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Abstract: This study was purposed to design a multimodal continuous optimization algorithm based 

on a scheme agent to address the multidimensional complexity of optimization. An evolutionary 

sampling method of subarea exploration and multiple exploitations was developed by employing the 

scheme with variable population size so as to obtain higher optimization speed and accuracy. Second, 

the distribution plan was quantified into high-dimensional variable parameters based on the 

characteristics of logistics distribution optimization problems, and a high-dimensional discrete 

optimization model was constructed. Then, we identified and addressed the prominent issues and 

malignant virtual changes in the application of continuous algorithms to discrete problems. We have 

introduced a reasonable mutation mechanism during the optimization sampling process to mitigate this 

issue. Continuous real coordinate points were transformed across the neighborhood to standard discrete 

integer coordinate points by normalizing and logicizing the optimization sampling coordinates; also, 

the discretization of the continuous algorithm was realized. This approach could effectively prevent 

the algorithm from searching for targets in continuous optimization space, thereby fully reducing the 

complexity of the objective function distribution after conversion. The experiments showed that the 

transformed multimodal discrete optimization algorithm effectively addressed the optimization design 

problem of logistics distribution. 
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1. Introduction 

In the current context of rapid economic development and escalating energy scarcity, the 

improvement of modern logistics systems [1,2], with a particular focus on enhancing green logistics 

capabilities [3,4], holds significant implications for the promotion of economic growth. In the logistics 

process, considerations for energy conservation and environmental protection typically involve 

customizing distribution schemes that feature the shortest path and minimal resource utilization, 

thereby minimizing transportation costs. This issue was addressed by establishing corresponding 

combination optimization models [5,6] and developing optimization algorithms [7,8]. 

In addressing logistics distribution challenges [9–11], it is essential to comprehensively consider 

various factors such as cargo loading layout [12], vehicle service arrangement [13], transportation path 

selection [14], loading capacity limitations [15], customer time requirements [16], maintenance 

costs [17], and operation modes [18,19]. For the sake of research convenience, specific links are 

generally designed under certain assumptions. For instance, Wang et al. developed a dual-objective 

optimization model with the aim to maximize the use of distribution vehicle space and minimize 

logistics operating costs for the loading and distribution of goods. They proposed a hybrid intelligent 

optimization algorithm to effectively determine the model solution [20]. Huang constructed a 

multiobjective optimization model for cross-border e-commerce, considering both the timeliness and 

cost of logistics delivery, and she employed the chicken swarm algorithm for solution analysis [21]. 

Wu and Yang established a high-dimensional optimization model for vehicle scheduling in logistics 

and introduced an improved particle swarm optimization (PSO) algorithm to enhance the speed and 

accuracy of solving the optimization problem [22]. Lu addressed the scheduling problem of Internet-

of-Things delivery vehicles and employed a PSO algorithm with nonlinear perturbation factors to 

enhance the optimization speed and success rate and reduce default penalty costs [23]. Evidently, the 

functional model created for logistics distribution problems exhibits high complexity, and swarm 

intelligence optimization algorithms [24] offer a relatively straightforward and effective approach to 

tackling such intricate optimization problems. 

Inspired by bionics [25] and simulations [26], the swarm intelligence optimization algorithms 

leverage individual inspiration, group sampling, and evolutionary iteration to generate a unique form 

of intelligence within a collective swarm [27]. This collective intelligence is particularly adept at 

solving complex optimization problems. Notable examples include the genetic algorithm (GA), which 

mimics biological heredity and mutation by discretizing decision variables into “chromosomes”, 

iteratively evolving better decision variables [28,29]. Similarly, PSO-based coordinate decision 

variables iteratively refine coordinate variables by simulating the foraging behavior of bird flocks, 

gradually converging toward the optimal position [30,31]. These algorithms possess diverse 

mechanisms and characteristics, each tailored to address various types of optimization problems [32]. 

This study delves into the complex challenges associated with optimizing logistics distribution, 

particularly in terms of dealing with its multidimensional complexity. First, a robust multimodal 

continuous optimization (MCO) algorithm was developed, emphasizing its ability to effectively 

explore complex high-dimensional optimization functions. Second, a model suitable for swarm 

intelligence optimization algorithms was created. This involved breaking down the distribution scheme 

into high-dimensional decision parameters and establishing the relationship between the distribution 

costs and these parameters within the objective function. Then, a practical mutation mechanism was 

introduced, recognizing the potential issue of malignant virtual changes (MVCs) stemming from 
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continuous decision variables. This mechanism converted continuous decision variables into standard 

discrete ones, addressing the challenge and simplifying the distribution of the objective function. The 

superior capabilities of the transformed multimodal discrete optimization (MDO) algorithm were 

confirmed through extensive testing of nominal and case functions, successfully minimizing the 

delivery cost globally. 

2. Related works 

The multimodal optimization (MO) algorithm developed in this study is a novel swarm 

intelligence optimization algorithm that includes both MCO and MDO. Although the proposed MO 

algorithm also employs heuristic swarm optimization methods, it is different from the heuristic mode 

of previous similar algorithms. First, our proposed MO algorithm uses a three-layer agent pattern to 

enable heuristic population sampling in a hierarchical and partitioned manner. Second, the inspired 

population sampling pattern involves density evolution that is guided by range and quantity. Finally, a 

rational mutation (RM) mechanism has been introduced into the discrete optimization to eliminate 

MVCs in the objective function. 

2.1. Overconvergence 

PSO is a swarm intelligence optimization algorithm with fast convergence and more flexible 

changes [30,31]. Its core dynamic update mechanism is shown in Eq (2.1). 
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where 1iv +  and iv
 represent the steps of the current individual in the (i+1)-th and i-th generations, 

respectively; 1ix +  and ix
 represent the sampling positions of the current individual in the (i+1)-th 

and i-th generations, respectively;   represents the system inertia, particularly the degree to which 

the current individual maintains the original step size; the function 
( )0,U 

  generates a random 

weight coefficient from 0 to  , increasing the diversity of the swarm;   represents the influence of 

the weight coefficient and is generally treated as multiplication; and ip
 gp

 represent the personal 

best positions of the current individual and the global best position of the current swarm, respectively. 

Based on the aforementioned dynamic evolution formula, individual sampling directions of particles 

can be updated one by one based on both personal best and global best information. 

On the one hand, heuristic information originates from a global optimum and an individual 

optimum, effectively improving population diversity. However, as the heuristic processing is applied 

globally, it tends to push the population toward local optima. This is the fundamental reason why PSO 

tends to fall into local optima. On the other hand, the evolutionary process of the particle swarm is 

formed by moving individual particles, and the movement here is not restricted by the partition. When 

the population is inspired by optimal information, the algorithm achieves large-scale and fast 
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convergence toward the optimal region. However, this is also why the algorithm may fall into a 

local optimum. 

