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Abstract: In response to the pressing need to understand anthrax biology, this paper focused on the
dynamical behavior of the anthrax model under environmental influence. We defined the threshold
parameter R, when R* > 1; the disease was almost certainly present and the model exists a unique
ergodic stationary distribution. Subsequently, statistical features were employed to analyze the dynamic
behavior of the disease. The exact representation of the probability density function in the vicinity of
the quasi-equilibrium point was determined by the Fokker-Planck equation. Finally, some numerical
simulations validated our theoretical results.
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1. Introduction

Anthrax is a contagious disease caused by bacteria produced by gram-positive endospores and
can be spread between animals and humans [1]. The disease can infect all warm-blooded animals,
especially herbivores such as cattle, sheep, goats, and horses [2-5]. When herbivores ingest a sufficient
number of spores from soil and plants, they are usually infected with anthrax. Once infected, the
animal will die within 24—48 hours [6,7]. Humans are infected with anthrax primarily through contact
with diseased animals. Once the bacteria enters the human body, it can cause symptoms such as fever,
skin lesions and breathing difficulties [7]. Anthrax spores have a strong ability to survive, which
can result in contaminated soil and water becoming long-lasting sources of infection [8,9]. Anthrax
occurs worldwide in 2004, a massive outbreak of anthrax killed up to 500 animals in Zimbabwe,
and 109 animal anthrax deaths were reported in North Dakota in 2005. Between August 2009 and
October 2010, there was an outbreak of 273 human cutaneous anthrax cases and 140 animal anthrax
deaths in Bangladesh [10-14]. In a limited resource environment, anthrax has caused great harm to
the development of animal husbandry and human health. As a result, anthrax has attracted widespread
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attention, and some progress has been made in disease control and vaccine research. In order to
efficiently control the spread of anthrax, it is imperative to investigate the dynamics of the disease.

In the past few decades, various mathematical models have been intensively studied on anthrax
dynamics. In previous studies, Hahn and Furniss analyzed how anthrax spreads and determined the
threshold of the disease [15]. In relation to animal migration, Friedman and Yakubu addressed the
basic reproduction number of the model. They examined the sufficient conditions for the presence
of an endemic equilibrium point in the diffusion model [16]. Mushayabasa et al. investigated the
global asymptotic stability of the endemic equilibrium point by analyzing a model that considers the
vectorial impacts of anthrax transmission [17]. In fact, the spread of the virus is linked to climate,
season, temperature and humidity. Due to the complexity of the environment system, the parameters
of the system inevitably change randomly due to perturbations, thus making it random. Incorporating
randomness into mathematical models of biological and biochemical processes is essential for gaining a
deeper comprehension of the mechanisms that regulate biological systems [18]. From [19,20], Cai and
Wang examined how changes in the environment affect the spread of diseases by analyzing the random
fluctuations in a susceptible-infected-susceptible (SIS) model that includes media coverage. However,
few studies have constructed stochastic processes into anthrax models, which facilitates the study in
this paper.

Soil renovation, heavy rains, and flash floods can lead to a rise in spore levels in the surroundings,
heightening the likelihood of infection [21]. It is crucial to take into account environmental disturbances
when studying anthrax. Based on the existing research [7], we present a stochastic model of anthrax to
explore the impact of stochastic disturbances on threshold dynamics. The stability of the new model
and the probability density function in the case of disease persistence are worth studying. It is well
known that the endemic equilibrium point and the basic reproduction number can reflect the persistence
of the disease for identified systems. However, environmental perturbations are unpredictable, so there
is no positive equilibrium in the stochastic system [22]. In this way, a stochastic anthrax model is
investigated for the stationary distribution of disease persistence. In practice, the statistical nature of
the model can lead to prevention and control the disease easier [22,23]. However, the resolution of
the high-dimensional Fokker-Planck equation presents a challenging task, and only a limited number
of research endeavors have been dedicated to addressing the computation of the probability density
function. To close this gap, in this paper we employ the four-dimensional Fokker-Planck equation
to investigate the probability density function for the stochastic anthrax model. Our article has the
following contributions:

e On the basis of existing research [7], we propose a stochastic anthrax model. Sufficient conditions
for the existence of an ergodic stationary distribution of globally positive solutions are established.

e The probability density function expression has been explored by few studies due to the difficulty
of solving the high-dimensional Fokker-Planck equation. Therefore, this study investigates the
precise representation of the probability density function in the vicinity of the quasi-equilibrium
point of the model when a persistent disease is present.

The rest of our paper is arranged as follows. Section 2 introduces the mathematical models and gives
the relevant notation and lemma. Section 3 proves the unique ergodic stationary distribution existence
when R* > 1. In Section 4, when R® > 1, the probability density function is obtained by solving the
Fokker-Planck equation in four dimensions. Section 5 provides the numerical simulations for our results
of the analysis. The main results are discussed in Section 6.
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2. Model formulation and preliminaries

2.1. Anthrax model formulation

Understanding the transmission mechanisms of anthrax epidemics requires the use of mathematical
models as an important tool. As it is known that there are different forms of anthrax models, here we
consider the following anthrax model [7]:

ds () _ _N@,  SOI@) _ _
S = N0 = 52— =D - AS 0 = 1. COS O = SO + 710,
A0 _ ) SOHD | ADS @) + 1. COS @) — (y + 1+ DI,
dr N(?) 2.1)
% = —aA(t) + BC(1),
dC
% = (y + WI(8) = 6(S (1) + I())C(1) — kC(0),

where S(r) and I(¢) are the number of susceptible and infected animals at time t, respectively.
N(t) = S(t) + I(¢) denotes the total live animal population at time t, A denotes grams of spores in
the environment, and C denotes the number of infected carcasses. The birth rate of animalsisr > 0, K
is the animal carrying capacity, and rN(1 — %) is born into the susceptible class per unit time. 7, is the
transmission rate of environment to susceptible animals, 7, is the transmission rate of infected carcasses
to susceptible animals, and 7; is the transmission rate of infected animals to susceptible animals, so
n, > 0,n. > 0,17; > 0. u is the death rate, y is the disease death rate, « is the spore decay rate, § is
the spore growth rate, ¢ the is carcass consumption rate, « is the carcass decay rate, and 7 denotes the
recovery rate of infected animals.

Assume that —— < 1, otherwise the anthrax increase is unbounded. On account of the total live

YHUFT

animal population as N(¢) = S (¢) + I(t), adding the equation S (¢) and /(¢) results in

dN(7) N(1) N(1)
_— 1 - ) — - I < 1 T 9
m rN(t)( X ) = uN(1) — yI(1) < rN(1)( z ) — uN(1)
and if 7 > u, this implies that lim sup,_,, N(t) < K(1 = £) = S,
Assuming 0 < N(0) < Sy, the positive invariant is

S S
F={(S,1,A,C)eRi|o<s+1<s0, 0<a PO+ o~ OHW o}_

a(8So+x) 8So+«k

The disease-free equilibrium point E, and the endemic equilibrium point E* are obtained by solving the
equation. Ey = (59,0,0,0), E* = (S*,I*,A*,C*), where

N* + I + wI*
D a(ON* + k) ON* + k
N*=8,—- %(1 - 3)with D = . +'L" — 4+ yZZﬁT 5';;;92 + yz;’; ag'xfﬁk), and the basic reproduction number of
Model (2.1) is
i + CS + aS
Ryi= — M, Y¥H NSo  YHE  BhSo

Ty +u+T yH+u+16So+k y+u+1adSe+k)
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Stochastic system
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Figure 1. The flow chart of anthrax transmission.

According to Saad-Roy et al. [7], the main results about the stability of the equilibrium point are
as follows:

(i) If Ry < 1, the disease-free eqilibrium Ey = (5,0, 0, 0) is globally asymptotically stable; thus a
small outbreak of anthrax is eradicated. If Ry > 1, the disease-free equilibrium is unstable; thus,
anthrax persists.

(i1) If Ry > 1, there has a unique endemic equilibrium with E* = (§*, ", A*, C*), which is globally
asymptotically stable in .

In real life, the dynamic behaviors of anthrax are disturbed by random factors in nature. In this paper,
we consider random noise on the basis of the Model (2.1) and adopt the method used by Imhof et al. [24].
Our hypothesis posits a direct correlation between stochastic fluctuations and S (¢), 1(¢), A(¢), C(¢). Thus,
the stochastic model for anthrax transmission is to be described in the following form:

_ N@ . SOI@)
ds @ =[rN)(1 - —=) = mi NGO

S®1
A1) =[50 + BADS @)+ 1.COSO = (3 + i+ DIOIdr + (DB, ©2)

= 1aAWDS (1) = nCOS (1) — uS () + TI(D)]ds + 071 S (HdB, (1),

dA(f) =[-aA(r) + BC(H)]dt + o3 A(1)dB3(1),
dC(n) =[(y + wI(1) = 6(S (1) + [(N))C(1) — kC(D)]dr + o4 C(1)dBa(1),

where o; (i = 1,2, 3,4) represents the intensities of the white noises and the definition of B;() (i = 1,2,3,4) is
based on complete probability space and is independent of standard Brownian motions. The transmission
diagram illustrating the dynamics of anthrax transmission is shown in Figure 1. After giving the basic
information of the anthrax model, the relevant lemma is given in the following section.

2.2. Notations and lemmas

Throughout this paper, we use X(t) = (S (¢), I(1), A(t), C()) as the solution of Model (2.2) with the
initial value X(0) = (S5(0), 1(0), A(0), C(0)). Let (Q, F,{F:}0,P) be the probability space with the
filtration {¥},»( satisfying the usual conditions that are right continuous, and ¥ contains all P-null sets.
Let RY be an-dimensional Euclidean space and U, = [+ - n] X [ - n] X [1 - n] X [1 - n].
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Our focus in this section is on the existence and uniqueness of a globally positive solution. In order
to achieve this goal, Lemma 2.1 is introduced to demonstrate the existence of a positive solution to the
Model (2.2). The proof of the existence theorem for positive solution can be obtained in terms of Mao
and Bahar [25,26], so the proof is omitted here.

Lemma 2.1. For any initial value X(0) = (S(0),1(0), A(0), C(0)) € R?, Model (2.2) has a unique
global positive solution X(t) = (S (1), 1(t), A(t), C(t)),t = 0, and the solution will remain in Ri with
probability one.

Based on the existence of the positive solution, the next step we will concentrate on is the asymptotic
estimate of the Model (2.2).

Lemma 2.2. Iffor all € > 1, the following inequalities hold
(e — o7 (e - o3

+1, 62(y+,u+7')>('y+,u+7')+ 2

€Mi+p+1)>7+ +1,

e(e — 1)o? e(e — 1o @.3)
T3+ 1, ex > (e — 1)(y+,u)+ﬁ+T4

there exists a positive constant T'(€) such that the solution X(f) = (S (1), I(t), A(t), C(¢)) with initial value
X(0) C R? has the following property limsup,_, . E|X(?)| < T(€). For this expression, the solution X(f)
is stochastically ultimately bounded.

ea>(e—-1)B+ +1,

The proof of Lemma 2.2 is shown in the Appendix.

