
Electronic
Research Archive

http://www.aimspress.com/journal/era

ERA, 32(3): 1973–1997.
DOI: 10.3934/era.2024090
Received: 13 December 2023
Revised: 14 February 2024
Accepted: 22 February 2024
Published: 06 March 2024

Research article

Jointly learning and training: using style diversification to improve domain
generalization for deepfake detection

Jicheng Li1, Beibei Liu1,*, Hao-Tian Wu2, Yongjian Hu1 and Chang-Tsun Li3

1 School of Electronic and Information Engineering, South China University of Technology,
Guangzhou 510641, China

2 Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou 510006, China
3 School of Information Technology, Deakin University, Geelong, VIC 3216, Australia

* Correspondence: Email: eebbliu@scut.edu.cn.

Abstract: Most existing deepfake detection methods often fail to maintain their performance when
confronting new test domains. To address this issue, we propose a generalizable deepfake detection
system to implement style diversification by alternately learning the domain generalization (DG)-based
detector and the stylized fake face synthesizer (SFFS). For the DG-based detector, we first adopt in-
stance normalization- and batch normalization-based structures to extract the local and global image
statistics as the style and content features, which are then leveraged to obtain the more diverse feature
space. Subsequently, contrastive learning is used to emphasize common style features while suppress-
ing domain-specific ones, and adversarial learning is performed to obtain the domain-invariant features.
These optimized features help the DG-based detector to learn generalized classification features and
also encourage the SFFS to simulate possibly unseen domain data. In return, the samples generated
by the SFFS would contribute to the detector’s learning of more generalized features from augmented
training data. Such a joint learning and training process enhances both the detector’s and the syn-
thesizer’s feature representation capability for generalizable deepfake detection. Experimental results
demonstrate that our method outperforms the state-of-the-art competitors not only in intra-domain tests
but particularly in cross-domain tests.

Keywords: deepfake detection; domain generalization; style diversification; contrastive learning;
adversarial learning

1. Introduction

Most deepfake detectors can achieve good performance when applied intra-domain scenarios, but
their performance may encounter dramatic degradation when subject to cross-domain settings [1–9].

http://http://www.aimspress.com/journal/era
http://dx.doi.org/10.3934/era.2024090

1974

This phenomenon is largely due to the representation gap between training and testing domains. In
other words, the detectors fit the data in the training domain so well that their generalization is likely
to be adversely affected. Poor generalization in testing domains with unknown forgery patterns is a
non-trivial issue for the industrial use of deepfake detectors. To tackle this issue, many solutions have
been proposed.

One common approach to boost generalization capability is to jointly use multiple forensic features
from different modalities like spatial modality, transform modality, temporal modality, and compressed
modality. For example, Zhou et al. [10] captured both tampering artifact and local noise residual fea-
tures. Li et al. [11] proposed the Face X-ray method. This generalizable technique succeeds by assum-
ing the existence of blending steps during fake face generation and does not rely on any knowledge
of the artifacts associated with specific manipulations. Chen et al. [12] combined features from two
color spaces (i.e., RGB and YCbCr). Chen et al. [13] considered that global supervisions are insuf-
ficient to learn generalized features and prone to overfitting; thus, they used the correlation between
local regions. Zheng et al. [14] detected spatially related manipulation traces (e.g., blending bound-
ary, checkboard, blur artifacts) and the temporal incoherence between frames by employing a fully
temporal convolutional network (FTCN) to learn the long-term temporal incoherence. Pang et al. [15]
investigated spatial and temporal inconsistency as well as dynamic temporal information, by applying
multiple sampling rates. Chen et al. [16] extracted more comprehensive temporal features by using a
spatiotemporal attention mechanism and convolutional long short-term memory to enhance spatiotem-
poral correlations. Liu et al. [17] used a spatial-phase shallow learning network to exploit the sensitivity
of the phase spectrum in the presence of up-sampling operation traces in fake face reconstruction. Cao
et al. [18] proposed a reconstruction-classification learning framework to enhance the representations
of forgery patterns while mining the essential discrepancy between real and fake images. Yu et al. [19]
relied on the so-called common forgery feature extractor (CFFE) to explore the commonality of dif-
ferent manipulation traces of deepfakes. Luo et al. [20] proposed a forgery mining framework that
utilizes a fine-grained relation learning prototype to mine critical information in forgeries. Consid-
ering that videos are usually saved and transmitted in a compression format, some researchers have
directly checked forgery traces by using features of compressed modality. For example, Hu et al. [21]
detected deepfake videos by learning frame-level features in I frames and temporality-level features
in time-dependent residuals. Wang and Chow [22] extracted I frames as key frames to alleviate the
information loss and extracted the face-background pairs via the Siamese structure network.

Recently, another promising approach has emerged, where more sophisticated detectors are trained
with a vast range of sample data that represent different manipulation artifacts. Different from previous
methods focusing on exhaustively exploring new forensic features, these methods also tend to gener-
ate self-making data to extend the training space. Using real data from business application scenarios
is desirable but not easily achievable due to high cost and other legal issues like privacy. Whereas,
generating pseudo training data from lab-based deepfake imitators seems more plausible since those
generators are based on common knowledge such as the image inpainting employed in deepfake pro-
cesses. So far this approach has apparently demonstrated its effectiveness. For example, in their
pioneering work [23], Li and Lyu proposed the face warping artifacts (FWAs) method to simulate fake
face images by blurring facial regions of real images. Unlike common data augmentation strategies,
the FWAs method generates pseudo samples by purposely simulating the manipulation traces left on
facial areas in the process of face swapping. Following this idea, Zhao et al. [24] designed an in-

Electronic Research Archive Volume 32, Issue 3, 1973–1997.

1975

consistency image generator to automatically generate annotated training data by using their pairwise
self-consistency learning network. Shiohara and Yamasaki [25] proposed a simple yet effective syn-
thetic scheme based on the use of self-blended images (SBIs). SBIs blend pseudo source and target
images from single pristine images to reproduce common forgery artifacts. Recently, Chen et al. [26]
proposed a self-prediction learning (SPL) method to learn rich hidden representations by predicting
masked patches in the pre-training stage. After pre-training, the discriminative model is fine-tuned via
multi-task learning, including a deepfake classification task and a forgery mask estimation task. Since
face forgery simulation is directly carried out on images in [23–26], we call this pseudo data generation
manner image-level data augmentation.

In general, the above two approaches have different focuses. The first approach concentrates on im-
proving feature extraction capability whereas the second one makes efforts to provide a better training
environment. Usually, these two approaches work separately. Their connection is exhibited in [25],
where SBIs are used to generate pseudo samples and the generated samples are subsequently used
to fine-tune the feature extractor. In this work, however, we propose a way to integrate these two
approaches into a complete deepfake detection system. They work in a domain generalization (DG)
framework and dynamically improve each other. To the best of our knowledge, this is the first work to
integrate these two approaches into an end-to-end detector. Our major contributions are summarized
as follows.

• For deepfake detection, we experimentally exhibit that style feature distributions vary with differ-
ent datasets, which exposes the severe challenge of cross-domain detection. Good generalization
can be realized unless the feature spaces for different target domains share a common projection.
To find such a projection, we concentrate on extracting general features that have good common-
ality in different target domains.
• A novel deepfake detection system is proposed; it consists of a DG-based deepfake detector and

a stylized fake face synthesizer (SFFS). These two parts interact with each other dynamically,
focusing on style diversification from feature representation and training data spaces to alleviate
overfitting to a specific domain. A two-phase training strategy is adopted in the proposed system.
In the first phase, the detector is updated by applying backpropagation, and the SFFS with its
weights frozen generates pseudo fake face samples for the updating process of the DG-based
detector. In the second phase, the style decoder of the SFFS is trained on samples from simulated
unseen domains with style diversification.
• Since style features have a high-frequency property and can better preserve manipulation traces,

we use contrastive learning to emphasize the common style features under a DG framework. On
the other side, content features usually have low-frequency property and may contain imaging
pipeline and storage traces, so we use adversarial learning to emphasize the common content
features. The stylized face images are obtained by modifying the style features. This feature-level
enrichment drives the fake face synthesizer to produce pseudo training data with more diversified
features. The output of the SFFS with image-level generation is then used as new source training
data to further train our detection network. Experimental results have demonstrated that this
interaction significantly improves the generalization capability of our deepfake detector.

The rest of this paper is organized as follows. Section 2 introduces the problem statement and our
methodology. Section 3 explains our proposed detection system in detail. Section 4 gives experimental

Electronic Research Archive Volume 32, Issue 3, 1973–1997.