We constructed a dynamic analysis diagram for the particle swarm algorithm (Figure 1) to enable 

a more intuitive understanding of the convergence problem. The distribution and updating of particle 

points were based on the dynamic updating method of the PSO algorithm. The blue dots in the figure 

represent individuals P1, P2, and P3 of the current particle, and their corresponding personal best 

points P1best, P2best, and P3best, respectively, are represented by yellow dots. The red dots represent the 

current global best point Gbest. Each current individual is inspired and guided by their personal best 

point and the current global best point to generate the positions of the next generation of particles, such 

as P1Next, P2Next, and P3Next, represented by the green dots in the figure. 

PSO
P1

P1best

P2

P3

P2best

Gbest

P1Next
P3Next

P2Next

P3best

          

PSO

 

(a)                               (b) 

Figure 1. Dynamic distribution of sampling in the PSO algorithm. 

((a) shows how the particle swarm is updated. (b) shows the convergence of the swarm boundary.) 

On the one hand, each particle is attracted to Gbest, which directly influences the convergence of 

all particles toward a single point. On the other hand, each particle is also attracted to its personal best 

point, which has a certain proximity relationship with Gbest and indirectly contributes to the 

convergence of all particles toward a single point. Based on the aforementioned two aspects of analysis, 

the entire particle swarm can quickly converge to a certain optimal region. Figure 1(b) shows the 

boundary lines of the two generations of the particle swarm, corresponding to the blue dashed box and 

green dashed box, respectively. The swarm boundary shows a clear converging trend, consistent with 

the aforementioned results of analysis. 

Although the dynamic distribution of the optimized population sampling has the characteristic of 

efficient convergence, this mechanism increases the possibility of falling into local optima due to 

overconvergence. After an in-depth analysis, we further found that the mechanism by which the 

entire population can converge toward a single point is a key factor in the formation of the above-

mentioned characteristics. 

In view of this, we used a multimodal approach to introduce hierarchical and partitioned 

processing modes to the population, which reduced the possibility of falling into local optima. In 

addition, a partition restriction on the population evolution was added to the MCO and MDO 

algorithms to ensure global exploration capabilities. 
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We constructed a dynamic schematic diagram of the corresponding sampling optimization 

method (Figure 2) to allow us visually understand the inhibitory effect of grading and partitioning on 

the overconvergence phenomenon. The yellow dots denoted by P1, P2, P3, and P4 in the figure 

represent four partitions, divided by yellow dashed lines. Based on the partition agents, basic 

individuals B1, B2, and B3 were generated within the corresponding partitions. Inspired by the basic 

individuals and partition agents, we generated sub-generation individuals C1–C10 in the 

corresponding and surrounding partitions. The optimal sub-generation individuals were selected to 

transform into basic individuals in the next iteration. The P2 partition in the figure does not continue 

to output during grading, indicating that the fitness of this partition was too low and the speed of new 

individual generation was limited to a certain extent. Basic individuals were limited by partition agents, 

making the sampling optimization points as dispersed as possible. The sub-generation individuals were 

influenced by the basic individuals, limiting the tendency of the group to converge toward a single 

point. Therefore, the dynamic distribution of the optimized population in the new MO algorithm was 

determined by the hierarchical and partitioned patterns. This approach aimed to overcome the problem 

of overconvergence of the global population to a single point, while still retaining the advantage of the 

particle swarm quickly converging to a more optimal region. 
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(a)                                (b) 

Figure 2. Dynamic distribution of sampling in the MO algorithm. 

((a) shows how the individuals are updated. (b) shows the distribution and boundaries of samples.) 

The distribution and boundaries of the two-level populations are shown in Figure 2(b). The 

number of individuals in the two levels was different, and the number of basic individuals in the two 

iterations was different after the better sub-generation individuals were converted to the basic 

individuals in the next iteration. This application of a variable population size provided a more flexible 

convergence method for the new algorithm. The basic boundary and the sub-generation optimal 

boundary are represented by blue dashed boxes and green dashed boxes, respectively. Although the 

boundary had a converging trend that is similar to that of the PSO algorithm, the boundary convergence 

in the MO algorithm is limited by partitioning. The contraction of the sub-generation optimal boundary 

is based on the survival of the fittest among the sub-generation individuals. The eliminated individuals 

are shown as dots with red dashed boxes in the figure, and they play a role in global exploration and 
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indirectly limit the overconvergence of the swarm. Figure 2 only illustrates the dynamic updating 

phenomenon of the MO algorithm, and its detailed dynamic mechanism is introduced in Chapter 3. 

2.2. Efficiency 

The GA is a swarm intelligence optimization algorithm with a wide search range and expansive 

population changes. Its core dynamic updating mechanism is based in the crossover and mutation of 

chromosomes [28,29]. On the one hand, the crossover of excellent individuals preserves some superior 

features while avoiding excessive convergence in the dominant region. On the other hand, individual 

random mutation preserves the global exploration mechanism throughout the evolution process. 

Although these factors improve the optimization reliability of the GA, the evolutionary direction of 

the individuals after their crossover and mutation is not easy to control, which introduces some 

difficulties that can affect the algorithm’s convergence. 

We constructed a dynamic updating diagram for individuals (Figure 3) as per the GA and based 

on the studies of crossover and mutation mechanisms. The yellow dots represent the previous-

generation individuals G1-1, G1-2, and G1-3. G1-1 and G1-2 cross to generate the current-generation 

individual G2-3. G1-1 and G1-3 cross to generate the current-generation individual G2-2. G1-1 mutates to 

generate the current-generation individual G2-1. The relationships of generation are shown by yellow 

dashed arrows in the figure. Similarly, the current generation of individuals generates the next 

generation of individuals G3-1, G3-2, and G3-3 through crossover and mutation, and the corresponding 

relationships of generation are shown by blue dashed arrows in the figure. 
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(a)                                  (b) 

Figure 3. Dynamic distribution of sampling in the GA. 

((a) shows how the individuals are updated. (b) shows the changing of distribution boundaries.) 

The heuristic effect of the global optimal position, represented by red dots in Figure 3, on the 

population is not particularly significant. The main reason for this is the relatively strong diversity of 

new populations that are generated through crossover and mutation. As shown in Figure 3(b), the 

boundaries of the two generations are represented by blue and green dashed boxes, respectively. The 

convergence speed between the two generations was not as fast as that for the previous PSO and MO 

algorithms, but the dispersion of individual distribution increased the reliability of the algorithm. On 
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the other hand, new individuals generated through a single crossover or mutation may not necessarily 

be better, but they appeared to be more comprehensive in the global search. Based on the 

aforementioned analysis, the distribution of the population in the GA was found to be relatively 

scattered, and the overall density was relatively uniform. This provided an effective basis for us to 

improve the efficiency of the new algorithm by using the density of the optimized population. 

