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Abstract: In this study, we formulate a reaction-diffusion Zika model which incorporates vector-bias,
environmental transmission and spatial heterogeneity. The main question of this paper is the analysis
of the threshold dynamics. For this purpose, we establish the mosquito reproduction number R; and
basic reproduction number Ry. Then, we analyze the dynamical behaviors in terms of R, and R.
Numerically, we find that the ignorance of the vector-bias effect will underestimate the infection risk of
the Zika disease, ignorance of the spatial heterogeneity effect will overestimate the infection risk, and
the environmental transmission is indispensable.

Keywords: Zika; reaction-diffusion; vector-bias; environmental transmission; spatial heterogeneity;
reproduction number; threshold dynamics

1. Introduction

Zika, caused by the Zika virus, is a mosquito borne disease. It is mainly transmitted to humans
through mosquito bites. In March 2015, a large outbreak in Brazil attracted worldwide attention. The
World Health Organization stated Zika as a Public Health Emergency of International Concern in
February 2016 [1]. Zika is associated with Guillain-Barré syndrome and microcephaly [2]. It poses a
major threat to global health in developing countries [3].

Differential equation models are an excellent tool in studying the spread of infectious diseases [4—11].
Recently, reaction-diffusion models play an important role in exploring the effects of spatial
heterogeneity on the spread of Zika [12-19]. Recently, researches showed that the Zika virus in a water
environment could be transmitted to aquatic mosquitoes via breeding [20]. This suggested that
determination of the route of Zika transmission needs to take environmental factors into account. In our
previous article [21], the environmental transmission route was introduced into Zika model. We
researched dynamical analysis of the system for three incidence functions related to the environmental
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transmission rate.  Then, we extended [21] to consider sexual transmissions and spatial
heterogeneity [22,23]. But, the above models did not consider the vector-bias. In fact, the vector-bias is
important for Zika transmission [24, 25]. However, few Zika models consider the vector-bias,
environmental transmission, and spatial heterogeneity simultaneously.

The vector-bias describes how mosquitoes prefer to bite infected people over susceptible ones. To
account for the vector-bias in the model, we introduce the parameters p and [. p and [ represent the
probabilities that an adult mosquito arrives at a human at random and bites the human if he/she is
infectious and susceptible, respectively. Let ¢ = £ (¢ > 1). Then g is called a vector-bias parameter.
In this study, we modify and add the vector-bias to our previous model in [23]. We assume that the
mosquitoes and humans are living in a bounded domain I" with smooth boundary dI". §(z, x) and
I,(¢, x) indicate densities of susceptible and infectious aquatic mosquitoes at time ¢ and position x,
respectively. S, (¢, x) and I,(¢, x) represent densities of susceptible and infectious adult mosquitoes at
time ¢ and position x, respectively. The densities of infectious humans at time ¢ and position x are
denoted by /;3(¢, x). The densities of the Zika virus in the water environment are denoted by V(z, x)
at time ¢ and position x. We assume that a susceptible human is unchanging [19, 24]. The density of
susceptible humans is denoted by H.(x). Inspired by article [24], we set the number of newly infectious
adult mosquitoes and humans per unit time to az(x)mfl—ljl*(x)S > and a3(x) 5 Iif;i)(x) I, respectively. a;(x)
denotes the transmission rate from /3 to S,. a3(x) denotes the transmission rate from /, to S 3. Then, we
propose a reaction-diffusion Zika model as follows

8S1 (1_Sl+ll

—— =TS22+ D)

)—ozl(x)LSl—w(x)Sl—él(x)Sl, xel,

ot Ki(x) K(x)+V
ol %4
" NN oy St T eWh s, xel,
3S2 pI3

—— =wX)S| - a’z(x)p 2= 02(x)S> + V- (di(x)VS»), xel,

ot I; + lH*(x)S

] I
O _ ol + an(x)—PE
p

mSQ - 62()C)12 +V- (d] ()C)Vlz), X € F,

or

(1.1)
ol [H.(x
P ngTqu(x)’z — YL + V - (dy(x)VI3), xel,
oV
= =105 =0V, xel.
0S, oL Ol
_— = — = r
on on  On 0 xedh
S100,x) = S10(x), 1,0, x) = Lip(x), $200,x) = S20(x), xel,
(0, %) = Lo(x), I;(0,x) = Ix(x), V(0,x) = Vo(x), xel,

for t > 0. 7(x) represents the birth rate of susceptible aquatic mosquitoes. K;(x) represents the maximal
capacity of aquatic mosquitoes in the water environment. @;(x) denotes the transmission rate from V' to
S 1. K>(x) denotes the half-saturation constant, which can cause a 50% chance of catching the Zika virus.
w(x) denotes the maturity rate of aquatic mosquitoes. 6;(x) and ,(x) denote the death rate of aquatic
and adult mosquitoes, respectively. y(x) represents the recovery and death rate of infected humans.
The rate of excreting the Zika virus for each infected human is denoted by 7(x). The clearance rate of
V(x,1) is denoted by o(x). di(x) and d,(x) represent the diffusion coeflicients of adult mosquitoes and
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humans. Here we employ the Neumann boundary condition %—i’ =0, (U = S, I, I3), where n represents
the outward unit normal vector on 0I'. Assume that 7(x), K;(x), K>(x), a;(x), az(x), az(x), w(x), 61(x),
02(x), y(x), n(x), o(x), dy(x), d»(x), and H.(x) are continuous and positive functions of x.

