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Abstract: Salient object detection (SOD) aims to detect the most attractive region in an image. Fully
supervised SOD based on deep learning usually needs a large amount of data with human annotation.
Researchers have gradually focused on the SOD task using weakly supervised annotation such as
category, scribble, and bounding-box, while these existing weakly supervised methods achieve limited
performance and demonstrate a huge performance gap with fully supervised methods. In this work, we
proposed one novel two-stage weakly supervised method based on bounding-box annotation and the
recent large visual model Segment Anything (SAM). In the first stage, we regarded the bounding-box
annotation as the box prompt of SAM to generate initial labels and proposed object completeness
check and object inversion check to exclude low quality labels, then we selected reliable pseudo
labels for the training initial SOD model. In the second stage, we used the initial SOD model to
predict the saliency map of excluded images and adopted SAM with the everything mode to generate
segmentation candidates, then we fused the saliency map and segmentation candidates to predict
pseudo labels. Finally we used all reliable pseudo labels generated in the two stages to train one
refined SOD model. We also designed a simple but effective SOD model, which can capture rich global
context information. Performance evaluation on four public datasets showed that the proposed method
significantly outperforms other weakly supervised methods and also achieves comparable performance
with fully supervised methods.

Keywords: salient object detection; weakly supervised; segment anything; bounding-box annotation;
deep learning

1. Introduction

Salient object detection (SOD) aims to detect regions of an image that can attract human attention.
It has important applications in various vision tasks, such as object detection [1], image retrieval [2],
and object tracking [3]. Traditional methods detect salient object through handcrafted features [4—8],
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which usually achieve low performance.

The emergence of deep convolutional neural networks in recent years has greatly improved the
performance of SOD. Fully supervised methods [9—13] have shown satisfactory results while needing
expensive pixel-level annotation.

Due to the fully supervised deep learning algorithm relying on pixel-wise annotation, researchers
have gradually focused on the SOD task using weakly supervised annotation. Most previous weakly
supervised SOD methods focus on using image-level category [14—17] and scribble [18, 19] as weak
supervision, which makes it difficult to accurately locate objects and sometimes miss some salient
parts. To address the above problems, Zhang et al. [18] used bounding-box [20, 21] annotation,
adopted the traditional unsupervised SOD methods and iterative refinement to obtain pseudo labels,
and trained a SOD neural network. Wang et al. [22] considered the GrabCut algorithm [23] on the
bounding-box annotation to generate pseudo labels, which is regarded as supervision to train the SOD
model. Both these bounding-box annotation based methods [18,22] achieve limited performance and
demonstrate a huge performance gap with fully supervised methods. For example, compared with the
fully supervised method multi-guidance SOD model (Mguid-Net) [13], the recent bounding-box
annotation based weakly supervised method GC [22] shows higher mean absolute error (MAE) by
67.57% and lower maximum f-measure (Fg) by 9.64% on the DUTS-TE [15] benchmark.

In this paper, we propose one weakly supervised SOD method based on the bounding-box
annotation and the recent large visual model Segment Anything (SAM) [24]. Given one training
dataset and its bounding-box annotations, we first regard the bounding-box annotations as box prompt
for the SAM model to generate segmentation as SOD initial pseudo labels. Although SAM is one
powerful segmentation model, it still may segment incomplete object or incorrectly segment the
background region as object. To conquer the influence of undesired results, object completeness and
object inversion check is proposed to select reliable pseudo labels, then these reliable pseudo labels
are regarded as supervision to train one initial SOD network. Excluding the images with unreliable
pseudo labels from the initial model training is helpful to achieve higher performance, but also
reduces the diversity of training data. To address the impact of dataset reduction and enrich the
training dataset, we adopt the initial SOD network and SAM with the everything mode to generate
more reliable pseudo labels, then train one refined SOD model.

The experimental results show that we achieve significantly better performance than other weakly
supervised methods and also achieve comparable performance with fully supervised methods.

The main contributions of this work include: 1) We propose one method to generate initial pseudo
labels, then carry object incomplete and object inversion check to select reliable pseudo labels for the
training initial SOD model. 2) We propose one method combining the initial SOD model and SAM
with the everything mode to predict more reliable pseudo labels and enrich the training dataset. 3) We
propose one simple yet effective SOD network, which can capture rich global context information. 4)
The proposed method significantly outperforms other weakly supervised methods and also achieves
comparable performance with fully supervised methods.

2. Related work

In this section, we first review the previous SOD methods with weak supervision including
image-level category, scribble, and bounding box annotation, then introduce the recent large visual
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model SAM.

2.1. Weakly supervised SOD

To achieve a trade-off between labeling efficiency and performance, several weakly supervised
methods have been proposed to detect salient object.