In this study, density control was applied in the evolutionary process of MO, and the distribution 

of individuals was restricted by partition range. This not only effectively circumvented the 

excessive loss of excellent individuals, it also facilitated the control of the regional distribution of 

population convergence. 

MO

Sub density 

region

High density 

region

           

MO

Basic individuals in 

the next iteration

 

(a)                                  (b) 

Figure 4. Density distribution of sampling in the MO algorithm. 

((a) shows how the individuals gather. (b) shows the iterative convergence.) 

We found that introducing hierarchical and partitioned mechanisms into the sampling 

optimization process not only solved the problem of overconvergence, it also enabled flexible 

adjustment of the sampling density according to the different distributions of the objective function. 

Figure 4 presents diagrams that illustrate the results of analyzing the distribution of sampling points in 

the MO algorithm. The information at each point in the figure was found to be consistent with that in 

Figure 2, where the eliminated sub-generation individuals in the right graph are no longer displayed. 

The area enclosed within the solid red circle in Figure 4(a) is the high-density sampling area, and the 

area enclosed within the dashed red circle is the less high density sampling area. In Figure 4(b), the 

green dots that were converted to basic individuals in the next iteration converged to the optimal target 

area over iterations, further increasing the sampling density nearby the optima. After analysis, the 

higher sampling density in the optimal target area was found to be due to two reasons. First, after 

hierarchical and partition processing, more individuals were generated as sub-generations in the more 

effectively optimized partition, forming a partition with a higher sampling density. Second, after 

hierarchical and partition processing, the distribution of individuals in a new sub-generation layer were 

found to spread toward the more optimal neighboring area. Because of the aforementioned two reasons, 

a trend of sampling convergence could be observed near the optimal target, providing a basis for 

improving the effectiveness of swarm optimization algorithms. 
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2.3. Discretization 

Mapping continuous independent variables into discrete variables by changing the computation 

of the objective function is a common technique that is used to transform a discrete optimization 

problem into a continuous optimization problem [33]. Although this method provides the necessary 

conditions for the application of continuous optimization algorithms to discrete optimization problems, 

it can sometimes result in a more complex distribution of the modified objective function. 

This phenomenon is discussed in detail in Section 3.2, and the concept of MVCs is also explained. 

To address this issue, we suggest the use of an RM mechanism based on the characteristics of MO that 

discretizes the decision variables represented by sampled individuals. The results of analysis show that 

this approach could eliminate the MVC phenomenon. 

3. Algorithm design 

3.1. Framework design of MCO 

The heuristic optimization algorithm involves global exploration, local mining, and the transition 

between these phases. These mechanisms are evident in the distribution characteristics of agents in the 

optimization space, corresponding to global dispersion, local aggregation, and the transition between 

dispersion and aggregation, respectively. Consequently, as the optimization process iterates, the results 

accumulated as a result of successive generations of population sampling were found to exhibit varying 

density distributions, as depicted in the process shown in Figure 5. At a local level, the higher the 

fitness of a region, the greater the distribution density of the optimization agents, and vice versa. On a 

global scale, this process of density distribution change is determined by the population evolution 

pattern and the utilization of individual sampling information, constituting a key factor that influences 

the accuracy and speed of the optimization algorithm. 

Disperse Gather
Optimization 

sampling

Normally

Repeatedly

Global

Later stagesEarly stages

Local

 

Figure 5. Mode conversion for swarm optimization sampling. 

The MO algorithm proposed in this paper primarily uses local uniform sampling with varying 

densities in different ranges. It gradually changes globally optimized sampling points from exhibiting 

dispersion to aggregation over successive generations. This approach fundamentally differs from 

conventional swarm intelligence optimization algorithms, as depicted in Figure 6. The key to 

influencing the accuracy and efficiency of the optimization process lies in whether this transition aligns 

with the problem of fitness distribution. For instance, in scenarios with a monotonic target fitness 

variation, minimizing the waste of sampling resources due to scattered sampling in disadvantaged 

areas enhances the progression from scattered to aggregated, consequently expediting the emergence 

of optimal results. Conversely, in cases with complex target fitness variation, the transition from 
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scattered to aggregated progresses at a slower rate. In such scenarios, a broader uniform multiple 

sampling range was employed to precisely capture the optimal region, thereby enhancing the accuracy 

of the optimal result. Effectively evaluating the distribution characteristics of optimization space was 

therefore pivotal in ensuring the quality of information judgment. 
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Figure 6. Dynamic sampling mechanism of the MO algorithm. 

In fact, the distribution status and characteristics of change of the target fitness in the global region 

are not limited to the two aforementioned cases, especially in different regions. The complex and 

diverse changes in fitness require more flexible algorithm to analyze and judge during the sampling 

process. Therefore, we propose to divide the heuristic optimization mechanism into three levels, as 

shown in Figure 7. Different sampling behaviors were applied to realize the transitions between 

different levels. 

Unguided Guided Targeted

Effective 

inspiration

Sampling 

aggregation

Exact 

inspiration

Sampling 

convergence  

Figure 7. Three-layer heuristic optimization behavior. 

We introduced a multiangle sampling information processing method to better understand the 

current sampling information and improve its heuristic effectiveness, along with the corresponding 

adjustment strategy outlined in Table 1. Automatically adjusting the swarm sampling density based on 

the sampling range and sample count allows the algorithm to strike a balanced trade-off between 

exploration and exploitation. This globally integrated regulation of the sampling density provides a 

more reliable mechanism for intelligent algorithms to enhance their adaptive evolutionary properties. 

Notably, as the optimization iterations progressed, even in regions with temporarily low levels of target 

fitness, sampling persisted, albeit with a relatively smaller sample count. Furthermore, with an increase 

in the fitness of a region, the number of sampling points was found to rapidly increase, demonstrating 

significant potential to prevent the optimized population from falling into a local optimum. 
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Table 1. Comparison of sampling information and strategy adjustment results. 

 
Fitness Fitness growth 

High Low Fast Slow 

Sampling range Decrease Increase - - 

Samples number - - Increase Decrease 

3.2. MDO discretization 

It is essential to map continuous decision variables to discrete ones during the fitness calculation 

process to adapt the continuous optimization algorithm for discrete optimization problems. This 

process involves not only creating the decision variables to suit specific problems, but also facilitating 

the process of variable updating that could originally take continuous values within the discrete 

decision space of the objective function. This transformation effectively converts the discrete objective 

function into a continuous one. 