Let X(f) be a regular time-homogeneous Markov process in R! described by the following stochastic
differential eqaution: dX(¢) = b(X)dr + 21;:1 g-(X)dB,(t). The diffusion matrix is defined as follows:
B(X) = ((b; (X)), b; (X) = Zle gigi(X), where X(¢) is nonsingular [27], then we have the follow-
ing lemma.

Lemma 2.3 (Khasminskii [27]). The Markov process X(t) has a unique ergodic stationary distribu-
tion v(-) if there exists a bounded open domain U C R! with regular boundary T and if it has the
following properties:

(i) There exists a positive E such that szzl bi(X)é&; > Eé?, XeU, E eR/;

(ii) There exists a nonnegative C*-function V such that LV is negative for any X € R\U.

Thus the Markov process X(t) has a stationary distribution v(-). Let f(x) be a function integrable with
respect to the measure m, for all x € R'. We can get

T
P{lim lf f(X(@)dt = f f)n(dx)} = 1.
T—oo T 0 Rl

According to the Routh-Hurwitz stability principle and Zhou et al. [28], the following algebraic
equation solving theory is given.
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Lemma 2.4 (Zhou et al. [28]). For the four-dimensional real matrix D = diag(oy,03,03,04), Z =
(aij)axa, the characteristic polynomial of Z is wz({) = {* + 518 + 520* + 53¢ + s4. Assuming that
A = (vjj)ax4 is a symmetric matrix, we have the following algebraic equation

D*+ZA+AZ" =0.
If Z has all negative real part eigenvaues, that is,
S1 >O, S3>O, S]SZ—S3>O,

then A is a positive definite matrix.

Using Lemmas 2.5-2.7, we will develop solutions for the four dimensions as described by Tan et
al. [23] and Zhou et al. [29].

Lemma 2.5 (Zhou et al. [29]). For the algebraic equation G+ B X,+X,B] = 0and G = diag(1,0,0,0),

—a; —a, —-az —ay rm 0 rs3 O
1 0 0 0 0 1)) 0 g
Bl = ’ Xl = ’ (24)
0 1 0 0 ris 0 r3 0
0 0 1 0 0 4 0 r44
— as - _ —a — (az—aias - _ — diax—as
where ry = 2(a1(a2a3_a1a4)_a§),r13 r, 133 = 12,7 a 122,724 33, 744 azas 122 If

a; >0,a3>0,a4 >0and aja, —az > 0,a1(aras — ayas) — ag > 0, then the matrix X, is postive definite.

Lemma 2.6 (Tan et al. [23]). For the algebraic equation G% + B X, +XQB§ = 0and Gy = diag(1,0,0,0),

-by -b, -b3 —by 0 713 0

_ 1 0 0 0 _ 0 7 0 O
B=lo 1 0o ol Xz‘m 0 73 0|
0 0 0 baa 0O 0 0 O

where722 = m,?’iw = —722,7"]1 = b27'22,7"33 = %722. Ifb] > 0,b3 > 0 and b1by, — by > 0, then the

matrix X, is semi-postive definite.

Lemma 2.7 (Tan et al. [23]). For the algebraic equation G(Z) + B, X, + X2B2T = 0and Gy = diag(1,0,0,0),

—C1 —Cp —C3 —C4 ri 0 00
1 0 0 0 0 7 0 0
Bi=10 o e cul| %=1o 0 0 o]
0 0 C43 Cy4 0 0 00
where'ry; = 2—21,722 = ﬁ If ¢y > 0 and ¢, > 0, then the matrix X5 is semi-postive definite.

For a stochastic model, stability is the basis for studying other properties, so the stationary distribution
is an important research content. Thus, the ergodic stationary distribution of the Model (2.2) is studied
in the following section.
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3. Stationary distribution

Due to the complex structure of nonlinear systems, it is generally difficult to solve their state
equations. Therefore, the Lyapunov method has been widely applied [30—35]. In this section, within the
framework of the stochastic Lyapunov method, we will provide sufficient conditions for the ergodicity
of the global positive solution and the existence of a stationary distribution.

Define

0'2 0’2
ni + 7+(ﬂ+71) r/cSO + ')’+(/1+71) ﬁnaSO
2

RS:: 2 2 2 2 2 ’
YHU+T+ 2 y+u+T+ 200+ k+Z) y+u+T+ 2 (@+ D)[0So+ (k+ )]

where R’ is a stochastic threshold for Model (2.2). Next, its ergodicity is discussed using threshold.

Theorem 3.1. If R® > 1, for any initial value (S (0), 1(0), A(0), C(0)) € R%, then Model (2.2) has a
unique stationary distribution v(-) and it follows the ergodic property.

Proof. The diffusion matrix of Model (2.2) is given by

o382 0 0 0
0 22 0 0
0 0 o242 0 |
0 0 0 o

B(X) = (b j(X))axa = (3.1)

where X = (S,1,A,C). Choose E = min(s,,A,C)egcRi{osz,0'312,a’%Az,oﬁCz}, then we have E > 0,
where U = [+ - n] X [+ -n] X [+ -n] X [+ -n]. Forany (S,1,A,C) € U and (¢, &, &3, €4) € RY, from (3.1),
we have )
D bi(X)Ek; = 186 + PE + FAE, 3 C2E > Bl
ij=1
where |£] = (& + & + & + fﬁ)%, then the condition (i) in Lemma 2.3 holds.
Construct the following function:

Wi=S+1I+A+C—-mInS —mglnl—mzmglnA—m2m4lnC,

and the positive constants m; (i = 1,2, 3,4) will be determined at a later stage. By Ito’s fomular, it can
be obtained that

m N Ay
LW, =-— ?‘ [rN(l — ) ~MAS = 1CS i~ — S + 71]

mi‘m3 (@A + BC)

SI
- % [naAS +n.CS + Uiﬁ —(y+u+ T)I] —
myomy
C
moiS?  moilP mymyo3A* mymyoiC?
+ + +
2§52 212 2A2 2C?
N
# (1 = 2) = uS = @A + BC = kC = 6(S +1)C

[(y + I = 6(S + HC - «C]
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ST'N(l - E) — [%VN(l _ E) " mpn " 5NC] _ m2m4(g ,u) + man
1 AS C
_[m;T + mzﬂl + mz’fﬁ ]+m1ncC+m1,u+m2(y+,u+T)

mlo'% I’I/lgO'% m2m30'§ m2m40'i

+ + oS +1)+ + + + +
mMoyms @ + Mymyd( ) + moniuk 5 > 3 5

N nimy [

—uS —aA + BA — kC

N 3 N
<rN(1 - f) - 3\/m1m2rN(1 - E)niéC - 313/m1m%m3TnaﬁC

0-2 0—2
- 2\/’"%’"4(7 + NS +mi(mA +1.C +u+ 71) (Y + U+ T+ 72)

o% O'i nimy I
+ momz(a + 7)+m2m4[(5(S +1)+k+ 7]—/1S —aA +BC — kC + N

Let
3

o
my[o(S + 1)+ k+ <7421]2 = (y +wn.S, my(a + 73)2 = mtn,BC,

o2 rN(1 = Yyrn,BC S
my ('y+/~1+T+72)+ ( K) Tlﬁ + ('}’+,U)7]C

(7'2 O'2 0'2
MA+n.C+u+ ) a+3) (S+D+x+ 5
o1 N
=m(@eA +n.C+p+ =) =rN(l - ),

then we can get

rN( - 2) rN(1 - %)
my = o2’ m; = o2 rN(1=Xyrn,BC (y+neS ’
nA+nC+pu+ 5 [(y+p+7+5)+ e+ ]
MeA+n.Crut L) a+—=5)  SES+D+x+E
N
rN(1 = g)m.C (y +wn.S
ms = nmy =

0'2 0—2 ’ 0—2 )
(1A +1.C +p+ )+ F)? [6(S + 1) +k+ 3]?

Thus,

N 3 7],‘1"11]
LW, <-3rN(1-=)(VR'-1)+
1 rN( K)(‘V ) N

+ BC.

Define the function
W(S,I,A,C) = M(W1 + Wz) + W5+ Wy + W5 + W,

where Wo =S + I,W3 = —-InS, Wy = —Inl, Ws = —InA, and Wy = ﬁ(S + I)P*!. Select a suitable
constant M > 0 satisfying the following condiction

—3MrN(1 — %)({/IF ~ 1)+ F, <=2,
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where

+ N
Fi= sup {—%S”“ B2 MeNCL = 2+ (M + D+ ST + oS
(S,I1,A,C)eR*
2¢2 272 2 2 2
—%SP” -~ l“%/lp” MO;S + MUZZI + % + % + %} < co.

+2u+t+y+

It is easy to check that

lim inf W(S,1,A,C) = +oo,
n—oo(S,I,A,C)ER\U,

where U, = [1 - n] x [+ -n] X [£ - n] X [1 - n]. Furthermore, W(S,1,A,C) is a continuous function

Hence, (S, 1,A, C) must have a minimum point (S g, I, Ag, C) in the interior of R?, then we define a
nonnegative function W : R* — R as follows

W(S7IaA’ C) = W(S71’A7 C) - W(SO’ I_O’AO’ C_'O)'

By utilizing 1to’s formula, we can derive the following result

LW, =rN(1 - %)—,uS —(y+wl + 0-%252 + % < rN(1 - %)4_ # 0'5212’
LW3:_§[FN(1_%)—%AS—UCCS—niTSI—,uS+TI]+U—%
\—M+%}+UQA+UCC+;1+O;,
LW4:_HUWJJFU”AJ’mC—(VJ““J”)I +%%\—U§A—U}C+(’y+u+f)+%§,
LW5=—%(—aA+ﬁC)+%§<A_IBXC+%§’

and

N
LW =(S + 1 |[rN(L = 2) =S = (v + 01 |+ 25 + 1/ (oS> + 731)

N
<IN = XS + 17 (S + 1" =y + g(a§51’“ + 2P,

Choose 0 < p < min{1, £ A "%}, then we can see that
1 2

+ N +
LW < —%S”” - ‘%V“ +rN(L= (S + 1) + g(aisp” + o2y~ Egret _ BT Y et

2 2
Electronic Research Archive

Volume 32, Issue 3, 1574-1617.
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hence,

mm,'IM

LW < - 3MrN(1 —%)(\‘7@— 1)+ + MrN(1 - %)+MBC

nl rNA-%) nA nC

+1n,A+1n.C+A+

N S I 1

+ N
- %‘SP“ - ‘%ﬂ’“ +rN(L= 2)(S + D"+ ‘—2’(0%517“ + o2y
2¢2 2712 2 2
Heapst _ HEY pi MayS™ Moyl” oy 03
- =SSP - —I"" + 2u+y+ T+ + + =+ =
2 2 HEYTTT ™ 2 2 "2

< - 3MrN(1 - %)(Vﬁ — 1)+ MrN(1 - %) + MBC + (Mm; + Dn;

rN(1-%) nA nC u fty
- - v A+ C+ A=yt T Tl
S [ g TR 2 2
N +
+rN(L= 2)(S + D+ g(aisp” + o2 - %‘SP” - ’%1}’”
MaiS? Mosl* o o3 o3
+2u+y+1+ + + =+ =+ =
2 2 )

2
03

2 b

Next, we form a condensed subset D in order to satisfy the condition (ii) as outlined in Lemma 2.3.

l)'—{§<s<l§2<l<1.f<A<1§<(<1}
. X X 9 X X 2 9 X X ) < S 9

where ¢ is a suffciently small constant. Choose ¢ satisfying the following conditions

N rN(1-X ’
= 3N = DR = 1)+ BME+ Fi < -1, VAR, n
T]c M mEY
_E+F2<_1’_W+F2<—l,—W+F2\—1,

where

F2<—1, —E+F2<—1,

+ N
Fo= sup {—’—‘SP“ B2 MeN(L= )+ MBC + (Mimy + gy + 203571 + s 71

(S,1,A,C)eR* 4
+ Mo3*S?* Mo2l? o2 o} o?
o S i S Y, T il sl M R B § QPN
2 2 2 2 2 2 2

Divide R? \ D into six domains:

D, ={(S,I,A,C) eR:,0<C <&}, D, ={(S,1,A,C) eR},0< S <&},

D; ={(S,[LA,C) e R, 0< I <& A>¢), Dy ={(S,LA,C) eR:,0< I <&,C > &),

1 1
Ds ={(S,I,A,C)eR:,0< S < E}, D¢ ={(S,I,A,C)eR,0< I < ?}.