1976

results and discussions. Section 5 concludes this work.

2. Problem statement and our methodology

To better understand the challenge of cross-dataset testing, we choose to use two public datasets,
namely FaceForensics++ (FF++) [27] and Deepfake Detection Challenge (DFDC) [28], to visualize
their differences in feature spaces by using the t-SNE tool [29]. Similar to [30], we calculate the
style feature fs of each dataset and show its position in the feature space in Figure 1. The details
of calculating fs will be given in the next section. We use red/orange color to represent fake/forged
faces and blue/light blue color to represent real faces. The blue points and red points in Figure 1(a)
refer to the style features of real and fake faces in the FF++ dataset, respectively. Meanwhile, the
blue and orange triangles in Figure 1(b) refer to the style features of real and fake faces in the DFDC
dataset, respectively. From the shape of their feature distributions, it could be easily imagined that their
classification planes for real and fake faces would be different. Observing the feature distributions of
the two datasets in Figure 1(c), we can immediately notice that, regardless of the dataset we used to
train the deepfake detector, it is hard to avoid severe performance degradation in the classification
stage. This is the so-called lack of generalization for machine learning-based detectors. Moreover, we
can calculate the content features of the same two datasets by using a similar method as that used to
obtain Figure 2. This situation is similar to what we have seen in Figure 1. This phenomenon is also
called the domain shift between the source (training-time) and the target (test-time) domains in cross-
dataset testing. The detection performance would degrade more severely with the increase of target
domains. Our task in this work is to find a way to alleviate the degradation of detection performance.
In other words, we needed to find better feature representations so that the feature distributions from
different target domains have more commonality.

One solution to our problem is domain adaptation (DA), which learns a discriminative classifier or
other predictor in the presence of a shift between training and test distributions. The appeal of the
DA approaches is their ability to learn a mapping between domains in the situation in which the target
domain data are either fully unlabeled (unsupervised domain annotation) or have few labeled samples
(semi-supervised DA) [31]. Considering that fake faces have different unknown sources and vary with
the rapid development of new technologies, we prefer to regard this problem as a DG issue. The
difference between DA and DG is that DA has to access the target domain while DG cannot observe
any target domain during training. This makes DG more challenging, but more realistic and favorable
than DA in practical applications [32].

DG aims to first learn a generic model on multiple source domains and then directly generalize to
an arbitrary unseen target domain without any additional adaption [32]. Recently, DG for generalizing
detection has drawn more and more attention in areas such as person re-identification [33], image
recognition [34] and face anti-spoofing (FAS) [30,35]. Wang et al. [30] adjusted the stylized features to
enhance liveness-related style information and suppress domain-specific ones in FAS. Style adjustment
is widely used in generative frameworks, where content features are taken as global statistics and style
features as local statistics. The reassembling of the pair of content and style features can be used to
generate pseudo spoof faces. There are different ways to implement style modification in literature.
Huang and Belongie [36] proposed adaptive instance normalization (AdaIN) for style transfer and
demonstrated that the style information can easily be changed by adjusting the mean and variance of

Electronic Research Archive Volume 32, Issue 3, 1973–1997.

1977

convolutional feature maps. StyleGAN [37] also produced impressive image generation results through
the application of AdaIN operations in a generative network. Wang et al. [32] performed random style
transformation with extra random noise to generate features with diverse styles and thus enhance the
generalization ability.

Motivated by these works, we propose a novel deepfake detection framework as shown in Figure 3.
It consists of two parts: the DG-based detector and the SFFS. The detector and the SFFS model work
alternately and dynamically update the network parameters.

Figure 1. Distributions of style features with t-SNE visualization.

Figure 2. Distributions of content features with t-SNE visualization.

Electronic Research Archive Volume 32, Issue 3, 1973–1997.

1978

Phase 1: DG-based detector

Interpolation

Weight β~U(0, 0.1)

fc1

fs1

N(0, 1)

+

AdaINμz

σz

nμ

nσ

μs

σs

Style

Decoder

Random

Perturbation

1
ˆ
cf

1
ˆ
sf

Lcon

Lsty

ˆ
z
ˆ

z

Augmentation

& Resize

& Translation

Fake Face Synthesizer (FFS)

Face

Blending

Convex Hull

& Augmentation
Augmented

Mask M

Stylized Image Generator (SIG)

Sampling
Stylized

Image

Real Image

 Ib

Pseudo Source

Image Is

S

F

F

S

Swin-S

Transformer

Encoder

...

Swin-S

Transformer

Encoder

...

Weight Sharing

CFE

SFE

fc1

fs1

CFE

SFE

fc2

fs2

DS

DT

Real

Fake

Real

Fake

AdaIN

Random

Style

Random

Content

AdaIN

Decoder

Classifier

Domain

Discriminator

Lloc

Ladv

Lcontra

Anchors

Positive Pairs

Negative Pairs

Lfcls

Content and Style Features Extraction Module (CSFEM) Contrastive Learning Module (CLM) Localization

ClassificationAdversarial Learning Module (ALM)

Multi-Training Datasets DM

Real Fake

fcr

fz1

fz2

SFFS

Anchors fsa

Content and Style Features Extraction Module (CSFEM)

CSFEM
CSFEM

Synthetic

Image If

Target Image

Phase 2: Stylized fake face synthesizer (SFFS)

Figure 3. The framework of the proposed method. For the contrastive learning module
(CLM), different colors indicate different authenticity information (green = real, red = fake),
different shapes represent content information from different domains (round = DS , triangle
= DT), and different linetypes denote style information from different domains (solid line =
DS , dashed line = DT).

3. Proposed deepfake detection system

The DG-based detection model consists of four modules: the content and style features extraction
module (CSFEM), the adversarial learning module (ALM), the contrastive learning module (CLM),
and the face forgery classification and localization module (FFCLM). For the given multi-training
datasets DM, we first randomly split it into DT and DS with the same number of samples and non-
domain overlapping, and apply the SFFS to create pseudo training data to expand DS . Subsequently, we
utilize the CSFEM to extract two sets of style and content features corresponding to DS and DT . Then,
we apply AdaIN to randomly reassemble the above two sets of style and content features to construct
the content randomization and style randomization feature spaces. The content randomization feature
space is used for the ALM to obtain a domain-invariant representation, and the style randomization
feature space is for the CLM to emphasize common style features as well as suppress the domain-
specific ones. Finally, the learned generalized representation, assembled by domain-invariant content

Electronic Research Archive Volume 32, Issue 3, 1973–1997.

1979

features and common style features, is fed to the FFCLM for forgery classification and localization.
The SFFS model consists of two modules: the stylized image generator (SIG) and fake face syn-

thesizer (FFS). The SIG uses style perturbation and style transfer to enrich the style diversity. Then,
the FFS is utilized to generate the fake face images that represent different manipulation artifacts. The
complete method is illustrated in Algorithm 1. We will describe our method module by module below.

Algorithm 1 Optimization process for proposed framework
Require: The multiple training datasets DM.
Ensure: Final optimized model parameters Φ of DG-based detector and Θ of SFFS.

1: Initialize model parameters Φ and Θ.
2: while not end of iteration do
3: Randomly split DM into DS and DT without domain overlapping.
4: Input the real samples from a randomly selected data domain in DS to SFFS to generate the

synthesized samples, which are used to create pseudo training data with a new domain label.
5: // Phase 1: Train the DG-based detector
6: Sample a batch of data {xS , yS } from DS .
7: Input xS to the CSFEM to obtain the content feature fc1 and style feature fs1.
8: Sample a batch of data {xT , yT } from DT .
9: Input xT to the CSFEM to obtain the content feature fc2 and style feature fs2.

10: Utilize fc1, fs1, and fs2 to get the self-assembly features fsa and random-assembly features fra.
11: Compute the contrastive loss Lcontra with Eq (3.3).
12: Utilize fc1, fc2, and fs2 to get the content randomization features fcr.
13: Compute the adversarial loss Ladv with Eq (3.7).
14: Compute the classification loss L f cls with Eq (3.8).
15: Compute the localization loss Lloc with Eq (3.9).
16: Compute the overall detection loss Ld with Eq (3.10).
17: Fix the SFFS and then minimize Ld and update Φ.
18: // Phase 2: Train the SFFS
19: Get the channel-wise mean µz and standard deviation σz of fs1.
20: Sample two perturbation variables µn and σn ∼ N(0, 1) with the same dimension as µz and σz.
21: Generate the mixed style µs and σs by using Eqs (3.11) and (3.12).
22: Get the new augmented feature fg by using AdaIN.
23: Get the stylized image Dec(fg) by using the style decoder Dec.
24: Input the stylized image to the CSFEM to obtain the content feature f̂c1 and style feature f̂s1.
25: Get the channel-wise mean µ̂z and standard deviation σ̂z of f̂s1.
26: Compute the content loss Lcon with Eq (3.14).
27: Compute the style loss Lsty with Eq (3.15).
28: Compute the overall generation loss LS FFS with Eq (3.13).
29: Fix the CSFEM and then minimize LS FFS and update Θ.
30: end while

Electronic Research Archive Volume 32, Issue 3, 1973–1997.

