
Electronic
Research Archive

http://www.aimspress.com/journal/era

ERA, 32(3): 2016–2032.
DOI: 10.3934/era.2024092
Received: 18 October 2023
Revised: 23 February 2024
Accepted: 27 February 2024
Published: 06 March 2024

Research article

Evolving blocks by segmentation for neural architecture search

Xiaoping Zhao1,*, Liwen Jiang1, Adam Slowik2, Zhenman Zhang1 and Yu Xue1,*

1 School of Computer Science, Nanjing University of Information Science and Technology, Nanjing
210044, China

2 Department of Electronics and Computer Science, Koszalin University of Technology, Koszalin
75-453, Poland

* Correspondence: Email: zxp@nuist.edu.cn, xueyu@nuist.edu.cn; Tel: +8618951802528,
+8613776601258.

Abstract: Convolutional neural networks (CNNs) play a prominent role in solving problems in various
domains such as pattern recognition, image tasks, and natural language processing. In recent years,
neural architecture search (NAS), which is the automatic design of neural network architectures as
an optimization algorithm, has become a popular method to design CNN architectures against some
requirements associated with the network function. However, many NAS algorithms are characterised
by a complex search space which can negatively affect the efficiency of the search process. In other
words, the representation of the neural network architecture and thus the encoding of the resulting
search space plays a fundamental role in the designed CNN performance. In this paper, to make
the search process more effective, we propose a novel compact representation of the search space by
identifying network blocks as elementary units. The study in this paper focuses on a popular CNN
called DenseNet. To perform the NAS, we use an ad-hoc implementation of the particle swarm
optimization indicated as PSO-CNN. In addition, to reduce size of the final model, we propose
a segmentation method to cut the blocks. We also transfer the final model to different datasets,
thus demonstrating that our proposed algorithm has good transferable performance. The proposed
PSO-CNN is compared with 11 state-of-the-art algorithms on CIFAR10 and CIFAR100. Numerical
results show the competitiveness of our proposed algorithm in the aspect of accuracy and the number
of parameters.

Keywords: convolutional neural network; neural architecture search; particle swarm optimization;
block-based

http://http://www.aimspress.com/journal/era
http://dx.doi.org/10.3934/era.2024092

2017

1. Introduction

Convolutional neural networks (CNNs) are applied in many meaningful real-world tasks such as
image recognition [1, 2], video classification [3], semantic segmentation [4], and natural language
processing [5]. Many remarkable CNN models have been proposed, such as AlexNet [6], VGG [7],
GoogleNet [8], ResNet [1], and DenseNet [9]. Although hand-crafted models have achieved excellent
performance in image tasks [10, 11], the design of architectures requires major effort from human
experts. Moreover, hand-crafted models usually lack flexibility and cannot be easily transferred to
work on multiple datasets.

To solve the above problems, neural architecture search (NAS) was proposed [12]. NAS aims to
search the best architectures of networks by means of a designing algorithm instead of performing
the design manually. Effectively, NAS formulates the architecture design problem as an optimization
problem and searches for a solution with high performance [13–16]. NAS methods can be divided into
three types on the basis of the type of search approach: 1) reinforcement learning (RL), 2) gradient
search, and 3) global search heuristics. Since RL approaches [12] require a large number of attempts
and long observations to generate rewards, their application to NAS is impractical as it requires a large
amount of computational resources. Gradient method approaches [17–19] are usually much faster than
the NAS based on RL. However, gradient-based methods are inappropriate for NAS as they are likely
to get trapped in a local optimum.

To overcome this limitation, evolutionary neural architecture search (ENAS), i.e., a global search
heuristic to progressively select neural architectures, has become a prominent approach in neural
network design. As highlighted in [20], ENAS is an umbrella name that includes all global heuristic
approaches, such as evolutionary algorithms and swarm intelligence algorithms. In addition, ENAS
can be viewed as a modern reinterpretation and implementation of neuroevolution which integrates
knowledge-based information to encode and solve the network design problem. While neuroevolution
attempts to evolve the structure and weights of a neural network, ENAS [21] evolves the structure and
then tends to use a gradient-based method to quickly identify promising weights. Furthermore,
traditional neuroevolution represents the search space as long vectors of weights that directly encode
the neural network. On the other hand, ENAS often uses clever encoding strategies that aim at
removing redundancies in the representation, and proposes a compact encoding of the problem. Thus,
while neuroevolution can be applied to small networks, ENAS is better suited to design deep neural
networks, such as CNNs. LargeEvo [22], proposed by Real et al., applies a genetic algorithm (GA) to
evolve CNN architectures, which explicitly represents the fully-connected layers and uses only one
mutation operator. The resulting search space is thus very high-dimensional and the search operators
tend not to be efficient at detecting new promising solutions. Inspired by popular architectures such as
ResNet [1] and DenseNet [9], Sun et al. use a GA to evolve the architectures in block-based search
spaces in [23]. Xue et al. [24] proposed a block-based adaptive mutation neural architecture search
algorithm, adaptively adjusting the mutation strategies during the evolution process to achieve better
exploration. Song et al. [25] proposed an efficient residual dense block search algorithm, exploiting
the variation of feature scale adequately to find lightweight and accurate networks for image
super-resolution. Fang et al. [26] introduced a densely connected search space capable of searching
block counts and block widths, thus expanding more possibilities on the basis of traditional
DenseNet. Although these methods have achieved good performance, the encoded search space is still

Electronic Research Archive Volume 32, Issue 3, 2016–2032.

