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Abstract: The merging of neural radiance fields with generative adversarial networks (GANs) can
synthesize novel views of objects from latent code (noise). However, the challenge for generative
neural radiance fields (NERFs) is that a single multiple layer perceptron (MLP) network represents a
scene or object, and the shape and appearance of the generated object are unpredictable, owing to the
randomness of latent code. In this paper, we propose a stylized generative radiance field (SGRF) to
produce 3D-aware images with explicit control. To achieve this goal, we manipulated the input and
output of the MLP in the model to entangle and disentangle label codes into/from the latent code, and
incorporated an extra discriminator to differentiate between the class and color mode of the generated
object. Based on the labels provided, the model could generate images of prohibited items varying in
class, pose, scale, and color mode, thereby significantly increasing the quantity and diversity of images
in the dataset. Through a systematic analysis of the results, the method was demonstrated to be effective
in improving the detection performance of deep learning algorithms during security screening.

Keywords: X-ray security inspection; data augmentation; 3D-aware image synthesis; stylized
generative radiance fields

1. Introduction

X-ray security screening is a preeminent protection for public safety in various venues such as
airports, railway stations, undergrounds, post offices, and customs. To this end, X-ray scanning
machines are deployed to detect and expose prohibited items concealed within the baggage, luggage,
or cargo. Human operators play pivotal roles in threat screening [1]. The expertise and proficiency of
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inspectors are indispensable for the accurate detection of threats; nevertheless, other factors, such as
emotional fluctuation and physical fatigue, tend to divert their concentration. The necessity for a
real-time, dependable, and automatic method for security screening is becoming increasingly pressing
owing to the challenging conditions encountered during the checking process. Specifically, the
random arrangement and extensive overlapping of content in luggage leads to highly occluded
images, which significantly complicates the task of identifying prohibited items amidst cluttered
backgrounds for inspectors [2].

Despite the growing interest in computer-assisted techniques to enhance the alertness and
detection capabilities of screeners, research in this area has been understudied owing to the scarcity of
extensive datasets and sophisticated deep-learning algorithms. Previous studies have primarily
focused on conventional image analysis [3–5] and machine learning. Most recently, deep learning
methods, especially convolutional neural networks (CNN), have demonstrated superior performance
over conventional machine learning methods for threat object classification [6–8], detection [9, 10]
and segmentation [11, 12]. Nevertheless, most methods merely achieve high accuracy and recovery
rates on specific datasets.
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Figure 1. Scenario of the X-ray image generation and the images can be displayed in four
color modes: (a) pseudo, (b) gray, (c) hot-jet, and (d) reversed.

The principle underlying X-ray imaging is the penetration of an X-ray beam through a scanned
object and its subsequent detection using a photoelectric sensor. The intensity of the X-ray signal
is inversely proportional to the density of the object material, thereby enabling determination of the
internal structure of the object. The formula for attenuation is Ix = I0e−µx, where I0 is the initial
density, Ix is the attenuated density at x cm, and µ is the linear attenuation coefficient [13]. The
formulation implies that Ix is correlated with the object thickness x and the nature of its material. The
influence of the object thickness is mitigated through the utilization of dual- or multi-energy imaging
technology, which enables the determination of the object’s density and properties, in particular, the
effective atomic number Ze f f . Owing to the sensitivity of human perception to color, the density and
effective atom number are converted to pseudo-color images or other color modes using lookup tables.
The process of generating X-ray inspection images is depicted in Figure 1. In pseudo-color mode,
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different materials exhibit different colors during X-ray imaging. Conventionally, blue, orange, and
green refer to the inorganic, organic, and mixed materials, respectively.