3.2.1. Decision variables 

Regarding the optimization of multisite and multivehicle cargo distribution, different allocations 

of transportation vehicles and delivery orders for destination sites can yield varied tariff results. We 

introduced the concept of distribution genes as decision variables (agents) to enhance the clarity of the 

distribution scheme representation. This approach aligns with the information recording feature of GA 

chromosomes. As shown in Figure 8, Nv and Ns represent the quantity of vehicles and sites, respectively, 

and Vi and Si represent the number of vehicles and sites corresponding to the i-th node, respectively. 

The gene sequence was set as twice the length of the number of sites (Ns sites) and divided into two 

parts. The first part was assigned a vehicle value (Nv vehicles) for each site within the range of (0, 

Nv], totaling Ns gene elements, each corresponding to a site. The latter part was assigned a service 

order value for each site within the range of (0, Nv), totaling Ns gene elements, also corresponding 

to each site. 

V1 V2 … … Vi … … VNs S1 S2 … … Si … … SNs

Vi:0-Nv Si:0-Ns

S1 i:1-Ns
 

Figure 8. Distribution of gene sequences. 

The unique assignment of the vehicle value gene element to each site ensured that only one 

vehicle was designated for delivering goods to each site. This approach allows each vehicle to be 

assigned to and serve different sites, preventing duplicate allocation of vehicle resources. During the 

goods distribution process, each vehicle distributes goods in ascending order based on the site numbers 

among the sites that it is tasked to serve at that time. 

The distribution of gene sequences depicted in Figure 8 functioned as a decision vector in a 

multidimensional optimization problem. In this vector, each element represents a decision variable in 
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one dimension. The values of these variables within the distributed gene sequences, i.e., distribution 

genes, changed continuously, allowing agents to adjust their spatial coordinates based on heuristic 

factors. This mechanism sustained population diversity in continuous optimization problems, 

enhancing the overall optimization search accuracy. 

3.2.2. Fitness calculation 

First, continuous decision variables were converted into discrete decision variables. Vehicle 

values were rounded up to obtain the corresponding vehicle numbers, that is, integers within the 

interval [1, Nv]. Stations with the same vehicle number formed a group, and the algorithm sorted all 

stations in the group based on their order values (real numbers). The smaller the order value of a site, 

the higher its distribution order within the group. As shown in Figure 9, the first four and the last four 

sites were assigned to car 1 and car 2, respectively. Within each group, the first site held the highest 

distribution priority, followed by the next three in descending order. The corresponding stations in the 

figure were sequentially assigned an order number (integer) within the group to simplify the 

representation of the distribution order. 

1.1 2.2 3.1 4.3 5.2 6.1 7.3 8.20.8 0.9 0.7 0.8 1.8 1.9 1.7 1.9

Vehicle Values Sequence Values

1 2 3 4 1 2 3 421

 

Figure 9. Discretization of continuous distribution genes. 

Second, continuous decision variables were converted into discrete decision variables. The 

vehicle values were rounded up to obtain corresponding vehicle numbers, that is, integers within the 

interval [1, Nv]. Stations sharing the same vehicle number formed a group, and the algorithm sorted 

all stations in a group based on their order values (real numbers). Within each group, the distribution 

order was determined by the order values, with lower values indicating higher distribution priority. As 

illustrated in Figure 9, car 1 served the first four sites, while car 2 served the last four sites. Within 

each group, the first site held the highest distribution priority, followed by the next three in descending 

order. For clarity in distribution order representation, each station in the figure was sequentially 

assigned an order number (integer) within its group. 

Finally, for the distribution scheme that met the constraint requirements, intra-group distribution 

costs were calculated based on the distribution order of each group. The sum of the costs of each group 

was then used as the objective function value for the current decision variables. We applied a table 

lookup strategy based on the table of intersite distribution costs to enhance the algorithm speed. A 

sample table of 10 intersite distribution costs is shown in Table 2, where the freight center is listed as 

site 0 and other sites are named in order starting from 1, respectively. The table was reflected in the 

program as a cost matrix F, and its internal elements F(m, n) indicated the cost of transferring the 

goods from site m − 1 to site n − 1. For example, the in-group distribution cost of vehicle 1 shown in 

Figure 9 was F(1, 2) + F(2, 3) + F(3, 4) + F(4, 5). 
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3.2.3. Problem analysis 

The aforementioned scheme was designed to compute discrete objective functions by mapping 

continuous decision variables to discrete ones within the objective function. This maintained the 

continuity of the independent variables outside of the objective function, allowing for direct 

application of the continuous optimization algorithm to the discrete optimization problem. However, 

this scheme might complicate the distribution of the objective function for the sorting section of the 

distribution optimization problem. 

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

1.1 1.2 1.3 1.4 7.5 7.6 7.7 7.8

1.1 1.3 1.2 1.4 7.5 7.6 7.8 7.7

1.2 2.4 3.1 4.4 5.3 6.1 7.3 8.51.7 1.9 0.9 0.8 0.7 0.8 4.5 4.9

1.2 1.9 0.7 0.8 0.7 0.8 4.4 4.9

1.2 1.1 0.7 0.3 0.7 0.8 4.4 4.1

1.5 1.1 0.7 0.3 0.7 0.4 4.8 4.1

P1

P2

P3

P4

Vehicle Values Sequence Values

1 2 1 2 3 4 1 2512

1 2 1 2 3 4 2 1512

Variable 
Coordinates

Distribution 
Schemes

S1

S2

 

Figure 10. Example of objective function complexity. 

As depicted in Figure 10, four continuous decision variables, named P1, P2, P3, and P4, exist. 

These decision variables could be transformed into two discrete strategies, named S1 and S2. For the 

three continuous decision variables P1, P2, and P3, their agent coordinates were found to be far apart 

in the optimization space. However, the discrete distribution solutions they represented were the same; 

that is, the objective function values were of the same magnitude. Conversely, the corresponding 

coordinates between P3 and P4 were found to be close to each other, but the discrete distribution 

schemes they represented were not the same. Analogously, a small change in the order of the 

distribution genes as an independent variable might cause a significant change in the distribution cost, 

making the distribution of the continuous objective function exceptionally complex due to the 

influence of the sorting process. This small change in the independent variable should not exist in the 

discrete problem. Therefore, we chose to refer to the complexity of the objective function caused by 

the small change in the delivery gene variable as an MVC. 

3.3. RM 

We have introduced an RM mechanism that allows agent coordinates to circumvent the 

complexities of continuous objective functions. This mechanism restricts independent variables within 

the discrete decision space, effectively eliminating MVCs that may result from continuous minor 

alterations in the distribution genes. Specifically, in optimization problems involving sorting, 

consecutive value sorting can lead to the manifestation of MVCs. Thus, we categorized the introduced 
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RM mechanism for the logistics distribution problem into two components: value mutation and 

sequencing mutation. These components were designed to manage the discretization of vehicle values 

and sequential values, respectively. 