2018

very large due to different kinds of blocks being individually encoded.
In this paper, inspired by [23], we propose a method to further reduce the search space and thus

enable a successful and computationally inexpensive application of ENAS. The contributions of this
paper are as follows:

1) We propose an encoding strategy for the DenseNet block that aims to compress the search space
and simplify the search process, resulting in significant efficiency improvements.

2) We propose a cutting method, which greatly reduces the size and flops of the final searched
model without affecting the classification accuracy and facilitates the transfer learning of the
designed architecture.

3) We propose an ENAS method based on particle swarm optimization for CNN design
(PSO-CNN). It combines early stopping and training subset methods to reduce computational cost
and increase convergence speed.

The remainder of the paper is designed as follows. Section 2 introduces the related work. Section 3
presents the proposed method. Sections 4 and 5 respectively describe the implementation details of
the experiment and analyze the results. Finally, Section 6 gives the conclusion and describes our
future work.

2. Related works

2.1. Particle swarm optimization algorithm

Let us consider a set D ⊆ Rn, namely the domain or decision space. Let us indicate with x =
(x1, x2, . . . , xn) ∈ D the generic vector of the domain and with f (x) a scalar function f : D→ R.

Particle swarm optimization (PSO) is a population-based optimization algorithm belonging to the
family of swarm intelligence algorithms [27]. To optimize f (x), PSO uses a population of individuals
i, namely particles. Each particle is associated with two attributes, velocity vi and position xi. The
position represents the candidate solution, while the velocity is a perturbation vector. The update
formulas to generate a new position xi+1 are given by

vi+1 = wvi + c1ri(xi
lbest − xi) + c2ri(xgbest − xi),

xi+1 = xi + vi+1, (2.1)

where c1, c2 are parameters of the algorithm called the acceleration constants, ri is a random number
between 0 and 1 (without 0 or 1), xi

lbest is the local best, i.e. the best position previously visited by the
particle i, and xgbest is the global best, i.e. the best position ever visited by the entire population.

If the newly explored position xi+1 outperforms xi
lbest, the local best is updated. If xi+1 also

outperforms xgbest, the global best is updated too.

2.2. Block-based design method

The efficiency of NAS depends heavily on the chosen search space. Modern studies on NAS
indicate the advantages of using a block representation of neural networks, simplifying the space
complexity [23, 24]. Inspired by these studies, we design a search space where the elementary unit is
the 2-dimensional DenseNet block [9] for image classification, here indicated as DB. Figure 1

Electronic Research Archive Volume 32, Issue 3, 2016–2032.

2019

illustrates the structure of DB. Three different convolutional layers with corresponding feature maps
are sequentially connected. The DB terminates with a transition layer to connect to the following DB.

An important feature of DB which is exploited by our NAS framework is that the DB like the one
in Figure 1 is univocally identified by two parameters: the number of layers N and the growth rate K.
Once these two parameters are identified, the entire block is designed. The growth rate K is used to
calculate the size of every input and output layer.

If the input size of the first layer is a0, then the input size of the N-th layer is a0 + (N − 1)K since
each layer accepts inputs from all previous layers. This is done for all N layers composing the block.
Due to its impact on network growth, the parameter K is called the growth rate. Further details of the
DB and the search space in the proposed NAS algorithm are provided in Section 3.2.

This section describes and discusses the details of the proposed approach. The overall framework
will first be provided in Section 3.1. The encoding strategy will be described in Section 3.2. The fitness
evaluation method will be given in Section 3.3. Section 3.4 will describe the evolutionary search with
the PSO algorithm. Finally, the cutting method after finding the optimal architecture will be provided
in Section 3.5.

Figure 1. An example of a DB.

3. Proposed algorithm

3.1. Algorithm overview

The whole framework of PSO-CNN is shown in Figure 2. First, according to [12], the final CNN
architectures that perform well in smaller datasets can be transferred to other datasets. In order to
accelerate the entire training process and save computing resources, the training set is randomly cut
into sub-training sets, and each CNN architecture is trained by the subset of a training set. Second, we
need to set the encoding strategy for the architecture of the search space, which will be described in

Electronic Research Archive Volume 32, Issue 3, 2016–2032.

2020

Section 3.2. Then, in order to accelerate the entire evolution process, PSO is used to evolve the DB
so as to find the best-performing individual on the sub-training sets. Next, the optimal architecture
found is segmented using the splitting method in Section 3.5. Finally, the optimal individual obtains
its accuracy after full training. In the following sections, the encoding strategy, fitness evaluation,
optimization of the DenseNet block by PSO, and segmentation block are introduced.

Dtrain

Sub

set

Dval

Dataset

Training

set

PSO

Evolution Select the best

Cut the blocks

Accuracy

Test

set

Densenet Blocks

Figure 2. The framework of the proposed PSO-CNN method.

3.2. Encoding strategy

This encoding strategy is designed for the network structure of DB. In the DenseNet block, there are
two hyperparameters introduced in Section 2.2. The growth rate K refers to the number of additional
channels in each layer, which is one of the hyperparameters. The other one is the number of layers
N. By simplifying the encoding method, the search process of PSO can be greatly improved. The
encoding strategy of a DenseNet block used by the proposed algorithm is

Di = (Ki,Ni), (3.1)

where Ki is the growth rate of the i-th DenseNet block, and Ni represents the number of layers in the
i-th DenseNet block. Figure 3 gives a specific example of the DenseNet block encoding strategy. From
the figure we can see that N = 3, so there are 3 layers in each block. The growth rate K = 3, so the
number of additional channels for each layer or the convolution kernel in each layer is 3. Eventually,
this block will have 3 ∗ 3 = 9 additional channels.