The remainder of this paper is organized as follows: In the next section, we give the well-
posedness of system (1.1). In Section 3, the mosquito reproduction number R; and basic reproduction
number R, will be established. In Section 4, threshold dynamical behaviors are analyzed. In Section 5,
we conduct some numerical simulations. This study ends with a brief conclusion.

2. The well-posedness

Let G := C(T', R®) be a Banach space with the supremum norm || - ||g. Let G* := C(T, RS). We then
have that (G, G") is a strongly ordered Banach space. Denote

Gy := {0 = (01,62, 05, 04, 05,06,66)" € G": 0 < 01(x) + 62(x) < Ky(x), ¥ x € T},

Throughout, we denote g := max g(x), g := min g(x).
xeQ - xeQ

Set F := C(I,R) and F* := C(T,R,). Assume that T»(f) and T5(f) : F — F* are the evolution
operators associated with

0

% = =6 (X + V- (di(x)Vvy), xeT,
8V3

E = —’)/()C)V3 + V : (dz(X)VV}), X € F’
(9\/2 _ (9\/3 _

6n_an_0, xeol.

We have that T',(¢) and Y'3(¢) are strongly positive and compact (see Chapter II in [26] and Theorems 7.3.1
and 7.4.1 in [27]). According to Subsection 2.1 in [28], one has

(Ti(OY)(x) = fr Fi(t, x, yW(ydy, i = 2,3,

fort > 0, ¥ € F. Here, F,(t, x,y) and F3(t, x, y) are the Green functions associated with —d,(x)v, + V -
(d1(x)Vvy) and —y(x)vs + V - (d2(x)Vv3) subject to the Neumann boundary condition, respectively.

Let a; and a, be the principle eigenvalue of —d,(x)v, + V - (d1(x)Vv,) and —y(x)v; + V - (d2(x)Vv3)
subject to the Neumann boundary condition, respectively. From [28], we obtain that there is M > 0
such that || Y;(7) [|< Me“" YVt > 0, i = 2,3. According to Theorem 2.27 in [29], one has that there exists
some b, > 0 and b; > 0 such that F(, x,y) < b,e ™ and F5(t, x,y) < bse .

Define Y (7) and Y4(¢) : F — F* by

T(OP(x) = e WOy () Ly(t)p(x) = e 2 y(x).
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Denote Y = diag('(7), (1 (), T2(2), V2(1), T3(), Y4(1)). Detine H = (H,, Ha, Hs, Ha, Hs, Hs) : Gx — G by

6, +0
H,(60) = ()65 + 63) (1 - %()2
N
Hy(0) = i ( )Kz(') n 9691,
_ oy @()pbsbs
H3(0) = w(-)6, 205+ 1H.()’
(1) pbs0;

Hi(0) = ()6, +
a3 () H, ()0
pOs + [H.(-) ’
He(0) = n(-)bs,

Hs(0) =

pOs + IH.()’

_ %
K>(-) + 66

61,

fort>0,x eI, and 8 = (6;, 65, 05, 64, 65, 05) € Gg. Then, rewrite system (1.1) as

d_w =Bw+ Hw),t >0,
dr
W(O) =0 € Gg,

2.1

where 8 = diag (81, B, B,, B,, B3,8,4) and B;(j = 1,2,3,4) are given by

D(B)={0e XD}, i=14,
D(B)) = {9 e CXD): %
B10 = —(w(x) + 61(x))6,

B0 = -62(x)0 + V - (d1(x)V6),
B30 = —y(x)0 + V - (da(x)VO),

8B40 = —o(x)0,

System (1.1) is also equivalent to an integral equation as follows:

:Oon(')F}, Jj=2,3,

0 € D(B)),
0 € D(By),
6 € D(8s),
0 € D(By).

w(t,0) = T()0 + f Tt — s)Hw(s,-))ds, t > 0,
0

w(0) = 0 € Gk,

where w := (81, 11,5,, 15,13, V).
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Lemma 2.1. For every 0 € Gg, system (1.1) admits a unique nonnegative solution w(t,-,0) € Gk on
[0, oo) with w(0, -, 0) = 6. Moreover, the solution is uniformly bounded and ultimately bounded.

Proof. For any 6 € Gk and ¢ > 0, then one has

01(x) + 61(x) O(x)
01(x) + ct(x)(63(x) + 04(x)) (1 - T(x)) - Ca'l(x)mel(x)
B6(x)
0,(x) + Ca’l(x)mgl(x)
@2(x) pOs(x)05(x)
00x) + cH@O) ) = | PO T @n ) - e T ™
@2(x) pOs(x)05(x)
04(x) + w(x)0,(x) + ¢ 205(0) + IHL.(Y)
@3(x)[H.(x)04(x)
B+ € a0 + 1.0
O(x) + CU(X)_QS(X)
6,0 |1 - c%t%(x)]
6>(x)
> |61 - c‘l’;” 95<x)] ,
04(x)
0s5(x)
B6(x)

and

Ki(x) = (61(x) + ¢H 1 (6)(x) + 02(x) + cHL(0)(x)

(2.2)

= Ki(x) - (91 () + 62(x) + cT(x)(B3(x) + O4(x)) (1 -
Ki(x)

7(x)(63(x) + 94(X)))
Ki(x) .