1980

3.1. Content and style features extraction module

For deepfake detection, we are not interested in meaningful image content, rather, we focus on
forgery traces to answer the question of whether a test face image is real. For this reason, many tra-
ditional methods often carry out forensic investigation into high-frequency image components that di-
rectly reflect image details like texture and edge, while ignoring the useful forensic information hidden
in image content. Image content mainly exists in low-pass components, reflecting the approximation
of the image. Although the existence of image content would interfere with the accurate extraction
of manipulation artifacts, we think that image content is the carrier of image processing history and
can provide useful information for image content-related traces like image origin, compression stan-
dards, compression ratios, storage format, and other low-pass imaging pipeline processing operations.
Based on this consideration, we propose to suppress meaningful image content and extract high-level
semantic features that contain content and style features. The CSFEM has been designed to output the
content feature fc1 and the style feature fs1. In the first procedure, the hierarchical vision transformer
using shifted windows (Swin-S) [38] is applied as an embedding network to learn high-level seman-
tic representations. In the second procedure, the content features extraction (CFE) and style features
extraction (SFE) branches obtain the outputs of fc1 and fs1.

Training a Swin-S with good representation ability relies on a huge dataset to learn the prior in-
formation. Since the unsupervised representation learning strategy called SimMIM [39] has demon-
strated that masked image modeling (MIM) pre-training can yield good generalization results on var-
ious downstream tasks, we adopt the SimMIM strategy to pre-train the Swin-S on publicly available
deepfake datasets. After pre-training, the Swin-S is optimized together with the overall network. The
content features and the style features are directly learned via CFE and SFE. Their network structures
are shown in Table 1. Like [30], batch normalization-based structures are used to summarize global
image statistics while instance normalization-based structures focus on the distinctive characteristics
of specific samples.

Electronic Research Archive Volume 32, Issue 3, 1973–1997.

1981

Table 1. Parameters for the proposed detection network. k means kernel size, cout represents
the output channels, s is the stride, p denotes the operation of padding zeros, B is the batch
size, and H0 and W0 indicate the height and width of input image.

Phase Layers Name Parameters Output feature size

Phase 1:
DG-based
detector

Encoder
in CSFEM

x1 = Swin-S(x0)

embed dim = 96
depths = [2, 2, 18, 2]
heads = [3, 6, 12, 24]
window size = 7

B × 768 ×
⌈

H0
32

⌉
×

⌈
W0
32

⌉

CFE
in CSFEM

x2 =

Conv2D(x1)

BatchNorm2D(x1)

ReLU(x1)

×3

cout = [768, 768, 768]
k = 3 × 3
s = 1, p = ’same’

B × 768 ×
⌈

H0
32

⌉
×

⌈
W0
32

⌉

SFE
in CSFEM

x3 =

Conv2D(x1)

InstanceNorm2D(x1)

ReLU(x1)

×3

cout = [768, 768, 768]
k = 3 × 3
s = 1, p = ’same’

B × 768 ×
⌈

H0
32

⌉
×

⌈
W0
32

⌉
AdaIN x4 = AdaIN(x2, x3) cout = 768 B × 768 ×

⌈
H0
32

⌉
×

⌈
W0
32

⌉

Discriminator x5 =

GRL(x4)

Linear(x4)

ReLU(x4)

Dropout(0.5)

Linear(x4)

cout = [256, 2] B × 2

Classifier x6 = Linear(x4) cout = 2 B × 2

Decoder x7 =

Upsample(x4)

Conv2D(x4)

BatchNorm2D(x4)

ReLU(x4)

×5

scale = 2
cout = [512, 256, 128, 64, 2]
k = 3 × 3
s = 1, p = ’same’
scale = 2

B × 2 × H0 ×W0

Phase 2:
SFFS

Style Decoder
in SIG

x7 =

Upsample(x4)

Conv2D(x4)

ReLU(x4)

Conv2D(x4)

ReLU(x4)

×5

scale = 2
cout = [512, 256, 128, 64, 3]
k = 3 × 3
s = 1, p = ’same’
scale = 2

B × 3 × H0 ×W0

3.2. Contrastive learning module

Fake faces often undergo an affine transform (i.e., scaling, rotation and shearing) to match the
poses of the target faces that they will replace [23]. Compared with real faces, fake faces generated
by common deepfake tools would lose high-frequency textures and details. The difference between
these two faces can be better reflected by their style features. From the view of style features, a
major obstacle to generalization is that domain-specific style features may conceal common ones in
cross-domain scenarios, which may result in misjudgment for unseen data. To solve this problem,
we propose a contrastive learning approach to emphasize common style features while suppressing
domain-specific ones.

Electronic Research Archive Volume 32, Issue 3, 1973–1997.

1982

We fix the source domain fc1 when we use the contrastive learning strategy. Two types of features
are introduced: self-assembly features fsa(fc1,i, fs1,i) as anchor features and random-assembly features
fra(fc1,i, fs∗,i) as styled features. An adaptive style transfer method, namely AdaIN [36] is used to
assemble a content feature and a style feature as follows.

fsa(fc1,i, fs1,i) = σ(fs1) ·
(

fc1,i − µ(fc1)
σ(fc1)

)
+ µ(fs1), (3.1)

fra(fc1,i, fs∗,i) = σ(fs∗) ·
(

fc1,i − µ(fc1)
σ(fc1)

)
+ µ(fs∗), (3.2)

where i is the index and fs∗ is randomly picked from { fs1, fs2}. µ(·) and σ(·) are the respective channel-
wise mean and standard deviation of the feature. In essence, AdaIN realizes the style transfer by
replacing the mean and standard deviation in Eq (3.1) with those from shuffled style features. We
implement Eqs (3.1) and (3.2) batch by batch.

To avoid overfitting, a stop-gradient operation is implemented on anchor features to fix their po-
sition in the feature space. We carry out the contrastive learning by measuring the cosine similarity
between fsa(fc1,i, fs1,i) and fra(fc1,i, fs∗,i). fra(fc1,i, fs∗,i) is drawn closer to or pushed away from their
corresponding fsa(fc1,i, fs1,i). The batch-based contrastive loss Lcontra is defined below:

Lcontra =
1
B

B∑
i=1

S ign(fsa(fc1,i, fs1,i), fra(fc1,i, fs∗,i)) · Dist(fsa(fc1,i, fs1,i), fra(fc1,i, fs∗,i)), (3.3)

where B is the batch size. S ign(·) checks the consistency of feature labels. Dist(·) is the negative cosine
similarity. We calculate S ign(·) and Dist(·) as follows. Here ∥·∥2 denotes the ℓ2-norm.

S ign(fsa(fc1,i, fs1,i), fra(fc1,i, fs∗,i)) =

+1, label(fc1,i, fs1,i) = label(fS R,i)
−1, otherwise

, (3.4)

Dist(fsa(fc1,i, fs1,i), fra(fc1,i, fs∗,i)) = −
fsa(fc1,i, fs1,i)∥∥∥ fsa(fc1,i, fra(fc1,i, fs∗,i))

∥∥∥
2

·
fS R,i∥∥∥ fra(fc1,i, fs∗,i)

∥∥∥
2

. (3.5)

3.3. Adversarial learning module

Content features are useful for sharing common low-pass information in cross-domain scenarios.
They mainly record some global semantic features and physical attributes; thus, a shared feature distri-
bution is easily acquired by using adversarial learning [30]. Based on this consideration, we choose to
use AdaIN in a different way that we generate the content randomization features fcr with unchanged
style but shuffled content features. In Eq (3.6), fc∗ is randomly selected from { fc1, fc2}.

fcr(fc∗,i, fs2,i) = σ(fs2) ·
(

fc∗,i − µ(fc∗)
σ(fc∗)

)
+ µ(fs2). (3.6)

The domain discriminator is used to make the fcr indistinguishable for different domains. Just
like [30], the parameters of the content random feature extractor GC are optimized by maximizing

Electronic Research Archive Volume 32, Issue 3, 1973–1997.