DenseNet consists of DenseNet blocks, with a general number of 4. The layers between two
adjacent DenseNet blocks are called transition layers, which mainly serves as a connection and
reduces the size of the feature map. Therefore, a Densenet can be represented as

Pi = (D1,D2,D3,D4), (3.2)

where Di represents the i-th block. Figure 4 shows an example of a DenseNet consisting of four blocks.

Electronic Research Archive Volume 32, Issue 3, 2016–2032.

2021

Figure 3. The encoding strategy of a DenseNet block.

of PSO can be greatly improved. Research on the transferable architecture shows that
the final architecture learned from a smaller dataset can be transferred to other image
tasks, and the architecture learned in the training subset can also be transferred to
the entire dataset [22]. The coding strategy of a DenseNet block used by the proposed
algorithm is shown as follows:

Di = (Ki, Ni) (2)

where Ki is the growth rate of the i-th DenseNet block, which is the increasing number
of channels per layer, and Ni represents the number of layers in the i-th DenseNet
block. The details are shown in Fig. 3.

Fig. 3 The coding strategy of a DenseNet block.

DenseNet consists of DenseNet blocks, with a general number of 4. The layer
between two adjacent Dense Blocks is called Transition Layers, which mainly serves
as a connection and reduces the size of the feature map. Figure 4 shows an example
of a DenseNet consisting of four blocks. Each block can be represented by Ki and Ni.
Therefore, a densenet can be represented as :

Pi = (D1, D2, D3, D4) (3)

…

T
ran

sitio
n

T
ran

sitio
n

Block 1Block 1 Block 2Block 2 Block 4Block 4

Fig. 4 A deep DenseNet with four blocks.

3.3 Fitness evaluation

After using the proposed encoding strategy, Algorithm 1 introduces the evaluation
method used in this algorithm. Since the method used in this paper is committed to
improving the search efficiency of the NAS algorithm, a subset of the training set is
used to train DB blocks. According to the related transferable block research [23], it

6

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 4. A deep DenseNet with four blocks.

3.3. Fitness evaluation

Algorithm 1 Evaluate the fitness
Require: a subset of training set dt, population pop, bestacc = 0, acc = 0;
Ensure: fitness of population fitness, bestacc ;

1: dtrain, dval ← Randomly divide dt into 80% as dtrain, 20% as dval;
2: fitness← []
3: for p in pop do
4: Decode p into a network structure;
5: Use the SGD optimizer to train the particle on dtrain;
6: acc← Evaluate the particle on dval ;
7: Add acc to f itness;
8: if acc > bestacc then
9: bestacc ← acc;

10: end if
11: end for
12: Return f itness, bestacc;

After using the proposed encoding strategy, Algorithm 1 describes the evaluation process of
evaluating the fitness for searching for the optimal individual. According to [28], a subset of the
training set dt is used to train the DenseNet blocks. It is worth noting that the samples in each subset
are chosen randomly without necessarily maintaining an even split of the classes. It also conforms to
the theory of transferable blocks [29], which proves that one architecture which is learned from one

Electronic Research Archive Volume 32, Issue 3, 2016–2032.

2022

dataset can be transferred to another larger dataset. The particle p in the population pop represents a
DenseNet individual. Then, dt will be split into a training set dtrain and a validation set dval. In
lines 3–10 of Algorithm 1, each particle is decoded into the corresponding network architecture. Next,
the SGD optimizer that has been widely proven effective is used to train the particle on dtrain. Finally,
the fitness value acc of the architecture represented by each particle is calculated on dval, and the
fitness values of all individuals in the population f itness and the optimal value bestacc are recorded.

3.4. Evolving the blocks by PSO

Algorithm 2 Evolving the blocks by PSO
Require: the set of number of layers N, the set of the growth rate K;
Ensure: gbest;

1: population← Initialize the particle (the number is set to 10) with N and K;
2: fitness← Use the fitness evaluation method in Algorithm 1;
3: gbest, bestepoch, generation g← null, 0, 1;
4: while g <= 30 and g − bestepoch < 10 do
5: pbest ← Update the best fitness of current population;
6: if pbest > gbest then
7: gbest ← pbest ;
8: Update the bestepoch;
9: end if

10: for particle p in population do
11: p← Use PSO to update the position (optimize with floating numbers);
12: Convert the encoding of p to integer encoding;
13: fitness← Use the fitness evaluation method in Algorithm 1;
14: end for
15: g← g + 1;
16: end while
17: Return gbest;

Algorithm 2 illustrates the proposed algorithm for using PSO to evolve DenseNet blocks. When
particles are initialized, the number of layers N and growth rate K are generated in a random range,
and then fitness evaluation is used for each particle. It should be noted that these two hyperparameters
have upper and lower bounds that need to be set, thereby meeting the memory constraints of the device
and avoiding the inability to build proper models and lose important information about the architecture.
In addition, an early stop mechanism is also used. When the accuracy of the particles does not improve
within 10 epochs, the entire evaluation process stops, and bestepoch represents the epoch in which the
historically optimal particle is found. In lines 5–9, the optimal fitness value of the current population
pbest and the historical optimal particle gbest are updated. In lines 10–14, the PSO algorithm is used
for all particles in the population to update their positions. It should be noted that when updating the
particle positions in continuous space, we first use floating point numbers and then convert to integer
codes, finally using the fitness evaluation method. The final output is the structure that exhibits the
most competitive performance throughout the entire iterative process. By combining the reduction of

Electronic Research Archive Volume 32, Issue 3, 2016–2032.