1 (x) + 92(X)))

= (K1 (%) — (61(x) + 62(x)) (1 -c
So, for small enough ¢ > 0, one has 6 + ¢H(0) € Gg, and
}Lrg %dist @+ cH@B),Gk) =0, V 6 € Gg.
By Corollary 4 in [30], we can obtain that for any ¢ in its maximal existence interval [0, z5) with ¢, < oo,

system (1.1) has a unique mild solution w(t, -, 6) with w(0,-,6) = 6, and w(0, -,0) € Gg. Moreover,
w(t,-,0) e Gk Y t € [0,1). w(t, -, 0) is a classical solution.
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Let Mi(t,x) = Si(t,x) + Li(t,x), My(t,x) = Si(t,x) + L(t,x). From (1.1), one has that
(M, (t, x), Ms(2, x)) satisfies

oM, M,
7 = T(.X)Mz (1 Kl (x)) ((,t)(X) + 61 (.X))Ml, X € F,
oM, 2.3
= COM = ()Mo +V - (d () VM), xeT, (2.3)
% =0, xeorl,

on

fort > 0. Since w(t,-,0) € Gx ¥V t € [0, 15), we have M (t, x) = S (¢, x) + I,(t, x) < K;(x) for t € [0, tg),
x € T'. Thatis, S (¢, -) and I,(t, -) are bounded on [0, #5). From the second equation of (2.3), we have

oM
— = S WOK() = 6(0)My +V - (di ()T M),
<K, = My + V- (di(x)VM), xeT, (2.4)
M.
M _, xedr.
on

Consider a comparison system as follows

9 _
W Tk -6y + V- (dy(x)Vy), xeT,

ot %

o (2.5)
— =0, x € or.

on

Let: = 55—7 We then have that % — V- (d{(x)V0) — (0K, — 62t) > 0. Therefore, ¢ is an upper solution

of (2.5).T3y the comparison principle, we have M,(z, x) < ¢ for t € [0, 1), x € . That is, S,(¢,-) and
L,(t,-) are bounded on [0, ).
From the fifth equation of (1.1), one has

oI
6—; <@t—yL+ V- (d()VE), xeT,
oI

a_’,j = 0’ X € 6F

It follows from the comparison principle that I5(z, x) is bounded on [0, #). So, there exists a positive
constant D and along with the sixth equation of (1.1), we have %—‘t/ < nD — oV. By the comparison
principle, we can obtain that V(z, x) is bounded on [0, t5). Therefore, for any initial value 6 € Gy,
solutions of system (1.1) exist globally on [0, +00).

Since S (¢, x) + I;(t,x) < K,(x) for x € T, t > 0, we have that S (¢, x) and I, (¢, x) are ultimately
bounded. From the third equation of (1.1), we have

08>

2 S WK, = 6,8, + V- (di(0)VS,), x€T,
oS
—2 =0, x € dr.
on
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According to the comparison principle, S5(7, x) is ultimately bounded. So, there exists 7 such that
So(t, x) < 256—12(‘ =2fort>ty, xel.
From the fourth equation of (1.1), one has

oL _—

a—; < @K, + 2@ - 8L + V- (di(0)Vh),  xel,
ol

—= =0, eol.
on *

So, I(t, x) is ultimately bounded. There exists #y; such that I5(¢, x) < 2@?1(5;22“72 fort > ty, x eT.
From the fifth equation of (1.1), one has B

ol

5, ST -yl + VY (dWVE),  xel,
I

@ = O, X € 61“,

on

where ¢; = 2M+22@. According to the comparison principle, I5(, x) is ultimately bounded. So, there

exists #p, such that I;(¢, x) < 2@ for t > ty, x € I. Similarly, we can get that V(¢, x) is ultimately
bounded. Thus, the solution w(z, x) is ultimately bounded.

Next, we give the proof of the uniform boundedness of solutions for system (1.1).

For any 6 € Gy, one has 6;(x)+6,(x) < K;(x), Yx € T, and the solution of system (1.1) w(t, -, 6) € G.
Thus, wi(t,-,0) + wy(t,-,6) < K, (-). That is, S(z, x) and I,(¢, x) are uniformly bounded.

From the third equation of (1.1), we have

% < (.U(X)Kl (X) — 52(X)S2 +V. (dl (X)VSZ), xe r,

%:O, x e or.

Then, for any initial value 8 € Gg, we can obtain
!
So(t, x) < Ta()63(x) + f Ta(t — w(x)K(x)ds
0
!
< Me™ || 05 || +f sz(l =5, %, Y)w)Ki(y)dyds
0o Jr

1
< Me™ || 6 |Ig +f bre 2" %K, | T | ds
0

bywK, | T |
02 '

< MI6s e +

For any ¢; > 0, choose N(c;) = Mcy + bzaé—é'” > (. Then for any initial value || 8 ||g< ¢; and
Yt > 0, we have S,(#,x) < N(ci). So, S »(t, x) is uniformly bounded. Similarly, for any ¢, > 0,
choose N(cy) = Mc, + %?V(cmm > 0, then, for any initial value || 6 ||c< ¢, and V¢ > 0, we have

Electronic Research Archive Volume 32, Issue 2, 1308—1332.



