 

where  𝐻ା  is the Moore-Penrose pseudo inverse of 𝐻  and 𝐻ሺ𝐻 ∈ ℝ௠ൈ௡ሻ  is a row normalized 
matrix, i.e., 

𝐷 ൌ 𝐺𝐻,                                 (12) 

where the variable 𝐺 is a diagonal matrix in size of 𝑟 ൈ 𝑟 , 𝐺௜,௜ and 𝐻௜∙ are respectively defined as 
follows, 

𝐺௜,௜ ൌ ‖𝐷௜∙‖ி,                              (13) 

and 

𝐻௜∙ ൌ ஽೔∙

ீ೔,೔
 ,                                (14) 

where 𝐷௜∙ stands for the 𝑖௧௛ row of 𝐷 and 𝐻௜∙ stands for the 𝑖௧௛ row of 𝐻. According to Eq (3), 
the truncated 𝐿ଶ,ଵ norm of matrix 𝐷 is defined as follows, 

‖𝐷‖௧ሺଶ,ଵሻ ൌ ∑ ‖𝐷௜∙‖ி
௥
௜ୀ௧ାଵ ,                        (15) 

where the parameter 𝑡 ሺ0 ൑ 𝑡 ൏ 𝑟ሻ stands for the number of subtracted Frobenius norms of rows in 

𝐷. In view of Eqs (9) and (11), it is not difficult to see that ‖𝐷‖௧ሺଶ,ଵሻ is equal to 

‖𝐷‖௧ሺଶ,ଵሻ ൌ  𝑇𝑟൫𝐶መ்𝑋𝐻ା൯,                        (16) 

where 𝐶መ ൌ ሺ cොଵ, cොଶ, … , cො௥ሻ is a real matrix and its rows are defined as follows, 

cො௜ ൌ ൜
ሺ0,0, , .0ሻ்,     𝑖𝑓 𝑖 ൑ 𝑡;

        𝑐௜       ,      𝑖𝑓 𝑖 ൐ 𝑡.
                       (17) 

where 𝑐௜  stands for the 𝑖௧௛  column of 𝐶 . Since the variable 𝐻 in Eq (12) is not an orthogonal 
matrix, it is easy to see that the truncated 𝐿ଶ,ଵ  norm in Eq (16) can be solved very fast by QR 
decomposition. 

3.2. The proposed truncated 𝑳𝟐,𝟏 norm minimization based matrix completion method (TLNM)  

Suppose the underlying matrix 𝑋 has been decomposed as in Eq (8). The optimization problem 
of TLNM is given as follows, 

min
௑,஼,஽,ா

||𝐷||௧ሺଶ,ଵሻ ൅ ఓ 

ଶ
||𝑊𝐸||ி, s. t. 𝑋 ൌ 𝐶𝐷 ൅ 𝐸, 𝑋ఆ ൌ 𝑀ఆ,           (18) 

where 𝑊 is a diagonal matrix with positive randomized diagonal entries. The remained variables, 
such as 𝑋, 𝐶, 𝐷, and 𝐸, have been defined in Eqs (8) and (12). The parameter 𝜇 is a positive real 
number.  

Since ||𝐷||௧ሺଶ,ଵሻis equal to 𝑇𝑟ሺ𝐶்𝑋𝐻ାሻ, the constrained optimization model in Eq (18) can be 

relaxed as the following model, 

min
௑,஼,஼መ,஽,ு,ா

𝑇𝑟ሺ𝐶መ்𝑋𝐻ାሻ ൅ ఓ 

ଶ
||𝑊𝐸||ி ൅ ఓ 

ଶ
‖ 𝑋 െ 𝐶𝐷 െ 𝐸‖ி.            (19) 
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By letting 𝑋ଵ ൌ 𝑋ெ, the variables i.e., 𝑋, 𝐶, 𝐷, and 𝐸 in Eq (19), are updated alternatively one 
by one. 