1983

the adversarial loss function while the parameters of the domain discriminator D are optimized in the
opposite direction. The process is formulated as follows:

min
GC

max
D

Ladv = −E(x,y)∈(X,YD)

ND∑
i=1

1[i = y]logD(GC(x)), (3.7)

where YD is the set of domain labels and ND is the number of different data domains. 1[i = y] indicates
that the value is 1 when i = y; otherwise, it is 0. To optimize GC and D simultaneously, the gradient
reversal layer [31] is used to reverse the gradient by multiplying it by a negative scalar during the
backward propagation. Table 1 shows the details of discriminator D.

3.4. Face forgery classification and localization module

The anchor fsa(fc1,i, fs1,i) is sent to the FFCLM for binary cross entropy calculation and localization
comparison. Unlike traditional deepfake detectors with only classification metric, we use both classi-
fication loss and localization loss to supervise the training process. The newly introduced localization
information comes from the ground-truth face mask in training datasets, which is a kind of side infor-
mation. The cross entropy loss L f cls and the pixel-level cross entropy localization loss Lloc are given as
follows.

L f cls = −

NC∑
i=1

yilog(pi), (3.8)

Lloc = −
1

H0W0

H0∑
h=1

W0∑
w=1

NC∑
i=1

Mihwlog(M̂ihw), (3.9)

where NC indicates number of classes (i.e., NC = 2), pi and yi are the softmax prediction probabilities
of the classifier and the ground-truth label, respectively. M is the ground-truth forgery mask with 1
indicating the manipulated pixels and 0 otherwise. The decoder consists of up-sampling and convolu-
tional layers to estimate a forgery mask M̂ ∈ RNC×H0×W0 .

To sum up, the overall detection loss function is formulated as in Eq (3.10), where α1, α2, and α3

are the weights used to balance the four loss terms. The complete network structure and parameters
for our DG-based detector are shown in Table 1.

Ld = L f cls + α1 · Lloc + α2 · Lcontra + α3 · Ladv. (3.10)

3.5. Stylized fake face synthesizer

We develop a pseudo fake face generator called the SFFS to enrich the style diversity of training
data. The SFFS consists of two parts: the SIG and FFS. The SIG uses feature-level modifications,
more exactly, style perturbation and style transfer to enrich the diversity of the style features. It is
an independent module which can generate stylized images. Meanwhile, the FFS is an independent
image-level-augmentation pseudo face generator. For simplicity, we directly apply the SBIs as in [25]
and FWAs as in [23] to accomplish this task. When the SIG and FFS work together, they can generate
augmented training samples, i.e., stylized fake faces, by using the output of the SIG. The structures of
the SIG and FFS are respectively illustrated in Figure 3. We give more detailed descriptions below.

Electronic Research Archive Volume 32, Issue 3, 1973–1997.

1984

The SIG has an encoder-decoder structure with the encoder CSFEM and the style decoder Dec. The
architecture and parameters of the SIG are shown in Table 1. Given a real image Ib, the content feature
fc1 and style feature fs1 are extracted by the CSFEM. The style transfer is realized by integrating the
perturbation information into the original style in a hidden space. Exactly, we modify the channel-
wise mean µz and standard deviation σz of fs1 with two random perturbation variables nµ and nσ as
in Eqs (3.11) and (3.12). The new channel-wise mean µs and standard deviation σs are obtained as
follows [32].

µs = β × nµ + (1 − β) × µz, (3.11)

σs = β × nσ + (1 − β) × σz, (3.12)

where nµ and nσ∼ N(0, 1) are two perturbations with the same dimension as µz and σz. β is an
interpolation weight sampled from uniform distribution, denoted as β ∼ U(0, 0.1). We use AdaIN, as
defined in Eq (3.2), to reassemble fc1 with µs and σs to get the new augmented feature fg. The stylized
image Dec(fg) is obtained from the decoder by using fg as an input. In the training of the SFFS, we fix
the parameters of the CSFEM and train the decoder with the overall generation loss LS FFS as follows.

LS FFS = Lcon + α4 · Lsty, (3.13)

Lcon =
∥∥∥ f̂c1 − fc1

∥∥∥
2
, (3.14)

Lsty = ∥µ̂z − µs∥2 + ∥σ̂z − σs∥2 , (3.15)

where α4 is the weight use to balance the content loss Lcon and the style loss Lsty. The content feature
f̂c1 and style feature f̂s1 of Dec(fg) are also extracted by the CSFEM, as shown in Figure 3. µ̂z and σ̂z

denote the channel-wise mean and standard deviation of f̂s1.
We use the self-blending strategy in [25] to explain the function of the FFS. Let Is = Dec(fg) and It =

Ib represent the source and target images, respectively. All augmentations and transformations applied
to Is are similar to those in [25]. Dlib [40] is used to predict a facial region and the mask M is initialized
by calculating the convex hull from predicted facial landmarks. Then M is augmented through elastic
deformation and smoothing to increase the diversity of the blending mask and consequently obtain
M̃. The pseudo fake face image I f is obtained by using Eq (3.16). Here ⊙ denotes element-wise
multiplication.

I f = Is ⊙ M̃ + It ⊙ (1 − M̃) (3.16)

The training process for the SFFS is illustrated in Algorithm 1. In the training phase of the SFFS,
we first fix the model parameters of CSFEM and then update the model parameters of the style decoder
Dec by minimizing the generation loss LS FFS . The well-trained SFFS generates diverse training data
for the next training phase of the DG-based detector. This alternating updating process is repeated
epoch by epoch.

Similarly, FWAs [23] can also be incorporated within the SFFS. We provide some resulting fake
face images in Figure 4. Compared to DeepFakes (DF) in FF++ [27], the SFFS can generate more
diverse and natural-looking fake faces. The feature distribution of those generated images and its
analysis are given in Section 4.6.3. Furthermore, the contributions of the SFFS and its key components
are studied in Section 4.5.

Electronic Research Archive Volume 32, Issue 3, 1973–1997.

1985

Figure 4. Visualization of real images (row 1), DeepFakes (DF) in FF++ (row 2), and the
synthesized images of the SFFS by using FWAs (row 3) and SBIs (row 4) to act as the FFS
module, respectively.

4. Experiments

To demonstrate the effectiveness of our method, we compare the proposed detector with 7 typical
methods, namely the baseline method Xception [1], published in 2017, FTCN [14], published in 2021,
SimMIM [39], SBIs [25], and CFFE [19], published in 2022, AdapGRnet [41] and SPL [26], published
in 2023. For a fair comparison, we simulate the compared methods with their officially provided source
codes under the same conditions and environment.

4.1. Datasets

We perform experiments on five widely used benchmark datasets, i.e., FF++ [27], DeepfakeDetec-
tion (DFD) [42], DFDC [28], Celeb-DF (CDF) [43], and DeeperForensics-1.0 (Deeper) [44]. FF++
contains 1000 original videos collected from YouTube and 4000 fake videos forged by four manip-
ulation methods, i.e., DeepFakes (DF), Face2Face (F2F), FaceSwap (FS), and NeuralTextures (NT).
The videos in FF++ have three kinds of video compression qualities: raw (c0), high-quality (c23) and
low-quality (c40). DFD provides 363 real videos and 3068 faked videos and contains a variety of
life scenes and facial expression changes. Similarly, it also includes three subsets of c0, c23, and c40
videos DFDC is a large-scale dataset in which subjects in complex scenes are manipulated by using
various unknown methods to develop deepfake detection algorithms in the real scenarios. CDF is a
high-quality face swapping dataset which contains 590 real videos and 5639 fake videos. It applies a
more advanced DF method to generate the fake videos. Deeper is one of the largest datasets; it which
modifies the pristine videos in FF++ to have new face IDs by using a new DF manipulation method.

Electronic Research Archive Volume 32, Issue 3, 1973–1997.

1986

Like [27, 28, 43, 44], we split the datasets into training, validation, and testing sets at the video
level. Table 2 shows the details of our used datasets. We use the OpenCV toolkit [45] to split each
video into frames and then evenly sample 100 frames from each video. For each frame, we then use
Dlib toolkit [40] to detect the bounding box of the face, which is then enlarged by 30% to contain
more image content around the face. Notably, during the pre-training stage of Swin-S, we utilize the
unlabeled mixed training set named DF-Mix, taken from [26], as the pre-training dataset.