1315

L(t, x) < N(c2). So, L(#, x) is uniformly bounded. From the fifth equation of (1.1), for any ¢; > 0,
choose N(c3) = Mcs + M > 0, then, for any initial value || 6 ||c< ¢; and V¢ > 0, we have

L(t, x) < N(c3). So, we can obtain that /5(7, x) is uniformly bounded. From the last equation of (1.1),
we can obtain V(¢,x) < e || 06 |Ir +M(l —e™®) < 6 |Ir +M. for any ¢4, > 0, we choose

N(cy) = ¢4 + M such that V(z, x) siN (c4) for any initial Valueill 0 |lc< ¢4 and Yt > 0. Thus,
V(t, x)is uniformfy bounded. In short, the solution w(z, x) of system (1.1) is uniformly bounded. This
completes the proof of Lemma 2.1. O

3. Reproduction number

In this section, the mosquito reproduction number R; and basic reproduction number R, will be
established though applying the theorem in article [31].

3.1. Mosquito reproduction number R,

Linearizing system (2.3) at (0, 0), we can get

oM
—L = ()M + (w(x) + 61 (x))M], xel,t>0,
ot
oM,
7 = w(xX)M, — 5 (x)M, + V. (dl()C)VMz), xel,t>0, (3.1)
oM, =0, xedrl.
on
Define P; as
—(w(x) + 61(x)) 7(x) )
P = . 3.2
0 ( O 60+ V(@ ()Y G2
In addition, the eigenvalue problem of system (3.1) is given by
(X2 + (w(x) + 61(0))x1 = dixi, xel,t>0,
w(x)x1 — 02 + V- (di(0)Vx2) = Aix2, x€Il,1>0, (3.3)
e, xedr.
on

According to Lemma 2.2 in [32] and Theorem 7.6.1 in [27], the following Lemma can be obtained:

Lemma 3.1. Let v,y := S(P1), where s represents the spectral bound. If v, > 0, then v, is a principal
eigenvalue of eigenvalue problem (3.3) with a strongly positive eigenfunction.

Define
Fl(-):(o T(’)),—vl(-)=(‘(‘“('”‘51('” 0 )

0 0 w(-) —,(")
Assume that A, (¢) : C([,R?) — C(I',R?) is the Cy-semigroup associated with the following linear system

y B 0 i@ ¥ ). xene>o0
)=\ v @ W | T
o

%:O,xeaf.

Electronic Research Archive Volume 32, Issue 2, 1308—1332.
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Let ¢,,(x) € C(T', R?) be the density of initial fertile mosquitoes, and L, : C(I', R?) — C(I',R?) be
defined by

L)) i= fo Fy (A (D)1 (3.4

Here, L;(¢,,)(-) denotes the distribution of the total new aquatic/adult mosquitoes generated by initial
density ¢,,. So, the spectral radius of L, is Ry, that is,

R1 = I"(L]). (35)
When system (1.1) is spatially homogeneous, we can give an explicit representation of R; as follows:
TW
Rj=———.
62((1) +0 1)

We can then get the following Lemma according to [31]:
Lemma 3.2. R, — 1 has the same sign as Vo
We can then get the following Lemma to hold applying to Lemma 2.5 in [32]:

Lemma 3.3. Let B := {(Myo, My)T € C(I[,R?) : 0 < Myo(x) < K;(x)),V x € ['}. Assume that R, > 1.
Then, we can obtain

tlim(Ml (t, x), My(t, x)) = (M{(x), M5(x)), uniformly for x € T,

with (Mo, M»y) € B\{(0,0)}. Moreover, 0 < Mj(x) < K(x), and M;(x) >0V x € I.

3.2. Basic reproduction number R

System (1.1) has two infection-free steady states Ey(x) = (0,0,0,0,0,0) and
E\(x) = (M{(x),0,M;(x),0,0,0). When R, > 1, E(x) exists. Linearizing system (1.1) at E;(x) and
considering infection compartments, we can then get

o,  ai(x)M;(x)
a—; = IKT)CI)V — (w(x) + 6,0, xel,
ol par(x)M(x)
a_; = w0l + le*—(x)zh —6,()h + V- (d(0)VDh), x€T,
Ji
% = a3(0) L — YOI + V - (da(x)VI3), xel, (3.6)
b%
2 n(x); —o(x)V, xel.
oL, Ol
oh _ 0l _ r
o o 0, x e dr,
for t > 0. Denote P, as
(@) + 8,() 0 0 e
P=| W BV @) e 0 3.7)
0 a3(x) —y(x) + V- (d2(x)V) 0
0 0 n(x) —o(x)

Electronic Research Archive Volume 32, Issue 2, 1308—1332.



1317

In addition, the eigenvalue problem of system (3.6) is given by

a(x)M;(x) _

¥4 — (W(x) +01(xX)1 = Ly, xeT,
K>(x)
_ par(x)M3(x) _ _ _ _
w(x)y1 + WX3 =02 + V- (di(X)Vi2) = k2,  x€T,
) 3.8
(D)7 - YT + V- (da(0VE3) = i, xeT, G5)
n(x)xs — o(X)is = Aax4, xerl,
02  0Oxs3
AL _ZAS T
o o 0, x € or,

for t > 0. According to Theorem 7.6.1 in [27], the following Lemma can be obtained:

Lemma 3.4. Let v,y i= S(P2), where s represents the spectral bound. If v,, > 0, then v, is a principal
eigenvalue of eigenvalue problem (3.8) with a strongly positive eigenfunction.