First, the variable 𝐶௞ାଵ is updated by solving the following sub-problem, 

𝐶௞ାଵ ൌ arg min
஼

‖ 𝑋௞ െ 𝐶𝐷௞ െ 𝐸௞‖ி .                   (20) 

According to the work by Wen [20], the optimization problem in Eq (20) can be rewritten as the 
following problem 

𝐶௞ାଵ ൌ arg min
஼

‖ 𝐶 െ 𝑇‖ி.                        (21) 

where 

 𝑇 ൌ ሺ𝑋௞ െ 𝐸௞ሻ𝐷௞
்.                              (22) 

Because the variable 𝐶  is an orthonormal matrix, it can be optimized with the help of QR. 
Suppose the QR decomposition of 𝑇 is 

𝑇 ൌ 𝑄𝑃,                                  (23) 

where 𝑄 ൌ ሺ𝑞ଵ, 𝑞ଶ, … , 𝑞௠ሻ is an orthonormal matrix, 𝑃ሺ𝑃 ∈ ℝ௠ൈ௥ሻ is an upper triangular matrix. 
Then, 𝐶௞ାଵ can be updated as follows, 

𝐶௞ାଵ ൌ ሺ𝑞ଵ, 𝑞ଶ, … , 𝑞௥ሻ,                           (24) 

where 𝑞௜ ሺ𝑖 ∈ ሾ1, 𝑟ሿሻ  is a column vector whose length is equal to 𝑚 . According to Eq (17), the 
variable 𝐶መ௞ାଵ can be updated as follows, 

 𝐶መ௞ାଵ ൌ 𝐶௞ାଵ ,                                (25) 

cො௜ ൌ ሺ0, … ,0ሻ்,                               (26) 

where cො௜ stands for the 𝑖௧௛ row of 𝐶መ௞ାଵ and 𝑖 ∈ ሾ1, 𝑡ሿ. 
Second, the variable 𝐷௞ାଵ is updated by solving the following problem, 

𝐷௞ାଵ ൌ arg min
஽

‖ 𝑋௞ െ 𝐶௞ାଵ𝐷 െ 𝐸௞‖ி .                   (27) 

Since 𝐶௞ାଵ is a column orthogonal matrix, it is not difficult to see that 

𝐷௞ାଵ ൌ  𝐶௞ାଵ
் ሺ𝑋௞ െ 𝐸௞ሻ .                          (28) 

Third, according to the problem in Eq (19), the matrix 𝑋௞ାଵ  can be updated by solving the 
following minimization problem, 

 min
௑

 𝐹ሺ𝑋ሻ ൌ 𝑇𝑟ሺ𝐶መ௞
்𝑋𝐻௞

ାሻ ൅ ఓೖ 

ଶ
‖ 𝑋 െ 𝐶௞𝐷௞ െ 𝐸௞‖ி.            (29) 

Let 
∇ி

∇௑
ൌ 0, we have, 

∇்௥ሺ஼መೖ
೅௑ுೖ

శሻ

∇௑
൅ 𝜇௞ሺ 𝑋 െ 𝐶௞𝐷௞ െ 𝐸௞ሻ ൌ 0,                    (30) 

𝐶መ௞
 𝐻௞

ା்
൅ 𝜇௞ሺ𝑋 െ 𝐶௞𝐷௞ െ 𝐸௞ሻ ൌ 0,                    (31) 

In order to reduce the computation cost for solving Eq (31), the matrix 𝐶መ௞
 𝐻௞

ା்
 is replaced with 
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𝐶መ௞
 𝐻௞, because the matrices 𝐻ା் and 𝐻 have the same singular vectors. Consequently, we have, 

𝐶መ௞
 𝐻௞ ൅ 𝜇௞ሺ𝑋 െ 𝑋௞ሻ ൌ 0,                         (32) 

and 

𝑋௞ାଵ ൌ 𝑋௞ െ ଵ

ఓೖ
𝐶መ௞

 𝐻௞,                         (33) 

𝑋௞ାଵ ൌ 𝑋௞ାଵ െ ሺ𝑋௞ାଵሻஐ ൅ 𝑀ஐ.                     (34) 

Fourth, the variable 𝐸௞ାଵ is updated by solving the following problem, 

 min
ா

 ||𝑊𝐸||ி൅‖ 𝑋௞ାଵ െ 𝐶௞ାଵ𝐷௞ାଵ െ 𝐸‖ி.                 (35) 

The problem in Eq (35) can be solved via a gradient descent search, and 

 𝐸௞ାଵ ൌ 𝜆ሺ𝑋௞ାଵ െ 𝐶௞ାଵ𝐷௞ାଵሻ𝑊ା.                    (36) 

where 𝜆ሺ 0 ൏ 𝜆 ൏ 1ሻ is a positive parameter that regulates the step size of gradient descent search. 