Data generation is an effective strategy for improving the performance of deep-learning methods,
particularly in the context of prohibited object detection during X-ray security inspections. This is
because the process of acquiring and annotating a large number of X-ray images in a real-world
setting is both expensive and time-consuming. Nevertheless, in recent years, researchers have made
tremendous efforts to create large-scale X-ray inspection datasets. Several commonly cited
benchmarks include GDXray, UCL TIP, SIXray, and OPIXray [14–17]. With flourishing
contemporary generative adversarial network (GAN) technology, its outstanding image-generation
capacity has received wide attention. Various attempts have been made to synthesize X-ray images of
prohibited items using GANs. For instance, Yang et al. [18] proposed a generative model based on
improvements to WGAN-GP to generate ten classes of prohibited items using real images. Zhu et
al. [19] attempted to synthesize images using SAGAN and CycleGAN to enrich the diversity of the
threat image database, although the quality of the generated images could be improved. Liu et al. [20]
developed a comprehensive framework based on GAN to synthesize X-ray inspection images for
data enhancement.
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Figure 2. The framework of the stylized generative radiance fields (SGRF).

Inspired by the concept of generative radiance fields (GRAF), we propose a stylized generative
radiance fields (SGRF) that enables controllable synthesis of 3D-aware images. The framework of
the model is shown in Figure 2, which will be described in detail in other sections. This model can
generate images of prohibited items based on label prompts and serves as an implicit representation
database, producing a large number of images with rich diversity in class, color mode, pose, etc. More
specifically, we make the following contributions.

• We implemented a stylized generative radiance field to learn the implicit representation of
multiple objects with different color styles using a single multilayer perceptron (MLP).
• We attained explicit control over the generation of 3D-aware images by entangling and

disentangling class and style labels into/from random latent codes.
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• We utilized the model to significantly augment the X-ray inspection datasets and effectively
increase the generalization ability of state-of-the-art detection algorithms in security screening.

The rest of this paper is organized as follows. Section 2 presents a literature review of the 2D
and 3D image synthesis methods. Section 3 describes stylized generative radiance field methodology.
Section 4 describes the experimental setup and details. Section 5 presents the experimental results for
the proposed model. Section 6 concludes the paper and provides recommendations for future research.

2. Related works

GAN: In 2014, Goodfellow et al. [21] introduced GANs, which are deep generative models
inspired by the game theory. During the training process, generator G and discriminator D compete to
reach a Nash equilibrium state. The principle of G is to generate as much fake data as possible to fit
the potential distribution of the real data, whereas the principle of D is to correctly distinguish real
data from fake data. The input of G is a random noise vector z (usually a uniform or normal
distribution). The noise was mapped to a new data space via G to obtain a fake sample G(z), which is
a multidimensional vector. The discriminator D is a binary classifier that takes both the real sample
from the dataset and the fake sample generated by G as the input, and the output of D represents the
probability that the sample is real rather than fake. The architecture of GAN is illustrated in Figure 3.
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Figure 3. The GAN comprises a generator (G) and a discriminator (D), where z is the input
noise, X is the real image, and G(z) is the fake image.

Following this principle, various GANs were developed for image generation and
translation [22, 23]. Initially, GAN adopted a fully connected MLP as the generator and discriminator.
Taking advantage of a CNN, Radford et al. [24] proposed a deep convolutional generative adversarial
network (DCGAN) that achieved superior performance in image generation. Owing to the use of
random latent vectors as inputs, unrestricted variables may result in collapse of the training process.
To address this issue, conditional GANs, such as CGAN, ACGAN, and InfoGAN [25–27] have
incorporated conditional variables (including labels, text, or other relevant data) into both the
generator and discriminator of the model. These modifications result in a more robust training process
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and the ability to generate images based on specific conditions. Moreover, considerable effort has
been devoted to optimizing the objective function for stabilizing Gan’s training. For example,
Arjovsky et al. [28] proposed a Wasserstein generative adversarial network (WGAN). They first
showed theoretically that the Earth-Mover (EM) distance produces better gradient behaviors than
other distance metrics. Gulrajani et al. [29] presented a gradient penalty named WGAN-GP to enforce
the Lipschitz constraint, which performs better than the original WGAN. Petzka et al. [30] introduced
a new penalty term known as the WGAN-LP to enforce the Lipschitz constraint.