2023

the training set with the early stop mechanism, this method can effectively accelerate the search process
and reduce computational complexity.

3.5. Progressively splitting DenseNet blocks

[30] showed that early feature reuse is redundant for later layers, and that feature reuse between
neighboring feature maps is a more efficient strategy. Therefore, as shown in Algorithm 3, after
obtaining the best-performing individual using PSO, we attempt to use the same cutting method for
each block. The cutting method makes more efficient use of features between adjacent layers than the
stacking method [28, 29], optimizing computational resources and improving model performance.
The dense connectivity of the DB helps to maintain the coherence of the information during the
cutting process, which mitigates the information loss that may be caused by the cutting. The cutting
method can reduce the potential redundancy of information that may be caused by global sharing, and
enhance the efficiency of feature utilization with a resistance to overfitting. The entire training set dt is
used to train the split structure, and the dt is divided into a training set dtrain and a validation set dval.
The number of cuts i starts from 1, and Figure 5 shows the process of cutting a block. It should be
noted that the cutting will be as uniform as possible, with the front part having the same size and the
last part being appropriately sized. The purpose of splitting blocks is to reduce the size of the final
searched model. If the final model is formed by stacking, the number of parameters will be several
times larger than the model obtained by splitting. In addition, once the final accuracy of the split CNN
candidates is not improved compared to before splitting, the splitting process will automatically stop.
Finally, the best structure will be obtained.

Algorithm 3 Progressively splitting DenseNet blocks
Require: the evolved blocks b, the optimal accuracy accbest , the training dataset dt;
Ensure: accbest;

1: dtrain, dval ← Randomly split dt into 80% as dtrain (training set), 20% as dval (validation set);
2: i, acc, n← 0, 0, 5;
3: while i < n do
4: i← i + 1;
5: c← Split b for i times;
6: Decode c into a network structure;
7: Use SGD optimizer to train c on the dtrain;
8: acc← Evaluate c on dval;
9: if acc > accbest then

10: accbest ← acc;
11: else
12: Break;
13: end if
14: end while
15: Return accbest;

Electronic Research Archive Volume 32, Issue 3, 2016–2032.

2024

Figure 5. An example of cutting a DenseNet block.

4. Experiment design

This section describes the experimental design related to our proposed PSO-CNN. First, Section 4.1
describes the benchmark dataset used, then Section 4.2 introduces the algorithms for comparison, and
finally Section 4.3 presents the setup of the experimental parameters.

4.1. Benchmark datasets

In order to validate the effectiveness of our proposed algorithm, experiments are carried out on two
benchmark datasets, CIFAR10 and CIFAR100, which are widely used in NAS methods. CIFAR10 is
a color image dataset containing ten categories, including cat, bird, dog, airplane, deer, automobile,
frog, horse, ship, and truck. Each category has 6000 images, so the entire dataset has a total of 60,000
images, of which 50,000 are training images and 10,000 are test images. The size of each image
is 32 × 32. The difference between CIFAR100 and CIFAR10 is that CIFAR100 has 100 categories
and each category has 500 training pictures and 100 test pictures. In addition, the performance results
of the comparison algorithm can be easily collected from other papers. Meanwhile, the images will be
pre-processed in the same way as the other methods and clipped to the original size, flipped horizontally
and finally input into the proposed algorithm.

4.2. Comparison methods

In the experiments, our proposed PSO-CNN will be compared with existing NAS methods to show
oue method’s competitiveness. Among the algorithms chosen for comparison, we chose the
gradient-based NAS method DARTS [17] and reinforcement learning (RL) NAS methods such as
EAS [31], NAS [12], and MetaQNN [32]. There are also evolutionary computational NAS methods
that are consistent with our algorithm, for instance, Genetic CNN [33], Hierarchical Evolution [34],
AE-CNN [23], Firefly-CNN [35], NSGANet [36], and EPSO-CNN [28].

Electronic Research Archive Volume 32, Issue 3, 2016–2032.

2025

4.3. Parameter setting

Due to the tasks and evaluations being identical to the benchmarks, we directly cited the results of
the comparison algorithms used in our study from other papers. In this paper, the inertia weight w is set
to 0.7, the acceleration coefficient c1 is set to 1.5, and the acceleration coefficient c2 is set to 1.5. The
population size and generation are set to 10 and 30, respectively. The number of convolutional layers
in the DenseNet block is in the range of [6, 32], and the growth rate range is in [12, 32]. The optimizer
used is SGD, the weight decay is set to e−4, the momentum is set to 0.9, and the initial learning rate is
set to 0.1.

5. Analysis of experimental results

In this section, the results of our experiments are analyzed. First, in Sections 5.1 and 5.2 we
analyze the results of our comparison experiments with other algorithms on CIFAR10 and CIFAR100,
respectively. Then, in Section 5.3 we analyze the ablation experiments of our algorithm.