3.3.1. Value mutation 

Value mutation commonly involves rounding decimals to the nearest integers. For ease of 

mechanism analysis and program readability, we employed upward rounding to convert vehicle values 

from the continuous real-number domain to discrete integer vehicle numbers. Assuming that Nv 

vehicles were available for assignment, within the continuous optimization algorithm, vehicle values 

could freely range in the interval (0, Nv], and the result obtained after upward rounding yielded vehicle 

numbers in the set {1, 2, ..., Nv}. Because the length of the continuous real-number space corresponding 

to each vehicle number was equal, the probability of individual vehicle numbers being assigned was 

equal when values were randomly selected within the set of real numbers. 

0.7 0.9 0.8 0.1 1.3 1.9 1.1 1.7

1 1 1 1 2 2 2 2

   

0.6 0.8 0.7 0.2 1.5 1.8 1.3 1.9

 

Figure 11. Example of value mutation. 

Figure 11 depicts the assignment of two vehicles to eight stations. The two assignment outcomes 

within the set of real numbers are presented in the first two rows of Figure 11 and were found to fall 

within the range of real numbers (0, 2]. Following the value mutation, the vehicle number assigned to 

the first four stations becomes 1, while the vehicle number assigned to the last four stations becomes 2. 

This sample demonstrated that the results of the assignment in the real-number domain differed, but 

after value mutation, they could be converted to the same discrete results in the nearby integer domain. 

This transformation essentially converted multi-point sampling within a local region in the continuous 

optimization process into a single repeated sampling process at a point in the discrete optimization 

process. This complicated the process of transitioning continuous optimization algorithms to discrete 

optimization processes. One viable approach to mitigate this issue was to limit the sampling density. 

This helped to prevent the excessive waste of computational resources due to repeated sampling. 

3.3.2. Sequencing mutation 

The influence of site grouping was excluded from the introduced sequencing mutation to maintain 

clarity in the distribution genes and mitigate the impact of site grouping. First, sequence values for all 

sites were directly prioritized. Second, corresponding sites were assigned integers from 1 to Ns to 

denote their preliminary sequence number, that is, the priority number, based on the priority ranking 

from smallest to largest. Finally, the sites were grouped according to the assigned vehicles, and the 

delivery order within each group followed the priority number, ranging from smallest to largest. 



1959 

Electronic Research Archive  Volume 32, Issue 3, 946–1972. 

1.1 1.2 2.1 2.3 2.5 8.1 8.3 9.7

1 2 3 4 5 6 7 8

                        

1.2 1.3 3.2 3.5 3.7 8.2 8.3 9.5

          

1.3 1.2 2.1 2.3 2.5 8.1 8.3 9.7

2 1 3 4 5 6 7 8

                        

1.2 1.1 3.2 3.5 3.7 8.2 8.3 9.5

 

(a)                                  (b) 

Figure 12. Example of sequencing mutation. 

((a) Original distribution genes. (b) Mutant distribution genes.) 

Figure 12 illustrates different scenarios for prioritizing eight sites. The four sorting outcomes 

within the set of real numbers are presented in the first two rows of Figure 12(a),(b), showcasing 

flexible and variable values. After sequencing mutation, it was observed that the left two sorting 

methods converged into one result, and the right two sorting methods converged into another result, 

resembling the characteristics of the value mutation. Additionally, comparing the sorted values of 

Figure 12(a),(b) real-number sets revealed that the differences between them were not significant, and 

the distance reflected in the coordinate space was also small. However, the order of relationships they 

represented differed. Through sequencing mutation, this sorting discrepancy was effectively visualized 

and the position coordinates were separated in the discrete optimization space. Clearly, after the 

sequencing mutation process, the slight changes in the distribution gene variables that could induce 

sorting changes in continuous space were reflected in the discrete space and the changes in the discrete 

distribution gene variables were evident, building a foundation to avoid the occurrence of MVC. 

After the two RM processes of value mutation and sequencing mutation, the distribution genes of 

P1, P2, and P3 in Figure 10 were converted into integer variables. As illustrated in Figure 13, the 

coordinates of their positions in the decision space were shifted to the integer coordinate point P5, 

transforming decision variables from the continuous real set to the discrete integer set in the 

optimization algorithm. 

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

1.1 1.2 1.3 1.4 7.5 7.6 7.7 7.8

1.2 2.4 3.1 4.4 5.3 6.1 7.3 8.51.7 1.9 0.9 0.8 0.7 0.8 4.5 4.9

1.2 1.9 0.7 0.8 0.7 0.8 4.4 4.9

1.2 1.1 0.7 0.3 0.7 0.8 4.4 4.1

P1

P2

P3

Vehicle Values Sequence Values

1 2 3 4 5 6 7 82 2 1 1 1 1 5 5

Vehicle Number Sequence Number

                           

P5

 

Figure 13. Coordinate transfer after RM. 

The value mutation and sorting mutation functions described were executed after each iteration 

of individual location coordinate updates and before the calculation of the objective function. The 

results of RM directly updated the individual location coordinates, serving as the basis for calculating 

the objective function and planning the next generation of individual distribution information. Because 
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RM converted the distribution genes represented by the location coordinates into discrete integer variables, 

the distribution of independent variables in the objective function was discrete. This eliminated small 

changes in continuous space among individuals, thus avoiding the occurrence of MVC. 

3.4. MDO process 

Algorithm:  Discrete optimization algorithm pseudocode 

0 initialize system parameters 

1 establish feasible reference 

2 while (loop1 <= SetNum1) 

3     randomly generate partitioned agents in the optimization space 

4     record partition agents information 

5     add the priori agents to the population 

6     calculate the sample size for each partition 

7     for Np <= Npmax do 

8         randomly generate base agents within the Np-th partition 

9         record base agents information 

10 end for 

11 calculation of base generation derived sampling size 

12 while (loop2 <= SetNum2) 

13     for Nb <= Nbmax do 

14         generate sub-generation agents around the Nb-th base generation 

15         record sub-generational agent information 

16     end for 

17     for Np <= Npmax do 

18         update partition agents and calculate sub-generation agent parameters 

19 end for 

20 revise sub-generational agents with updated sampling information 

21     survival of the fittest, iterative transformation 

 22     loop2++ 

23 end while 

24 loop1++ 

25 end while 

The optimization process followed a systematic series of steps. Initially, the population was 

initialized by randomly generating sampling points within the feasible region, acting as the initial 

optimization agents. These agents, defined by their location coordinates or distribution genes, served 

as decision variables. An RM was then applied to transform continuous real coordinates into discrete 

integer coordinates. The objective function, representing transportation costs for various distribution 

schemes, was calculated based on the updated coordinates. Subsequently, a population of offspring 

agents was generated around each individual, with a focus on evolution factors and variation in the 

objective function. Descendant agents underwent a similar mutation process, and winners were 

selected based on their objective function values. The process was iterated through offspring 

reproduction until a specified condition was met. The dominant agent, representing the optimal 

individual, was recorded, and the procedure continued until the exit task was executed, consequently 

outputting the optimal distribution solution and concluding the program. 