Image translation, or converting images from one domain to another, is another primary task of
GANs. Isola et al. [31] utilized a pix-to-pix GAN to perform image adaptation between pairs of images.
Subsequently, the HD pix-to-pix GAN [32] enhanced the quality and resolution of the generated images
up to 2048 × 1024 pixels. Owing to the difficulties in obtaining paired data in real-world scenarios,
CycleGAN, DiscoGAN, and DualGAN [33–35] employed a term of cyclic consistency to train the
model using unpaired data. Choi et al. [36] proposed StarGAN, which accomplished image translation
across multiple domains by using a single model.

To date, contemporary GAN technology has achieved outstanding performance in synthesizing
high-resolution photo-realistic 2D images; however, GAN cannot synthesize novel views of objects,
and the generated images unable to maintain 3D consistency.

NERF: Neural radiance fields [37] are powerful for learning 3D scene implicit representations,
where the scene is represented as a continuous field and stored in a neural network. The neural radiation
field can render high-fidelity images from any perspective by training on a set of posed images. The
implicit rendering process is illustrated in Figure 4. The inputs are the position o, direction d(θ, ϕ),
and the corresponding coordinates (x, y, z) of the emitted light from a certain perspective, which are
fed into the neural radiation field to obtain the volume density σ and color (r, g, b) and obtain the final
image through volume rendering. To obtain clear images, positional encoding optimizes the networks
by mapping a 5D input to a high-dimensional space to represent the high-resolution geometry and
appearance. Additionally, a coarse-to-fine strategy was adopted for hierarchical volume sampling to
increase rendering efficiency.

NERF has achieved impressive success in view synthesis, image processing, controllable editing,
digital human body, and multimodal applications. The limitations of NERF are its slow training and
rendering, restriction to static scenes, lack of generalization, and the requirement of a large number of
perspectives. To address these issues, Garbin et al. [38] proposed FastNeRF that can render
high-fidelity and realistic images at 200 Hz on high-end consumer GPUs. Li et al. [39] presented the
neural scene flow fields to expand it to dynamic scenes by learning implicit representation of scenes
from monocular videos. Because the NERF requires retraining for a new scene and cannot be
extended to unseen scenes, academic research on this topic comprises pixelNeRF and
IBRNet [40,41]. Moreover, NERF stores one scene in one fully connected multilayer network (MLP),
which restricts the representation of multiple scenes in a single model.
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Figure 4. Implicit rendering process of NERFs, where, x(x, y, z) refers to the 3D location
of the point, o, d(θ, ϕ) refers to the origin, direction of the ray, and c(r, g, b)/σ refers to the
color/density of the rendering point, respectively.

GRAF: Taking advantage of GAN and NERF, GRAF [42] designed a generative model of NERF
by integrating a neural field into a GAN generator. The model can generate 3D-aware images from
the latent code (noise) and can be trained using a set of unposed images. In addition to changing the
perspective, GRAF also allows the modification of the shape and appearance of the generated objects.
Although GRAF has demonstrated remarkable capabilities in generating high-resolution images
with 3D consistency, its performance in more complex real-world settings is limited, owing to its
inability to effectively handle multi-object scenes. GIRAFFE [43] aims to represent scenes as
synthetic neural feature fields that can control the camera’s pose, position, and angle of objects placed
in the scene as well as the shape and appearance of objects. GIRAFFE is a combination of multiple
MLP networks, each of which representing a scene or an object. Our goal was to utilize a single MLP
to store various objects or scenes. Inspired by previous studies, we designed stylized generative
radiance fields to accomplish this objective. Using this model, we exercised explicit control over the
generation of objects based on the class and style labels.