Table 2. The detailed information of the used datasets.

Datasets
Real Videos/Fake Videos
Training Validation Testing

FF++(c23) (DF/FS/F2F/NT) 720/720 140/140 140/140
DFD(c23) - - 363/3068
DFDC - - 2500/2500
CDF - - 178/340
Deeper - - 2000/2000

4.2. Experimental setup

The Swin-S transformer encoder is pre-trained by using the regular settings of SimMIM, as detailed
in [39]. To train our detection model, the input images are resized to 224 × 224 (i.e., H0 = W0 = 224)
and the AdamW optimizer is employed with a cosine learning rate scheduler. The training hyperpa-
rameters are set as follows: the mini-batch size B = 32, an initial learning rate of 0.001, weight decay
of 0.05, β1 = 0.9, β1 = 0.999, and a warm-up of 5 epochs. The weight factors α1, α2, α3, and α4 of the
loss function are set as 1.0, 0.5, 0.5, and 1.0, respectively. For each mini-batch, the number of real and
fake samples is half and half. However, for the fake samples, half of the fake images come from the
training dataset, and the rest come from SFFS. This training stage lasted for 50 epochs.

We use the area under the receiver operating characteristic curve (AUC) as the evaluation metric.
The AUC value can reflect the overall performance under different detection thresholds, which is inde-
pendent of the threshold values. A high AUC value usually indicates a good detection accuracy and a
low detection error rate. The AUC values are calculated based on a frame-level evaluation in this work.
From the viewpoint of generalization, the AUC values in cross-domain testing are expected to remain
the same as in intra-dataset testing. From the viewpoint of robustness, the AUC values are expected to
be the same for different dataset testings.

4.3. Experiment on generalization to unseen datasets

To evaluate performance in cross-domain scenarios, we use the complete FF++(c23) collection as
the training dataset, including four types of face forgery manipulations: DF, F2F, FS and NT, and we
use the following four datasets as unseen datasets: DFD(c23), DFDC, CDF, and Deeper. The results
are listed in Table 3, where the best result is bolded and the second best result is underlined. For
comparison purposes, we also list the AUC values of the compared methods, namely Xception, FTCN,
SimMIM, SBIs, CFFE, AdapGRnet, SPL, and our method on the FF++(c23) in intra-dataset testing.
In the third column, we can see that all AUC values are greater than 96% though our method has the

Electronic Research Archive Volume 32, Issue 3, 1973–1997.

1987

highest AUC value, exactly 99.60%.
Let us examine the generalization capability of the baseline algorithm Xception first. Table 3 shows

that, compared with 96.30% in the intra-dataset testing, it decreases by 13.14%, 28,40%, 36.84%,
and 26.49% for DFD, DFDC, CDF and Deeper, respectively. Its average decrease in AUC values
is 26.22%, indicating that the earliest detector severely lacks generalization capability. For the FTCN,
SimMIM, CFFE and AdaGRnet, compared to the intra-dataset testing results, their average decrease
in AUC values have been increased to -18.52%, -19.78%, -18.71%, and -21.46%, respectively. For the
state-of-the-art methods like SBIs and SPL, with the help of self-made training data, their performance
has been further improved, increasing to -15.31% and -15.12%, respectively. Our method achieves the
best result and the average decrease is -10.74%, over 4% better than the second best method SPL, and
over 15% better than the baseline method Xception.

Table 3. Cross-dataset evaluation. Our proposed method is compared with 7 methods in
terms of AUC values (%). The third column lists the AUC values for intra-dataset testing.
“-” denotes the decrease in AUC value relative to that in the third column.

Methods Training set
Testing set Average

decreaseFF++(c23) DFD(c23) DFDC CDF Deeper
Xception [1]

FF++(c23)

96.30 -13.14 -28.40 -36.84 -26.49 -26.22
FTCN [14] 99.26 -8.74 -19.39 -19.41 -26.64 -18.52
SimMIM [39] 96.21 -12.76 -21.86 -23.65 -20.86 -19.78
SBIs [25] 99.35 -5.79 -26.93 -9.23 -19.27 -15.31
CFFE [19] 97.63 -6.37 -25.54 -23.43 -19.48 -18.71
AdapGRnet [41] 99.48 -9.88 -23.29 -26.12 -26.54 -21.46
SPL [26] 99.50 -12.03 -19.32 -16.26 -12.87 -15.12
Ours 99.60 -4.50 -16.54 -9.05 -12.85 -10.74

Table 4. Further cross-dataset evaluation. Our proposed method is compared with 7 methods
in terms of AUC values (%). Mixed⋆ in the third column denotes the mean of 4 intra-
dataset evaluations because the mixed dataset is different for each cross-dataset evaluation.
“-” denotes the decrease in AUC value compared to that in the third column.

Methods Training set
Testing set Average

decreaseMixed⋆ DFD(c23) DFDC CDF Deeper
Xception [1]

Mixed dataset

95.45 -10.82 -20.31 -27.33 -9.53 -17.00
FTCN [14] 98.13 -3.29 -11.61 -12.97 -10.89 -9.69
SimMIM [39] 98.08 -6.76 -12.83 -13.22 -9.74 -10.64
SBIs [25] 98.17 -2.45 -15.61 -5.10 -7.49 -7.66
CFFE [19] 97.60 -2.47 -9.13 -10.27 -7.77 -7.41
AdapGRnet [41] 98.20 -3.98 -12.67 -14.12 -11.10 -10.47
SPL [26] 98.23 -4.98 -10.93 -9.56 -4.01 -7.37
Ours 98.56 -1.81 -8.74 -4.33 -3.46 -4.59

Electronic Research Archive Volume 32, Issue 3, 1973–1997.

1988

4.4. Further experiment on generalization to unseen datasets

Using data from different datasets can allow one to better take advantage of the DG strategy. To
further demonstrate the effectiveness of the proposed detection system, we conduct cross-dataset test
by using the following strategy: we choose three of the four datasets {DFD, DFDC, CDF, Deeper} to
form a large mixed training dataset with FF++(c23) and test the compared methods on the remaining
dataset. Table 4 illustrates the AUC values of all the methods. The effect can be easily observed
from the results. We first examine the results in intra-dataset testing. Although the AUC values for
all 8 methods including ours, decrease by around 1% relative to Table 3, all 8 methods have exhibited
significant improvement in cross-dataset tests. Compared to the results from the intra-dataset testing,
the corresponding decreases are -17%, -9.69%, -10.64%, -7.66%, -10.47%, and -7.37% for Xception,
FTCN, SimMIM, SBIs, CFFE, AdapGRnet, and SPL, respectively. Our method still performs best. It
only decreases by 4.59% . Moreover, from the standard deviation of the decrease values {-1.81, -8.74,
-4.33, -3.46}, we can easily notice that the performance is quite stable, indicating strong robustness
against different datasets.

4.5. Ablation study

In this subsection, we investigate the contribution made by each module in detail so that we can
better understand their roles in the framework. For comparison with the above results, we still use
FF++(c23) as the training dataset and use DFD(c23), DFDC, CDF, and Deeper as the testing datasets.
As shown in Table 5, we design 7 module combinations, namely {Co1, Co2, ..., Co7}, and we provide
the corresponding experimental results. Co1, Co2, and Co3 are used to investigate the effect of the
ALM, CLM, and FFCLM, which are the key parts of our detector. Co4 and Co5 are used to investigate
the effect of the style perturbation operation, the SIG of our SFFS synthesizer, respectively. Co6 is
utilized to study the effect of the complete SFFS. Co7 refers to our method with the complete setting.

Regarding the results for Co6, the SFFS makes the most significant contribution in terms of AUC
values, which verifies that our alternating sample generation and model training can greatly extend the
capability of our detector to recognize unseen data. Other obvious contributions are made by the CLM,
SIG, ALM, and style perturbation, in order. Regarding the results for Co2, Co5, Co1, and Co4, there
is similar impact to the improvement on generalization capability. In particular, the ALM and CLM
contribute much to feature extraction. The style perturbation and SIG provide better training samples.
Regarding the results for Co3, multi-task learning in the FFCLM can also improve the generalization
capability to some degree.

Electronic Research Archive Volume 32, Issue 3, 1973–1997.

1989

Table 5. Ablation study for 6 key components in our method. Each configuration is trained
on FF++(c23) and tested on DFD(c23), DFDC, CDF and Deeper. The AUC values (%) are
reported.