Algorithm 1. The updating steps of our proposed TLNM. 

Input:  𝑀 and Ω; 

 Initialization: 
     𝜆 ൐ 0, 𝜇଴ ൐ 0, 𝜌 ൐ 0, 𝜀 ൐ 0; 𝑋଴ ൌ 𝑀; 𝐶଴ ൌ 𝑒𝑦𝑒ሺ𝑚, 𝑟ሻ, 

 𝐷଴ ൌ 𝑒𝑦𝑒ሺ𝑟, 𝑛ሻ;  𝐸଴ ൌ 𝑧𝑒𝑟𝑜𝑠ሺ𝑚, 𝑛ሻ. 

 Repeat: 
    𝐶௞ାଵ:    Eq (24);       𝐶መ௞ାଵ:   Eq (25) and Eq (26); 
        𝐷௞ାଵ:    Eq (23);       𝑋௞ାଵ:    Eq (33) and Eq (34); 

𝐸௞ାଵ:    Eq (36);       𝜇௞ାଵ:   Eq (37); 
    𝑘 ൌ 𝑘 ൅ 1. 
Until: ‖𝑋௞ െ 𝑋௞ିଵ‖ி ൑ 𝜀. 

Output: 𝑋௢௣௧ ൌ 𝑋௞. (The recovered image.) 

Finally, the parameter 𝜇௞ାଵ, which regulates the step size shown in Eq (33), is updated as follows, 

𝜇௞ାଵ ൌ 𝜌 ∙ 𝜇௞,                              (37) 

where 𝜌 ሺ𝜌 ൐ 1ሻ and  𝜇଴ ൐ 0. 
In general, the proposed truncated 𝐿ଶ,ଵ norm minimization method that is abbreviated as TLNM 

is obviously faster than the TNNR method and other methods proposed in recent years. In order to 
facilitate the implementation of our proposed TLNM method for the readers, the updating steps of 
TLNM are summarized in Algorithm 1. 
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3.3. Complexity analysis of our proposed TLNM method 

In this section, the computation complexities of TLNM, TNNR and other popular methods are 
summarized in Table 1. 

Table 1. The computation complexities of TLNM and other methods. 

Method Complexity 
TLNM 𝑂ሺ𝑚 ∙ 𝑟ଶሻ 
TNNR 𝑂ሺ𝑚 ∙ 𝑛ଶሻ 
LMaFit 𝑂ሺ𝑚 ∙ 𝑟ଶሻ 
FNNM 𝑂ሺ𝑚 ∙ 𝑛ଶሻ 
SCPN 𝑂ሺ𝑚 ∙ 𝑛ଶሻ 
MBF 𝑂ሺ𝑚 ∙ 𝑟ଶ ൅ 𝑟ଷሻ 

In Table 1, 𝑚 is the row number of 𝑀, 𝑛 is the column number of 𝑀 and 𝑟ሺ0 ൏ 𝑟 ≪ 𝑚ሻ is 
the estimated rank of 𝑀. Since the most CPU time of TLNM is spent on executing QR for calculating 
the orthogonal matrix 𝐶, the complexity of TLNM is equal to that of QR, i.e., 𝑂ሺ𝑚 ∙ 𝑟ଶሻ. The most 
CPU time of TNNR is spent on using SVD to compute the singular values at its each iteration. 
Consequently, the complexity of TNNR is equal to that of SVD, i.e., 𝑂ሺ𝑚 ∙ 𝑛ଶሻ. Because the LMaFit 
method is also fast method based on QR, its complexity is equal to that of TLNM. FNNM and SCPN 
are two kinds of methods based on weighted nuclear norm minimization, in which the SVD 
decomposition is an essential tool for computing the singular values. Thus, the computation 
complexities of FNNM and SCPN are all equal to that of SVD. Since the MBF method uses both QR 
decomposition and SVD decomposition at its each iteration, its computation complexity is 𝑂ሺ𝑚 ∙
𝑟ଶ ൅ 𝑟ଷሻ. 

According to the complexities shown in Table 1, it is clear that the computation complexity of 
TLNM is much smaller than those of TNNR, FNNM and SCPN. 