3. Methods

GAN is a generative model primarily utilized for image generation and translation tasks, but the
synthesized images are unable to maintain multi-view consistency. By contrast, NERFs enable the
generation of 3D-aware images owing to the inherent nature of the radiance field. GRAF is a
combination of GAN and NERF, and has been proven successful for novel view synthesis from a
random latent code, which also allows modification of the shape and appearance of the generated
object based on latent code. However, the shapes and appearances of the objects are randomly
generated without explicit control. Moreover, the GRAF prototype employs an MLP to learn the
implicit representation of one object or scene, leading to high memory consumption in multiple-scene
cases. Therefore, we argue for representing multiple scenes using a single MLP and generating
objects with explicit control through the SGRF, which has evolved from GRAF. In the following
section, we briefly review the NERF and GRAF models, which form the basis of our model.
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3.1. Neural radiance fields

Neural radiance fields [37] provide the foundation for various NERF-derived models. Its
contributions include implicit representation of 3D geometry and differentiable volume rendering.

Implicit representation: Radiance fields provide implicit representations of 3D geometry. The
radiance field is a continuous function with the input of the 3D location x = (x, y, z), viewing direction
d = (θ, ϕ), output of the emitted color c = (r, g, b), and volume density values σ. The mapping of
the function from input to output is implemented using an MLP network FΘ : (x,d) → (c, σ) and
its weights are optimized to map each input 5D coordinate to its corresponding volume density and
directional emitted color. The network FΘ directly operated on 5D input coordinates performs poorly at
representing high-frequency variations in color and geometry because deep networks are biased toward
learning low-frequency functions. Positional encoding was used to map a 3D location x∈ R3 and
viewing direction d ∈ S2 into a higher-dimensional space to enable the MLP to more easily approximate
a higher-frequency function. Formally, the positional encoding function is defined in Eq (3.1) [37].

γ(p) =[sin(20πp), cos(20πp), (sin(21πp), cos(21πp),
. . . , (sin(2L−1πp), cos(2L−1πp)]

(3.1)

This function γ(·) is applied separately to each of the three coordinate values in x and the three
components of the Cartesian viewing-direction unit vector d. In the experiments, L = 10 for γ(x) and
L = 4 for γ(d). In Eq (3.2) [37], an MLP network fΘ(·) is applied to map the resulting features to a
color value c ∈ R3 and volume density σ ∈ R+.

FΘ : RLx × RLd → R3 × R+

γ(x), γ(d) 7→ (c, σ)
(3.2)

Volume rending: To render a 2D image from the radiance field fΘ(·), the volume density σ(x)
can be interpreted as the differential probability of a ray terminating at an infinitesimal particle at the
location x. The expected color C(r) of the camera ray r(t) = o + td with near and far bounds tn and t f

is calculated using Eq (3.3) [37].

C(r) =
∫ t f

tn
T (t)σ(r(t))c(r(t), d))dt,

where T (t) = exp (−
∫ t

tn
σ(r(s))ds).

(3.3)

Rendering a view from a continuous NERF requires estimating integral C(r) for a camera ray traced
through each pixel of the camera. This continuous integral of C(r) is numerically estimated using
deterministic quadrature, which limits the resolution of the representation, because the MLP would
only be queried at a fixed discrete set of locations. Instead, a stratified sampling approach was used
to partition [tn, t f ] into N evenly spaced bins and draw one sample uniformly at random from each
bin. This approximation approach estimates the integral value from a discrete set of samples. In
Eq (3.4) [37], let (ci

r, σ
i
r)

N
i=1 denote the color and volume density values of N random samples along

camera ray r. The rendering function π(·) maps these values onto the color value cr. The color value,
cr, was calculated using Eq (3.5) [37].
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π : (R3 × R+)N → R3, {(ci
r, σ

i
r)} 7→ cr, (3.4)

cr =

N∑
i=1

T i
rα

i
rc

i
r, T i

r =

i−1∏
j=1

(1 − α j
r),

αi
r =1 − exp (−σi

rδ
i
r),

(3.5)

where T i
r and αi

r denote the transmittance and alpha value of sample point i along ray r and δi
r =

∥xi+1
r − xi

r∥2 is the distance between neighboring sample points. Network FΘ is trained with a set of
posed images by minimizing the reconstruction loss between observations and predictions. In addition,
a hierarchical volume sampling strategy was applied to improve the rending efficiency.