Figure 14 shows the flowchart of the discrete optimization algorithm that has been designed 
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for the logistics distribution cost optimization problem. Its detailed functional process is described 

as follows: 

Step 1. The population was initialized by randomly generating sampling points in the feasible 

region as the initial optimization agents. The agents’ location coordinates were the decision variables 

for optimization, and they were composed of distribution genes. If there was an established dominant 

population, it was added to the initial population of agents to form the initial population. 

Step 2. The RM of the agent’s location coordinates was performed. The continuous real 

coordinates were transformed into discrete integer coordinates, and the updated location coordinates 

were used as the coordinates of the current sampling point to perform the objective function calculation; 

then, the transportation costs of different distribution schemes were obtained. 

Step 3. The objective function value, the amount of objective function value variation, the 

distribution range, and the number of offspring populations generated from the current individual were 

calculated by combining the evolution factor (i.e., learning rate). 

Step 4. With each agent individual as the center, we generated a population of uniform sampling 

points according to the range and number of offspring as a population of offspring optimization agents. 

At the same time, the current agent also transformed itself into a descendant agent and participated in 

the analysis and operation of the descendants. In this step, the objective function was not calculated. 

Step 5. The position coordinates of the descendant agents were rationally mutated. The continuous 

real coordinates were transformed into discrete integer coordinates, the updated position coordinates 

were used as the coordinates of the sampling points of the descendants, and the calculation of the 

objective function of the descendants was performed to obtain the transportation cost of the derived 

distribution scheme. 

Step 6. The winners were selected based on the objective function value of the descendant 

individuals, and the winning individuals were retained as the current generation of optimization agents 

to participate in the subsequent processing. 

Step 7. We determined whether to end offspring reproduction. If yes, the next step was performed; 

if not, it looped back to Step 3 for the next-generation reproduction process and new distribution 

schemes were derived. 

Step 8. The information of the current dominant agent individual was recorded, especially 

focusing on the optimal individual that was explored. 

Step 9. We determined whether to end the procedure. If yes, the next processing session was 

performed; if not, it looped back to Step 1 and the superiority-seeking exploration was continued. 

Step 10. The exit task was executed, the optimal distribution solution and cost results were output, 

and the program was ended. 
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Figure 14. Flowchart of the discrete optimization algorithm. 

4. Experiments and analysis 

Similar to classical swarm intelligence optimization algorithms, the MO algorithm is also a 

heuristic swarm optimization algorithm. This type of algorithm is suitable for objective functions but 

not suitable for mathematical optimization methods, and it is difficult to establish mathematical 

theoretical analysis for such algorithms. Swarm intelligence optimization algorithms are generally 

tested by using benchmark functions to demonstrate the improvements of the new algorithm and thus 

objectively analyze the effectiveness of the algorithm. We first validated the superior performance of 

the new algorithm by using six benchmark functions, and then we examined the effectiveness of the 

new algorithm in terms of solving discrete optimization problems in logistics optimization cases. 

4.1. Experimental tools 

The continuous optimization test was conducted to assess the initial performance of the 

optimization algorithm by using benchmark functions, such as Griewank, Needle, Rastrigin, 

Rosenbrock, Schaffer, and Shubert. This test compared the classical GA, PSO, and MCO (MO with 
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continuous optimization) to provide a more intuitive reflection of the MO algorithm’s optimization 

performance. The parameters for each algorithm were set as listed in Table 2. 

Table 2. Parameters for three algorithms. 

Algorithms Parameters Value 

GA Number of chromosomes 100 

GA Iteration evolution upper limit 5000 

GA Probability of variation 5% 

GA Termination condition for invalid evolution 20 

GA Encoding accuracy of a single variable 15 bits 

PSO Number of population individuals 300 

PSO Maximum iterations  1200 

PSO Detection interval during optimization  30 

PSO Termination condition for invalid progress  0.001 

PSO Optimal weight coefficient for the individual 1.5 

PSO Optimal weight coefficient for the whole 0.5 

MCO Initial number of population individuals 36 

MCO Maximum outer cycles  20 

MCO Maximum inner cycles  2 

MCO Evolution factor (learning rate) 0.5 

MCO Elimination rate 0.7 

4.2. Continuous optimization 

Continuous optimization tests were conducted for various benchmark functions; the 

representative optimization processes were as illustrated in Figure 15(a)–(f). 

The horizontal axis in Figure 15 represents the number of samples, that is, the cumulative number 

of samples. This logical quantity analysis helped us to eliminate the influence of the computer 

environment on the algorithm speed. The vertical axis in Figure 15 represents the objective 

function. For example, in minimax optimization, a faster decrease in the curve indicated a faster 

optimization search. 

Analysis of the optimization results revealed that the GA demonstrated good exploration ability 

by quickly capturing better values in the early stages of optimization. However, in the later stages of 

the optimization search, the objective function value curve flattened, indicating insufficient exploration 

ability. PSO also quickly captured better values early on but sometimes experienced prolonged 

stagnation in the intermediate phase between 1500 and 6000 samples (Figure 15(a)). The GA and MCO 

both showed multiple instances of new optimal values and outperformed PSO before the 6000th 

sample. This was because PSO got temporarily trapped in a local optimal region, resulting in a slower 

overall optimization process. The MCO algorithm’s overall optimization process was faster, allowing 

it to jump out of local optima earlier and speed up global optimum convergence. Particularly for 

the deceptive Needle problem, MCO jumped out of local optima and converged to the global 

optimum around the 3000th sample, while the GA and PSO remained stuck in local optima even 

after 10,000 samples. 
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Figure 15. Comparison of nominal optimization processes. 

(The tests in (a), (b), (c), (d), (e) and (f) used benchmark functions Griewank, Needle-in-

a-haystack, Rastrigin, Rosenbrock, Schaffer and Shubert respectively.) 
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Table 3. Statistics of optimization test results. 