Due to existing large-scale classification datasets, image-level category based methods have
received more attention. Wang et al. [15] first proposed to perform SOD with image-level category
labels and design a foreground inference network to predict saliency. Li et al. [14] proposed to
combine a coarse salient object activation map from the classification network and saliency maps
generated from unsupervised methods as pixel-level annotation to train fully convolutional networks.
Piao et al. [16] presented a multi-filter directive network including a saliency network as well as
multiple directive filters, which is designed to extract and filter more accurate saliency cues from the
noisy pseudo labels. Piao et al. [17] designed a noise-robust adversarial learning framework and a
noise-sensitive training strategy to conquer noise pseudo labels generated from category.

The scribble annotation on foreground and background also can be regarded as weak supervision
for SOD. Zhang et al. [18] designed one model based on scribble annotation and edge detection, then
proposed one edge-structure-aware module as a supplement of scribble annotation. Yu et al. [19]
proposed a local coherence loss to propagate the scribble labels to unlabeled regions based on image
features and pixel distance.

Weakly supervised SOD with bounding-box annotation has received wide attention in the past two
years. Liu et al. [25] used bounding-box annotation and the traditional methods to generate initial
pseudo labels, then iteratively refined the initial pseudo labels by learning a multitask map refinement
network with bounding-box annotation finally, they trained one salient object detector supervised by
refined pseudo labels. Wang et al. [22] considered the GrabCut algorithm [23] on the bounding-box
annotation and some adjustment steps to generate pseudo labels, which is regarded as supervision to
train the SOD model.

Some researchers consider combining different forms of weak supervision. Zeng et al. [26] designed
a multisource weak supervision framework to integrate category and caption labels.

Although the above weakly SOD methods were proposed in recent years, these existing weakly
supervised methods achieve limited performance and demonstrate a huge performance gap with fully
supervised methods. In this work, we propose one new weakly method and aim to achieve comparable
performance with fully supervised methods.

2.2. SAM

With the development of deep learning [27-29], many deep learning-based image segmentation
methods [30-32] have achieved significant results, but they usually rely on predefined conditions.
Recently, SAM [24] was introduced to address challenges such as diverse object shapes, sizes, and
complex background conditions. The technique aims to achieve efficient and accurate segmentation of
arbitrary targets, regardless of target shape, size, and background conditions.

SAM can segment the corresponding mask based on prompts such as the given foreground or
background points, bounding-box, mask, and text. The implementation of the above function consists
of three steps: 1) extracting the image embedding, which is a time-consuming process but only needs
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to be calculated once for each image, 2) encoding the user input prompt by the prompt encoder, and 3)
decoding the image embedding and prompt embedding by the mask decoder, extracting the interested
segmentation, and outputting the corresponding predicted masks and the intersection over union (IoU)
score of each mask.

SAM is widely used in computer vision tasks. Chen et al. [33] combined image-level annotation
and SAM for semantic segmentation. Yamagiwa et al. [34] proposed a novel zero-shot edge detection
model with SAM. Zhang et al. [35] introduced a training-free object segmentation approach for SAM
by one-shot tuning on a pair of an image and a mask. Chen et al. [36] incorporated domain-specific
information or visual prompts into the segmentation network and significantly elevated the
performance of SAM. Zhao et al. [37] proposed a speed-up alternative method for SAM with
comparable performance.

In weakly supervised SOD with bounding-box annotation, generation pixel-level segmentation with
bounding-box annotation is the most important step. We can regard the bounding-box annotation as a
box prompt input for the SAM model to generate pixel-level segmentation.

3. Proposed method

The main flowchart of our method includes two stages, which is shown in Figure 1. In the first stage,
given one training dataset and its bounding-box annotations, we regard the bounding-box annotations
as box prompt for the SAM model to generate initial pseudo labels, then carry two label selection
strategies to select reliable pseudo labels as supervision to train one initial SOD network. Excluding the
images with low quality pseudo labels from the initial model training is a double-edged sword, which
helps the model achieve higher performance but also reduces the diversity of training data. The second
stage of our method aims to generate reliable pseudo labels for these excluded images and enrich the
training dataset to train a refined SOD model. Specifically, we use the initial SOD network to predict
the saliency of excluded images and adopt SAM with the everything mode to generate segmentation
candidates, then fuse the saliency and segmentation candidates to predict pseudo labels. Finally we
train one refined SOD model using all reliable labels generated in the two stages.

Stepl: Initial training on reliable labels Step2: Refined training on more labels
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Figure 1. The main framework of the proposed method. In the first step, reliable initial
labels are selected to train the initial SOD network and low quality labels are excluded. In
the second step, some excluded labels are predicted for training the refined SOD network.
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3.1. Bounding-box annotation

In this work, we use bounding-box annotation as weak supervision with two principles: 1) Each
bounding-box is a minimum rectangular box that contains at least one salient object, and 2) the
overlapped objects would be merged into one larger region and annotated by one bounding-box.
Some examples of bounding-box annotation are shown in Figure 2.

Figure 2. Examples of bounding-box annotation.