3.2. Generative radiance fields

The GRAF [42] comprises a radiance field-based generator and a multi-scale patch discriminator. It
differs from NERF in that it attempts to learn a model using unposed images rather than posed images.

3.2.1. Generator

The generator takes the camera intrinsic matrix K, camera pose ξ, 2D sampling pattern ν, and
shape/appearance codes zs/za as inputs, and predicts the image patches P

′

. The camera poses ξ = [R|t]
sampled from a pose distribution pξ and ν(u, s) determines the center u ∈ R2 and scale s ∈ R+ of the
virtual K × K patch drawn from a uniform distribution. The shape and appearance variables zs and za

are obtained from the shape and appearance distributions ps and pa, respectively.
Ray sampling: K × K patch P(u, s) is determined by a set of 2D image coordinates that describe

the location of every pixel of the patch in the image domain Ω. In Eq (3.6) [42], the corresponding 3D
rays are uniquely determined by P(u, s), the camera pose ξ, and the intrinsic matrix K.

P(u, s) = {(sx + u, sy + v)|x, y ∈ {−
K
2
, . . . ,

K
2
− 1}} (3.6)

3D point sampling: As with the NERF, stratified sampling was used to sample N points {xi
r}

N
i=1

along each ray r for the numerical integration of the radiance field.
Conditional radiance fields: The radiance field was implemented using a fully connected neural

network with parameter θ. In addition to a regular radiance field, it is conditional on two latent codes:
shape code zs and appearance code za, which determine the object’s shape and appearance. As shown
in Figure 5, the shape encoding h is derived from the positional encoding of γ(x) and shape code zs

and then transformed to the volume density σ by density head σθ. The volume density is computed
independently without using viewpoint d and appearance code za to disentangle the shape from the
appearance during the inference. To predict the color c, the concatenating vector of the shape encoding
h, positional encoding of γ(d), and appearance code za are passed to the color head cθ.
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Volume rendering: Given the color and volume density (ci
r, σ

i
r)

N
i=1 of N points along a ray, the color

cr ∈ R
3 of the pixel corresponding to the ray is obtained using the volume rendering operator π. The

predicted patch P
′

is generated by combining the results of all sampling rays.

3.2.2. Discriminator

The discriminator was implemented as a convolutional neural network with leaky ReLU activation.
To accelerate training and inference, the discriminator compares the synthesized patch P

′

with a patch
P extracted from a real image I drawn from the data distribution pD. To extract a K × K patch from a
real image, the real patch P is sampled by querying a real image at 2D image coordinates P(u, s) using a
bilinear interpolation operation, which is referred to as Γ(I, ν). It was proven that the discriminator with
shared weights was sufficient for all patches even though they were sampled at random locations with
different scales. As the scale determines the receptive field of the patch, starting with patches of larger
receptive fields to capture the global context, patches with smaller receptive fields are progressively
sampled to refine the local details.

3.2.3. Train and inference

During adversarial training, the goal of generator G(θ) is to minimize the objective function, and
that of discriminator D(ϕ) is to maximize the objective function. The non-saturating objective function
V(θ, ϕ) with R1-regularization is defined in Eq (3.7) [42].

V(θ, ϕ) = Ezs,za,ξ,ν[ f (Dϕ(Gθ(zs, za, ξ, ν)))]
+ EI,ν[ f (−Dϕ(Γ(I, ν))) − λ∥∇Dϕ(Γ(I, ν))∥2],

(3.7)

where f (t) = − log(1 + exp(−t)), I denotes an image from the data distribution pD, pν denotes the
distribution over random patches, and λ controls the strength of regularization. Spectral and instance
normalization were used for the discriminator. RMSprop was used as an optimizer with a batch size
of 8 and learning rates of 0.0005 and 0.0001 for the generator and discriminator, respectively.
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3.3. Stylized generative radiance fields

GRAF can synthesize novel views of an object from latent code, although the generation of the
shape and appearance of an object is random and lacks explicit control. To address this issue, we
propose the use of SGRF that enable the implicit representation of multiple 3D objects using a single
MLP, providing precise control over 3D-aware image synthesis according text prompts (labels).