Types Modules Training set
Testing set

Average
DFD(c23) DFDC CDF Deeper

Co1 w/o ALM

FF++(c23)

91.90 80.52 84.73 80.71 84.49
Co2 w/o CLM 91.68 80.15 84.70 80.66 84.30
Co3 w/o FFCLM 94.12 82.10 87.35 84.23 86.95
Co4 w/o SP 93.85 79.74 86.80 83.42 85.95
Co5 w/o SIG 92.20 78.55 85.32 81.62 84.42
Co6 w/o SFFS 91.36 76.69 83.38 78.80 82.56
Co7 Our Complete 95.10 83.06 90.55 86.75 88.87

4.6. Further discussion

4.6.1. Face forgery localization

Figure 5. Illustrations of the estimated forgery masks and class activation maps (CAMs).
Images are overlayed with the important attention regions highlighted with Grad-CAM [46].

In the FFCLM, we use Eq (3.9) to provide auxiliary supervision to improve detection accuracy.
In this subsection, we visually demonstrate the effectiveness of our face forgery mask estimation and
forgery localization method. In Figure 5, we first show the original forged face images from five public
deepfake datasets employed in this work. We then list the ground-truth forgery masks M provided

Electronic Research Archive Volume 32, Issue 3, 1973–1997.

1990

by datasets and our estimated masks M̂, respectively. Comparing M̂ with M, we can easily find that
our mask estimation method can work well. Even in profile face images, our method still achieves a
relatively accurate forged localization result. We further give the class activation maps (CAMs) using
Grad-CAM [46]. It can be observed that the forged region around the face is highlighted in all fake
images, and that the regions with more obvious visual artifacts have higher attention values. These
observations further verify that our method can accurately capture facial anomalies in forged face
images.

4.6.2. Effect of β on generalization performance

The interpolation weight β is a critical parameter to control style perturbation in the SFFS. Since
the output of the SFFS is used as training data (see Figure 3) and dynamically takes part in the model
training, β would affect the performance of our detector. We list the relationship between β and the per-
formance of the detector in Table 6. We limit the range of β to [0, 0.3] to prevent the mixed style from
being overly affected by random perturbation variables, which may alter the image content. It can be
observed that when the range of β is increased from U(0, 0.05) to U(0, 0.10), the generalization perfor-
mance improved. This is because better style diversity of samples is realized as β increases. However,
as the range of β increases from U(0, 0.10) to U(0, 0.30), the detection performance decreases. The
reason for this is that too large of a β value makes the variation in image styles overly dramatic, thereby
introducing too much interference. To balance the style diversity and the interference in image content,
we set β to U(0, 0.10).

Table 6. Evaluation with different interpolation weights β in terms of AUC values (%).
The training dataset is FF++(c23), and the testing datasets are DFD(c23), DFDC, CDF,
and Deeper.

Interpolation weight β Training set
Testing set

Average
DFD(c23) DFDC CDF Deeper

U(0, 0.05)

FF++(c23)

94.10 81.22 89.55 82.62 86.87
U(0, 0.10) 95.10 83.06 90.55 86.75 88.87
U(0, 0.15) 93.92 81.67 88.96 81.96 86.63
U(0, 0.20) 91.55 79.88 85.76 78.90 84.02
U(0, 0.25) 89.86 77.94 83.52 76.72 82.01
U(0, 0.30) 88.90 75.66 82.74 75.93 80.81

4.6.3. Learned feature spaces

As stated at the end of Section 2, we expect to find a good projection space so that the features
from different target domains have more commonality. Now we shall go back to this topic and explain
why the proposed detector can achieve better performance in different target domains. We still use
the same two datasets as an example and shall visually illustrate the change in feature distributions.
We first investigate the change in the distributions of style features. By comparing Figure 6(a) with
Figure 1(c), we can easily find that the red and orange points representing fake faces have become
closer, as with the blue and light blue points representing real faces, indicating that the intra-class

Electronic Research Archive Volume 32, Issue 3, 1973–1997.

1991

distance decreases. In the meantime, the read and orange points are more widely separated from the
blue and light blue points, indicating inter-distance increases. Obviously, the learned features have
more expected distributions, which benefits the generalization. As for the content features, when we
compare Figure 6(b) with Figure 2(c), we can obtain a conclusion similar to that for the style features.
An astonishing improvement can be found in Figure 6(c), where the points representing real and fake
faces are further separated. In addition, the pink “+” points that represent the features of our generated
pseudo samples cover a larger area, which indicates that our detector can recognize more different
unseen features from cross-domain scenarios. It is worth mentioning that the blue and light blue points
representing real faces contract more compactly in this case.

Figure 6. Distributions of learned features with t-SNE visualization.

4.6.4. Effect of different video compression qualities of training data

The quality of training data may affect the performance of detectors. To evaluate the ability of our
method to minimize this influence, we train our detector on the training data in three video compression
protocols, i.e., raw format c0, good quality format c23, and poor quality format c40. We then test it on
the CDF dataset. To emphasize the superiority of our method, we compare it with the same 7 literature
methods as in Tables 3 and 4. Table 7 gives experimental results in terms of AUC values. It can be
seen that, among the three protocols, each of the 8 methods achieve the highest AUC values in the
format c23. We imagine that the video quality of CDF data is close to that of the format c23 since real
videos in CDF are chosen from publicly available YouTube videos [43]. Videos shared on social media
platforms like YouTube tend to be slightly compressed for the sake of storage and transmission. When
trained on data in the format c0 and tested on CDF videos, all 8 methods have slightly lower AUC
values than their counterparts on the format c23. This decrease is attributable to the quality difference
between the training and testing datasets. The obvious loss of AUC values for all 8 methods take
place when using the training data in the format c40. The reason is that the strong video compression
operation in this protocol removes many useful forensic traces in the high frequency components of
images. However, our method keeps the highest AUC values among the 8 methods for each protocol,
indicating its good robustness against the change of compression quality of training data.

Electronic Research Archive Volume 32, Issue 3, 1973–1997.

1992

Table 7. Cross-dataset evaluation with different qualities of training data. The AUC values
(%) are reported.

Methods
Testing on CDF
Training on
FF++(c0)

Training on
FF++(c23)

Training on
FF++(c40)

Xception [1] 58.32 59.46 54.60
FTCN [14] 78.69 79.85 74.82
SimMIM [39] 74.30 75.56 71.23
SBIs [25] 89.18 90.12 85.15
CFFE [19] 73.96 74.20 73.22
AdapGRnet [41] 72.25 73.36 73.57
SPL [26] 82.74 83.24 80.26
Ours 89.93 90.55 86.65

4.6.5. Computational complexity analysis

We analyze the computational complexity by comparing our method with the above 7 methods.
The computational load is closely associated with the FLOPs and model parameters, so we make
our comparison based on these metrics. The end-to-end detectors include our method and [1, 14,
19, 39, 41]. Table 8 shows that the detector using the Vision Transformer (ViT) as the backbone,
as in [39], significantly increases the computational complexity relative to the convolutional neural
networks (CNN)-based detectors, including those in [1, 14, 19, 41]. Our method uses the Swin-S (an
improved ViT) network as the backbone and thus requires more parameters and FLOPs than [1, 14,
19, 41] but less than [39]. The SBIs [25] and SPL [26] are not end-to-end detectors in that their data
generation and detection processes are separately carried out. Therefore, we are only concerned about
the complexity of the detection process. We can observe that SPL (i.e., the second best method in
cross-dataset evaluation) has the highest computational complexity. This is because SPL uses the large
ViT model Swin-L [38]. Our method has less computational complexity than Swin-L based SPL but
more than CNNs-based SBIs.

Table 8. Computational complexity comparison for different detection methods.

Methods Input Image Size Parameters (Megabytes) FLOPs (Gigabytes)
Xception [1]

1 × 3 × 256 × 256

20.81 6.01
FTCN [14] 14.75 11.99
SimMIM [39] 197.00 48.95
SBIs [25] 19.00 3.12
CFFE [19] 26.50 10.83
AdapGRnet [41] 11.19 5.72
SPL [26] 198.50 52.90
Ours 66.31 15.53

Electronic Research Archive Volume 32, Issue 3, 1973–1997.

1993

4.6.6. Effect of using different encoders in the CSFEM

We further investigate the effect of using different encoders in the CSFEM. Exactly, we use four
typical detection networks, namely, Xception [1], ResNet-50 [47], EfficientNet-B4 [48], and Swin-
S [38], and apply their feature extraction layers as the encoder one by one. The features extracted with
different encoders are reshaped to have the same dimensions, i.e., B × 768 ×

⌈
H0
32

⌉
×

⌈
W0
32

⌉
, and then fed

to the CFE and SFE branches separately. The cross-dataset evaluation results are listed in Table 9. It
can be seen that all four encoding networks realize good generalization performance, indicating the
effectiveness of our proposed framework. Among them, the use of Swin-S results in the highest AUC
values.