Electronic Research Archive Volume 32, Issue 3, 1574-1617.
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We aim to demonstrate that the inequality LW(S, I, A, C) < —1 holds true on the domain Ri \ D. This is
equivalent to establishing its validity on the six specified domains.
Case 1: If (S, 1,A, C) € D, one can see that

_ N
LW <-3MrN(1 - E)(i/ﬁ— 1) + BMC + F,
N
<-3MrN(1 - E)(i/ﬁ— 1) +BME + Fy < —1.

Case 2: If (S, 1, A, C) € D,, one can see that

_ rN(1 =X rN(1 =&
LW<——(S K)+F2<——( K)+F2<_1-
Case 3: If (S, 1,A, C) € D3, one can see that
T aA a
w12 p < p <
1 &
Case 4: If (S,1,A,C) € Dy, one can see that
= CC c
w2 v pm <L F <

1

Case 5: If (S, 1, A, C) € Ds, one can see that

LW < —'%SP“ + F, < —4;“ +F, < -1
Case 6: If (S, 1, A, C) € Dg, one can see that
N T pty
LW < — ! VL4 +F2\—W+F2<—l.

Hence, we obtain LW < —1 for all (S,1,A, C) € R \ D. According to Lemma 2.3, it can be deduced
that the Model (2.2) possesses a unique stationary distribution denoted as v(-). This serves to conclude
the proof.

Remark 1. As we know, a deterministic system disease persistence is measured according to the basic
reproduction number Ry and the endemic equilibrium point E*. However, in a stochastic model, there
is no positive equilibrium due to unpredictable noise perturbations. Therefore, the persistence of the
disease in a stochastic system is reflected by the presence of an ergodicity stationary distribution.
According to Theorem 3.1, Model (2.2) has a unique stationary distribution when R* > 1. Comparing
the expressions for Ry and R°, we find that R* < Ry and the presence of disease in both the model and
the stochastic model can be assessed using a consistent measure of R® > 1.

Remark 2. Model (2.2) characterizes the impact of random noise on the spread of anthrax, which is
an extension of Model (2.1). When random noise is absent, i.e., o; = 0 (i = 1,2,3,4), Model (2.2)
degenerates into Model (2.1).
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4. Probability density function

This section aims to derive the precise formulation of the density function for Model (2.2) at a
quasi-equilibrium point. It is important to emphasize that the probability density function serves as a
representation of the dynamic attributes of a stochastic system with statistical relevance. Our main goal
is to ascertain the probability density function for the purpose of examining the dynamics of the model
from a statistical perspective.

Before proving the probability density function, two equivalent differential equation forms for
Model (2.2) are given. Let x; = InS,x, = Inl,x3 = InA, x4 = InC. By Ito’s formula, an equivalent
model can be obtained:

dx, = [PN(1 = yen ¢ 5 pet 4t Tt + o dBy()
x =[r — =)™ —n; —n.e" —n.e T——u—- — o ,
1 1% nex1+ex2 n n. o % 3 14D
X1 X1 ,X3 X1 ,X4 0_2
dxy = i 4 7, . (y 4+ 1) — 221dr + 0dBy(),
el + ev e e 2 4.1)
et 0.% .
dx; = [ﬁ— —a — —]dr + 03dB;5(1),
ev 2
ev2 O'Z
dxs = [(y + ,u)—4 —o0(e" +e")—k— E]dt + 0 4dBy4(1).
ex

2 2 ) 5
Lethy=p+ b=y +u+t+F by=a+F by =k+ 3. If

P niSCIS(S + 1) + balbs .
" b3@eA + e C + D)LY + 100eS +5r0(S + D) + baby] + T rN(1 = R)CIS(S + 1) + by]

holds, Model (2.2) admits a quasi-steady £, = (§1,1;,A;,C)) = (¢*1, e%, €%, *4), where I, is the positive
root of the equtaion

F(I) =|bibybs + bibybsd(t = ba) + naBly + )by = T)(x = by) + meba(y + )b = (7 = by)| I

N
+ [blbyb3by + b1byb36rN(1 — E) + b1b3(by — 1;) + b36(by — n;)(T — by) — binS(y + )
N N _
+2n,8(y + wrN(1 - E)(bz —7) +2b3n(y + wrN(1 - E)(bz =7)+ bibsn(y + w)(by — DI}
N N N
- {b3(77i —by)orN(1 — E) + 1,80y + wWrN( - E)]2 + bina(y + rN(l — E)

N N
+hny + IV = DT + bibyne(y + rN(L = 21,
and e s -
rN(1=2)+1Li(by—7) _ bi(y + Wi
by © T byby+ b + 0PN =Y 4 T (b, - 1))
bi(y + w)Bl
bibsby + bibsl; + bys[rN(1 — ) + I;(b, — )]

In addition, assume if R® > 1, then R® > 1, which means that Model (2.2) admits a quasi-steady E,
under the condition R* > 1. Let

Slz

Alz

yi=xi—xi (i=1,2,3,4), 4.2)
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where x; = InSy,x; = Inl, xj = InA;, x; = InCy, then the linearized system of (4.1) is as follows:

dy; =(=aiy1 — any2 — aizys — ajays)dt + o1dB (1),
dy, =(aziy1 — azys + axnys + arys)dt + 02dB,(1), 4.3)
dys =(—assy; + azzys)dt + o3dB3(1), .

dys =(=a41y1 — asyr — asys)dt + 04dBy(2),

where ) S o _
0] I]ill - - 77,-S111 TI] -
an =+ —+ = + 1A +n.Cy, app = —— — =, a3 = NA,
11 =M ) le NNaA1L T 701, ar2 N]Z 3 13 = NaA1
A _ n:S1h 1,514 +1.5,C _ 1aS14A, _ 1.51C,
ais =n.Cy, a1 = —— + = » U3 = —= Ay = — =,
i I I I
i - + I + )l
ass :ﬁ_—l, aq = 5S1, aqn = (511 - 0/_—/1)1, aqq = O/_—ﬂ)l

A1 Cl Cl
By employing the above lemmas, we will demonstrate the probability density function of the Model (2.2)
near the quasi-steady equilibrium E|.
Let Y = (y1,y2,y3.y4) ., D = diag(cy,0,03,04), and B(r) = (B(1), By(1), B3(1), B4(1))". We can
rewrite Model (4.3) as the following form:

dY = ZYdt + DdB(1),

where
—aj;y —dap —ai;z —ap
dzy —dz1 Az (257
Z = R
O 0 —das3 ass
—a4) —a4 0 —a44

then the linearized Model (4.3) can be simiplified to dY = ZYdr + DdB(t). Based on the pertinent
theory proposed by Zhou et al., it is postulated that there is a probability density function denoted as
®(y1,y2, V3, y4) in the vicinity of the quasi-endemic equilibrium E.

Theorem 4.1 (Zhou et al. [22]). Assuming that R® > 1 for any initial value (S (0), 1(0), A(0), C(0) € R%,
the solution (S (1), I(t), A(t), C(t)) of the Model (2.2) follows the unique log-normal probability density
function ®(S, 1, A, C) around the quasi-endemic equilibrium E\, which is described by

O(S.1.A.C) :(271)‘2 |A|_% e—%(ln §5—1+1n ﬁ+1n Aii|+ln %)A"(ln SS*,”“ ﬁ+ln /;,il+1n %)T’
where A is a positive definite matrix.

From Gardiner [36], the density function U(Y) = U(y1, 2, y3, y4) of the quasi-stationary distribution
of Model (4.3) at the origin Y* = (0,0, 0, 0) can be described by the four-dimensional Fokker-Planck
equation as follows:

L o? PU )
5 7o T o (mauyr + any: — aizys — awy) Ul + ——[(ax1y1 — @21y + azsys + azys) U]
P 2 ayi 6y1 8y2

0 0
+ —[(=as3y; + as3ys) U] + —I[(—as1y1 + asny: — asuys)U] =0,
3)’3 (9y4
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which can be approximated by a Gaussian distribution
- 1 %\ N A *\T
U(Y) =cexp —E(Y—Y)M(Y—Y) ,

M is a real symmetric matrix, which is described by MD>M + ZT M + MZ = 0. If M is positive definite,
let M~' = A, then
D*+ZA+AZ" =0. (4.4)

According to Tian et al. [37], (4.4) can be rewriten as the sum of the four equations as follows:
D} +ZA+NZT =0 =1,2,3,4),

whereDl (0'1,000) D, = (0 0'2,0 0) D; = (000'3,0) D4—(0000’4)A A1+A2+A3+A4,
D? = D? + D} + D3 + Dj. Consider the corresponding characteristic equation of Z as follows:

W) =+ 5180 + 5207 + 53¢ + 54, (4.5)

where
§1 =aj + dx + asz + Ay,

s2 =ayi(ax + azz + ass) + axi(Qr2 + a3z + Aas) + A33044 + A24G4 — 414041,

53 =ay1a21(azs + ag) + azzags(an + az) + a2ax1(azs + ag) — ajsaz(as + ag)
+ anag(ay — apn) — azas (a3 + ay) + 43033040 + 44033041,

54 =ayazzag(a; + ap) + azag(anas + ay1a4a33a41 — a14az — a13ds))
— apazsas(axs + axy) — ayazzas(az + a).