3.2. Initial pseudo labels generation with SAM

According to the definition of bounding-box annotation, the outside of the bounding-box is the
background and the inside of the bounding-box contains salient object while lacking pixel level
location. Generation pixel level segmentation with bounding-box annotation is the key step of this
task. The existing method [25] considered traditional SOD methods and the constraint of the
bounding box to compute saliency, followed by saliency adjustment and refinement. However, these
traditional SOD methods have poor generalization ability. In [22], authors proposed one
bounding-box based segmentation via the GrabCut algorithm [23], which mainly considers low level
image feature and leads to limited performance.

Recently, one new large visual segmentation model SAM [24] was proposed. SAM supports
bounding-boxes as segmentation prompts. In this weakly supervised SOD task, the bounding-box
annotation in each training image can be used as a box prompt input for the SAM model, and the
SAM segmentation result can be regarded as an initial pseudo label for SOD. Figure 3 shows four
examples of the initial pseudo label generated by the SAM model, where (a) is the input image and
bounding-box annotation, (b) is manual annotated ground-truth, and (c) is the segmentation result of
SAM with box prompt. The left three columns show satisfactory results, while the right three

columns show undesired results.

(a) Image (b) Ground-truth (c) Initial label (a) Image (b) Ground-truth (c) Initial label

Figure 3. Some examples of SAM segmentation with box prompt. The left three columns
show satisfactory results, while the right three columns show undesired results.
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3.3. Initial pseudo label selection

Although the SAM model achieves satisfactory results in many training images, it still shows
obvious deficiencies in some cases. Some object segmentation results are incomplete, and some
background regions are segmented as object. Simply regarding all initial pseudo labels to train salient
object detector will lead to limited performance. To conquer these problems, we propose object
completeness and object inversion check to exclude undesired pseudo labels while reserving high
quality labels.

Object completeness check. Given the input image and bounding-box annotation, which is shown
in Figure 4(a), the ground truth is shown in Figure 4(b), and the SAM with box mode may generate an
incomplete segmentation result. Two segmentation examples are shown in Figure 4(c), where the top
and bottom demonstrate incomplete and complete segmentation results, respectively. To remove the
incomplete result from training, we compute the mean IoU (mloU) to measure the object completeness.
Specifically, given one image and its bounding-box annotations B; (i = 1..n), the segmentation result
of SAM contains m regions and their minimum external rectangle can be denoted as C; j = 1..m).
For each bounding-box B;, we calculate its IoU with each segmentation rectangle C; and select the
maximum value, then calculate the mean IoU of all bounding-boxes:

rousy =, (B0 @3.1)
v B U CYl
1 n
IoU = - loU(B; 3.2
mloU = ~ " 1oU(B)) (3.2)

i=1

where | | means the area function. The mloU indicates the completeness of an initial pseudo label. In
Figure 4(d), the top result shows mloU with value 0.596 and the bottom result shows mloU with value
0.971. For each image, its initial pseudo label with mloU is less than one threshold th,,;,;, which can
be regarded as an incomplete label.

mloU = 0.596

"

| ]
[

(a) Tmage (b) Ground-truth (¢) Tnitial label (d) mloU

Figure 4. Examples of object completeness check. The top and bottom rows show
incomplete and complete object segmentation result, respectively.
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Object inversion check. When salient object occupies most of the image, SAM sometimes ignores
the foreground region and incorrectly segments the background region as object. One example is
shown in the top row of Figure 5. To conquer this problem, we first perform morphological dilatation
filtering on the initial pseudo label, then compute the ratio of object pixels touching the boundary of
the image as follows:

(3.3)

where H and W are the height and width of the image, respectively, and E;, E,, E;, and E, are the
numbers of pixels touched with top, bottom, left, and right boundary of the image. The Bnd measures
the object inversion of the initial label. In Figure 5(d), the top result shows Bnd with value 0.923 and
the bottom result shows Bnd with value 0.066. For each image, its initial pseudo label with Bnd larger
than one threshold thg,,; can be regarded as an inverse label.

(a) Image (b) Ground-truth (c) Initial label (d) Bnd

Figure 5. Examples of object inversion check. The top and bottom rows show inverse and
correct object segmentation results, respectively.

3.4. Training initial SOD network

In the aforementioned section, given one training dataset, we adopt SAM with box mode to generate
initial pseudo labels, which is followed by label selection to exclude undesired pseudo labels while
reserving high quality pseudo labels. The reliable pseudo labels can be regarded as supervision to train
one initial SOD network.

In this paper, inspired by [38], we propose one simple yet effective SOD network, which is depicted
in Figure 6. The proposed SOD model contains three components: an encoder, an atrous spatial
pyramid pooling (ASPP) module, and an attention mechanism based decoder. The encoder is based
on the ResNet101 [39] to extract low-level to high-level visual features and reduce the resolution of
feature maps. The encoder consists of a head-convolution and four residual layers denoted as Layer;
(1€1l,2,3,4). In these four residual layers, the number of residual learning bottlenecks are 3, 4, 23,
3, the strides are set as 1, 2, 2, 1, and the dilations are set as 1, 1, 1, 2, respectively. The resolution of
each residual layer feature is 1/4, 1/8, 1/16, 1/16 of the image resolution, respectively.
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Figure 6. Network architecture of our method. The concat is concatenation operation
among channel axis, and attention mechanism includes a channel attention and spatial
attention operation.