4. Experimental results 

In the experiments, TLNM is tested on a number of real-world color images and its convergence 
accuracy and speed are compared with the results of other popular methods including LMaFit [20], 
TNNR [17], MBF [18], SCPN [23], and FNNM [34]. 

In the experiments for TLNM, the parameter 𝜆 is set to 0.001,  𝜇଴ is set to 
ଵ଴଴

‖ெ‖ಷ
 and 𝑡 is 

selected from 1~25. The value of parameter 𝜌 should be adjusted according to the tested data. The 
maximum iteration numbers for TLNM, TNNR, MBF, FNNM, SCPN, and MBF are set to 300, 300, 
300, 500, 500, and 500, respectively. The parameters for TNNR, SCPN, FNNM, LMaFit, and MBF 
are adjusted optimally. 

All the experiments are conducted on a laptop computer equipped with i7-1195G7 CPU and 32 
GB of RAM memory. 
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4.1. Images containing random missing values 

For evaluating our proposed TLNM method, 16 colorful images are tested. These images shown 
in Figure 1 are also widely used by some popular matrix completion methods proposed in recent years, 
such as the TNNR [17] method, a low-rank quaternion matrix completion method [1], and a non-local 
robust quaternion method [2]. In our proposed TLNM, the channels of these images are recovered 
separately. 

    
(A) (B) I (D) 

    
(E) (F) (G) (H) 

    
(I) (J) (K) (L) 

    
(M) (N) (O) (P) 

Figure 1. The 16 original images, i.e., A, B,…, P, used in our experiment are all in size of 
500 ൈ 500. 

In our experimental, 50% entries of the images (A~P) in Figure 1 are randomly selected as missing 
entries, i.e., their values are initialized to zero, to generate incomplete images (𝐴ஐ~𝑃ஐ) at first. Then, 
the TLNM method is tested using these images and its performance is compared with those of other 
five methods. The peak signal-to-noise ratio (PSNR) is chosen as the standard for evaluating 
convergence accuracy and is given as that 

𝑃𝑆𝑁𝑅 ൌ 10 ∙ 𝑙𝑜𝑔ଵ଴ ቀଶହହమ

ெௌா
ቁ,                         (38) 

𝑀𝑆𝐸 ൌ ଵ

௠௡
ฮ𝑋௢௣௧ െ 𝐼ฮ

ி

ଶ
,                          (39) 

where 𝑋௢௣௧ is an output of a matrix completion method, 𝐼 is matrix without missing values. 
Let 𝑟 ൌ 300  and 𝜌 ൌ 1.02 , the TLNM method is tested on the 16 incomplete images, i.e., 

𝐴ஐ~𝑃ஐ. The PSNR values of TLNM, TNNR, MBF, LMaFit, SCPN, and FNNM are listed in Table 2. 
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Table 2. The PSNR values of TLNM using images containing 50% randomly missing entries. 

Image MBF LMaFit SCPN FNNM TNNR TLNM 
𝐴ஐ 44.12 39.91 41.17 45.52 45.42 45.86 
𝐵ஐ 33.58 33.42 33.49 34.42 34.93 35.17  
𝐶ஐ 31.46 31.08 32.16 31.48 31.88 31.85 
𝐷ஐ 30.85 30.70 31.32 32.34 32.69 32.35 
𝐸ஐ 24.59 24.43 24.44 25.14 25.54 25.68 
𝐹ஐ 25.63 25.07 26.27 25.95 26.26 26.35 
𝐺ஐ 33.08 32.31 33.53 34.46 35.21 35.36 
𝐻ஐ 25.90 24.66 26.63 26.54 26.51 26.65 
𝐼ஐ 29.58 28.73 30.69 30.27 31.19 31.25 
𝐽ஐ 20.77 19.28 21.12 21.33 21.30 21.17 
𝐾ஐ 24.93 23.82 25.14 25.12 25.25 25.35 
𝐿ஐ 31.38 30.52 32.02 31.84 32.25 32.50 
𝑀ஐ 26.15 25.36 27.10 26.32 27.24 27.58 
𝑁ஐ 27.82 27.35 28.35 28.06 28.48 28.91 
𝑂ஐ 24.87 23.85 24.61 25.11 25.51 25.73 
𝑃ஐ 28.19 27.87 30.42 30.79 30.84 30.79 