In s,, the following formula can be calculated

ni(y + S 11 T]a(7 +u)S 1A,

Ar1A4s + AoaQay — A1aGa] = = > 0,
21044 + A24G4) — A1404) e, c,
nil; mSl n:S3
apay = —(1— —=) + (n.A1 +n.C)(7 - =) > 0.
N2 N2

1 1

In s3, the following formula can be calculated

ni(y + wBS I . npS1C

Q21033044 + A23033042 — 414033041 — A1303304] = (y +u—6Cy) >0,

NzAl Al
n(y +wE 0T nay+whA,_ nS] niS 1
Aa120r1044 = —— T——)+ = T— +C+IT——>0,
12021044 NG, ( N2 ) c. ( N )+ ne(y + Ii( N
Uiﬁilz C 771 1 77:'5 % npC % 771'5 %
Qa12071033 = —=— + Cilr-—)+ —@0-—)>0,
12021433 N2A1 (T - N2 ) + 1aBC\(T N2 ) A ( N2 )
nzncSI 1
— a14a2104p = T( y+u—=38C) +naneS 1Aty + = 6Cy) + 128, Ci(y + u— 6Cy) > 0.
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In s4, the following formula can be calculated

nneBS 11 C) . - = - mBSICE _
~a1431a33050 =———=—(y + p = 6C) + 1065 1C1(y + pp = 6C1) + ————(y + = 6C1) > 0,
N2A, A
npy +wh — miS3 o nSi By +whC  mST
ar071A33044 = —— T——)+1, +wh(t— —) + = T——)>0,
2021A33044 VA, ( N ) + 1By + I ( N ) i ( N )
where 7 — "I’Vij > 0 and
1
_ bibay + ) + | by + @) = Sbi Ty + )| + 8y + N = §) + iz = by)]
(y+pu—-0Cy) = >0

9

b1b4 + bll_l + 6["N(l - %) + I_l(T - bz)]

while s; > 0, 5, > 0, and s3 > 0. We can calculate s;5, — s3 > 0 and s1(s,53 — §154) — s§ > (. As per the
Routh-Hurwitz stability criterion [38], it can be deduced that the matrix Z possesses eigenvalues with
negative real parts. According to the theory of matrix similar transformations, it is evident that wz({) is
a similarity invariant, indicating that sy, s, 53, and s4 are also similarity invariants.

Next, the corresponding proof for the positive definiteness of A is divided into four steps.

Proof. Step 1. Consider the algebraic equation

DI +ZA + AN Z" =0, (4.6)
Let Z, = U,ZU;", where
1 0 00
U 0O 1 0O
] =
0 0 1 0
0 % 0 1
azl
and
a14041—a1242]
—an T o7 Tdi —di4
a%1+az4d41
7, = dyr T 4z a4 i
0 wi —dass ass
0 w a3asy 424041 —A21044
2 azi azy
2
— __ az3aq _ 41044 axdy,
where w; = — o sWo = —Ay) — Ay + a2 -
21

Case 1: When w; # 0 and w, # 0, there exists the elimination matrix U;; such that Z;; = U, Z,U 1‘11,
where

10 0 O
01 0 0
U“‘0010’
00 -2 1
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then there is
ajqdaq)—aldny

—di] o —ap3 —di4
2
ay,+az4aq) axwy
- +
Z” = a2 az] 23 " 1W 24 R
0 Wi —azz + 22 ass
0 0 w 424041021044 _ A33W2
3 azy w1
where Wy = w2 6133W1 —azzwp + W2 A24G41—A21044 + a23a41

wi
Case 1- 1 If ws ¢ 0, in order to find the standard transformation matrix Qq;; such that 7y, =

QmZan, where

mp Ny ms my
a24a41—a21044 a4a41—A21A44 aszzwaz\2
O = 0 wiws ZECETE —azz apws( - )
1 = _
0 0 Wi as4aq) a21044 _ az;wy s
azl wi
0 0 0 1
with
A4Q4) + Q24041 = A21044_g2 — 433
my =a;wiws, my = ( IWiws,
(121
azz(Wy — W) apaQa) — A21Gas  A33W2
mz =ws[apwy + axuws + azzws + ( ) - )
w» any w1
azz(Wy —wi) ,  Go4Qs) — A210as  A33W2 5
+( )+ ( - )1,
W (253 w1

ardy) — A21Q44  A33W) arady) — A21044  A33W)3

2
) I(
as wi as wi
aady) — 41044 — d21d33

my =[azzws + (

)

+ aywiws + azzws( ).
asy
Thus, we can get
—851 —S8 —83 —84
1 0 0 0
T = o 1 o ol
0 0 1 0

Meanwhile, (4.6) has the following form:

(@i UnUnNDHQ11 Uy Up)"
+ (@ UnUDZQ1 Un U™ 10 Un UDA(Qin Un Uy
+ QiU UDA(Q i UnUD' (@i UnUNZ(QiUn U~ '" =

. 2 TT
That is, Dy + T11,01 + ©,T},, = 0, where ©; = (Q111U11U1)A1(Q111U11U1) P11l = AW W30,
According to Lemma 2.5, we can obtain the semlposmve definite matrix
$253—5154 _ S3
2[s51(s253—5154)—53] 0 2[s1(s253—5154)—55] 0
0 — 0 —
0, = 2[s51(s253—5154)—53] 251 (s253—5154)—53]
[ [ E— s )
2[s51(s253—5154)=53] 0 2[s1(s253—5154)—53] 0
0 _ s1 0 S1852—83
2[s1(s253—5154)—53] 2[s1(s253—5154)—53]

Electronic Research Archive Volume 32, Issue 3, 1574-1617.



1590

Therefore, it can be calculated that
Ar = o1 (@ Un U0 Q1 Un U 4.7)

is positive definite.
Case 1-2: If w3 = 0, we can find the standard transformation matrix Q;;, such that T, = QmZUQl‘]lz,
where

m; mp ns nmy
Q 0 " 1133(‘4:1/21—W1) ass
112 =
0O O 1 0/
0O O 0 1
with
2
ay, + axay aszzwy — dzzwi »
my =a,wy, My = apwy — 3w — Wi —————, M3 = apw) + auws + (———)°,
as; wi
aszswy — dszzwi ad4) — d21d44  A33W)
my =axuw; + azz(——————) + azs( - ).
w1 ary Wi
We have
-by —-by, —-bs —by
T 1 0 0 0
112 — 0 1 O O )
0 O O 24041 —A21A44 _ A33W2
az] wi

where b;(i = 1,2, 3,4) are marks, and we only care about their traits. According to the uniqueness of
wz({), it can be obtained that

az1dgn
by =an +as + ag — > 0,
as
2 2 2
- aag 034y, andndy  ad3ds 021040044
by =ay as3 + ay1ass + azau + + — - _ >0,

2
ag ay, ay a4 ag

by =ay az3a44 + a12a21(az3 + as) + anasi(an — an) — asas(a;z + ag) + 43033040 + A24a3304

) 2 2 )

N ar1azasn(az — ap) N ar1auass(az — apy) 4 andy dy, 43103304, 0y Ay,044
2 2 2
as da ay ay g

The following results can be obtained that b1b, — b3 > 0, then (4.6) can be transformed into the
following form:

(Q12UnUDD(Q112Un Uy’
+ [(Q112U11UDZ(Q112Un Uy (012U UDA Q112 Un Uy )T
+ QiU UDA(Q12Un U (@12 Un UNZ(Q1pUn U~ =

That is, D + 11120, + ®2T1Tl2 = 0, where ©, = (Q112U11U1)A1(Q112U11U1) Pl12 = AwWi07.
According to the Lemma 2.6, we can obtain the semlposmve definite matrix
W 0 ~mm 0
0, = ~ . 2(17118—173) by ol
2(b1b2~b3) 2b3(b1b2—b3)
0 0 0 0
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Therefore, by calculation,
Ay :P%H(QmU11Ul)_l®2[(Q111U11U1)_1]T (4.8)

is semi-postive definite.
Case 2: When w; # 0 and w, = 0, the objective is to determine the standard transformation matrix Q,
that satisfies the equation T, = Q1,7 Ql‘zl, where

arsazal,
T an e s .
2
423d33dy, a24041 =21 A44 \ A23G4] 24041 =021 A44 \27 423041
Op = 0 4 (—as; + a1 ) a1 [ass +( as1 )] az1
0 0 ar3a4) 424041 —A21A44
azy azy
0 0 0 1
with ) )
ay, + axayg Qp4ay) — Ap1044  G230330;
my =(——— +az — ,
2
ary asy as,
ads) o 5 arady) — d21044 ardy) — A21044 »
mz = asy — a3 + ( )1
asy ar asy
2
230240330y (4Q41 — A21044  A2303304)
m4=—f+(—a33+ ) .

as, az asy
We can obtain that 7, = T, and (4.6) can be transformed into

D(z) + T12®1 + ®1T1T2 = 0.

Where@l— (Q12U1)A1(Q12U1) » P12 = — %0' Consequently,

azy

A1 = pL (01U 'O (01U T 4.9)

is a positive definite matrix.
Case 3: When w; = 0 and w, # O, there exists the transformation matrix U;; such that Z;; =
U3Z, U7, where

13°
1 0 0O
U 0100
13 =
000 1y
0 01O
then we have
al4a41—apnay
—ay T —ay4 —a;
—a _a§1+az4a41 a a
Zis = 21 e 24 3|
w ar4a41—a21A44  A2344]
2 a a
21 21
O O ass —das3

we are able to find the standard transformation matrix Q;; such that T3 = Q373 Q1‘31, where

ny m2 ms nmy
a21 +azaa4) 24041 —A21044 az3ds3daq)
Q13 — 0 —as ( ) Cl33( asz + a ) a33 + a1
b
0 0 ass —das33
0 0 0 1

Electronic Research Archive Volume 32, Issue 3, 1574-1617.



1592

with )
_ _ Q4041 — Ap1d4q Ay + A24d4) A24041 — A21044
my = — dy1azwy, My = ass( - —ap)———,
an as as
ar3dszszdy) axa4) — do1d44 2 ady) — Q21044 o
m3 =apapuw, + ———— —ap(———— ) +ap + (———)7],
as as as
ap3aszdyg) Ar4d4) — A21044 ar3dszdyg 2
my =axazwy + ( —as) — an(————— +a33).
an as a

We can obtain that 773 = 7111, and (4.6) can be transformed into
D2 T _
o T+ T13®1 + ®1T13 = 0,

where ©; = p%(QwU13U1)A1(Q13U13U1)T,P13 = —ay wy0 . Consequently,

A1 = p1(013UU) 10, [(01:UU)'TT (4.10)

is a positive definite matrix.
Case 4: When w; = 0 and w, = 0, there exists the transformation matrix U4 such that T4 = Q14Z; Q1‘41,
where

ny ny ms My
d§1+az4a41
_ |4 ————— dz3 dax
Qs = o )
0 0 1 0
0 0 0 1
with ) )
apdgy +ay; + axag ax, +axndas ,
m; = —ay; ), My = aaas) — apdy + (——————)7,
ary ar
2
a23a21
ms3 = —dj3dy; — Az3ds3z — P s My = A3A33 — A14d1 — 4021 — A24044.
21
We then have
—C; —Cp —C3 —C4
T 1 0 0 0
4= 0 0 —ds3 ass
0 0 axizas) ax4a41—a21044
az] az]

a arazza a2,
24441 23433441 24741

+ + 24> (),
21 a1 ay,

cr=an +ay + =2 > 0,0 = (an +an)az + (au + dp)ax — asas + <
Thus, (4.6) can be transformed into

D(Z) + T14®3 + ®3Tﬂ =Y,

where ©®5 = p%(QMU])Al(QMU])T, P14 = apop. With Lemma 2.7, we can obtain the semi-postive
14

definite matrix

L 0 00

0 -— 00
@: 2cico
"o 0 00

0 0 00
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Therefore, by calculation,
Ay = p1 (014U ' O5[(Qu U 4.11)

1s semi-postive definite.