The ASPP module performs multiscale feature extraction and fusion via dilated convolutions, which
allows the extracted features to have a larger receptive field while preserving the resolution of the
feature maps. In the ASPP module, the input feature pass through five parallel layers including a 1 x 1
convolution, three 3 X 3 convolutions with dilation rate of 12, 24, and 36, respectively, and a global
average pooling layer, then the outputs of five parallel layers are concatenated to one high-level feature.

The decoder aims to predict a high-resolution saliency map with object details by fusion high-level
features and low-level features. Specifically, the high-level output of the ASPP module is followed
by 1 X 1 convolution (convl) to yield feature F,. Simultaneously, the low-level feature from Layer,
is dimension reduced by 1 X 1 convolution (conv2) to yield 64-channels feature F,. The high-level
feature F, is concatenated with low-level feature F, and followed by a 3 X 3 convolution (conv3),
which outputs 256-channels feature Fs.

To assign higher weights on potential salient regions and eliminate redundant noise, the feature F;
is fed into one attention mechanism module, which contains a sequential channel attention operation
and a spatial attention operation, inspired by [40]. Simultaneously, the Layer; feature is dimension
reduced to 64-channels feature by 1 x 1 convolution (conv4) and concatenated with the outputs of the
attention mechanism module to recover more object details:

F, = concat((Attn(F5), conv4(Layer))) 3.4)

where concat is the concatenation operation among channel axis, Affn denotes the attention
mechanism, and conv4 denotes one convolution operation.

Finally, the concatenated feature F, passes through two 3 X 3 convolutional layers (conv5, conv6),
one 1 x 1 convolutional layer (conv7), and one upsampling and sigmoid operations to predict saliency.
The cross-entropy loss is selected as the loss function:

1 &
Loss = —— Z{PG,- -log(S;) + (1 — PG;) - log(1 —§,)} 3.5
NS
where N means batch size, PG means the pseudo label, and S means the network predicted saliency.
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3.5. Excluded pseudo labels prediction

In the training of the initial SOD model, some images with incomplete or inverse pseudo labels are
excluded from the training dataset for better performance. This operation also reduces the diversity of
training data and degrades the generalization of the model. In this section, we propose one method to
generate reliable pseudo labels for these excluded images.

Given one excluded image I with bounding-box annotations B; (i = 1..n), the desired pseudo labels
need two requirements: salient and with accurate boundary. For the former condition, we use the
trained initial SOD network to predict the image saliency S, which indicates salient region but lacks
accurate object boundary. For the latter condition, we adopt SAM with the everything mode to generate
all possible segmentation candidates R; (i = 1..k), which can provide accurate object boundary. For
each segmentation candidate R;, in order to determine whether it is salient object or not, two factors
are considered:

(1) The position relative to bounding-box annotations. We denote all pixels inside bounding-box
annotations as M, then calculate the overlapped proportion between segmentation candidate R;
and M:

RNM
RpOS = % (36)

where | | means the area function.

(2) The mean saliency of segmentation candidate. We binarize the predicted saliency S as S ;,, then
calculate pixel-level intersection ratio between segmentation candidate R; and binaried saliency
S bin+

RN S i

Rsal = 3.7
R G-7)

If both the above two metrics exceed threshold thg,,s and thg,,, respectively, the segmentation R;
can be regarded as one salient region. All salient regions in the image I together form the predicted
pseudo label.

One example of excluded pseudo labels prediction is shown in Figure 7. Given the input image and
annotation, which is shown in Figure 7(a), its ground truth is shown in Figure 7(b), its initial pseudo
label generated by SAM with box mode is incomplete object and is shown in Figure 7(c), its saliency
map predicted by the initial SOD network and binarization result is shown in Figure 7(d) and (e), and
SAM with the everything mode generates all possible segmentation candidates with accurate object
boundary, which is shown in Figure 7(f). The segmentation candidates inside bounding-box annotation
and having high saliency are selected to form predicted pseudo label, which is shown in Figure 7(g).
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(b) () (d) (e) (g

Figure 7. The diagram of the excluded pseudo label prediction. (a) input image and
bounding-box annotation, (b) ground truth, (c) initial pseudo label generated by SAM with
box mode, (d) saliency map predicted by initial SOD network, (e) binarized saliency map,
(f) segmentation candidates generated by SAM with everything mode, and (g) predicted
pseudo label.

The excluded pseudo label prediction can generate satisfactory results in most cases, but it
inevitably failed in some cases. The object completeness check is applied on these excluded pseudo
label prediction results once again to select reliable pseudo labels.