5.1. Experimental results of the algorithm on CIFAR10

Table 1 displays the competitiveness of the proposed PSO-CNN compared to other algorithms on
CIFAR10 and CIFAR100. The second and third columns represent the tested error rates of the
algorithms. C10 and C100 represent the two datasets. In addition to this, the number of parameters of
the architectures searched by the different algorithms and the search time overhead spent are also
shown. The sixth column shows the type of construction process for the final model, where “RL”
represents reinforcement learning, “Gradient” stands for gradient-based methods, and “EC”
represents evolutionary computation.

Table 1. Comparison experiments of our proposed PSO-CNN with other algorithms.

Algorithms
Error (%)
C10

Error (%)
C100

Parameters (M)
Times
GPU/Days

Method

EAS [31] 4.23 - 23.4 10 RL
NAS [12] 6.01 - 2.5 22,400 RL
MetaQNN [32] 6.92 27.14 - 100 RL
DARTS (first order) [17] 3.14 20.58 3.3 1.5 Gradient

Large-scale Evolution [22]
5.4
-

-
23

5.4
40.4

2750 EC

Genetic CNN [33] 7.1 29.05 - 17 EC
Hierarchical Evolution [34] 3.63 - - 300 EC

AE-CNN [23]
4.3
-

-
20.85

2.0
5.4

27
36

EC

NSGANet [36] 4.67 25.17 0.2 27 EC
EPSOCNN [28] 3.58 18.56 6.74 < 4 EC
Firefly-CNN [35] 3.3 22.3 3.21 - EC
PSO-CNN (our proposed) 3.28 18.24 1.07 3 EC

Electronic Research Archive Volume 32, Issue 3, 2016–2032.

2026

As can be obtained from Table 1, the proposed algorithm PSO-CNN obtains the lowest
classification error rate, except for DARTS, compared to the comparison algorithms, but with a much
smaller model size. Since the hand-crafted networks have no search process, they are represented by
‘-’ on GPU/Days. Compared with the three reinforcement learning based search methods, the
proposed algorithm is 0.95% lower than EAS, and has an obvious advantage in computing time.
Compared with the evolutionary calculation method, the proposed algorithm is 2.12% lower than
Large-scale Evolution, and 1.02% lower than AE-CNN. The number of parameters of PSO-CNN is
less than all comparison algorithms except NSGANet, because NSGANet is a multi-objective NAS
method and takes the number of parameters as one of the optimization objectives. Therefore, due to
the small number of parameters, its classification error rate is 1.39% higher than the proposed
algorithm. As PSO is used for optimization, the proposed algorithm has similar classification
performance with EPSOCNN, but the number of parameters is much fewer.

5.2. Experimental results of the algorithm on CIFAR100

The classification difficulty ratio of CIFAR100 is higher due to having more categories. The error
rate of PSO-CNN on CIFAR100 is 18.24%. Compared with gradient-based algorithms, the error rate of
PSO-CNN is 3.3% lower than DARTS. In addition, compared with the method based on reinforcement
learning, the proposed PSO-CNN has a lower error rate of 8.9% than MetaQNN. When compared with
other well-known algorithms such as Large-scale Evolution and Genetic CNN, the proposed algorithm
has a greater accuracy advantage. When compared with EPSO-CNN, the proposed algorithm has
similar classification performance with it, but the size of the final model of the proposed algorithm is
much smaller. The performance of PSO-CNN is mainly due to its flexibility in utilizing different parts
of the features, and the local adaptation helps the network to better fit the distributional characteristics
and local details of the complex input data. At the same time, the cutting process should take care to
avoid loss of information that may result from localized connections.

It is worth noting that the proposed algorithm does not need to re-evolve on CIFAR100, and the
user only needs to re-migrate and cut the evolved blocks on CIFAR10, which also helps reduce the
computation time.

5.3. The convergence analysis

According to the analysis of the convergence performance, the performance of the block searched
by the PSO-CNN is shown in Figure 6. In the early stage of evolution, the PSO can perform a fast
global search. When at the 10th generation, the accuracy of the population reached 0.45. In subsequent
generations, the performance of the searched block is maintained at about 0.5. The algorithm finally
converges after the 20th generation, and the accuracy of the finally searched block is about 0.6. It
should be noted that the training of these blocks is insufficient because we want to speed up the search
efficiency of the algorithm. The best individual will be cut and undergo final training.

Each of the final blocks are cut evenly, and the final model with different cutting times is tested to get
the training loss and validation accuracy. As shown in the Figure 7, the five models have extremely fast
convergence speed in the early stages of training. After 50 epochs, the training loss tends to converge.
At the 150th epoch, the convergence speed accelerates sharply, and almost all models tend to converge
after 200 epochs. In addition, the validation accuracy experiments of the five models also show that

Electronic Research Archive Volume 32, Issue 3, 2016–2032.

2027

the performance of the final models do not degrade after being cut, and this phenomenon can validate
the effectiveness of our proposed cutting method. We also found that, among all the final models, the
final model which is cut 2 times has the fastest convergence rate in the entire training process.

Figure 6. Convergence curve of evolving the block on CIFAR10.

(a) Training Loss (b) Validation Accuracy

Figure 7. Experimental results of different cutting times.

Figure 8 shows the final test accuracy of the final models after being cut. All models have been
trained by SGD for 300 epochs. From the figure, we can see that the searched blocks without cutting
have the lowest accuracy. In addition, the final model which is cut twice obtains the best classification
performance, and it also matches the result of the training loss in Figure 7. It is worth noting that for
the final model, more cuts do not necessarily bring better performance. The performance of models
whose cutting numbers are 3, 4, and 5 are worse than cutting numbers of 2.