3.3.1. Generator

In the generator, the label codes of the class and style are entangled with a latent vector as the input
of the conditional radiance field. This encourages the generator to use label-embedding latent vectors
to synthesize objects with explicit control in terms of class and style. The schema of label embedding
is illustrated in Figure 6.
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Figure 6. The schema for embedding label codes into latent vectors by multiplication (X).

Input: The random latent code z ∈ N(0 ∽ 1) is split into shape code zs and appearance code za. The
class and style labels are embedded into the embedding layers, and the label-embedded codes z

′

s and z
′

a

are produced by multiplying the shape code zs and appearance code za with the label codes.
Output: In contrast to GRAF, which employs a single value of σ and c, the conditional radiance

field g(θ) in our model produces a volume density array [σ(i)]N−1
i=0 and color array [c( j)]M−1

j=0 , both
indexed by numerical labels. In practice, the number of classes was set to N = 5 and the number of
styles at M = 4.

Conditional radiance field: The network structure of conditional radiance fields g(θ) is illustrated
in Figure 7. The mechanism of prediction for volume density σ and color c is the similar to that of
GRAF. However, the input and output of g(θ) are manipulated for entangling and disentangling label
codes accordingly. In practice, a total of 1024 rays are sampled for one image with parameters P(u, s),
camera pose ξ and intrinsic K, then 64 points are sampled along each ray r. Here, γ(x), and γ(d) are
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the positional encoding of the 3D coordinates x and ray direction d of the point. z
′

s and z
′

a are the latent
codes associated with class and style, respectively.
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j=0.

3.3.2. Discriminator

In addition to using a regular discriminator D(ϕ) to compare the synthesized patch P
′

with a real
patch P, another auxiliary classifier Dvgg based on VGG16 is added to distinguish the class and style of
an object or scene. VGG16 [44] is a classical deep CNN that is typically used for multi-classification
tasks owing to its superior generalization ability. Initially, the discriminator Dvgg is trained using the
annotated images I

′

, which are downsampled from real image I.

3.3.3. Train and inference

In the training phase, the loss function guides network optimization. The discriminator D(ϕ) is
trained using a real patch P and a synthesized patch P

′

with labels. The discriminator Dvgg was trained
using a rescaled real image I

′

. The loss function of G(θ) is expressed by Eq (3.8).

L(G(θ)) =Ladv(D(ϕ)|P
′

i, j) + λ1Lcls(Dvgg|P
′

i, j)

+ λ2Lsty(Dvgg|P
′

i, j),
(3.8)

where Ladv is the adversarial loss of P and P
′

, Lcls and Lsty denote the classification and style loss
of the generator, respectively, and λ1 and λ2 are weights for Lcls and Lsty. In this experiment, MSE
and RMSprop were used as the adversarial loss function and optimizer, respectively, with parameters
λ1 = 2.0 and λ2 = 3.0 and a batch size of 8. During the inference phase, class and style labels are
embedded into latent codes zs and za, respectively, for controllable synthesis of 3D-aware images.
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4. Experiments

4.1. Datasets

Owing to the difficulty in obtaining X-ray data in a real scene, we trained the model on a synthetic
dataset. In a 3D editing software, such as Blender, an object was set at the origin and the camera
was on the surface of the upper hemisphere facing toward the origin of the coordinate system. By
manipulating the camera’s pose, we can capture natural images of an object from a variable perspective.
Subsequently, the captured images were binarized and converted into a semantic map as an input
to an HD pix-to-pix GAN. The four types of semantic maps correspond to the four display styles
individually. The image translator is a pretrained HD pix-to-pix GAN that is responsible for the style
transfer of the captured images. The dataset comprises five classes of images of prohibited items,
such as guns, forks, pliers, knives, and scissors, and each class is displayed in four color modes: grey,
pseudo, hot jet, and reversed. The image synthesis pipeline is illustrated in Figure 8.