The described procedure can be represented using pseudo-code and is shown in Algorithm 1. All
reliable pseudo labels generated in this stage and initial stage are regarded as supervision to train the
refined SOD model.

Algorithm 1 Excluded pseudo labels prediction

Input: bounding-box annotations B; (i = 1..n), segmentation candidates R; (i = 1..k) generated by
SAM everything mode, saliency map S predicted by initial SOD network
Output: pseudo-label mask PG and quality
. PG =]
S pin = binarization(S)
M = all pixels inside bounding-box annotations
for each segmentation candidate R; do
calculate the position relative to bounding-box annotation Rpos using Eq 3.6
calculate the mean saliency Rsal using Eq 3.7
if Rpos > thgy,s and Rsal > thg,, then
PG = PG +R;
end if
end for
: PG=PGNM
calculate mloU between PG and bounding-box annotations using Eqs 3.1 and 3.2
- if mloU > th,,;,y then
return PG, reliable
. else
return PG, unreliable
. end if

R N AT

e e e e e
A U R I 4
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4. Experiments

In this section, to prove the effectiveness of the proposed method, we present experimental results
including implementation details, evaluation metrics, performance comparison, and ablation study.

4.1. Implementation details

This work uses bounding-box annotation as the prompt of SAM to generate an initial label, then
carries object completeness and object inversion check to select reliable labels with threshold
parameter th,,;,y and thg,,, which is selected as 0.9 and 0.3, respectively. In the excluded pseudo label
prediction stage, we use the initial trained SOD model to predict saliency followed by binarization
with threshold 0.25 and we use SAM with the everything mode to generate all possible segmentation
candidates, then select salient region with threshold parameter thg,,, and thg,, which is selected
as 0.95 and 0.3, respectively. The choice of important parameters will be discussed in the
ablation studies.

Our proposed SOD network uses ResNet101, which was pretrained on ImageNet [41] as encoder
backbone. For the decoders, the convolutional layers weights are initialized by normal distribution
with 0.01 standard deviation and zero mean value. Each 3 X 3 convolutional layer is followed by a
relu and a batch norm layer and the 1 X 1 convolutional layer conv2 and conv4 are followed by a batch
norm layer only. We use the stochastic gradient descent to train the SOD network 40 epochs with an
initial learning rate of 2 x 1078, a weight decay of 5 x 107, and a momentum of 0.9. The learning rate
is decreased by 10% at 10 epochs and batch size is set as 10. To predict the pseudo label of excluded
images in the first stage, we use the initial trained SOD network to predict their saliency and fuse SAM
segmentation with the everything mode. For predicting better saliency with the initial SOD network,
the image feed to training initial SOD network is resized to 512 x 512. In training the final SOD
network, following fully supervised method stacked cross refinement network (SCRN) [9], we resize
the input image to 352 X 352 and scaled resolution with [0.75, 1, 1.25] times to augment data.

4.2. Datasets

Train data: Following the weakly supervised method based on the bounding-box annotation [25],
we take DUTS-TR [15] as the training set, which contains 10553 images. Although the training set
already has pixel-level annotation, we do not use pixel-level annotation.

Test data: To verify the performance of the proposed method, tests were conducted on four public
datasets: DUTS-TE [15], extended complex scene saliency dataset (ECSSD) [42], DUT-OMRON [8],
and HKU-IS [43]. The DUTS-TE dataset contains 5019 test images, which contain important scenes
for saliency detection. The ECSSD dataset consists of 1000 images with different sizes and multiple
targets. The DUT-OMRON dataset contains 5168 images, and the dataset scenes are complex and
contain one or multiple objects. The HKU-IS dataset contains 4447 images with high-quality pixel-
wise annotations.

4.3. Evaluation metrics

Maximum F-measure(Fg): The performance measurement computed by the weighted harmonic
of the precision and recall is below:
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ro (1+B)xPxR
F™ B xP+R
where 52 is set to 0.3 to raise more importance on precision.

MAE: The difference between the saliency map S and the ground-truth G can be calculated as
below:

4.1)

1 W H
MAE = o 3 ) 1S (y) = Gyl (4.2)

x=1 y=1

4.4. Performance comparison

We compare our method against some recent state of the art methods, including fully supervised
models progressive attention guided recurrent network (PAGR) [44], gated bi-directional message
passing module (BMPM) [45], detect globally and refine locally (DGRL) [46], pixel-wise contextual
attention network (PiCANet) [47], SCRN [9], visual saliency transformer (VST) [10],
PoolNet-R+ [11], integrity cognition network (ICON-R) [12], Mguid-Net [13], weakly supervised
models alternate saliency map optimization (AMSO) [14], weakly supervised saliency (WSS) [15],
NWS [26], saliency bounding boxes (SBB) [25], GC [22], weakly-supervised SOD via scribble
annotations (WSSA) [18], multi-filter directive network (MFNet) [16], structure-consistent weakly
supervised SOD (SCWSSOD) [19], noise-sensitive adversarial learning (NSAL) [17], and
unsupervised models texture-guided saliency distilling (TSD) [48], uncertainty mining network
(UMNet) [49], unsupervised domain adaptive SOD (UDASOD) [50], and encoder-bigbigan
(E-BigBiGAN) [51]. For fair comparison, we use either the implementations or the saliency maps
provided by the authors.