The PSNR values listed in Table 2 show that our proposed TLNM is much more accurate than the 
compared methods. The MBF method is not as accurate as the SCPN and TNNR methods, because the 
former cannot adaptively regulate the thresholds for the singular values of tested images. The LMaFit 
method is less accurate than the MBF method, because it cannot obtain the singular values of 
incomplete images via its updating steps. The PSNR values of TNNR on the 16 incomplete images are 
much better than those of MBF and LMaFit, because the truncated nuclear norm is a much better 
approximation of rank function than the nuclear norm. The SCPN method is a bit more accurate than 
the FNNM method on most tested incomplete images. The main reason is that the Schatten capped 𝑝 
norm used in SCPN can be seen as a special case of weighted nuclear norm that assigns different 
weights for different singular values, while FNNM is a nuclear norm minimization method. The PSNR 
values of TLNM on the tested images are much more accurate than the TNNR method and the recently 
proposed FNNM and SCPN. Hence, the proposed truncated 𝐿ଶ,ଵ norm should be a better relaxation 
of rank function than truncated nuclear norm. 

After the comparison of convergence accuracy, it is necessary to compare the speed of TLNM 
with those of TNNR, SCPN, FNNM, MBF, and LMaFit. The CPU times for these six methods to reach 
the PSNR values shown in Table 2 are plotted in Figure 2. 

The CPU time curves plotted in Figure 2 show that TLNM is obviously faster than the TNNR, 
SCPN, FNNM, and MBF methods, because TLNM can recover the incomplete images by QR and the 
computation cost of QR is 7 percent of that of SVD [32]. FNNM is the slowest one among the six 
tested methods, because its CPU time is much larger than those of other methods. More exactly, it 
takes about 110~180 seconds to search for the optimal solutions, while other methods take less than 
80 seconds. The TNNR method takes about 40~71 seconds to converge on the 16 tested images, which 
indicates that it converges faster than the FNNM method does. Compared with FNNM and TNNR, the 
CPU time of SCPN is much smaller, which leads to a fact that the SCPN method can converge with 
fewer number of iterations. The main reason is that these three methods are almost equal in terms of 
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computational cost. The MBF method is a bit faster than the SCPN method, because it can improve its 
speed by performing SVD decomposition on a small size matrix. The CPU time of LMaFit is almost 
equal to TLNM, because neither of these two methods require the usage of SVD. 

 

Figure 2. The CPU times of TLNM and other state-of-art methods using the 16 incomplete 
images with 50% missing values randomly distributed. 

In view of the PSNR values in Table 2 and the CPU time curves plotted in Figure 2, it is easy to 
see that TLNM outperforms its competing methods, i.e., TNNR, SCPN, FNNM, LMaFit, and MBF, in 
both convergence accuracy and CPU time. 

To intuitively show the details of output of TLNM and other state-of-art methods, some of their 
outputs are shown in Figure 3. 

From Figure 3, it is easy to see that the recovered images shown in (A4) and (B4) given by LMaFit 
are respectively not as clear as the results shown in (A8) and (B8) given by TLNM, because there’re 
many noises remained in the former. The recovery results of MBF shown in (A3) and (B3) are much 
better than the results given by LMaFit, however they contain a small bit of noisy pixels. The SCPN 
method performs better on the incomplete image shown in (B2) than on the image shown in (A2), 
because its output shown in (B5) is much better than the result shown in (A5). The recovered images 
given by TLNM, FNNM and TNNR, which are almost as clear as the original images shown in (A1) 
and (B1), are much better than the results given by LMaFit, MBF, and SCPN. 

4.2. Experimental results on images with structured missing values 

Eliminating structural missing textures that occur in an image is a more difficult work than 
restoring the images containing random missing values, because the pixels covered by texts are 
distributed continuously. 