NO. 
Griewank Needle Rastrigin 

GA PSO MCO GA PSO MCO GA PSO MCO 

1 0.0087 0.0000 0.0000 -3546.4099 -3596.8927 -3597.5196 0.2212 0.0000 0.0004 

2 0.0044 0.0000 0.0000 -3599.4862 -3599.9991 -3595.2110 1.1718 0.0000 0.0052 

3 0.0058 0.0000 0.0001 -3599.8834 -3401.2250 -3592.3091 0.1541 0.0000 0.0448 

4 0.0085 0.0000 0.0001 -3576.4285 -3600.0000 -3596.2463 1.8767 0.0000 0.0000 

5 0.0026 0.0000 0.0001 -3598.5653 -3600.0000 -3594.6778 1.5559 0.0000 0.0002 

6 0.0004 0.0000 0.0001 -3595.4264 -3600.0000 -3598.5334 2.4279 0.0000 0.0004 

7 0.0016 0.0000 0.0002 -3599.7370 -3600.0000 -3599.4721 1.2546 0.0000 0.0001 

8 0.0048 0.0000 0.0001 -3597.8252 -3600.0000 -3599.8120 1.1212 0.0000 0.0024 

9 0.0010 0.0000 0.0001 -3597.8611 -3600.0000 -3598.0424 2.3655 0.0000 0.0337 

10 0.0018 0.0000 0.0001 -3563.4747 -3401.2250 -3594.5222 0.0495 0.0000 0.0567 

11 0.0001 0.0000 0.0001 -3542.4302 -3600.0000 -3599.5722 0.1541 0.0000 0.0078 

12 0.0042 0.0000 0.0001 -3587.6483 -3600.0000 -3593.0288 1.3851 0.0000 0.0049 

13 0.0040 0.0000 0.0000 -3599.5134 -3401.2250 -3599.5746 1.3290 0.0000 0.0515 

14 0.0086 0.0000 0.0007 -3598.2640 -3600.0000 -3598.1535 1.2866 0.0000 0.0026 

15 0.0079 0.0000 0.0000 -3591.4437 -3401.2250 -3599.4319 0.8335 0.0000 0.0055 

16 0.0004 0.0000 0.0001 -3599.0221 -3600.0000 -3597.3215 0.5085 0.0000 0.0042 

17 0.0001 0.0000 0.0000 -3586.5276 -3600.0000 -3599.7086 0.8335 0.0000 0.0039 

18 0.0012 0.0000 0.0000 -3545.4849 -3599.9997 -3598.4448 1.0196 0.0000 0.0120 

19 0.0077 0.0000 0.0002 -3583.2710 -3600.0000 -3595.1445 2.1842 0.0000 0.0040 

20 0.0083 0.0000 0.0005 -3597.8120 -3600.0000 -3599.9242 0.1541 0.0000 0.0063 

Mean 0.0041 0.0000 0.0001 -3585.3258 -3560.0896 -3597.3325 1.0943 0.0000 0.0123 

SD 0.0032 0.0000 0.0002 19.3260 79.4351 2.3516 0.7282 0.0000 0.0178 

Max 0.0087 0.0000 0.0007 -3542.4302 -3401.2250 -3592.3091 2.4279 0.0000 0.0567 

Min 0.0001 0.0000 0.0000 -3599.8834 -3600.0000 -3599.9242 0.0495 0.0000 0.0000 

Table 3 presents the statistics resulting from multiple optimization tests for the first three nominal 

functions. In most cases, PSO demonstrated good convergence ability, achieving global optimal results 

with high accuracy for Griewank and Rastrigin, while the GA and MCO showed relatively lower 

accuracy. However, regarding the minimum statistics, MCO and PSO achieved very similar results in 

some cases. Conversely, for the Needle problem, MCO exhibited better accuracy with the smallest 

mean (−3597.3325) and the smallest standard deviation (2.3516) of optimization results, indicating 

good and stable overall optimization performance with superior global search capability. The 

maximum optimization result (−3592.3091) suggested that the algorithm captured the global optimal 

region consistently. In contrast, the mean (−3560.0896) and standard deviation (79.4351) of the PSO 

optimization search results in the group test indicated a deviation from the global optimal region. 

However, its minimum value for the optimization search result (−3600.0000) reached the global 

optimum. This suggested that strong convergence ability may temporarily affect optimization accuracy 

when the algorithm is trapped in local optima, but higher accuracy results quickly emerge once the 

local optima are escaped. 

In summary, the group intelligence optimization algorithm was influenced by group evolution, 
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introducing uncertainty into the optimization process and results. However, the statistical results 

showed that MCO exhibited minimal standard deviation and relatively good stability. Its minimum 

optimization results nearly approached the global optimum, and the optimization convergence process 

demonstrated a faster exploration speed in the optimization region. These characteristics highlighted 

that MCO effectively balanced global exploration and local exploitation, providing a solid foundation 

for its application to high-dimensional discrete optimization in logistics and distribution. 

4.3. Discrete optimization 

This study examined the abstract model for logistics and distribution, expanding the distribution 

sites from 11 sites (including freight centers) in Table 4 to 21 sites. The spacing between sites was 

assumed to be uniform, the distance from the freight center increased sequentially, and the distribution 

cost was directly proportional to the transportation distance. Without sacrificing generality, the 

problem model effectively captured the intricacies of high-dimensional discrete optimization for 

multivehicle, multisite distribution problems. The logical representation of the correlation between site 

distances and distribution costs encapsulated the fundamental characteristics of real-world distribution 

challenges. Moreover, the parameters used in this test remained consistent with those employed in the 

continuous optimization test in the evaluation of the algorithm’s generalization capability. 

Table 4. Sample table of intersite distribution costs. 

Site 0# 1# 2# 3# 4# 5# 6# 7# 8# 9# 10# 

0 0 10 20 30 40 50 60 70 80 90 100 

1 10 0 10 20 30 40 50 60 70 80 90 

2 20 10 0 10 20 30 40 50 60 70 80 

3 30 20 10 0 10 20 30 40 50 60 70 

4 40 30 20 10 0 10 20 30 40 50 60 

5 50 40 30 20 10 0 10 20 30 40 50 

6 60 50 40 30 20 10 0 10 20 30 40 

7 70 60 50 40 30 20 10 0 10 20 30 

8 80 70 60 50 40 30 20 10 0 10 20 

9 90 80 70 60 50 40 30 20 10 0 10 

10 100 90 80 70 60 50 40 30 20 10 0 

The optimization process for the logistics and distribution scheme is illustrated in Figure 16, 

offering a representative comparison of the optimization and convergence processes. The red and blue 

solid lines in the figure represent the optimization curves for MDO (MO applied to discrete 

optimization) and D-PSO (PSO with discrete optimization), incorporating an RM mechanism for 

sampling coordinates. The red and blue dashed lines represent the optimization curves for MCO and 

C-PSO (PSO with continuous optimization), lacking an RM mechanism for sampling coordinates. In 

terms of the final optimization results, the addition of an RM mechanism significantly enhanced the 

accuracy, with MDO demonstrating more pronounced effects. 