Quantitative Comparison: Table 1 shows quantitative comparison between our work and nine
fully supervised, nine weakly supervised, and four unsupervised methods. The up (down) arrow
indicates that the larger (smaller) value is better. Compared with unsupervised and weakly supervised
models, we significantly show better performance on all datasets and every evaluation metric.
Compared with fully supervised models PAGR [44], BMPM [45], DGRL [46], and PiCANet [47], the
proposed method also achieves better performance. Compared with fully supervised models
SCRN [9], VST [10], PoolNet-R+ [11], ICON-R [12], and Mguid-Net [13], our work shows only a
slightly worse, even comparable performance, while these methods need human Ilabeling
pixel-wise annotation.

We also trained our proposed SOD network with manual ground-truth of the training dataset DUTS-
TR [15]. The parameters and training setting are the same as training the final SOD model in weakly
mode. In manual ground-truth, although the object and background are usually presented as 1 and 0, we
find that it is not binarized on the object boundary. Each training image is annotated by several people,
and their annotations show little difference in object boundary. The final ground-truth is the mean
of all annotations. Since our pseudo-label is binarized, for fair comparison, we trained our proposed
SOD network with manual ground-truth and their binarization, which are denoted as Ours_GT and
Ours_GT* in Table 1. Compared with Ours_GT*, our weakly supervised method shows comparable
performance except for a slightly worse performance on challenging the DUT-OMRON dataset, and
Ours_GT shows larger MAE, mainly due to lacking binarization on object boundary of ground-truth.
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Qualitative Comparison: Figure 8 shows a few saliency maps of the evaluated methods. The
visual comparison shows that our method performs well and is robust, and can adapt to complex or
small object scenes.

Table 1. Quantitative comparison of our method with other methods. The up (down) arrow
indicates that the larger (smaller) value is better, the bold representation means the best result.

.. . ECSSD DUTS-TE HKU-IS DUT-OMRON
Methods Supervision Input size
F;T  MAE|l Fz;1 MAE| F,1 MAE| F;1 MAE|

PAGR [44] Fully 353x353 0927 0.061 0.855 0.056 0918 0.048 0.711 0.071
BMPM [45] Fully 256x256 0928 0.044 0.850 0.049 0920 0.038 0.775 0.063
DGRL [46] Fully 384x384  0.925 0.043  0.834 0.051 0914 0.037 0.779 0.063
PiCANet [47] Fully 224x224 0935 0.047 0.860 0.051 0919 0.043  0.803 0.065
SCRN [9] Fully 352x352  0.950 0.038  0.888 0.040 0.934 0.034 0812 0.056
VST [10] Fully 224x224 0951 0.033  0.890 0.037 0.942 0.029 0.825 0.058
PoolNet-R+ [11] Fully 300400 0.949 0.040 0.894 0.039 0941 0.034 0.831 0.056
ICON-R [12] Fully 384x384 0950 0.032 0.892 0.037 0939 0.029 0.825 0.057
Mguid-Net [13] Fully 352x352 0946 0.035 0.892 0.037 0.938 0.031 0.805 0.056
Ours_GT Fully 352x352 0944 0.042 0.893 0.038 0.939 0.033 0.811 0.055
Ours_GT* Fully 352x352  0.948 0.035 0890 0.037 0.942 0.029 0812 0.055
AMSO [14] Weakly 328x328 0.810 0.114 0.625 0.123  0.821 0.091  0.633 0.100
WSS [15] Weakly 256x256  0.828 0.105  0.657 0.106  0.821 0.081 0.611 0.111
NWS [26] Weakly 256x256  0.846 0.096  0.704 0.097 0.823 0.086 0.619 0.109
SBB [25] Weakly 256x256  0.878 0.072  0.775 0.073  0.869 0.057 0.751 0.075
GC [22] Weakly 300400  0.894 0.062 0.806 0.062 0.880 0.052 0.791 0.065
WSSA [18] Weakly 256x256  0.884 0.061 0.780 0.062 0.874 0.047 0.740 0.068
MEFNet [16] Weakly 256x256  0.873 0.084  0.763 0.079 0.875 0.058  0.685 0.098
SCWSSOD [19] Weakly 320320 0915 0.049 0.844 0.049 0909 0.038 0.783 0.060
NSAL [17] Weakly 256x256  0.878 0.078  0.781 0.073  0.882 0.051 0.715  0.088
Ours Weakly 352x352  0.945 0.035 0.889 0.036 0.932 0.031 0.793 0.055
TSD [48] Unsupervised  320x320  0.926  0.044 0.843  0.047 0.914 0.037 0.790 0.061
UMNet [49] Unsupervised 320x320  0.903 0.063  0.798 0.067 0.907 0.041 0.787 0.063
UDASOD [50] Unsupervised  352x352  0.929 0.043  0.850 0.050 0923 0.035 0.778 0.059