In this section, the 16 color images shown in Figure 1 are arranged with some textures to generate 
the incomplete images for testing our proposed TLNM method. In Figure 4, an example of incomplete 
image with texture missing entries is plotted for show. 
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(A1) Original image 𝐴 (A2) Incomplete image𝐴ஐ (A3) MBF, PSNR = 44.12 (A4) LMaFit, PSNR = 39.91

 

(A5)SCPN, PSNR = 41.17 (A6) FNNM, PSNR = 45.52 (A7) TNNR, PSNR = 45.42 (A8) TLNM, PSNR = 45.86

 

(B1) Original Image 𝐾 (B2) Incomplete image 𝐾ஐ (B3) MBF, PSNR = 24.93 (B4) LmaFit, PSNR = 23.82

 

(B5) SCPN, PSNR = 25.14 (B6) FNNM, PSNR = 25.12 (B7) TNNR, PSNR = 25.25 (B8) TLNM, PSNR = 25.35

Figure 3. The recovered images given by MBF, LmaFit, SCPN, FNNM, TNNR, and 
TLNM. The CPU times of these methods are shown in Figure 2. One-half of the entries of 
the images shown in (A2) and (B2) are randomly missing. 
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Figure 4. An example of incomplete image with textured missing entries. 

All the 16 color images shown in Figure 1 will be masked by the same textures as in Figure 4 for 
generating the incomplete images in this section. The final PSNR values and CPU times of TLNM on 
the 16 incomplete images with textures are compared with those of other state-of-art methods. 

Table 3. The PSNR values of TLNM, TNNR, MBF, SCPN, FNNM, and LMaFit on the 
incomplete images with textured missing values. 

Image MBF LMaFit SCPN FNNM TNNR TLNM 
𝐴ஐ 39.12 14.95 38.40 38.81 39.31 39.33 
𝐵ஐ 24.10 21.85 25.25 24.15 25.78 25.93 
𝐶ஐ 21.33 19.88 24.28 23.86 23.78 24.03 
𝐷ஐ 29.51 27.81 29.71 29.66 30.42 30.25 
𝐸ஐ 19.84 18.67 20.77 20.08 20.19 20.29 
𝐹ஐ 18.23 16.51 19.09 18.31 18.56 18.51 
𝐺ஐ 25.31 23.68 25.95 25.33 26.33 27.02 
𝐻ஐ 21.87 19.93 22.21 22.14 22.23 22.56 
𝐼ஐ 24.39 21.94 24.58 24.28 24.62 24.71 
𝐽ஐ 18.34 16.72 18.38 18.57 18.27 18.66 
𝐾ஐ 17.41 16.31 17.87 17.35 18.11 17.94 
𝐿ஐ 23.81 19.47 24.57 23.75 25.25 24.86 
𝑀ஐ 19.37 16.21 20.57 19.95 20.18  20.19 
𝑁ஐ 21.19 15.49 22.35 21.10 22.19 22.11 
𝑂ஐ 20.11 19.49 20.63 20.05 20.77 20.51 
𝑃ஐ 23.46 21.06 24.36 23.39 24.55 24.57 

First, the PSNR values of TLNM and other five methods are listed for comparation in Table 3. 
Although removing the textures is a more difficult task than that in Section 4. 1, our proposed TLNM 
method has a much better performance in such case than the performances of LmaFit, MBF, SCPN, 
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FNNM, and TNNR methods. The PSNR values of LMaFit on the 16 tested images are much smaller 
than those of MBF. Hence, the MBF method is more capable of handling the matrix completion tasks 
with structured missing values. Compared with the MBF method, the recently proposed SCPN method 
is much more accurate, because the latter can regulate the weights for singular values adaptively. Since 
the FNNM method is a nuclear norm minimization method, its convergence accuracies are smaller 
than those of SCPN on the tested images. The proposed TLNM method is much more accurate than 
the TNNR method on most tested images, because the PSNR values of TLNM are better than those of 
TNNR. In view of the PSNR values in Tables 2 and 3, it is easy to see that TLNM can recover the 
incomplete images with random missing entries and textured missing entries much more accurately 
than the five compared methods on most tested images. 

Second, the CPU times of TLNM on images containing textures are plotted in Figure 5. 

 

Figure 5. The CPU times of TLNM, TNNR, MBF, LMaFit, SCPN, and FNNM on images 
containing textures. 