Table 9. Further investigation of using 4 different encoders in our CSFEM. The AUC values
(%) are reported.

Encoder in CSFEM Training set
Testing set

Average
DFD(c23) DFDC CDF Deeper

Xception

FF++(c23)

93.03 79.58 85.60 83.26 85.37
ResNet-50 92.42 80.26 87.15 83.51 85.84
EfficientNet-B4 93.36 81.84 86.67 84.06 86.48
Swin-S (Our used) 95.10 83.06 90.55 86.75 88.87

5. Conclusions

In this paper, we have proposed a new way to design deepfake detectors so as to make them general-
ize well to cross-domain scenarios. Instead of using the aimless relation between the deepfake detector
and pseudo training data generator, our deepfake detector and the training data generator work together
and alternately update the network parameters. For better detection, we construct a more diverse fea-
ture space by reassembling different content and style features. Furthermore, the contrastive learn-
ing strategy has been employed to emphasize generic style information while the adversarial learning
strategy has been used to obtain a domain-invariant content representation. For pseudo training data
generation, a feature-level data augmentation method has been devised to enrich style diversity and
prevent the detector from over-relying on specific styles in the training data. Extensive experiments
have shown that our method outperforms other related state-of-the-art methods in both the intra-dataset
testing and cross-domain scenarios. The generalization capability has been significantly improved due
to the jointly learning and training mechanism.

Use of AI tools declaration

The authors declare they have not used artificial intelligence (AI) tools in the creation of this article.

Electronic Research Archive Volume 32, Issue 3, 1973–1997.

1994

Acknowledgments

This work was supported by the Science and Technology Foundation of Guangzhou Huangpu De-
velopment District (Grant No. 2022GH15), and the Open Foundation of Henan Key Laboratory of
Cyberspace Situation Awareness (Grant No. HNTS2022017).

Conflict of interest

The authors declare that there are no conflicts of interest.

References

1. F. Chollet, Xception: Deep learning with depthwise separable convolutions, in 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2017), 1800–1807.
https://doi.org/10.1109/CVPR.2017.195

2. B. Bayar, M. C. Stamm, Constrained convolutional neural networks: a new approach towards
general purpose image manipulation detection, IEEE Trans. Inf. Forensics Secur., 13 (2018), 2691–
2706. https://doi.org/10.1109/TIFS.2018.2825953

3. R. Durall, M. Keuper, J. Keuper, Watch your up-convolution: CNN based generative
deep neural networks are failing to reproduce spectral distributions, in 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), (2020), 7887–7896.
https://doi.org/10.1109/CVPR42600.2020.00791

4. Y. Qian, G. Yin, L. Sheng, Z. Chen, J. Shao, Thinking in frequency: face forgery detection by
mining frequency-aware clues, in Computer Vision – ECCV 2020, Springer, (2020), 86–103.
https://doi.org/10.1007/978-3-030-58610-2 6

5. H. Zhao, W. Zhou, D. Chen, T. Wei, W. Zhang, N. Yu, Multi-attentional deepfake detection, in
2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (2021), 2185–
2194. https://doi.org/10.1109/CVPR46437.2021.00222

6. Y. Luo, Y. Zhang, J. Yan, W. Liu, Generalizing face forgery detection with high-frequency features,
in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
(2021), 16317–16326.

7. J. Yang, A. Li, S. Xiao, W. Lu, X. Gao, Mtd-net: learning to detect deepfakes images
by multi-scale texture difference, IEEE Trans. Inf. Forensics Secur., 16 (2021), 4234–4245.
https://doi.org/10.1109/TIFS.2021.3102487

8. B. Chen, W. Tan, Y. Wang, G. Zhao, Distinguishing between natural and GAN-generated
face images by combining global and local features, Chin. J. Electron., 31 (2022), 59–67.
https://doi.org/10.1049/cje.2020.00.372

9. G. Li, X. Zhao, Y. Cao, Forensic symmetry for deepfakes, IEEE Trans. Inf. Forensics Secur., 18
(2023), 1095–1110. https://doi.org/10.1109/TIFS.2023.3235579

10. P. Zhou, X. Han, V. I. Morariu, L. S. Davis, Two-stream neural networks for tampered face detec-
tion, in 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),
IEEE, (2017), 1831–1839. https://doi.org/10.1109/CVPRW.2017.229

Electronic Research Archive Volume 32, Issue 3, 1973–1997.

http://dx.doi.org/https://doi.org/10.1109/CVPR.2017.195
http://dx.doi.org/https://doi.org/10.1109/TIFS.2018.2825953
http://dx.doi.org/https://doi.org/10.1109/CVPR42600.2020.00791
http://dx.doi.org/https://doi.org/10.1007/978-3-030-58610-2_6
http://dx.doi.org/https://doi.org/10.1109/CVPR46437.2021.00222
http://dx.doi.org/https://doi.org/10.1109/TIFS.2021.3102487
http://dx.doi.org/https://doi.org/10.1049/cje.2020.00.372
http://dx.doi.org/https://doi.org/10.1109/TIFS.2023.3235579
http://dx.doi.org/https://doi.org/10.1109/CVPRW.2017.229

1995

11. L. Li, J. Bao, T. Zhang, H. Yang, D. Chen, F. Wen, et al., Face x-ray for more general face
forgery detection, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), (2020), 5001–5010.

12. B. Chen, X. Liu, Y. Zheng, G. Zhao, Y. Q. Shi, A robust GAN-generated face detection method
based on dual-color spaces and an improved xception, IEEE Trans. Circuits Syst. Video Technol.,
32 (2022), 3527–3538. https://doi.org/10.1109/TCSVT.2021.3116679

13. S. Chen, T. Yao, Y. Chen, S. Ding, J. Li, R. Ji, Local relation learning for face
forgery detection, in AAAI Technical Track on Computer Vision I, 35 (2021), 1081–1088.
https://doi.org/10.1609/aaai.v35i2.16193

14. Y. Zheng, J. Bao, D. Chen, M. Zeng, F. Wen, Exploring temporal coherence for more general video
face forgery detection, in 2021 IEEE/CVF International Conference on Computer Vision (ICCV),
(2021), 15024–15034. https://doi.org/10.1109/ICCV48922.2021.01477

15. G. Pang, B. Zhang, Z. Teng, Z. Qi, J. Fan, Mre-net: Multi-rate excitation network for
deepfake video detection, IEEE Trans. Circuits Syst. Video Technol., 33 (2023), 3663–3676.
https://doi.org/10.1109/TCSVT.2023.3239607

16. B. Chen, T. Li, W. Ding, Detecting deepfake videos based on spatiotemporal attention and convo-
lutional LSTM, Inf. Sci., 601 (2022), 58–70. https://doi.org/10.1016/j.ins.2022.04.014

17. H. Liu, X. Li, W. Zhou, Y. Chen, Y. He, H. Xue, et al., Spatial-phase shallow learning: rethink-
ing face forgery detection in frequency domain, in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), (2021), 772–781.

18. J. Cao, C. Ma, T. Yao, S. Chen, S. Ding, X. Yang, End-to-end reconstruction-classification learning
for face forgery detection, in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), (2022), 4113–4122.

19. P. Yu, J. Fei, Z. Xia, Z. Zhou, J. Weng, Improving generalization by commonality learn-
ing in face forgery detection, IEEE Trans. Inf. Forensics Secur., 17 (2022), 547–558.
https://doi.org/10.1109/TIFS.2022.3146781

20. A. Luo, C. Kong, J. Huang, Y. Hu, X. Kang, A. C. Kot, Beyond the prior forgery knowledge:
mining critical clues for general face forgery detection, IEEE Trans. Inf. Forensics Secur., 19
(2024), 1168–1182. https://doi.org/10.1109/TIFS.2023.3332218

21. J. Hu, X. Liao, W. Wang, Z. Qin, Detecting compressed deepfake videos in social networks using
frame-temporality two-stream convolutional network, IEEE Trans. Circuits Syst. Video Technol.,
32 (2022), 1089–1102. https://doi.org/10.1109/TCSVT.2021.3074259

22. T. Wang, K. P. Chow, Noise based deepfake detection via multi-head relative-interaction,
in Proceedings of the AAAI Conference on Artificial Intelligence, 37 (2023), 14548–14556.
https://doi.org/10.1609/aaai.v37i12.26701

23. Y. Li, S. Lyu, Exposing deepfake videos by detecting face warping artifacts, in 2019 IEEE Con-
ference on Computer Vision and Pattern Recognition Workshops, IEEE, (2019), 46–52.