Define

a ()M ()
00 o RO “@O+a) 0 0 0
0 o0 X 0 w(-) -0() 0 0
Fy(-) = 7.0 ,=Vs() =
S P 0 0 0 0 -y 0
0 0 0 0 0 0 nG) -o0)

Letu = (I;,5,1;, V), V- (dx)Vu) = (0,V - (di(x)VL),V - (d»(x)VI5),0)". Assume that A,(¢) :
C(I,R*) — C(I',RY) is the Cy-semigroup associated with the linear system

‘;_': - V,()u+ V- (@dxVw), xel,
o, al;
=g = 0, x el

for t > 0. Let ¢,n(x) € C(I', R*) be the density of initial infectious individuals, and L, : C(I',R*) —
C(I',R*) be defined by

Lo(@m2)() := j; Fr () Az (D)o (-)dr. (3.9)

Here, L,(¢,,2)(-) denotes the distribution of new productive infected individuals generated by initial
density ¢,,,. So, the spectral radius of L, is R, that is,

R() = I"(Lz). (310)

When all parameters of system (1.1) are constants, we can give the actual formula of R, by

R pasra3 M N nwaazM;
0= .
lyo,H*  yKpdr(w + 61)

We can then get the following Lemma according to [31]:

Lemma 3.5. Ry — 1 has the same sign as Vo

Electronic Research Archive Volume 32, Issue 2, 1308—1332.
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4. Threshold dynamics

According to Theorem 4.1 in [23], we know that Ey(x) is globally attractive when R; < 1.
Biologically, the mosquito population will vanish. Under this assumption, it is pointless to study the

spread of the Zika disease. Thus, in this study, we just consider the case R; > 1.

Theorem 4.1. Assume R, > 1 and Ry < 1. Then, the disease free state E;(x) = (M7(x), 0, M3(x),0,0,0)

is globally attractive.

Proof. Since Ry < 1, it follows from Lemma 3.5 that v;2 < 0. Then, there exists a sufficiently small
¢ > O such that v, - < 0, where v, _is the principal eigenvalue of the following eigenvalue problem

1 (O(MI(x) +6) o
it T — (@) + 610 = A, xel,
Kz(x)
C pa((MI() +6) | . o
W) + — 2 3= 6(0% + V- (di(0)VF) = A, x€T,
[H.(x)
a3(xX)x2 — y(x)x3 + V- (d2(x)Vy3) = Axs, xeTl,
N0 — 0 = Wa, xel,
o> Oxs _
(')n_@n_o’ x € or,

with a strongly positive eigenfunction (Y1, Y2, X3, Y4)-

(4.1)

According to Lemma 3.3, when Rg” > 1, for the above ¢, there exists #; > 0 such that 0 < S (¢, x) <

Mi(x)+¢, 0<Sy(t,x) < Mj(x)+¢,¥Vxel,t>1.So, for > t;, we can get

ol - a (X)(Mi(x) +¢)

- - I r
o < e V = (w(x) + 61(x)1, xel,
ol paa()(M;(x) + )

stmwh+ 21m&) L= 6,(0)L + V- (dy(0)VEh), x€T,

Jé

% < a3(0)L —y(X) L+ V- (da(x) V), xel,
%—‘; <Nk - o)V, xel
012 (913

oh _ 05 _ r.
on On 0 xed

For any initial value 6 € Gk, there exists some /My > 0 such
(Il(th X, 9), IZ(tl’ X, 0)9 13(t1a X, 9)’ V(tbxa 0)) < hl(/%l’)?29)?39)?4)’ Vxel.

that
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Next, consider a comparison system as follows:

% _ m<x)(lzzzg) + g)m — (@) + 61X, xeTl,
% = w(X)il; + pw(xzz‘fg) Sty — a0 + V- (dh(OVE),  x €T
% = a3(x)ity — y()iz + V - (da(x)Viiz), xel, (4.2)
% = n(x)it3 — o(x)iy, xel,
% - % =0, x € or,

for ¢ > 1;. Then, system (4.2) admits a solution /"2 (¥1, ¥2, Y3, 44), ¥ 1 > £;. According to the
comparison principle, we can obtain

(1, (t, %), L(t, x), I3(t, X), V(£, X)) < e’ (%1, %o 0 a) Y £ 2 1, x € T

Hence, lim(/(¢, x), I,(t, x), I;(, x), V(¢, x)) = (0, 0,0, 0), uniformly for x € I. According to Lemma 3.3,
t—o00

we have lim § (7, x) = M{(x) and lim §(¢, x) = M3(x), uniformly for x € I O
—00 —o0

Remark 1 Biologically, when R; > 1 and Ry < 1, Theorem 4.1 shows that the Zika disease will
eventually disappear.
Let w(t, x) := (S 1(t, x), 1;(¢t, x), S2(¢, x), I,(t, x), (¢, x), V(¢, x)) and 0(x) := w(0, x). Define

P=1{0eGg:6(-)Z0,0,(-) #0,65(:) £ 0,66(-) £ 0},
OP :=Gx\P={0€ Gk : 0,(-) =0,0r 04(-) = 0,0r 05(-) = 0,0r 66(-) = 0}.

Define the solution semiflow of system (1.1) as I1(z) : Gx — Gg and I1()6 = w(t, -, 0) for any ¢ > O.
Applying the method described in [33-35], we can obtain the following Lemma:

Lemma 4.1. Assume that Ry > 1, and 0, # 0, and 64 # Q. If there is a positive constant k; such that

liminf ws(t, x, 6) > «y, uniformly for all x € T, then there is a positive constant k, such that
t—+oc0

lim inf(w, (z, x), wa(t, ), (2, ), wa(t, x), ws(t, ), we(t, ), ) 2 (K2, K2, K2, K2, K2, K2), 4.3)

uniformly for all x € T.