HP Pix-to-Pix GAN

G1

G2 G2

Class i
( i=0,1,2,3,4) Style j

( j=0,1,2,3)

xy

z

Semantic
 label

Image translator

Camera

3D Model

Pose

Figure 8. The pipeline of the synthesis of training dataset from 3D models.

4.2. Baselines

We trained the model on the synthesized dataset prepared in Section 4.1 and compared its results
with those of the NERF, GRAF, and GIRAFFE models, respectively. NERF learns 3D geometry from
posed images and synthesizes novel views using differentiable volumetric rendering. GRAF generates
high-quality 3D-aware images from latent codes of shape and appearance without requiring posed
images. GIRAFFE is a combination of multiple MLP networks that represent multiple objects in a
given scene.
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4.3. Evaluation metrics

Frechet inception distance (FID) scores have been extensively adopted to evaluate the quality and
diversity of generated images. We calculate the FID scores using Eq (4.1) [45].

FID = d2((mr,Cr), (mg,Cg))
= ||mr − mg||

2
2 + T r(Cr +Cg − 2(CrCg)1/2),

(4.1)

where pair (mr,Cr ) corresponds to real images, pair (mg,Cg ) corresponds to generated images, and
m and C are the mean and covariance, respectively. We also introduce kernel inception distance
(KID) [46], which does not require a normal distribution hypothesis such as FID and is an unbiased
estimate. In addition, average precision (AP) and mean average precision (mAP) are the most popular
metrics used to evaluate object detection performance.

5. Results

5.1. Synthesis of X-ray images of prohibited items

The model was trained on a synthetic dataset (Section 4.1). We employed an RMSprop optimizer
with learning rates of 0.0001 and 0.0005 for the discriminator and the generator, respectively. During
the inference phase, the inputs of the MLP are label-embedded latent codes z

′

s and z′a and view direction
d(θ, ϕ). The average inference time was 0.7723 s for each image with a size of 128. In Figures 9
and 10, some X-ray images were predicted based on the class and style labels after 50,000 iterations.
In Figure 11, novel views of prohibited items are synthesized by altering the pose of the virtual camera.
Here, θ, ϕ are the pitch and yaw angles of the camera in a spherical coordinate system.

i=0

i=1

i=2

i=3

i=4

j=0

d1 d2 d3 d4 d5 d6 d7 d8

Figure 9. Samples of the synthesized X-ray images of prohibited items with class labels
(i = 0, 1, 2, 3, 4), style labels (j = 0), and view direction d(θ, ϕ).
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j=0

j=1

j=2

j=3

i=0

d1 d2 d3 d4 d5 d6 d7 d8

Figure 10. Samples of the synthesized X-ray images of prohibited items with class label
(i = 0), style labels (j = 0, 1, 2, 3), and view direction d(θ, ϕ).

Ф=60° 

i=0, j=0

θ=30°  

Ф=70° 

Ф=80° 

Ф=90° 

θ=45°  θ=60°  θ=75°  θ=90°  θ=105°  θ=120°  θ=135°  

Figure 11. Novel view synthesis of prohibited items by manipulating camera pose. Here,
θ, ϕ are the pitch and yaw angles of the camera, respectively.

The FID score indicates the differences between the real and generated images; the lower the FID
score, the better the generative model’s performance. As shown in Figure 12, the ‘guns’ and ‘pliers’
presented superior quality and diversity compared to other category because they have more complex
details in the internal structures than other categories.
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Figure 12. FID scores of prohibited items grouped by category and color mode.

5.2. Ablation studies

Our model was derived from the GRAF model by modifying the inputs and outputs of the MLP in
the prototype. Therefore, we performed ablation studies by comparing the results of our model with
those of its counterparts. In Table 1, we quantitatively compared the FID and KID scores of GRAF with
our model under the pseudo-color mode, indicating no significant variance between the two models.

Table 1. FID and KID Comparison for each model in the pseudo-color mode.