Step 2. For the following algebraic equation
D5+ ZAy + Ay Z" =0, (4.12)

consider the corresponding order matrix J, and elimination matrix Us:

01 00O 1 0 0O
0010 0O 1 0O
JZ = B U2 = agq .
0 001 0 i 1 0
1 0 0O 0 4 0 1
asz
Let Z, = (U»J>)Z(U,J,)~!, then we can obtain that
o a21a33+6120136;44—a14a23 —ai, ars
ass ais 0 a3
Zy = ,
0 r —d4 —ay4
0 r —dji2 —ap;3z —Aapg
where 1| = —qy + Guetenen o g GnGkdnasta,
1 41 = 2 1 =
Case 1: When r; # 0, r, # 0, there exists the elimination matrix U,; such that Z,; = U,,Z, U21 , where
10 0 O
01 0 O
Uy = 5
00 1 O
00 -2 1
r
then we have
Gy ay + 021042;1141123 —ap, + azslrz a
7 = ass ayq —a3r3lr2 —ass
! 0 r —d4p — % —a44 ’
0 0 r3 —a|;3 —dyg + a44r2

where 3 = (a4 + “44’2)’2 —ap — (alz+rL1114)rz

Case 1-1: Ifr; # 0 the standard transformation matrix Q,;; can be determined in order to obtain the
transformation 751y as To;; = Oy 1221Q211, where

n ny ns ny
_ 0 rirs —(aiz+au+an)rs (%2 — a3 — ayy)’ — dars
Qo = 0 0 rs % — a3 — ay >
0 O 0 1
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with
ny =assrir, ny = (a3 — ap)rir,
Ayl a4 agar o 27V ) 2

n3 =[—azry — asrs + (asn + Naiz +ay — )+ (asp + )+ ( —a;3 —as)’rs,

r r r r

asar; 24,4441
ny = — azarirs + ag(a;s + ag + azg)ry + [—agur; + ( PR a3 —ais)’1( PR a3 — ais).
1 1

As aresult, we have T»; = T11, and (4.12) has the following form:

(0211 U1 Uz J)D3(Q011 U U )"
+ [(0211U21 UaJ2)Z(Q211 U1 Uad2) " 1(Qa11 Uz UaJ2) Aa(Qa11 U Ua )"

+ (0211 U21 Uz J2)Ag( Q211 Uz UaJ) [(Q211 U2y U J2) Z(Q011 U2 Ua Jp) ™' = 0.

That is, D} + T5110; + ©,T5;; = 0, where O, = é(QmU21U2-]2)A2(Q211U21szz)T, P211 = a33r11307.

According to Lemma 2.5, we can obtain the semipositive definite matrix

$283—5154 0 _ 53 0
2[s51(s253—5154)—53] 2[s1(s253—5154)—53]
0 53 0 —S1
0, = 2[s51(s253—5154)—53] 251 (s253—5154)—53]
P=f__  s3s 0 . ) B 0
2[s1(s253—5154)—53] 2 s1(s253—5154)—53]
0 - 5 5 0 519753
2[s1(s253—5154)—53] 2[s1(s253—5154)—53]

Therefore, it can be obtained by calculation that

As = 0311(0211 U2 U J2) ' O1[(Q211Uai Ua o) ' (4.13)
Case 1-2: If r; = 0, we can find the standard transformation matrix (i, such that T,;, =
0212251 Q5 ,, where
apry (a4 —an — ) (an + %)2 —axry (a3 + ajs + ap)dsg — azr
Os1r = 0 I —(asn + %) —Ayy
212 — () 0 1 0 ’
0 0 0 1
then we have
by by b h
1 0 0 0
T212 - 0 1 O O )
0 0 0 % —di;z —ays
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where
b = 1 2 2 2 2
1= (—aj,a44 — arpay, + ay1a33a44 + a13a3, + A13033041 + A74044)
A14044 + 42044 — A3304]
1
+ (@11A14044 + A11A42044 — Q11033041 + Q14021044 — A1403304])
A14044 + A42044 — A3304]
1 2 2 2
+ (a14a33Q44 + A33042044 — Q33041 + A14G4, + As05,)
Q14044 + 42044 — A3304]
1
+ (+a14042044 + A21A42044 — A21033041 — A33041044) > 0,

A14G44 + Q42044 — A3304]
by =[ai(az; + az3 + as) + azi(ain + asz + aas) + a33aas + aaas — a14a41]

1
2 2 2 2
5 (—a1,a44 — aay, + anassass)(aizdy, + aizaszsas + aj,das)
(a14044 + Aa44 — az3a41)
1 2 2
5(A13a14a44 + A1, Qus + Q1203 — A11033024)(A14012044 — A14033041)
(a14044 + Aspa44 — a33a41)
1 2 2
2(01361146144 + aj,Qas + Q12054 — A11033044)
(@14a44 + ag2a44 — a33041)
1 2 2 0
2(611361146144 + 7,044 + anay, — anazass) > 0,
(a14044 + Qa4 — a33a41)
= Q14044 + Q42044 — A3304]
bz = laszasn(araxs + ay1axazzas — asay — apds)]

- 2 2
Q13014044 + A ,Q44 + Q1204 — Q13033044

A14044 + A42044 — A3304]
+ 2 2 (+aziazass(an + ap) + anaszzaa(ais + ais))
130414044 T Q7,044 + A120,, — 413033044
a14044 + A42044 — A3304]
+ 5 5 la12as3a41(azs + az4)] > 0.
13014044 + A ,Qa4 + Q120,, — A13033044

We can obtain b,b, — by > 0, then (4.12) can be transformed into the following form:

(0212U21 Uz J))D5(Q12Un Ua )"
+ [(0212U12UsJ2)Z(Q212Un Uad2) " 1(Q212Un1 UaJ2) Aa(Q212Un  Ua )T
+ (022U U202) As(0212 U2 Ua o) [(Q212Un Uz J2) Z(Q212U2 U o) ' =

That is, D + Ty120, + O, T7 51, = 0, where 0, = (Q212U21U2J2)A2(Q212U21U2J2) » P212 = A33F102.
According to Lemma 2.6, we can obtain the semlposmve definite matrix

by 1

2(b1b>-b3) (1) " 2(b1ba-b3) 0
(:)2 — 01 2(b1by—b3) ;) 0 .
S B b
2(b1b2-b3) 0 2b3(b1b2~b3) 0
0 0 0
Therefore, it can be obtained by calculation that
As = 0315(0212Un UaJ2) ' 0,[(Q212Un Uay) " (4.14)
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is semi-postive definite.
Case 2: When r; # 0 and r, = 0, there exists the transformation matrix Q,, such that T,, =
0:2,0;,, where

—apaxry ap(ap + an)r nj ny
2
_ 0 —apr app(a;z + ais +agp) (ap +ay)” +anay
0n=| A
—dajz —d1z —dig
0 0 0 1
with 5 )
n3 = — aplanasu + anlaiz + ay) + ay, + (a3 + a)’l,

2
N4 =a12a3371 — A12044(A13 + Q14 + agn) — [a2a44 + (@13 + a14)" (a3 + ays).

It can be obtained that 75, = T1;, and (4.12) can be transformed into
Dé + T22®1 + ®1T2TZ =0,
where 0, = é(QZZUZJZ)AZ(QZZUZJZ)Ta P22 = —azazsrio;. Consequently,

Ay :P%z(szszz)_](:)l[(Q22U2]2)_]]T (4.15)

is a positive definite matrix.
Case 3: When r; = 0 and r, # 0, there exists the transformation matrix U,; such that Z,; = Ux3Z, U2‘31

1 000
0100
U=y 0 0 1)
0010
then we have
ary app + W ans —day
a a —a 0
Zos = 83 14 33 ’
r —ajz —dy —ap
0 0 —Q44 —ag

We can find the standard transformation matrix Q,3 such that 753 = 03753 Qg;, where

—a3aaary  ass(arz + asn)r ms my
2
Ons = 0 —dy41> ag(aiz + ay +agp) ap, +apnay
3 =
0 0 —Q44 —ag
0 0 0 1
with
_ 2 2
m3 = — ag[—azsry + anaas + an(as + a) + ay, + (a3 + ay)’]

2
My =a12a337 — A12044(a13 + 14 + ag2) — [a12a44 + (a13 + a1a)"1(a13 + aa).

It can be obtained by calculation that 753 = Ty, and (4.12) can be transformed into

Dé + T23®1 + ®1T2€, =0,
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where O, = pL;(Qza U»3UsJ2)As(Q23UnsUsJo)!, po3 = —azzasr,or,. Consequently,

As = p55(023Un3Uada) ' 01 [(Q23Uns Ua o) " (4.16)

is a positive definite matrix.
Case 4: When r; = 0 and r, = 0, there exists the transformation matrix Q,4 such that 7,4, =
0242,0;,, where

2
a(ais +as) axa33 + ay1aas — a14a3 +ay, —axaszz +apaz  (a; + a;)as

Q — ass aig 0 —ds3
24 0 0 1 0 ’
0 0 0 1

then we have

—C; —C —C; —C4
1 0 0 0
Ty =
0 0 -—ap —d44
0 0 -ap -ap-ay
where c; = a1+ ay +asz +agy — a3 —a —agp >0, ¢ = 4 > (. Thus, (412) can be

k a13042+aA14042—0A 12044
transformed into

Dé + T24®3 + ®3T27;‘ =0,

where @5 = [)%(Q24U2J2)A2(Q24U2J2)T, P = az0,. With Lemma 2.7, we can obtain the positive
24
semidefinite matrix

2% 0 00
) L 00
~ 0 5=
@ - 2¢1Cr X
1o 0 00
0O 0 00
Therefore, it can be obtained by calculation that
Ag = 03,(024UsJ0) ' O3[(Q24UaJo) " (4.17)
1s semi-postive definite.
Step 3. For the following algebraic equation
D5 +ZAs + A3Z" =0, (4.18)

consider the corresponding order matrix J3 and elimination matrix Us :

J3 = , Us=

o - O O
- o O O
o o = O

—_ O O
- O O O

1
0
0
0

S O O =
S O = O
219
ool
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Let Z3 = (U3J3)Z(U3J3)7!. It can be obtained by calculation that

—das33 0 ass 0
ajpdp3—allai3
_|T43 T Tdus —daj2
Z3 - 0 axasp—ajzasl _
T a44 as
+
0 kl k2 _ulzazsaljnazl