Lemma 4.2. LetPy; := {# € P : II(t)0 € 0P,V t > 0}. Define w(0) as the omega limit set of
{II(1)8 : t > 0} and Q = {Eo} U{E}}. Then, | Jgep, @(6) = Q.

Proof. Since 6 € Py, we know II(r)6 € OP for any t > 0. That is, w,(¢,-,0) = 0, wy(t,-,0) = O,

ws(t, -, 0) = 0, or we(t,-,6) = 0 for any ¢ > 0. In the case where w,(¢,-,0) = 0 for any ¢ > 0, it follows
from the second equation of system (1.1) that w(z, -, 8) = 0 or we(t, -, 0) = 0 for any ¢ > 0.
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Assume wy(t, -,0) = 0. From the first equation of system (1.1), one has ws(z, -, 6) = 0 and wy(t, -, 0) = 0.
ws(t, -, 0) satisfies

% = —y(X)ws + V- (dr(x)Vws),  x €T,
0
% =0, xedrl.

Thus, lim ws(%, x, 6) = 0 uniformly for x € I'. From the sixth equation of (1.1), one has lim wg(z, x,6) = 0
—o0 [—o0

uniformly for x € I. In other words,
llm(Wl(t, X), W2(t$ X), W3(t7 X), W4(t, X), WS(t’ .X), W6(Z’ x)) = EO(X)’ I/H’llformly for X € l:
t—o00

If wi(z,-,0) = 0 does not hold, then wg(z, -, 8) = 0 holds. From the sixth equation of (1.1), one has
ws(t,-,0) = 0 for any t > 0. So, wy(t,-,6) = 0 for £ > 0. In this case, assume ws(%, -, 0) = 0 for any ¢ > 0,
and then w (¢, -,6) = 0 for any # > 0. This contradicts our assumption. Thus, ws(t3, -, 8) £ 0 for some
t3. From Lemma 3.3, we can obtain tli)rg(wl(t, x,0), wi(t, x,0)) = (M;(x), M;(x)) uniformly for x € I.

Thus,
hm(W] (ta X), WZ(t’ .X'), W3(t7 .X'), W4(t, .X'), W5(t, X), W6(t? X)) = El (.X), I/lnlfOrmly fOr X € l:
t—o0

Assume that there exists #, > 0 such that wy(#4, -, 8) Z 0. From Lemma 3.3, one has w»(t, -, 8) > O for
any t > t4. S0, wy(t,-,0) = 0, ws(t,-,6) = 0, we(t,-,0) = 0 for t > t,. Assume wy(t,+,0) = 0 for t > 1.
Thus, ws(t,-,0) = 0 and we(t,-,0) = 0 for ¢ > t4. So, wy(t,-,0) = 0 for t > t4. This contradicts our
assumption. Similarly, if ws(z, -, 8) = 0 or we(t, -, 0) = 0 for t > 14, then w(t, -, 6) = 0 for ¢ > 14, which
contradicts our assumption. Thus, (Jgep, @(0) = Q. O

Lemma 4.3. Assume that Ry > 1. Then, Ey(x) is a uniform weak repeller for P in the sense that there
exists yy > 0 such that

lim sup [LI(1)6 — Eo()llc = g1, (4.4)

t—+00
with initial value 6 € P.

Proof. First, we consider a linear system as follows:

a0
—vzpl(lll)f/, xel,
ot
50 4.5)
(9_]12 =0, xedr.

Here, ¥ = (¥, 9,)7, and

Py = [ R+ @) +81(0) (0 (1 - 245)
1\M1) = ar(x .
w(x) LUy + 65(x) + V- (di(0)V)

Clearly, P1(0) = P;. By Lemma 3.1, it follows from R; > 1 that v;1 = s(Py) > 0. Since P;(u;) is a

continuous for small enough u;, one has s(P;(u;)) > O for small enough p;. Let V;;lm = s(P1(uy)).
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Then, v, , > 0. Denote (é1, $») as the positive eigenfunction corresponding to V1 - Then, system 4.5)

has a solution ((z, x), §(z, x)) = €"71'(¢y, $2).
Next, assume (4.7) does not hold. That is,

lim sup |[TI(1)0 — Eo()lle < 1, (4.6)

t—+00

for some § € P. Then, there is a constant ts > 0 such that 0 < wq(z, x, 9), wo(t, x, @), ws(t, x, 9), wal(t, x, 9),
ws(t, x, 0), we(t, x,0) < 1, x € T. Then, wi(t, x, §) and ws(t, x, 0) satisfy

ow 2

a_tl = 7(x) (1 - Kllgc )w2 + (w(x) + 01(xX))wy, xel,t>1,
% = wx)w; — Mﬂl + 02(x)|wa + V- (d1(x)Vw,) xel,t>1ts
ot IH.,(x) ’ ’ ’
% = O, x e or.

Since wy (¢, x, 8) > 0 and ws(t, x, 0) > 0 for ¢ > 15, there exists & > 0 such that (w,(zs, x, 8), wi (s, x, 6)) >
01(¢1, »). Applying the comparison principle, one has

Wi, x,0), wi(t, x,0)) = 01”7 ($1,B,), forVi>15, xeT.