Class Gun Fork Knife Pliers Scissor
GRAF (FID) 43.55 45.25 80.14 46.92 55.35
/without (KID) 0.038 0.029 0.084 0.042 0.048
Ours (FID) 47.74 51.81 78.43 48.27 54.52
/with (KID) 0.042 0.032 0.079 0.039 0.050

5.3. Synthesis of x-ray inspection images

By fusing the prohibited item image with a benign background image, we synthesized X-ray
inspection images using pixel-by-pixel alpha-blending algorithms [20]. A schematic of the synthesis
of X-ray inspection images is shown in Figure 13. Some samples of the synthesized images are shown
in Figure 14. The prohibited objects were located within red bounding boxes.
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+

Prohibited item

Mask

Background

Synthesized Image

Figure 13. Schema of synthesis of X-ray inspection images based on the pix-by-pix alpha-
blending algorithm.

(I)

(II)

(III)

Figure 14. Samples of the synthesized X-ray inspection images in the pseudo-color mode.
Each image comprises (I) one prohibited item (II), two prohibited items, or (III) two or more
overlapping prohibited items.

In the experiment, we first prepared two datasets: Dataset A, which included 2000 images selected
from the real dataset, and Dataset B, which included 1000 images from the real dataset and 1000
synthesized images. Each dataset comprises five classes of prohibited items: guns, forks, knives,
pliers, and scissors. The two datasets were then split into training and validation sets in a ratio of 4:1.
For validation, we employed YOLOv8 [47] as the object detection paradigm. The model was trained
on Datasets A and B separately. The training curves demonstrated that the model trained on Dataset
B outperformed the model trained on Dataset A, achieving improvements of approximately 4.4% in
mAP0.5 and 11.9% in mAP0.5:0.95.
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During the inference phase, Model A was the pretrained model on Dataset A and Model B was the
pretrained model on Dataset B. Both models were tested on the same test set, which comprised 500 real
images from an available dataset. By evaluating the mAP values of both models in Table 2, Model B
achieves superior performance over Model A, demonstrating that augmented Dataset B effectively
improves the detection accuracy and generalization ability of the deep learning algorithms. We expect
to further enhance the detection performance by adding additional synthesized X-ray inspection images
to the training set.

Table 2. The evaluation metrics of pretrained Models A and B on the test set.

Model Class P R mAP mAP
(0.5) (0.5:0.95)

Gun 0.79 0.81 0.85 0.56
Fork 0.77 0.63 0.71 0.34

Model Knife 0.62 0.52 0.54 0.30
(A) Pliers 0.72 0.68 0.73 0.47

Scissor 0.71 0.46 0.60 0.42
Mean 0.72 0.62 0.68 0.42
Gun 0.93 0.91 0.92 0.67
Fork 0.78 0.55 0.61 0.37

Model Knife 0.65 0.43 0.56 0.38
(B) Pliers 0.82 0.65 0.83 0.51

Scissor 0.74 0.51 0.62 0.44
Mean 0.78 0.61 0.71 ↑ 0.47 ↑

6. Conclusions

In this study, we propose a novel stylized generative radiance field for the controllable synthesis
of 3D-aware images. By manipulating the input and output of the conditional radiance field (MLP)
and incorporating a new discriminator (VGG16), we enabled the entanglement and disentanglement of
class and style labels into and from random latent vectors, thereby achieving explicit control over the
generation of prohibited items. Moreover, our model can generate nonexistent images in the training set
using transfer learning. The main advantages of this model are that it can learn multiple objects using
a single MLP and synthesize novel views according to class and style labels. The experimental results
reveal that our image generation model significantly increases the quantity and diversity of the images
of prohibited items, and the augmented dataset effectively promotes the accuracy and generalization
of object detection algorithms. Furthermore, our proposed model has the potential to be extended to
other fields such as medial image generation. In the future, we plan to add more subclasses to a class,
such as different types of guns in a gun class, enriching the diversity in the 3D geometry of prohibited
items within one category.
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