2
_ a21a23—a11423 412453 _ ai4a3
where k; = a,; + an + 2 ky = ars — Tan

13
Case 1: When k; = 0 and k, # 0, there exists the standard transformation matrix Qs; such that
T3 = 0312505, where

q1 q>2 q3 qa
az3ag) ajppax+azax ajppaz3+aizaz; \2
0 0 (—a4 + a134 Yoo —(ags + = m' Dky (< 013' ) — agnks
31 = a12a23+a13a2) ’
0 0 k> e
0 0 0 1
with
azzagn apzang [25%14%Y)
g1 =— (—as + Yaizky, g = (—aj — as + )(—ag; + )ka,
as as as
_ a14a3043 k A12023044 + A13021044 ) appdrs + apar o, k
q3 =lasas — ———— — axk, + +ay + (————) Nk,
as as as
ar3ay4) appar3 + aayg apaz3 + a;3az; ,,A12023 + a13as
qs =(as - Yainky + (Aas + ———————)auk, + [asnk, — ( )] .
as ags as

We can obtain that 75, = T, and (4.18) can be transformed into

Dé + T31®1 + (:)]T3Tl =0,
where ©; = p%(Q31U3-73)A3(Q31U3J3)T, P31 = (a13a41 — arasn)k,o3, and ©; = ©. Consequently,

Az = 05,(031U3J3) 7101 [(Q5, U3 J3) ' 4.19)

is positive definite matrix.
Case 2: When k; # 0, k&, = 0, there exists the transformation matrix U;, such that Zz;, =
UsyZ; U3_21 , where

1 0 0 0

0 1 0 0

Un=1p o 1 0|’
00 awh__

ax3a4qn—ai3d4)

then we have

—das3 0 ass 0
- - anay _anaizki
Ziy = a3 —an + = - ajs + mds=ayads ai
0 —ay + e 4 dusdaki >
41 ans daa a3asn—ai3as a2
0 0 k anpaptaizay _ _ apagpk
3 ars a3as—aj3as)
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where k3 = (a13a44+apags+aizan )k ataak] -
ax3a42—ai3asl (axzasn—aizas) . .
Case 2-1: If k&3 # 0, we can find the standard transformation matrix Qs,; such that T3y

-1
Q32] Z32 T321 s where

qi q> qs q4

- 42324 — A12a23+a13a21 apap+aizdy _ _ apanki 2
Ou1 = 0 (a4 + " Y3 (—aas + o s ( o 612%24_6“3&4]) + aunks
2= 0 0 k3 apaxitajzay;  _ djzdapk; ’

a3 az3d4—ajzaq)

0 0 0 1

with

appdns + appars + azayg

q1 =(a3as — apan)ks, g = (—ay; — as + )ausks,
ais as

az3dng apayzk; azask; apars + azayg

g3 =k3[(—as + ——)(—=a14 + —————) + apk, + (—asu +
as az3dyy — d13d4 az3dyy — d13d4 as
azask; azask; azasnk; 2
- (_a44 + + (_a44 + -
azzdyy — d13dy4) dz3d4y — A13041 azszdyy — A13d4)
appdsz + ajzas) azasnk; 2
+ ( - ) ]’
as az3dyy — A13a4
_ apds;s + a3dy) aasnk 2,412023 + A13a2) aizaspk
qs =lasks + ( - )7 1( -
a3 az3dyy — A13a41 a3 az3ayy — A13441
ansany appars + azayg
+ (a4 + —)ank; + (—ayy + ————
as as

)asks.
It can be obtained by calculation that 75,; = Ty, and (4.18) can be transformed into
D% + T321®1 + (:)1T3Tﬂ =0,

where ©; = é(QmU32U3]3)A3(Q321U32U3J3)T,P321 = (a13a41 — axas)kzos. Consequently,

2 -15 14T
A3 = p51(0321U3U3J3)" O1[(Q321U3UsJ3) " ] (4.20)
is positive definite matrix.
Case 2-2: If k3 = 0, we can find the standard transformation matrix Qs> such that T3, =
-1
0322723,05,,, where
qi 9> q3 q4
_ apax __aianki
Q322 = 0 a1 + aij Aaq + a3a42—0a13a41 daz ,
0 0 1 0
0 0 0 1
with ‘
andns a13a42K1 ax3dnyg
q1 =Q13a41 — Ax3a42, G2 = (a1 — Q4a + + )(—as + ——),
ais ax3agy — Aj3dy) a3
ayzask; 2 apazk; axs3dng
@3 =(—agy + ————— )" + (—ay + ————)(—aq + ——),
ax3aqp — Ag3ay ax3agy — Ag3dy a3
ayzask; ax3dnyg
qs =(—a44 + ———————)agp + (—as + ——)a,.
ax3aqy — Ag3ay as
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‘We can find B ) )
—by —by —bs —-b,
1 0 0 0
T3 = 0 1 0 0 ,
0 0 0 aipaz3+aizdz; azasnk
ais a3a42—a130d41

which means that
b, :a%36121a42 + alza%3a42 + 413021023047 + 413021023042 + 413023033042
+ 413023041044 — 0%36141(011 + ay + asz + as) > 0,
by =(a13a21a47 + A12G53047 + Q13021023047 + A13023033042)(A 13021 Aay + Q1203047 + A1302102304)
+(A13021 23002 + 413023041 A44)(AT3021Aaz + A12A53002 + A13021A23047 — A11A13023042)
- a%3a41(a11 +as +az + a44)(af3a21a42 + 61120536142 + a13a21a30a4 — A1101302304))
+ay(ay + azs + agy) + az(an + azs + as) + azzaas + axag — ajzag > 0,
By =— 6;13((1236142 —a3as)
a\3021042 + Q12053042 + Q13021023042 — A11013023042
) 6213(6123042 — i) [az1as3a44(ar + ar2) — aziazzas(ais + ais))
a13021042 + Q12053042 + A13021023042 — A11013023042
ai3(axag — apds)

+ = 5 [—aaszas(ax + az)] > 0,
aj3a2144 + 412053042 + 413021023042 — 411013023042

[aszasr(aiiaxs + ay1axaassas — arsan — ayzas)]

we can find that b, b, — b; > 0, and (4.18) can be transformed into the following form :

(Q302U3U3J3)D35(Q32 U3 Us )"

+ (@32 Un U3 J3)Z(Q322 U3, Us J3) ' 1(Q322 U3 UsJ3) A3 (@300 Uy Us J3) "

+ (030U U3 J3)A3(Q30 U3 UsJ3) (@32 Uz UsJ3)Z(Qann Uz UsnJ3) ™' 1T =
That is, Dj + 7520, + 0,T1,, = 0, where ©, = (Q322U32U3J3)A3(Q322U32U3J3) , P32 = (azas; —
axaq)o3. According to Lemma 2.6, we are able t0 obtain the semipositive definite matrix

b 0 S B
2(b1b2—b3) ) 2(b1b2—b3)
(:)2 — 01 2(b1by—b3) g 0 .
1 b
2(b1b2-b3) 0 2b3(b1b2-b3) 0
0 0 0 0
Therefore, it can be obtained by calculation that
Az = 052(03200U3UsJ3) ' 020302 U Us J3) ', (4.21)

is semi-postive definite.
Case 3: When k; = 0 and k, = 0, there exists the transformation matrix Q33 such that 7533 =
03325053, where

ajpaz3 _ a12a23\2 * *
apz(an +a —=;2) (-an - =20 ny o ong
ajpdas
_ —ai3 —an + =5 —aj4 —ap
Q33 - O O . 1 0 )
0 0 0 1
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with I’l; = —a;3azz + 6114(611] + agq — %) and I’ZZ = Cl]z(a]] + 111;15221) + asasn, then we can find
—Ci —C —C3 —C4
T 1 0 0 0
S 0 —au —aq
0 0 0 __apaxtaizag
a3
where
_ a;ndn;
C1 =aq +aszz — > 0,
ais
- a3

Cy = [ariazzass(ar; + arn) + azzasn(anaxs + ay1a24a33a41 — a14a21 — a13az1)]
a1paz3 + ajzay; + a13044
as
- [aipas3as(ax + ax) + azazzas(az + ays)] > 0.
Qa12a73 + a3dy; + a13044

Thus, (4.18) can be transformed into
Dé + T33®3 + ®3T32 =0,

where ©; = p%(Q33 UsJ3)A3(Q33U303)!, p33 = —aj303. With Lemma 2.7, we can obtain the positive
33

semi-definite matrix 1
e !
- 0 —
O =], 2
1o
0

Therefore, it can be obtained by calculation that

As = p33(033U3J3) 7' 03[(Q33 U3 J3) 1" (4.22)

2

o O O O

0
0
0
0

o O

is semi-postive definite.

Step 4. For the following algebraic equation
Di+ZAs+ NZ" =0, (4.23)

consider the corresponding order matrix J4 and elimination matrix Uy:

0001 1 0 0O
1 000 0O 1 00
J4‘0100’U‘“0—%10'
0010 0O 0 01
Let Z, = (U4J4)Z(U4Js)~". Tt can be obtained that
0 —% —Qy4 —ay
—dpp —ap3— al,:lazm —da4) —ap
Z4 - 0 ai3dy “14”%1 ry + az1aa) ar + ana |°
apn a%z az a2
0 P1 P2 0
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— 21033 —
where p1=—asz + an ° P2 = ass.

Case 1: When p; = 0 and p, # 0, it is possible to determine the standard transformation matrix Qy4; in
order to satisfy the equation Ty, = Q4174 Q;ll, where

[y I Iz Iy
2
aizasi d14dy, az1a33a41 aiazias;
O = 0 (T + —)ass anazs + =070 anas + 0
41 = 12
0 0 ass 0
0 0 0 1
with ) )
1443, ar1Qq4) — 14071, A13az1  A14dy;
I =(-azaz - Jass, b = (a3 + ax + X + —5—)ass,
ap ap ap aj,
2
apjzay; - Ai4dy, apazass az1441 »
I3 =azs[—aa( +——)+anan+ ——— +(au + )1,
ap ai, a ap
2
apaz | ai4dy, az104) anayg
ly = — anass( +—5—) +(au+ Yaz + )ass,
an alz a12 [751)

then it can be obtained by calculation that 74; = 7Ty, and (4.23) can be transformed into

D(z) + T41®1 + (:)ITZ] =0,

a

A ar4a? A
where ©; = é(QmU4J4)A4(Q41U4]4)T,P41 = (ap3az — 141221 )az3os, and O = ©;. Consequently,
Ay = pf”(QMU4]4)‘1(:)1[(Q41U4J4)‘1]T (4.24)

is positive definite matrix.

Case 2: When p; # 0 and p, = 0, there exists the transformation matrix Uy,, then Zy, = UspZy U;Z‘,
where

1 0 0 0
0 1 0 0
Un=19 o | o
0 0 012(012033—021033) 1
a12a13a21+aiady;
then we can find
0 __a21044 —aus + a12a33a41(a12—az1) —ay
a2 a12a13a21(+a14a%1)
_ _ _ Quaaz1 _ a11a12a33(d12—a21) _
7 ar a3 alz2 da anapa) +a4as, an
42 12013021 +a1445,  appay+ayaar _ (aint+a)(@inazs—az ass) ai(aii+ain) ’
“%2 a a2ai3+aisaz) ap
0 0 D3 (a1 +app)(ap—a)

ajpaiztaiaazg

azs(@p—azi)(ainanu+azas) _ anay;(an+an)@n-an)’
a2a13+aaaz) a1 (aipaiz+aisaz; )
Case 2-1: If p; # 0, we can find the standard transformation matrix Qg4;; such that Ty; = Q41 Z4> ngll,

where

where p; = as3 +

L I I8 Iy
0 P31 (apaiz+aisds;) I (a11+a2)*(an—az)? p3aai(aii+arn)
Q421 — a, (arpa13+aisaz )? apn ,
0 0 D3 (a11+a12)(@12—az1)
(arpaiz+aisany)
0 0 0 1

Electronic Research Archive Volume 32, Issue 3, 1574-1617.