Due to V;hu > 0, one has w;(-, x, @) — +oo and ws(, X, @) — +o00 as t — oo. This contradicts our
assumption. It implies that {E((x)} is an isolated invariant set in P, and W*({Ey(x)}) NP = 0. ]

Similar to the proof method of Lemma 4.3, we can draw the following conclusion:

Lemma 4.4. Assume that Ry > 1. Then, E|(x) is a uniform weak repeller for P in the sense that there
exists (o, > 0 such that

lim sup [[I1(1)0 — E ()llc = o, 4.7)

—+00

with initial value 6 € P.
Next, based on Lemmas 4.2, 4.3, and 4.4, we can obtain the following result:

Theorem 4.2. If R, > 1 and Ry > 1, then there exists € > 0 such that, for every initial state 6 € P, the
solution of system (1.1) w(t, -, 0) satisfies

lim inf(wq(z, -, ), wa(t, -, ), wa(t, -, 0), wa(t, -, 0), ws(t, -, ), we(t, -, 0)) > (g, &, €, &, &, €). (4.8)
—+00

Proof. By Lemmas 4.3 and 4.4, we can get that Q is an isolated invariant set for I1in P, and W*(Q)NP =
0, where W*(Q) is the stable set of Q for II. From Lemma 4.2, we know that any orbit of I1(¢) in Py
converges to Q as t — 0. So, no subset of Q forms a cycle in JP. By the acyclicity theorem on uniform
persistence for maps (see Theorem 1.3.1 and Remark 1.3.1 in [36]), we conclude that IT is uniformly
persistent with respect to (P, dP). In addition, the uniform boundedness of the solution of (1.1) implies
that I1(#) is point dissipative. According to Theorem 3.7 and Remark 3.10 in [35], we have that I1(7)
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admits a global attractor A in P. It follows from A = I1(#)A that 6,(-) > 0,04(-) > 0,65(-) > 0, and
Os(-) > O forall @ € A. Let &E = |50 [1(H)A. Then, &E C P and lim d(I1(#)0,E) = 0 for all 6 € P.
t—+00

Define a continuous function Y: Gx — [0, +00) by
Y(#) = min {min 6>(x), min 64(x), min f5(x), min 96(x)} , V0 eGg.
xel’ xel’ xell xell

Clearly, Y(0) > 0 for all 6 € &. Since & is a compact subset of P, we can get 19n£ Y() = I}}llgl Y > 0.1t
€ (S

follows from the attractiveness of & that there is a positive constant k; such that

liminf Y(II()6) = lim inf min(w, (-, x, 6), ws(-, x, 0), ws (-, x, 0), we(-, X, 0)) > (K1, Ky, Ky, Ky).
t—+00 t—+00 xel

From Lemma 4.1, there exists some £ > 0 such that

lim inf(wl (t’ .’ 9)’ WZ(l’ .7 9)’ W}(t’ ., 9)7 W4(t7 ., 9), Ws(t, .’ 6), W6(t, .’ 9)) 2 (8’ 8’ 8, 87 8’ 8)'
t—+00

Remark 2 Biologically, when R; > 1 and Ry > 1, Theorem 4.2 shows that the disease will persists.
5. Numerical simulations

In this section, we give numerical simulations for the dynamical behaviors of the solutions and the
effect of some key factors on the transmission of the Zika disease. For this purpose, some parameters
are selected with the following values: I' = (0, ), 7(x) = 1, K;(x) = 500, K>(x) = 16, w(x) = 0.05,
01(x) = 0.15, 6,(x) = 0.05, n(x) = 0.1, p(x) = 0.3, H.(x) = 100, y(x) = 0.14, d;(x) = 0.001,
dr(x) = 0.008, p = 0.6, [ = 0.3. Under this set of parameters, we calculate the mosquito reproduction
number R; =5 > 1.

5.1. Numerical simulation for the dynamical behaviors of the solutions

Initial values are selected as S;(0,x) = 30(1 + sin(2x)), 1;(0,x) = 0.3(1 + sin(2x)), S,(0,x) =
10(1 + sin(2x)), I,(0,x) = 0.1(1 + sin(2x)), I3(0,x) = 1 + sin(2x), V(0,x) = 0.03(1 + sin(2x)). To
simulate the result of Theorem 4.1, we choose a@;(x) = 0.001(1 — cos(2x)), a>(x) = 0.004(1 — cos(2x)),
a3(x) = 0.005(1 — cos(2x)). We calculate the basic reproduction number to be Ry = 0.0343 < 1. Figure 1
shows that the Zika disease will be eliminated.

To simulate to result of Theorem 4.2, we set the transmission rate functions as follows:

a1(x) = 0.05(1 = cos(2x)), az(x) = 0.14(1 = cos(2x)), a3(x) = 0.158(1 — cos(2x)). 5.1

Then, we calculate Ry = 1.0832 > 1. From Theorem 4.2, we know that system (1.1) is uniformly
persistent, which is shown in Figure 2.
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S, (6x)
S,(6x)

S, (6x)
16X

Figure 2. The dynamical behaviors of the solutions for system (1.1) with Ry = 1.0832 > 1.
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5.2. The effect of some key factors on the transmission of Zika disease
5.2.1. The effect of the vector-bias g = % on Ry and I,(z, x) and I5(¢, x)

Here, we choose a,(x) = 0.14 and d,(x) = 0.011. Other parameter values remain unchanged, and other
transmission rate functions are selected as in (5.1). Figure 3 shows that the basic reproduction number R
is an increasing function with g. When g = 1, 1.e., p = [, this case indicates no vector-bias, and one has
Ry = 0.9908 < 1. The Zika disease will disappear from Theorem 4.1. Then, R, increases as g increases.
When g > ¢* (here g* = 2.9089), we know R, > 1. The Zika disease persists from Theorem 4.2. It implies
that the vector-bias can cause disease outbreaks. Figure 3 indicates that neglecting the vector-bias will
underestimate the risk of disease.