24. T. Zhao, X. Xu, M. Xu, H. Ding, Y. Xiong, W. Xia, Learning self-consistency for deepfake de-
tection, in 2021 IEEE/CVF International Conference on Computer Vision (ICCV), (2021), 15003–
15013. https://doi.org/10.1109/ICCV48922.2021.01475

Electronic Research Archive Volume 32, Issue 3, 1973–1997.

http://dx.doi.org/https://doi.org/10.1109/TCSVT.2021.3116679
http://dx.doi.org/https://doi.org/10.1609/aaai.v35i2.16193
http://dx.doi.org/https://doi.org/10.1109/ICCV48922.2021.01477
http://dx.doi.org/https://doi.org/10.1109/TCSVT.2023.3239607
http://dx.doi.org/https://doi.org/10.1016/j.ins.2022.04.014
http://dx.doi.org/https://doi.org/10.1109/TIFS.2022.3146781
http://dx.doi.org/https://doi.org/10.1109/TIFS.2023.3332218
http://dx.doi.org/https://doi.org/10.1109/TCSVT.2021.3074259
http://dx.doi.org/https://doi.org/10.1609/aaai.v37i12.26701
http://dx.doi.org/https://doi.org/10.1109/ICCV48922.2021.01475

1996

25. K. Shiohara, T. Yamasaki, Detecting deepfakes with self-blended images, in 2022 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), (2022), 18699–18708.
https://doi.org/10.1109/CVPR52688.2022.01816

26. H. Chen, Y. Lin, B. Li, S. Tan, Learning features of intra-consistency and inter-diversity: keys
toward generalizable deepfake detection, IEEE Trans. Circuits Syst. Video Technol., 33 (2023),
1468–1480. https://doi.org/10.1109/TCSVT.2022.3209336

27. A. Rossler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, M. Niessner Faceforensics++: Learning
to detect manipulated facial images, in 2019 IEEE/CVF International Conference on Computer
Vision (ICCV), (2019), 1–11. https://doi.org/10.1109/ICCV.2019.00009

28. B. Dolhansky, J. Bitton, B. Pflaum, J. Lu, R. Howes, M. Wang, et al., The deepfake detection
challenge (DFDC) dataset, preprint, arXiv:2006.07397.

29. L. V. der Maaten, G. Hinton, Visualizing data using t-SNE,
J. Mach. Learn. Res., 9 (2008), 2579–2605. Available from:
https://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf?fbcl.

30. Z. Wang, Z. Wang, Z. Yu, W. Deng, J. Li, T. Gao, Domain generalization via shuffled style as-
sembly for face anti-spoofing, in 2022 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), (2022), 4113–4123. https://doi.org/10.1109/CVPR52688.2022.00409

31. Y. Ganin, V. Lempitsky, Unsupervised domain adaptation by backpropagation, in Proceedings of
the 32nd International Conference on Machine Learning, 37 (2015), 1180–1189. Available from:
http://proceedings.mlr.press/v37/ganin15.html.

32. Y. Wang, L. Qi, Y. Shi, Y. Gao, Feature-based style randomization for domain
generalization, IEEE Trans. Circuits Syst. Video Technol., 32 (2022), 5495–5509.
https://doi.org/10.1109/TCSVT.2022.3152615

33. S. Lin, C. T. Li, A. C. Kot, Multi-domain adversarial feature generalization
for person re-identification, IEEE Trans. Image Process., 30 (2021), 1596–1607.
https://doi.org/10.1109/TIP.2020.3046864

34. H. Nam, H. Lee, J. Park, W. Yoon, D. Yoo, Reducing domain gap by reducing style bias, in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
(2021), 8690–8699.

35. Q. Zhou, K. Y. Zhang, T. Yao, X. Lu, R. Yi, S. Ding, et al., Instance-aware domain generalization
for face anti-spoofing, in 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), (2023), 20453–20463. https://doi.org/10.1109/CVPR52729.2023.01959

36. X. Huang, S. Belongie, Arbitrary style transfer in real-time with adaptive instance normaliza-
tion, in 2017 IEEE International Conference on Computer Vision (ICCV), (2017), 1510–1519.
https://doi.org/10.1109/ICCV.2017.167

37. T. Karras, S. Laine, T. Aila, A style-based generator architecture for generative adversarial net-
works, in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
(2019), 4396–4405. https://doi.org/10.1109/CVPR.2019.00453

Electronic Research Archive Volume 32, Issue 3, 1973–1997.

http://dx.doi.org/https://doi.org/10.1109/CVPR52688.2022.01816
http://dx.doi.org/https://doi.org/10.1109/TCSVT.2022.3209336
http://dx.doi.org/https://doi.org/10.1109/ICCV.2019.00009
http://dx.doi.org/https://doi.org/10.1109/CVPR52688.2022.00409
http://dx.doi.org/https://doi.org/10.1109/TCSVT.2022.3152615
http://dx.doi.org/https://doi.org/10.1109/TIP.2020.3046864
http://dx.doi.org/https://doi.org/10.1109/CVPR52729.2023.01959
http://dx.doi.org/https://doi.org/10.1109/ICCV.2017.167
http://dx.doi.org/https://doi.org/10.1109/CVPR.2019.00453

1997

38. Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, et al., Swin transformer: hierarchical vision
transformer using shifted windows, in Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), (2021), 10012–10022.

39. Z. Xie, Z. Zhang, Y. Cao, Y. Lin, J. Bao, Z. Yao, et al., Simmim: a simple framework for masked
image modeling, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), (2022), 9653–9663.

40. D. E. King, Dlib-ml: a machine learning toolkit, J. Mach. Learn. Res., 10 (2009), 1755–1758.
Available from: https://www.jmlr.org/papers/volume10/king09a/king09a.pdf.

41. Z. Guo, G. Yang, J. Chen, X. Sun, Exposing deepfake face forgeries with guided residuals, IEEE
Trans. Multimedia, 25 (2023), 8458–8470. https://doi.org/10.1109/TMM.2023.3237169

42. M. Schroepfer, Creating a data set and a challenge for deepfakes, in Facebook Artificial Intelli-
gence, 5 (2019). Available from: https://ai.facebook.com/blog/deepfake-detection-challenge.

43. Y. Li, X. Yang, P. Sun, H. Qi, S. Lyu, Celeb-df: a large-scale challenging dataset for deepfake
forensics, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR), (2020), 3207–3216.

44. L. Jiang, R. Li, W. Wu, C. Qian, C. C. Loy, Deeperforensics-1.0: a large-scale dataset for real-
world face forgery detection, in 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), (2020), 2886–2895. https://doi.org/10.1109/CVPR42600.2020.00296

45. G. Bradski, The opencv library, in Dr. Dobb’s Journal: Software Tools for the Professional Pro-
grammer, 25 (2000), 120–123.

46. R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, D. Batra, Grad-cam: visual expla-
nations from deep networks via gradient-based localization, in 2017 IEEE International Confer-
ence on Computer Vision (ICCV), (2017), 618–626. https://doi.org/10.1109/ICCV.2017.74

47. K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2016), 770–778.

48. M. Tan, Q. Le, Efficientnet: rethinking model scaling for convolutional neural networks, in Pro-
ceedings of the 36th International Conference on Machine Learning, (2019), 6105–6114.

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Electronic Research Archive Volume 32, Issue 3, 1973–1997.

http://dx.doi.org/https://doi.org/10.1109/TMM.2023.3237169
http://dx.doi.org/https://doi.org/10.1109/CVPR42600.2020.00296
http://dx.doi.org/https://doi.org/10.1109/ICCV.2017.74
http://creativecommons.org/licenses/by/4.0

	Introduction
	Problem statement and our methodology
	Proposed deepfake detection system
	Content and style features extraction module
	Contrastive learning module
	Adversarial learning module
	Face forgery classification and localization module
	Stylized fake face synthesizer

	Experiments
	Datasets
	Experimental setup
	Experiment on generalization to unseen datasets
	Further experiment on generalization to unseen datasets
	Ablation study
	Further discussion
	Face forgery localization
	Effect of on generalization performance
	Learned feature spaces
	Effect of different video compression qualities of training data
	Computational complexity analysis
	Effect of using different encoders in the CSFEM

	Conclusions