Electronic Research Archive Volume 32, Issue 3, 2016–2032.

2028

0 1 2 3 4 5
The number of cuts

0.935

0.940

0.945

0.950

0.955

0.960

0.965

Ac
cu

ra
cy
\%

Fig. 8 The classification of the final models with different cut times.

Table 2 shows the number of parameters and flops in the final model after each cut.
These two indicators are very important, because the smaller the parameters and flops,
the lighter the final searched model, which can greatly accelerate the training speed.
The results in the table show that as the number of cuts increases, the parameters
and flops are significantly reduced. This is because the number of cuts can effectively
reduce the number of dense connections in the entire network, and it can prove the
effectiveness of cutting method. Compared with some well-known algorithms in Table
1, the final parameter of our proposed algorithm has greater advantages than all
other methods, except NSGANet, because NSGANet is a multi-objective algorithm
and it specifically optimizes parameters. Compared with the similar EPSO-CNN, the
parameters of the final model searched by the proposed algorithm is less than 1/6 of
that of EPSO-CNN.

6 Conclusions and Future Work

The goal of this paper is to speed up designing a CNN architecture search algorithm
by using PSO and find a model as little as possible. The goal is successfully achieved
on CIFAR10 and CIFAR100. To reduce the search space, this paper uses PSO to
evolve the blocks which has two parameters. In addition, a method of segmentation is
proposed to shrink the size of the final model. It can be seen from the experimental
results that PSO-CNN(our proposed algorithm) achieves better results in comparison
with different state-of-the-art design methods in terms of accuracy and consumption
of computing resources. PSO-CNN still consumes a lot of computing resources, thus,
in the future, we will try to design a new search space to accelerate the process of
evaluating individuals.

Acknowledgments

This work was partially supported by the National Natural Science Foundation of
China (61876089, 61403206, 61876185, 61902281), the opening Project of Jiangsu Key
Laboratory of Data Science and Smart Software (No.2019DS301), the Natural Sci-
ence Foundation of Jiangsu Province (BK20141005), the Natural Science Foundation

14

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 8. The classification of the final models with different cut times.

Table 2. The number of parameters and flops of the final models with different cutting times.

1 2 3 4 5 6
Parameters 1.71 M 1.49 M 1.30 M 1.20 M 1.14 M 1.07 M
Flops 3.32 G 1.7 G 1.014 G 702 M 556 M 420 M

Table 2 shows the number of parameters and flops in the final model after each cut. These two
indicators are very important because, the smaller the parameters and flops, the lighter the final
searched model, which can greatly accelerate the training speed. The results in the table show that as
the number of cuts increases, the parameters and flops are significantly reduced. This is because the
number of cuts can effectively reduce the number of dense connections in the entire network, and it
can prove the effectiveness of the cutting method. Compared with some well-known algorithms in
Table 1, the final parameter of our proposed algorithm has greater advantages than all other methods,
except NSGANet, because NSGANet is a multi-objective algorithm and it specifically optimizes the
number of parameters. Compared with the similar EPSO-CNN, the parameters of the final model
searched by the proposed algorithm is less than 1/6 of that of EPSO-CNN.

6. Conclusions

In this paper, the aim was to accelerate the design of CNN architectures using PSO and to find the
smallest possible model. The goal was successfully achieved on the CIFAR10 and CIFAR100 datasets.
To reduce the search space, this paper uses PSO to evolve the blocks, which has two parameters. In
addition, a method of segmentation is proposed to shrink the size of the final model. As can be seen
from the experimental results, PSO-CNN shows excellent competitiveness with different state-of-the-
art design methods in terms of accuracy and computational resource consumption. In the future, we
will try to carry out experiments with more datasets to evaluate the performance of the architecture
after using the cutting method under different circumstances. Considering the current computational

Electronic Research Archive Volume 32, Issue 3, 2016–2032.

2029

resource constraints, we will further refine our model by focusing on how to effectively utilize resources
to improve computational efficiency and expand the scope of testing.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgment

This work was partially supported by the National Natural Science Foundation of China
(62376127, 61876089, 61876185, 61902281), the opening Project of Jiangsu Key Laboratory of Data
Science and Smart Software (No. 2019DS301), the Natural Science Foundation of Jiangsu Province
(BK20141005), the Natural Science Foundation of the Jiangsu Higher Education Institutions of
China (14KJB520025).

Conflict of interest

The authors declare there is no conflict of interest.

References

1. K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, (2016), 770–
778. https://doi.org/10.1109/CVPR.2016.90

2. S. Singaravel, J. Suykens, P. Geyer, Deep-learning neural-network architectures and methods:
Using component-based models in building-design energy prediction, Adv. Eng. Inf., 38 (2018),
81–90. https://doi.org/10.1016/j.aei.2018.06.004

3. H. Xu, J. Kong, M. Liang, H. Sun, M. Qi, Video behavior recognition based on actional-structural
graph convolution and temporal extension module, Electron. Res. Arch., 30 (2022), 4157–4177.
https://doi.org/10.3934/era.2022210

4. D. Peng, Y. Lei, H. Munawar, Y. Guo, W. Li, Semantic-aware domain generalized segmentation, in
2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, (2022),
2584–2595. https://doi.org/10.1109/CVPR52688.2022.00262

5. T. Korbak, K. Shi, A Chen, R. V. Bhalerao, C. Buckley, J. Phang, et al., Pretraining language
models with human preferences, in Proceedings of the 40th International Conference on Machine
Learning, PMLR, 202 (2023), 17506–17533.