Next, we demonstrate the effect of the vector-bias ¢ = £ on the infected adult mosquitoes I (, x) and
infected humans I;(¢, x). In Figure 4, the red solid curve represents ¢ = 1. It indicates no vector-bias.
The blue solid curve represents g = 5. It indicates that there is a vector-bias. We find that the presence of
the vector-bias leads to an increased peak value of I,(¢, x) and I5(t, x). In addition, as time goes on, the
vector-bias has an increasingly strong effect on the peak of the distribution of infected adult mosquitoes
and infected humans.

1005 T T T T T T T T

0.995

0.99

Figure 3. Plot of contours of Ry versus the vector-bias g = 2.
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Figure 4. Distribution of I5(¢, x) and I5(, x) prevalence with t = 5, 10, 20 for various g.

Volume 32, Issue 2, 1308—1332.



1326

5.2.2. The effect of the environmental transmission rate a; on Ry and /,(¢, x) and V(z, x)

Here, we choose d,(x) = 0.01. Other parameter values remain unchanged and the transmission rate
functions are selected as in (5.1). Figure 5 gives that the basic reproduction number R, is an increasing
function with a;. When a; < @], we have Ry < 1. From Theorem 4.1, the Zika disease will disappear.
Ry increases as a; increases. When a; > aj (here a] = 0.2818), one has Ry > 1. The Zika disease
persists according to Theorem 4.2. Figure 5 indicates that the environmental transmission is important
and indispensable.

Next, we will present the effect of the environmental transmission rate a; on the distribution of 7; (¢, x)
and V(z, x). We change the value of @, and other parameter values remain unchanged. We consider
three different values: a; = 0.1, 0.2, 0.3. From Figure 6, when the time is fixed, the peak value of
infected aquatic mosquitoes increases significantly with the increase of the environmental transmission
rate a;. As time goes on, the environmental transmission rate has an increasingly strong effect on the
peak of the distribution of infected aquatic mosquitoes and the densities of the Zika virus in the water
environment.

1008 T T T T T 1
1.006

1.004
1.002

Ifp-————— - ——— R e e e e
o~ 0998
0.996

0.994
0.992

0.99r

0.988° ' :
0.05 0.1 0.2 a; 0.3 0.4 05

Figure 5. Plot of contours of R, versus the environmental transmission rate ;.
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Figure 6. Distribution of /,(¢, x) and V(¢, x) prevalence with ¢ = 10, 20, 30 for various «;.
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5.2.3. The effect of the diffusion rate on R

Here, we just consider the effect of the human diffusion rate d, on R. The transmission rate functions
are selected as in (5.1). Figure 7 gives that the basic reproduction number Ry is a decreasing function
with d,, which is consistent with the results obtained in [37,38]. When d, = 0, this case indicates no
diffusion in human population, and one has Ry = 2.2571 > 1. The Zika disease persists according
to Theorem 4.2. As d, increases, R, decreases. When d, > d; (here d; = 0.0098), Ry < 1. From
Theorem 4.1, the Zika disease will disappear. Figure 7 shows that neglecting the human diffusion will
overestimate the risk of the Zika disease.

2.5 T T T T T

0 d; 0.02 0.04 0.06 0.08 0.1

Figure 7. Plot of contours of R, versus the human diffusion rate 5.

5.3. A numerical application to Brazil

From the Brazil Ministry of Health [39], we collect the weekly reported accumulated Zika cases in
Brazil from March 25, 2016 to April 14, 2018. We use model (1.1) to fit the real-world data and take a
week as the time unit. Some other parameters can be selected from previous literature [21]. 7(x) = 1,
w(x) =0.05%7,0;(x) =0.15%x7,y(x) = 0.1 X7, 52(x) = 0.05 X7, ap(x) = 0.025 X7, a3(x) = 0.028 X 7.
H.(x) = 2.05 x 10® [40]. Other parameters will be estimated by applying the least-squares estimation
method. a;(x) = 0.0001 x 7, n(x) = 0.1 X7, p(x) = 0.3 x7, d;(x) = 0.001, d>(x) = 0.008, p = 0.4,
[=0.3. Ki(x) = 1.02 x 10°, K>(x) = 3.28 x 10”. We can get Ry < 1, and from Theorem 4.1, the Zika
disease will disappear in Brazil. The fitting result for the accumulated cases is given in Figure 8.
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Figure 8. Simulation of the reported accumulated Zika cases in Brazil from March 25, 2016
to April 14, 2018.

6. Conclusions

This study investigated a reaction-diffusion Zika model based on our previous model in [23]. We
introduced the vector-bias in the model in article [23]. In this study, we considered the combined effects
of vector-bias, environmental transmission, and spatial heterogeneity on spread of Zika disease. We
defined two threshold indexes: the mosquito reproduction number R; and basic reproduction number
Ry. Dynamical behaviors in terms of R, and R, were analyzed. Finally, we simulated the effects of
the vector-bias g = ?, the environmental transmission rate a;, and the human diffusion rate d, on R,.
We found that the ignorance of the vector-bias effect will underestimate the infection risk of the Zika
disease and the ignorance of the human diffusion rate effect will overestimate the infection risk.
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