E-BigBiGAN [51]  Unsupervised 512x512  0.825 0.162 0.668 0.195 0.804 0.155 0.607 0.232
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Figure 8. Saliency quality comparison between our work with recent methods.
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4.5. Ablation study
4.5.1. Approach effectiveness analysis

In this work, we first adopt the bounding-box annotations to generate initial pseudo labels and select
reliable pseudo labels to train one initial SOD model, then predict more reliable pseudo labels to enrich
the training dataset and learn the refined SOD model. For fair comparison, we follow SCRN [9] and
use multiscale augmented training data to train the final SOD model. To verify the effectiveness of
each step, we also train one baseline SOD model with all initial pseudo labels. The performance of
these SOD models is shown in Table 2. Compared with the baseline model, the initial SOD model
achieves significant performance improvement, especially the MAE metric reduced by 13.04%. This
result proved that the removal of low-quality labels for model training is effective. The refined SOD
model further improves performance and the MAE metric is reduced by 5%, which mainly benefited
from the excluded pseudo label prediction. The final SOD model demonstrates the best performance.

Table 2. The performance comparison of SOD models with different training settings on
DUTS-TE dataset. The up (down) arrow indicates that the larger (smaller) value is better.

Method Training Setting Image Num FzT MAE|
Baseline all initial labels 10553 0.854 0.046
Initial SOD reliable initial labels 8452 0.869 0.040
Refined SOp  "chable initiallabel g0 0.875 0.038

+reliable predicted label
reliable initial label
Final SOD +reliable predicted label 9847 0.889 0.036
+multiscale training

4.5.2. Initial reliable labels selection

To generate initial reliable labels from SAM with box mode, we carry object completeness and
object inversion check to select labels. For each image, its initial pseudo label with object
completeness measure mloU less than threshold #h,,,,; or object inversion measure Bnd larger than
one threshold thg,; will be removed from the initial SOD model training. The label selection is one
key step of our method. In order to analyze the parameter influence of the label selection, we use
different threshold parameter settings to select reliable labels and train the initial SOD model, then
evaluate the model performance. The experimental results are shown in Table 3. The parameter value
x means the selection parameter is invalid and turns off the selection operation.

We first turn off the two label selection operations as baseline, which is shown in the top row of
Table 3. We set object inversion parameter thg,;, with 0.9, 0.6, 0.5, 0.3, and 0.15 and set object
completeness parameter th,,;,y with 0.3, 0.6, 0.7, 0.9, and 0.95. The smaller parameter thg,,; and the
larger parameter th,,;,y means more strict label selection condition, which can generate more reliable
pseudo labels and achieve performance improvement. On the other hand, the excessively strict label
selection condition also decreases the number and diversity of training data, which leads to
performance drop. The parameter thg,; with 0.3 and the parameter th,,;,; with 0.9 shows the best
performance, which is selected as the best parameter.
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Table 3. The label selection parameter analysis on DUTS-TE dataset. The up (down) arrow
indicates that the larger (smaller) value is better, the bold representation means the best result.

thg o Initialed SOD
" mo Image Num Fg 1 MAE |

X X 10553 0.854 0.046
0.90 0.30 10328 0.858 0.045
0.60 0.60 9803 0.865 0.043
0.50 0.70 9555 0.863 0.043
0.30 0.90 8452 0.869 0.040
0.15 0.95 6848 0.861 0.042

Table 4. The single thp,, parameter analysis on DUTS-TE dataset. The up (down) arrow
indicates that the larger (smaller) value is better, the bold representation means the best result.

thg Initialed SOD

" Image Num Fg? MAE |
0.90 10494 0.858 0.047
0.60 10473 0.858 0.047
0.50 10460 0.858 0.047
0.30 10393 0.860 0.045
0.15 9997 0.855 0.046

Table 5. The single th,,;,; parameter analysis on DUTS-TE dataset. The up (down) arrow
indicates that the larger (smaller) value is better, the bold representation means the best result.

o Initialed SOD

mie Image Num Fg1 MAE |
0.30 10393 0.859 0.047
0.60 9963 0.859 0.044
0.70 9709 0.865 0.041
0.90 8612 0.861 0.042
0.95 7234 0.861 0.042

We also explored the effect of only using object inversion parameter thg,,; or object completeness
parameter th,,;,y, which is shown in Tables 4 and 5, respectively. Parameters of thg,; and th,,;,u
settings remain the same as in Table 3. The experimental results conclusion is similar to Table 3. The
smaller parameter thg,; and the larger parameter th,,;,; means more strict label selection condition,
which can generate more reliable pseudo labels and achieve performance improvement. On the other
hand, the excessively strict label selection condition also decreases the number and diversity of training
data, which leads to a performance drop. When only using object inversion parameter thg,; to select
reliable labels, thg,, with 0.30 still shows the best performance in Table 4, but demonstrates a slightly
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worse performance than the performance in Table 3 when thg,, with 0.30 and th,,;,; with 0.90. This
phenomenon proves that object inversion check and object completeness check are complementation
operations to select reliable labels. One similar conclusion is also presented in Table 5.