The curves in Figure 5 show that the speed of TLNM is equal to that of LMaFit and is much 
smaller than those of TNNR, SCPN and FNNM. The TLNM method takes about 10 seconds to recover 
the textured missing entries for each image, while the TNNR method takes about 65~130 seconds. The 
SCPN methods should have a smaller number of iterations than TNNR and FNNM, its CPU times on 
the 16 images are much smaller than those of the latter. The FNNM method is the slowest one among 
the six tested matrix completion methods, because it takes about 120~150 seconds to converge.  

By comparing the CPU times shown in Figure 5, we see that TLNM should be 5 times as fast as 
SCPN, 10 times as fast as TNNR and 13 times as fast as FNNM, respectively.  

Third, some outputs given by TLNM and other methods are displayed in Figure 6. 
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(A) Original Image (B) Incomplete image (C) MBF, PSNR = 25.31 (D) LMaFit, PSNR = 23.68

 

(E) SCPN, PSNR = 25.95 (F) FNNM, PSNR = 25.33 (G) TNNR, PSNR = 26.33 (H) TLNM, PSNR = 27.02

Figure 6. The recovered images of TLNM and other state-of-art methods. (A) is an original 
image. (B) is an incomplete image. (C), (D), …, and (H) are the outputs of MBF, LMaFit, 
SCPN, FNNM, TNNR and TLNM, respectively. 

Figure 6 indicates that the result given by LMaFit is not clear, because the recovered image in (D) 
has many noisy pixels. The result given by MBF shown in (C) is much better than that given by LMaFit. 
However, there are very noticeable text traces appeared in (C). The result of SCPN shown in (E) is 
much clearer than those of FNNM, MBF, and LMaFit. Hence, this result reaffirms a fact that the 
weighted nuclear norm minimization method should have a better convergence accuracy than a method 
based on nuclear norm minimization in most cases. The TNNR method can recover the images masked 
by textures successfully, because its PSNR value is much better than those of the SCPN, FNNM, 
LMaFit, and MBF methods. Moreover, the result given by TNNR is much better than the results given 
by SCPN and FNNM. However, there are some inconspicuous traces of texture remained in the 
recovered image given by TNNR. The TLNM method is much more accurate than the compared 
methods, because its PSNR, i.e., 27.02, is much better than those of the latter. The recovery result 
given by TLNM shown in (H) is clearer than the results of other methods, because there is almost no 
noises distributed in image (H). 

Finally, the detailed convergence processes of TLNM and other five compared methods, i.e., the 
PSNR curves, are plotted in Figure 7. 
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Figure 7. The curves of PSNR versus iteration number for TLNM and other five compared 
methods on the incomplete image shown in Figure 6(B). 

From Figure 7, it is easy to see that the FNNM takes about 400 iterations to converge, which is 
the slowest method among the six tested methods. The SCPN and TNNR take about 100 and 180 
iterations to converge, respectively. The iteration number of MBF, TLNM, and LMaFit are almost 
equal to 200. Although the gap in the number of iterations between the TLNM and TNNR methods is 
not large, their CPU times vary greatly. The main reason is that the computation cost of TLNM is 
smaller than that of TNNR. In view of the CPU times shown in Fig. 5 and the PSNR curves in Figure 
7, it is not difficult to see that the CPU time of each iteration for TLNM is about ten percent of that of 
TNNR, which means that the main computation costs of TNNR and TLNM are main consumed by QR 
decomposition and SVD decomposition, respectively. Hence, the methods based on QR, i.e., TLNM, 
LmaFit, and MBF, are faster than the TNNR, SCPN, and FNNM methods using SVD. 

5. Conclusions 

In this paper, a truncated 𝐿ଶ,ଵ norm minimization method, which is abbreviated as TLNM, is 
proposed for improving the speed and convergence accuracy of TNNR. On one side, for improving the 
convergence accuracy of TNNR, a novel truncated 𝐿ଶ,ଵ norm is designed as a better relaxation of rank 
function than the truncated nuclear norm in the proposed TLNM. Second, for improving the speed of 
TNNR, the optimization problem of TLNM is solved using QR decomposition to update the key 
variables. Experimental results using color images show that TLNM is more accurate than the fast 
methods based on matrix factorization and other state-of-art methods, such as LmaFit, MBF, SCPN, 
FNNM, and TNNR. Since the speed of QR is about 7 times as fast as that of SVD, the proposed TLNM 
method is faster than the compared state-of-art methods using SVD, i.e., SCPN, TNNR, and FNNM. 
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