Considering the convergence speed of the optimal result, regardless of the presence of the RM 

mechanism, PSO exhibited notable rapidity in the early stages of optimization. After approximately 7000 
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cumulative samples, the PSO optimal value approached nearly 500. However, the PSO convergence 

was relatively weak in the later stages, particularly for C-PSO without RM, where the final 

optimization result did not surpass 400. The optimization speed of MCO without RM was relatively 

slow due to the algorithm parameter settings favoring exploration. Without the RM of sampling 

coordinates, the objective function of the optimization space was presented as a continuous distribution 

with MVCs, imposing a burden on exploration. 

Upon transforming MCO into MDO through the introduction of an RM mechanism, the 

undesirable virtual changes were eliminated. The objective function of the optimization space could 

then be represented as a discrete distribution, significantly improving the speed and accuracy of the 

optimal result convergence. As indicated by the red solid line in Figure 16, the convergence speed of 

MDO in the early stages was not as rapid as that of D-PSO. However, it caught up before reaching 

about 20,000 samples through a more extended period of effective breakthrough. After reaching 

approximately 80,000 samples, MDO surpassed D-PSO’s breakout speed and continued toward the 

global optimal result, eventually converging to a distribution cost of 200. 

 

Figure 16. Comparison of optimization process for logistics delivery schemes. 

Given the inherent uncertainty in the results of heuristic optimization algorithms, we employed a 

testing approach involving multiple trials and multiple iterations per trial. The distribution cost results 

obtained from multiple optimization searches of D-PSO are presented in Table 5. The top row of the 

table indicates the group number, ranging from Sets 1 to 10. Each group consisted of 10 tests, identified 

from 1 to 10 in the leftmost column. The table encompassed 100 tests across these 10 trials. Upon 

examining the statistical outcomes, it was observed that D-PSO identified the global optimal 

distribution cost of 200 only after seven out of 10 rounds of tests. The average results for each round 

ranged between 352 and 456. 
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Table 5. Records and statistics of multiple optimization results for D-PSO. 

Site 0# 1# 2# 3# 4# 5# 6# 7# 8# 9# 

1 490 480 510 380 510 390 450 530 440 370 

2 410 290 520 270 240 390 200 400 340 450 

3 380 470 390 340 330 240 390 540 390 490 

4 280 460 260 540 410 520 300 410 370 440 

5 550 490 580 290 430 370 400 260 390 390 

6 470 420 400 330 290 530 440 450 360 540 

7 370 380 410 250 440 390 310 620 420 480 

8 450 440 430 570 290 380 410 340 520 400 

9 300 500 550 430 380 510 380 470 450 560 

10 240 460 390 400 390 390 240 310 560 440 

Mean 394 439 444 380 371 411 352 433 424 456 

SD 94.4 59.9 91 102.9 78.4 83.4 80.8 106.2 67.1 59.2 

Max 550 500 580 570 510 530 450 620 560 560 

Min 240 290 260 250 240 240 200 260 340 370 

Table 6. Records and statistics of multiple optimization results for MDO. 

Site 0# 1# 2# 3# 4# 5# 6# 7# 8# 9# 

1 210 400 240 220 200 260 200 370 550 510 

2 370 240 200 250 290 380 200 430 450 290 

3 200 290 450 200 200 260 430 200 260 220 

4 200 210 200 200 200 220 200 220 220 370 

5 200 440 500 200 200 200 200 350 250 200 

6 200 370 200 200 270 200 400 330 320 230 

7 200 470 480 420 200 260 260 200 280 270 

8 240 340 200 200 370 380 200 200 200 200 

9 370 360 280 350 390 220 450 350 280 200 

10 200 380 230 280 200 440 200 480 420 200 

Mean 239 350 298 252 252 282 274 313 323 269 

SD 66.6 78.6 119.9 72.9 71.4 81.7 102.1 97.4 107.6 95.8 

Max 370 470 500 420 390 440 450 480 550 510 

Min 240 290 260 250 240 240 200 260 340 370 

Table 6 presents the results of distribution costs obtained from multiple optimization searches 

conducted by MDO. With the exception of the second round, all other rounds resulted in a global 

optimal distribution cost of 200, demonstrating the high accuracy of MDO. Compared with the 

optimization results of D-PSO, the average value of optimal distribution costs obtained by MDO 

ranged from 239 to 350, which was smaller than the average result for D-PSO. This suggested that 

MDO demonstrated better overall performance. The standard deviation for D-PSO ranged from 59.2 

to 106.2, while that for MDO ranged from 66.6 to 119.9, indicating comparable stability between the 

two algorithms. The maximum optimization results for D-PSO were between 450 and 620, whereas 

those for MDO were between 370 and 550. This suggests that both algorithms encountered local 

optima, impacting their stability to varying extents. The minimum optimization results for D-PSO were 

between 200 and 370, with 10% of the optimal results being ≤ 200. In contrast, the corresponding 

results for MDO were between 200 and 210, with 90% of the optimal results being ≤ 200. This 
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demonstrated a significant improvement in algorithm performance with only 10 instances of 

optimization result statistics, with MDO showing a more pronounced improvement, offering 

approximately a 90% chance of finding the global optimal result. 

5. Conclusions 

The proposed MO algorithm comprises two branches: MCO and MDO, tailored for different types 

of optimization problems. 

First, addressing continuous optimization, we introduced the MCO algorithm. This algorithm 

leverages the heuristic changes in successive sampling information through the dynamic division of 

multiple regions, adapting to various types of changes in sampling density within these regions. The 

optimization mode was designed to ensure a faster convergence speed while preserving exploration 

capability in multiple global dominant regions, effectively preventing the optimization process from 

being hampered by local optima. As a result, the MCO algorithm demonstrated superior performance 

in terms of overall optimization speed and accuracy. 

Second, for discrete optimization problems, we investigated the MVC issue that tends to arise 

when applying continuous optimization algorithms. To address this, we proposed the MDO algorithm. 

MDO incorporates the RM mechanism of agent coordinates to confine continuously distributed 

optimization sampling points to the discrete decision variable space. This mitigates the issue of 

excessively dense sampling in the optimization space, effectively resolving the problem of MVC. 

Application to logistics and distribution optimization problems indicated a significant improvement in 

optimization performance as a result of transforming continuous optimization algorithms into discrete 

optimization algorithms by using the RM mechanism. 

Finally, we thoroughly validated the superiority of MDO in the task of optimizing exploration by 

conducting statistical tests on uncertainty in the heuristic optimization algorithm results. The statistical 

scheme involved multiple rounds of tests, revealing that the MDO algorithm’s enhancement was more 

pronounced after multiple optimization searches. This suggests that MDO maximized the benefits of 

a large sample number for comprehensive exploration, further improving the algorithm accuracy and 

stability. For more complex practical optimization problems that involve conducting relatively large 

numbers of optimization searches an require improved result reliability, algorithms with superior 

exploration performance, such as MO, should be preferred. 
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