4.5.3. Excluded label prediction

To predict the pseudo label of excluded images in the first stage, we use the initial SOD network to
predict their saliency and adopt SAM with the everything mode to generate segmentation candidates.
For each segmentation candidate, we calculate its position measure Rpos and saliency measure Rsal.
If both Rsal and Rpos exceed threshold thg,,, and thg,, ,the segmentation candidate will be considered
as a salient region. We set parameter thg,,s; with 0.60, 0.90, 0.95, 0.97, 0.99 and set thg,, with 0.1,
0.2, 0.3, 0.5, 0.7, then train the refined SOD model and evaluate the performance, which is shown in
Table 6. The model performs the best performance when the parameter thg,,, 1s set to 0.95 and thg,
is set to 0.3.

Table 6. The excluded pseudo label prediction parameter analysis on DUTS-TE dataset. The
up (down) arrow indicates that the larger (smaller) value is better and the bold representation
means the best result.

the, thee Refined SOD

pos - Image Num Fg1 MAE |
0.60 0.1 9990 0.872 0.040
0.90 0.2 9900 0.873 0.039
0.95 0.3 9847 0.875 0.038
0.97 0.5 9750 0.873 0.039
0.99 0.7 9620 0.871 0.039

Table 7. The single thg,,, parameter analysis on DUTS-TE dataset. The up (down) arrow
indicates that the larger (smaller) value is better and the bold representation means the
best result.

the Refined SOD

pos Image Num Fs 1 MAE |
0.60 10313 0.859 0.051
0.90 10261 0.868 0.044
0.95 10244 0.868 0.044
0.97 10232 0.863 0.045
0.99 10214 0.874 0.041

In addition, we further discuss the result of only using position measure parameter thg,,s and
saliency measure parameter thgy,, which is shown in Tables 7 and 8, respectively. Parameters of
thgpes and thg, settings remain the same as in Table 6. When only using position measure parameter
thrpes to predict reliable labels of excluded images, higher parameter thg,,; means more strict
condition, which can generate more reliable pseudo labels and achieve performance improvement.
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For the parameter thg,,,, even when selected as the very large value 0.99, there are still 10214 images
for training the refined SOD model and maintaining the diversity of training data. When only using
saliency measure parameter thg,, to predict reliable labels of excluded images, higher parameter thg,,
means more strict condition, which can generate more reliable pseudo labels and achieve performance
improvement. On the other hand, the excessively strict condition also decreases the number and
diversity of training data, which leads to performance drop. The parameter thg,, with 0.3 still shows
the best performance in Table 8, but demonstrates a slightly worse performance than the performance
in Table 6 when thg,, with 0.3 and thg,,, with 0.95. This phenomenon proves that position measure
and saliency measure are complementation measures to select reliable labels.

Table 8. The single thg,, parameter analysis on DUTS-TE dataset. The up (down) arrow
indicates that the larger (smaller) value is better and the bold representation means the
best result.

thew Refined SOD

- Image Num Fg? MAE |
0.1 10017 0.872 0.039
0.2 9952 0.870 0.039
0.3 9907 0.873 0.038
0.5 9800 0.872 0.039
0.7 9672 0.868 0.041

5. Conclusions

Fully supervised SOD based on deep learning usually needs a large amount of data with human
annotation. The weakly supervised method based on category, scribble, and bounding-box consumes
low annotation cost while achieving limited performance and demonstrating a huge performance gap
with fully supervised methods. Research on the weakly supervised method with low annotation cost but
achieving comparable performance with fully supervised methods is still challenging for the SOD task.

In this paper, we propose one weakly supervised SOD using bounding-box annotation with two
stages. In the first stage, we use the bounding-box annotation as the box prompt of SAM to generate
initial pseudo labels, then carry object completeness and object inversion check to select reliable
pseudo labels for training the initial SOD model. In the second stage, we use the initial SOD model
and SAM with the everything mode to predict more reliable pseudo labels, then use the reliable
pseudo labels generated in the two stages as supervision to train one refined SOD model. Experiments
show that we achieve significantly better performance than other weakly supervised methods, and
also achieve comparable performance with other fully supervised methods.

However, the proposed method contains two stages and is difficult to achieve global optimization. In
the future, we will consider one end-to-end method to solve this problem. In addition, we will consider
further reducing the annotation cost with unsupervised methods such as k-means clustering [52] and
contrastive learning. We also will consider applying this method to related fields such as SOD on
optical remote sensing images [53-55].
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