6. A. Krizhevsky, I. Sutskever, G. Hinton, Imagenet classification with deep convolutional neural
networks, Commun. ACM, 60 (2017), 84–90. https://doi.org/10.1145/3065386

7. K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition,
preprint, arXiv:1409.1556.

Electronic Research Archive Volume 32, Issue 3, 2016–2032.

http://dx.doi.org/https://doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/https://doi.org/10.1016/j.aei.2018.06.004
http://dx.doi.org/https://doi.org/10.3934/era.2022210
http://dx.doi.org/https://doi.org/10.1109/CVPR52688.2022.00262
http://dx.doi.org/https://doi.org/10.1145/3065386

2030

8. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, et al., Going deeper with
convolutions, in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
IEEE, (2015), 1–9. https://doi.org/10.1109/CVPR.2015.7298594

9. G. Huang, Z. Liu, L. Van Der Maaten, K. Q. Weinberger, Densely connected convolutional
networks, in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE,
(2017), 2261–2269. https://doi.org/10.1109/CVPR.2017.243

10. J. Xi, Z. Xu, Z. Yan, W. Liu, Y. Liu, Portrait age recognition method based on
improved ResNet and deformable convolution, Electron. Res. Arch., 31 (2023), 6585–6599.
https://doi.org/10.3934/era.2023333

11. C. Swarup, K. U. Singh, A. Kumar, S. K. Pandey, N. Varshney, T. Singh, Brain tumor detection
using CNN, AlexNet & GoogLeNet ensembling learning approaches, Electron. Res. Arch., 31
(2023), 2900–2924. https://doi.org/10.3934/era.2023146

12. B. Zoph, Q. V. Le, Neural architecture search with reinforcement learning, preprint,
arXiv:1611.01578.

13. T. Elsken, J. H. Metzen, F. Hutter, Neural architecture search: A survey, J. Mach. Learn. Res., 20
(2019), 1997–2017.

14. Y. Xue, W. Tong, F. Neri, P. Chen, T. Luo, L. Zhen, et al., Evolutionary architecture search for
generative adversarial networks based on weight sharing, IEEE Trans. Evol. Comput., 2023 (2023),
1. https://doi.org/10.1109/TEVC.2023.3338371

15. Y. Xue, X. Han, Z. Wang, Self-adaptive weight based on dual-attention for differentiable neural,
IEEE Trans. Ind. Inf., 2024 (2024), 1–10. https://doi.org/10.1109/TII.2023.3348843

16. Y. Xue, Z. Zhang, F. Neri, Similarity surrogate-assisted evolutionary neural architecture
search with dual encoding strategy, Electron. Res. Arch., 32 (2024), 1017–1043.
https://doi.org/10.3934/era.2024050

17. H. Liu, K. Simonyan, Y. Yang, DARTS: Differentiable architecture search, preprint,
arXiv:1806.09055.

18. Y. Xue, J. Qin, Partial connection based on channel attention for differentiable neural architecture
search, IEEE Trans. Ind. Inf., 19 (2023), 6804–6813. https://doi.org/10.1109/TII.2022.3184700

19. Y. Xue, C. Lu, F. Neri, J. Qin, Improved differentiable architecture search with multi-stage
progressive partial channel connections, IEEE Trans. Emerging Top. Comput. Intell., 8 (2024),
32–43. https://doi.org/10.1109/TETCI.2023.3301395

20. Y. Liu, Y. Sun, B. Xue, M. Zhang, G. G. Yen, K. C. Tan, A survey on evolutionary
neural architecture search, IEEE Trans. Neural Networks Learn. Syst., 34 (2023), 550–570.
https://doi.org/10.1109/TNNLS.2021.3100554

21. Y. Xue, C. Chen, A. Slowik, Neural architecture search based on a multi-objective
evolutionary algorithm with probability stack, IEEE Trans. Evol. Comput., 27 (2023), 778–786.
https://doi.org/10.1109/TEVC.2023.3252612

22. E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, et al., Large-scale evolution
of image classifiers, in Proceedings of the 34th International Conference on Machine Learning
(ICML), PMLR, 70 (2017), 2902–2911.

Electronic Research Archive Volume 32, Issue 3, 2016–2032.

http://dx.doi.org/https://doi.org/10.1109/CVPR.2015.7298594
http://dx.doi.org/https://doi.org/10.1109/CVPR.2017.243
http://dx.doi.org/https://doi.org/10.3934/era.2023333
http://dx.doi.org/https://doi.org/10.3934/era.2023146
http://dx.doi.org/https://doi.org/10.1109/TEVC.2023.3338371
http://dx.doi.org/https://doi.org/10.1109/TII.2023.3348843
http://dx.doi.org/https://doi.org/10.3934/era.2024050
http://dx.doi.org/https://doi.org/10.1109/TII.2022.3184700
http://dx.doi.org/https://doi.org/10.1109/TETCI.2023.3301395
http://dx.doi.org/https://doi.org/10.1109/TNNLS.2021.3100554
http://dx.doi.org/https://doi.org/10.1109/TEVC.2023.3252612