1603

with
] _—021033(012 — ay)(a1aa4 + aosdyy)
| =
ap ’
/ _[6121(—61126113 — d14ay) + Ar1ag + A1dsr)(a12a13 + A14021) + ay (an + ap)an — azl)]p
2 — 3 2 3
ap ap
aiax(ay + ap)(apn — az)
- 3 1ps,
ap
I _[—0416121(012013 + d14ar) + anaz(ain —ay)  axnlan + 012)2(6112 - a21)2]p
3= - 3
0%2 ap (anpa13 + aan)?
(an + apn)(an — ax)(anaxs + aas) + (61126124 T aasq (an + apn)anas; — 0216133))2
ap(anas + ajsaz) apn appdz + ajudsg
psazxi(ay +ap)  (an + an)*(an — axn)?
+ + s—1p3.
ap (a2a13 + asaz)
/ _(61126124 +anay  (an +ap)(ands — axas;) N (an +an)(an —an), pax(an + an)
= _
a a12a13 + ajsdy a1pai3 + apsdy apn
_ aaxaszs(a — ax )(anay + a as) + paazi(ay +ap) (an + ap)(an — ax)
a%z ap) apaz + ajsday)
(an + an)*(an — axn)* (an + a)an — az)
(anaiz + aisa)? appdgz + dajdog
/ _[6112024 +anay  (an +ap)(anas; — axas;) + (an +ap)(an —a)
= _
ap apaz + ajsds) appdz + ajsds) ’
then we can obtain that T4,; = T4y, and (4.23) can be transformed into
2 A A T
DO + T421®1 + ®1T421 = 0,
A . _
where ©; = %(Q421U42U4J4)A4(Q42] U42U4]4)T,p421 = wmb Consequently,
2 -1A 1T
Ay = 051021 UpUsJ3) O1[(Qa21 UsoUsJs) ™' ] (4.25)

is positive definite matrix.
Case 2-2: If p; = 0, we are able to find the standard transformation matrix Q4y, such that Ty, =
042224,0},,, Where

l [ I3 Iy

0 a12a13a2;+a14a§1 apay+azias _ a(antan)an-—ay)  ai(aii+an)
O = 4 an apai3+ai4az) ap ,

0 0 1 0

0 0 0 1
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with
I = - axy(apags + 61146121)’
ap
b =[—ars — Aol + Ag1a41 — Aigy (@i + an)(ands - a21a33)]a21(a12a132+ a14a21)’
ap appdz + ajady; ai,
s :[61126124 +anaq  as(an +ap)an - 6121)]2 B 6141(61120332"‘ a14as1) N anazs(an — a21),
ap appdz + ajsday; ai, ap
I, 26121(011 + 012)[012024 tanas (a1 + ap)(apnaszs — axazs) + (a1 +ap)an —az)
apn ap apaiz + ajuds) appaz + ajsds)
_anay (anas + aj4az)
ai, .
We then have R .
—-by —b, b; by
sl 0 0 bs
m = 10 bl
0 0 0 b

which means that

1
appaz + apan
(a1 + ap)(an —ax)

(ana3 + asay )?

+ay(ax +asz + as) + axi(ay + asz + asg) + a33aas + axagp — aag > 0,
B3 :(a” * dulan - an) laii(az1 + as3 + asq) + az(an + asz + agy) + az3aas + azds — a14ds ]

apaiz + ajsdng

(a1 + an)*(an — ax)*

(anaiz + ajsay )’
+ ayax(ass + ag) + azzaga(an + azr) + anax (ass + ag) — araaz(aar + ag)

+ apag(ay — apn) — azas (a3 + ars) + axazsas + axazas > 0,

S

1 [(ainai3 + apsaz )ay; + az + asz + ag) + (a; + ap)(a —az)] >0,

SO
)
Il

[(aipa13 + ansaz)(an + ax + azs + ag) + (an + app)(apn — az)]l

[(ainai3 + apsaz )ay + ax + asz + ag) + (a; + ap)(ap — az)]

bib, — by > 0, and (4.23) can be transformed into the following form :
(Qi2UnUsJ)D3(Qunn Uiy Usds)"
+ [(Qu2UnnUsJ)Z(Qu2 Usn Usd )™ 1(Qun2 Usn UsJs) Aa(Quna Usn U J )"
+ (Qu22UsnUsJ ) Ag(Quno Uiy UsJ ) [(Quno Uy UsJ ) Z(Qunn Uiy U Jy) ™' = 0.
That is, D2 + Ty»®, + @,TL, = 0, where 6, = é(Q422U42U4J4)A4(Q422U42U4J4)T, P4 =

“laptitan®) - - According to Lemma 2.6, we can find the semipositive definite matrix

as)
b 1
2(b1by-b3) (1) 2(b1by—b3) 0
(:)2 = 0 2(b1by-bs) E) 0 .
2(b1b2~b3) 0 2b3(b1by—b3) 0
0 0 0 0
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Therefore, we can obtain that

Ay = P30y (0 U UsJs) ' 05[(Qunn Usy Usds) 1" (4.26)

is semi-postive definite.

Case 3: When p; = 0 and p, = 0, there exists the transformation matrix Q4 such that 743 = Q4,Z4Q0.»,
where

[ [, I3 Iy
dlga
04y = —dip —a1;3— 1;1221 —d4) —dy
42 =
0 0 1 0|’
0 0 0 1
with
[ = I, = ai4day o [ = ai4az) ar1aq
| = apap +aua, b = ayas + (a3 + )", 1 = apasu — ayn(—a;3 - + a + )
apn apn apn
I, = apdigang apds1aqg
4=4apadq tanapt+ ——————ax)ay — ——.
apn apn
We then have
-1 —0Co -3 —Cy
T 1 0 0 0
43 — a1a4q ailazl | »
+ ==l + ==t
0 0 au+=7% an+ 70
0 0 0 0
where
n ar1dy
C1 =aq1 +az +azz + aqq + axg + > 0,

apn
Cr =aziazzass(ay; + ai) + azzasn(a)as + a11a24a33a4) — A14az) — A130z1) — A12033041(A23 + Ao4)

az1aq Yo + ar1dq
24

+(an +ay +az +as +ax + ) — aziaszas(ayz + aps) > 0.

an an
Thus, (4.23) can be transformed into

D(z) + T43®3 + (:)3TI3 = 0,

where ©; = p%(Q43 UsJ)A(Qu3UsJ)T, psy3 = —apo4. With Lemma 2.7, we can obtain the positive
43

semidefinite matrix O3

2]71 0 00
A 0 == 0 0
®: = 2818,
"o 0 00
0O 0 00
Therefore, it can be obtained by calculation that
A4 = p13(QuUads) ' O3[(QusUsd) ™' (4.27)

is semi-postive definite.
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In summary, Az, A4 are positive definite and Ay, A; are at least semi-positive definite. Hence,
A = A; + Ay + A3 + Ay is a positive definite matrix, and there is a unique and precise density
function surrounding the quasi-endemic equilibrium E when R* > 1. Considering the transformation of
O'1,¥2,93,y4) = (In S% In %, In Ail’ In C-%) and (S, 1, A, C), the unique ergodic stationary distribution v(-)
of Model (2.2) approximately follows a unique log-normal probability density function

@(S.1,A,C) (271) A 2e 2(1n51+ln7+ln—+ln—)A l(ln—+ln7+ln—+ln—)T

This completes the proof of Theorem 4.1.

Remark 3. By combining Theorems 3.1 and 4.1, it is possible to find evidence that the stationary
distribution of Model (2.2) around the equilibrium E| is compatible with the probability density function
O(S,1,A,C). Hence, a reasonable stochastic criterion for disease persistence can be achieved when
R* > 1. From this we can see that accurately representing the density function can be an efficient method
for preventing and managing numerous epidemics.

5. Numerical simulations

In this section, we apply theoretical findings to analyze the dynamics of anthrax and investigate the
impact of environmental disturbance on the transmission of the disease. Using by Milstein’s method [39],
the discretization equation of Model (2.2) is given by

Sl
rNi(1 — —) NaArSk — NeCiSk — Usz —uSy + 7l
k

Sie1 =Sk + At

O'
+ 1S, VAt + 715,%% — DA,

Lot = I + At + ool VAt + —IZ(nk ~DAr, (5.1)

S ili
NaArSk + nNCrSi + T~ (y+u+ 1l
!

2
g
Ate1 = A + (—aAg + BCHAL + 03A; VAtw, + fAi(wi ~ DAs,

0_2
Cra1 = Ci + [(y + I — (S i + L)Ci — kCi] At + 0:4Ci VAL + 740;3(43 - DAt

where the time increment is Ar > 0, and yy, 7, wy, & (k = 1, ..., n) are the independent Gaussian random
variables following the distribution N(0, 1). As stated by Saad-Roy et al. [7] and Mushayabasa et
al. [17], Table 1 displays the relevant biological parameters and the initial value of Model (2.2). Next,
our objective is to perform empirical examples to concentrate on the following three aspects:

1. If R® > 1, there is a unique ergodicity property stationary distribution.

2. Stochastic fluctuations have an impact on disease persistence in the Model (2.2).
3. Focus on the probability density function of Model (2.2).

Electronic Research Archive Volume 32, Issue 3, 1574-1617.



1607

o 02 04 06 08 1 12 14 16 18 2 0 2 4 3 8 1w 12 14 16 18
t(days) x10%

0
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T 12 14 16 18 2 0 0005 001 0015 002 0025 003 0035 004 0045 005
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Figure 2. The left column shows the paths of S(¢), I(¢), A(¢) and C(¢) for Model (2.2)
with initial values (S (0), 1(0),A(0),C(0)) = (10,0.1,0.001,0.01) under noise intensities
o1 = 0.005, 0, = 0.005, 03 = 0.005, 04 = 0.005, respectively. The right column shows the
histograms of S (), I(¢), A(¢) and C(¢).

0 0z 04 o086 08
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Table 1. List of biological parameters and initial of Model (2.2).