2031

23. Y. Sun, B. Xue, M. Zhang, G. G. Yen, Completely automated CNN architecture design
based on blocks, IEEE Trans. Neural Networks Learn. Syst., 31 (2020), 1242–1254.
https://doi.org/10.1109/TNNLS.2019.2919608

24. Y. Xue, Y. Wang, J. Liang, A. Slowik, A self-adaptive mutation neural architecture
search algorithm based on blocks, IEEE Comput. Intell. Mag., 16 (2021), 67–78.
https://doi.org/10.1109/MCI.2021.3084435

25. D. Song, C. Xu, X. Jia, Y. Chen, C. Xu, Y. Wang, Efficient residual dense block search for image
super-resolution, in Proceedings of the AAAI conference on artificial intelligence, AAAI Press, 34
(2020), 12007–12014. https://doi.org/10.1609/aaai.v34i07.6877

26. J. Fang, Y. Sun, Q. Zhang, Y. Li, W. Liu, X. Wang, Densely connected search
space for more flexible neural architecture search, in 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), IEEE, (2020), 10625–10634.
https://doi.org/10.1109/CVPR42600.2020.01064

27. J. Kennedy, R. C. Eberhart, Particle swarm optimization, in Proceedings of
ICNN’95 - International Conference on Neural Networks, IEEE, 4 (1995), 1942–1948.
https://doi.org/10.1109/ICNN.1995.488968

28. B. Wang, B. Xue, M. Zhang, Particle swarm optimisation for evolving deep neural
networks for image classification by evolving and stacking transferable blocks, in
2020 IEEE Congress on Evolutionary Computation (CEC), IEEE, (2020), 1–8.
https://doi.org/10.1109/CEC48606.2020.9185541

29. E. Real, A. Aggarwal, Y. Huang, Q. V. Le, Regularized evolution for image classifier architecture
search, in Proceedings of the AAAI Conference on Artificial Intelligence, AAAI Press, 33 (2019),
4780–4789. https://doi.org/10.1609/aaai.v33i01.33014780

30. G. Huang, S. Liu, L. v. d. Maaten, K. Q. Weinberger, CondenseNet: An efficient denseNet
using learned group convolutions, in 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), IEEE, (2018), 2752–2761. https://doi.org/10.1109/CVPR.2018.00291

31. H. Cai, T. Chen, W. Zhang, Y. Yu, J. Wang, Regularized evolution for image classifier architecture
search, in Proceedings of the AAAI Conference on Artificial Intelligence, AAAI Press, 32 (2018),
4780–4789. https://doi.org/10.1609/aaai.v32i1.11709

32. B. Baker, O. Gupta, N. Naik, R. Raskar, Designing neural network architectures using
reinforcement learning, preprint, arXiv:1611.02167.

33. L. Xie, A. Yuille, Genetic CNN, in 2017 IEEE International Conference on Computer Vision
(ICCV), IEEE, (2017), 1388–1397. https://doi.org/10.1109/ICCV.2017.154

34. H. Liu, K. Simonyan, O. Vinyals, C. Fernando, K. Kavukcuoglu, Hierarchical representations for
efficient architecture search, preprint, arXiv:1711.00436.

35. A. I. Sharaf, E. S. F. Radwan, An automated approach for developing a convolutional neural
network using a modified firefly algorithm for image classification, in Applications of Firefly
Algorithm and its Variants, Springer, (2020), 99–118. https://doi.org/10.1007/978-981-15-0306-
1 5

Electronic Research Archive Volume 32, Issue 3, 2016–2032.

http://dx.doi.org/https://doi.org/10.1109/TNNLS.2019.2919608
http://dx.doi.org/https://doi.org/10.1109/MCI.2021.3084435
http://dx.doi.org/https://doi.org/10.1609/aaai.v34i07.6877
http://dx.doi.org/https://doi.org/10.1109/CVPR42600.2020.01064
http://dx.doi.org/https://doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/https://doi.org/10.1109/CEC48606.2020.9185541
http://dx.doi.org/https://doi.org/10.1609/aaai.v33i01.33014780
http://dx.doi.org/https://doi.org/10.1109/CVPR.2018.00291
http://dx.doi.org/https://doi.org/10.1609/aaai.v32i1.11709
http://dx.doi.org/https://doi.org/10.1109/ICCV.2017.154
http://dx.doi.org/https://doi.org/10.1007/978-981-15-0306-1_5
http://dx.doi.org/https://doi.org/10.1007/978-981-15-0306-1_5

2032

36. G. Cuccu, J. Togelius, P. Cudre-Mauroux, Playing atari with six neurons (Extended abstract), in
Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-
20), International Joint Conferences on Artificial Intelligence Organization, (2020), 4711–4715.
https://doi.org/10.24963/ijcai.2020/651

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Electronic Research Archive Volume 32, Issue 3, 2016–2032.

http://dx.doi.org/https://doi.org/10.24963/ijcai.2020/651
http://creativecommons.org/licenses/by/4.0

	Introduction
	Related works
	Particle swarm optimization algorithm
	Block-based design method

	Proposed algorithm
	Algorithm overview
	Encoding strategy
	Fitness evaluation
	Evolving the blocks by PSO
	Progressively splitting DenseNet blocks

	Experiment design
	Benchmark datasets
	Comparison methods
	Parameter setting

	Analysis of experimental results
	Experimental results of the algorithm on CIFAR10
	Experimental results of the algorithm on CIFAR100
	The convergence analysis

	Conclusions