Parameters  Description Value Units Ref.
Animal carrying capacity 100 animals [7]

r Birth rate 1/300 Day™! [7]

u Death rate 1/600 Day™! (7]

K Carcass decay rate 1/10  Day™! [7,40]

a Spore decay rate 1/10  Day™! [7,17]

y Disease death rate 1/10  Day™! [7,14]

n; Transmission rate of infected animals ~ 1/100 Day™'. [7]

Na Transmission rate of environment to 1/2 Day~! gm spore™. [7]
susceptible animals

e Transmission rate of infected carcasses 1/10  Day~! carcass™ [7]
to susceptible animals

T Recovery rate of infected animals 1/10  Day™! [7,41]

B Spore growth rate 1/500 Spores carcass 'day”!  [7]

0 Carcass consumption rate 1/20  Day~' animal™! [7,41]

5.1. Dynamical behaviors of Model (2.2) under R® > 1

The main parameters are given in Table 1. Let the stochastic perturbations be (o, 03,03, 04) =
(0.005, 0.005, 0.005,0.005) in Model (2.2) then we can calculate that

M YrH mSo o YHH BnaSo

Ry = =4.3560 > 1,
vy+u+t y+u+t6So+k y+u+ta(dSo+k)
2 2
l. +(u+ 2 .S +u+ .S
RS = n ~ i Y (/J 23—2 e o — " Y (/J 20)—2 - ﬁ?] 0 -
Y+u+T+ 5 yHu+7t+F0So+tk+3) yHru+t+F(@+ F)6So+ (k+ )]

=1.1545 > 1.

The disease has a tendency to persist in both deterministic and stochastic models according to
Theorem 3.1. It can be inferred that Model (2.2) has a stationary distribution v(-). In Figure 2, we give
the time series diagram of the model solution and its corresponding histogram. In the time series diagram
in Figure 2, the curve fluctuates up and down, but the overall trend is stable. The corresponding interval
of frequency can be seen in the histogram on the right. It is shown that the Model (2.2) has a unique
ergodic stationary distribution, which is consistent with the result of Theorem 3.1. This indicates that the
disease will endure. In real life, anthrax is not easy to be completely eradicated, but in a relatively stable
state. Next, the dynamical behavior is observed when the parameters of the stochastic and deterministic
models are identical. It is shown that the stochastic path fluctuates around the deterministic path, which
indicates that the stochastic Model (2.2) has an ergodic stationary distribution. Figure 3 confirms this.

5.2. Impact of random noises o, 0, 03,04 on the disease persistence

Mathematical limitations make it tough to establish sufficient conditions for disease extinction in the
stochastic anthrax model [42,43]. Therefore, for a comprehensive discussion, we present numerical
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simulation of disease elimination with high noise. For example, to prevent the spread of anthrax, people
can increase the culling rate or vaccination rate, which will effectively eliminate the spread of anthrax.

We use numerical simulations to prove that excessive environmental noise can lead to the extinction
of anthrax. Let o = 0y = 0, = 03 = 04, o be taken as 0.002, 0.005, and 0.01, respectively. The
other parameters and initial value are identical to those in Table 1 and the simple calculations show that
R’ > 1. It can be concluded that the disease persists; if we let o = 0.02,0.05, 0.1, studies have shown
that large enough environment noise will eradicate the disease, and the numerical simulation clearly
shows our conclusion in Figure 4.

5.3. The probability density function of Model (2.2)

In this part, the numerical representation of the probability density function of Model (2.2) will be
our focus. From Theorem 3.1, we can calculate that if (o7, 05, 073, 074) = (0.005, 0.005, 0.005, 0.005),
the Model (2.2) has a unique stationary distribution. Moreover, through meticulous computation, it
is determined that the variables’ values in Table 2 are all positive. By the definition of E|, we obtain
that (S1,1;,A,,C)) = (24.8194,0.4094, 0.00044, 0.02852). According to Theorem 4.1, we know that
the distribution has a probability density function around the quasi-steady state E;, and the stationary
distribution v(-) obeys a log-normal density function ®(S, I, A, C). Its function expression is:

0.0511 -0.0271 0.0134 0.0283
-0.0271 1.4113 0.4421 0.1271
0.0134  0.4421 0.2216 0.0932}’
0.0283  0.1271 0.0932 0.1014

A=10"3x

and the corresponding marginal density functions are :

F(S)= (;;? = 0.08 exp[-9.79(In(S —24.8194))*], F() = ac');(l) = 2.22 exp[—0.35(In(I — 0.4094))*],
00 00

F(A) = A 0.35 exp[—2.26(In(A — 0.00044))*], F(C) = Evoln 0.16 exp[—4.93(In(C — 0.2852))*].

By constructing frequency histograms and fitting curves for the variables S, I, A, and C, the marginal
density functions F(S), F(I), F(A), and F(C) were plotted. The numerical findings depicted in Figure 5
validate the assertion that the fitting curves closely align with the corresponding theoretical marginal
density functions.

Table 2. Value of variables.

wi w2 w3 r| r rs
-0.8739 1.7655 -0.8033 -17.2838 -0.0217 -0.0003
ki ky k3 D1 P2 D3
11.1646 -0.0001 -0.0352 -16.5267 0.1312 -10.7746
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for stochastic Model (2.2) with different noise
intensities(oy, 0, 03, 04). The red line represents the result of deterministic Model (2.1), and

the blue line represents the result of stochastic Model (2.2), repectively.
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Figure 5. The marginal density functions and frequency fitting curves of S, 1, A, and C in
Model (2.2), respectively. All of the parameter values are the same as in the above Figure.

6. Conclusions and discussion

To explore the possibility of an ergodic stationary distribution and a representation of the probability
density function, we propose the stochastic anthrax model in this study. We will discuss our primary
contributions in the two areas.

By considering the effect of external environmental perturbations, we focus on the stochastic anthrax
model. First, we calculate the basic reproduction number of the deterministic model Ry, if Ry < 1, which
means that the anthrax will be extinct in the animal population, while Ry, > 1 implies that anthrax will
persistence. For stochastic Model (2.2), the uniform boundedness of the model is presented. Second,
we demonstrate that the stochastic anthrax model has a unique ergodic stationary distribution at the
threshold R; > 1 in Lemma 2.3 and Theorem 3.1 by building appropriate Lyapunov functions and
applying ergodic theory. From the similar threshold and basic reproduction number, R® > 1 can be
seen as a unified criterion to ensure the persistence of disease in deterministic and stochastic models.
Comparing the expressions for Ry and R*, we find that R* < Ry, so R > 1 can be viewed as a uniform
measure to determine the persistence of the disease in both the model and the stochastic model. In
addition, by setting up noise perturbations of different intensity, we found that the higher the noise
level, the faster the disease extinction. That is, external disturbances play an important role in disease
development, such as environmental elimination, culling of infected animals, and vaccination.

Understanding the statistical characteristics is crucial for managing infectious diseases, but it is
challenging to ascertain the statistical properties of disease persistence within an ergodic stationary
distribution. To study the dynamic behavior of disease, we construct the endemic equilibrium point,
through the equivalence between the Model (4.1) and the corresponding linear Model (4.3) and deduced
the log-normal accurate expression of ®(S, I, A, C) four-dimensional density function. Furthermore, the
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covariance matrix A is determined through the use of an algebraic equation D* + ZA + AZT = 0. The
precision of A can be verified by applying the stability theory to the zero solution of the linear equation,
as discussed in the previous research [39]. Furthermore, our method and theory can demonstrate that A
is positive definite, even in cases where D is a semi-definite matrix.

Finally, there are several important themes that deserve further study. To begin, the stochastic model
established in this paper only considers the effect of white noise. However, Lévy noise can describe
the model more accurately when there is a sudden change in the environment. On the other hand, time
delay is an important factor affecting the stability of ecological dynamic systems, as time delay may
alter the stability of the system and lead to system fluctuations [43,44]. Therefore, considering Lévy
noise and delay effects has theoretical value and practical significance. We leave these for future work.
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Appendix 1 : The proof of Lemma 2.1

Proof. Denote the Lyapunov function : V(S,1,A,C) = S€ + €l + A° + C¢, for € > 1, applying
[to’s formula

DV(S,1,A,C) = LV(S,1,A,C)dt + €01 S “dB;(t) + €021°dBy (1) + €03A°dB;(t) + €0,CdBy(1),

where
LV(S,1,A,C)
:nyﬂmu—%—%M—mw>m%—m+ﬂ]
+e%“%mAS+mcs+m%;—@+yﬂ—rn+e¥”paA+ﬁq
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< -Sv[en; +ue+t(e—1)— 6(62_ 1)0'%56]
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— C[=(e = D)(y + ) — B + ke — 6(62_ Do2ce 4 erva - %)S“l.
Let
F(S,1,A,C)
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It follows from (2.3) that there exists the positive constant T, such that F (S,1,A,0) < T,. Hence, we
can obtain that
LV(S,1,A,C) < F(S,1,A,C) = V(S,1,A,C) < T, — V(S,1,A,C),

which yields that dV(S,1, A, C) < [T, — V(S,1, A, C)]dt + €0 S€dB; (f) + €, I"dBy(f) + €03AdBs(t) +
€0 4C<dBy(1). Integrating both sides of the equation d[e'V(S, 1, A, C)] and taking expectations leads to

the following

E[e'V(S,1,A, C)] < V(S(0), 1(0), A(0), C(0)) + Te'.
Thus, limsup, , EV(S,1,A,C) < T, as a result, lim sup,_,., EIX(@)|° < ML := T(e). In addition,

€
l—j)/\O

when € = 2, we have limsup, . E|X()]* < T,, which is the second moment of the solution of
Model (2.2). Now, forany & > 0, let ¥ = /2. By Chebyshev’s inequality, P{IX(1)] > ¥} < ZXOF which

yields that lim sup,_, ., P{|X(?)| > ¥} < q% = ¢. Therefore, we have limsup, ,  P{{IX(#)| < ¥} >1-¢€. In
other words, the solution of Model (2.2) is stochastically ultimately bounded.

Appendix 2 : Theory in obtaining standardized transformation matrix

Through the use of invertible linear transformations, we will derive the corresponding stan-
dardized transformation matrices of standard B;. The matrix of B;: For the algebraic equation
D} + ZA, + A\Z" = 0, where D = diag(c,0,0,0) and

app dpiz a3 dig

7= azy dxp a3 d4 .
0 an a axn
0 0 as au
We assume that ay; # 0, az; # 0 and as3 # 0. Define X = (xq, x,, x3, x4), which follows dX = ZXdr.
Considering the following vector Y = (y1, y2, y3, y4)!,
V4 = Xgq,y3 = yQ = A43X3 + Aq4X4,
Y2 =Y = anasXy + (ass + Qaa)asxs + (A, + a34043)%4,
Vi =Yy = a21G3a43%1 + (a2 + 33 + Aaa)azas3x + [ag3(ansas + asaass + az3au) + a3 + agylxs
+ [ax4azays + (a33 + Aag)assdas + (34043 + a3,)as]x
= MmX) +NnaXxXy +n3xz + ngxy,

then the corresponding strandardized transformation matrix is given by

n np n; ny
N = 0 axpasy (az +aw)as  ai, + asas -
0 0 ags agq
0 0 0 1
We derive that Y = NX, which means dY = NdX = NZXdt = (NAN~!)Ydt, then we have
Y1 —a; —dy —az —a4)(y
2 L0 0 0 |]»
Y = = .
d d Vs 0 | 0 0 ||y dt
4 0 0 1 0 Va
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Therefore, we can obtain that the corresponding standard B; matrix is NZN -1 := Z,, which refers to
Lemma 2.5. Let p = ayjanaso and © = p>NANT.
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