
ERA, 32(2): 1239–1267. 

DOI: 10.3934/era.2024059 

Received: 11 November 2023 

Revised: 03 January 2024 

Accepted: 19 January 2024 

Published: 30 January 2024 

http://www.aimspress.com/journal/era 

 

Research article 

Research and comparison of pavement performance prediction based on 

neural networks and fusion transformer architecture 

Hui Yao1,*, Ke Han1, Yanhao Liu1, Dawei Wang2 and Zhanping You3  

1 Beijing Key Laboratory of Traffic Engineering, College of Metropolitan Transportation, Faculty of 

Architecture, Civil and Transportation Engineering, Beijing University of Technology, No.100, 

Pingleyuan, Chaoyang, Beijing 100124, China   
2 School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150006, 

China  
3 Department of Civil and Environmental Engineering, Michigan Technological University, 1400 

Townsend Drive, Houghton, MI 49931-1295, United States   

* Correspondence: Email: huiyao@mtu.edu. 

Abstract: The decision-making process for pavement maintenance from a scientific perspective is 

based on accurate predictions of pavement performance. To improve the rationality of pavement 

performance indicators, comprehensive consideration of various influencing factors is necessary. To 

this end, four typical pavement performance indicators (i.e., Rutting Depth, International Roughness 

Index, Longitudinal Cracking, and Alligator Cracking) were predicted using the Long Term Pavement 

Performance (LTPP) database. Two types of data, i.e., local input variables and global input variables, 

were selected, and S-ANN and L-ANN models were constructed using a fully connected neural 

network. A comparative analysis of the predictive outcomes reveals the superior optimization of the 

L-ANN model. Subsequently, by incorporating structures such as self-attention mechanism, a novel 

predictive approach based on the Transformer architecture was proposed. The objective is to devise a 

more accurate predictive methodology for pavement performance indices, with the goal of guiding 

pavement maintenance and management efforts. Experimental results indicate that, through 

comparative analysis of three quantitative evaluation metrics (root mean square error, mean absolute 

error, coefficient of determination), along with visual scatter plots, the predictive model employing the 

fused Transformer architecture demonstrates higher robustness and accuracy within the domain of 

pavement performance prediction when compared to the L-ANN model. This outcome substantiates 

the efficacy and superiority of the model in terms of predictive performance, establishing it as a reliable 

mailto:huiyao@mtu.edu


1240 

Electronic Research Archive  Volume 32, Issue 2, 1239–1267. 

tool for accurately reflecting the evolution of asphalt pavement performance. Furthermore, it furnishes 

a theoretical reference for determining optimal preventive maintenance timing for pavements. 

Keywords: pavement engineering; performance prediction; transformer; neural network; self-attention  

 

1. Introduction  

As China’s economy and technology continue to rapidly develop, infrastructure is also constantly 

improving and updating. Among these improvements, pavement engineering has achieved notable 

success. However, with the continuous aging of old pavement projects, the focus of pavement 

engineering implementation is not only on the construction of new pavements but also on the 

establishment of a complete and cyclical pavement maintenance system. In the realm of pavement 

maintenance management, conducting timely and appropriate maintenance can often result in lower 

costs compared to addressing issues after significant deterioration has occurred.  Pavement surface 

performance data is a critical component of the pavement management system, and pavement surface 

performance prediction is the basis for maintenance decisions. In promoting the healthy construction 

and maintenance of asphalt pavement, it has become crucially important to accurately predict the 

development trend of asphalt pavement performance [1]. The establishment of a scientific and accurate 

pavement surface performance prediction model is essential for pavement maintenance and repair 

methods. By accurately grasping the degradation of key performance indicators of asphalt pavement, 

the optimal maintenance timing can be better determined and a scientific maintenance decision-making 

plan can be formulated to maximize the service benefits of pavement surfaces [2]. 

The deterioration of asphalt pavement performance refers to the situation where, during its actual 

service life, the original structure or function of the pavement undergoes changes due to the influence 

of various factors. These factors encompass a multitude of variables, such as pavement structure, traffic 

load, natural environment, and maintenance interventions, among others, and their interactions are 

intricate and diverse. Hence, characterizing the relationship between performance indicators describing 

pavement behavior and the factors that influence them is nonlinear and exceedingly complex. 

In addressing the issue of predicting pavement performance, scholars both domestically and 

internationally have implemented a variety of research methodologies. Traditional prediction models 

utilized in the past include deterministic and probabilistic models. Zhu, Meilan et al. [3] conducted a 

mechanical and performance analysis of various pavement structures on Huaxi Road in Beijing. They 

established a predictive model for the pavement performance index of Huaxi Road based on actual test 

data and assessed the accuracy of related indicators such as PCI (Pavement Condition Index) and RQI 

(Roughness Quality Index). Jin, Yin-Li et al. [4] conducted a study using the Han-Ning Expressway 

network in Shaanxi Province, China as a case study to investigate the relationship between vehicle 

load and pavement performance. They utilized pavement evaluation data to obtain the Sectional 

Cumulative Equivalent Single Axle Load (SCESAL) and the Pavement Quality Index (PQI). Several 

regression models were developed to capture the relationship between SCESAL and PQI. Karam J 

developed a multiple linear regression model based on data collected from the LTPP database [5]. This 

model is used to predict the rut depth of hot mix asphalt concrete (HMA) pavement under specific 

structural, climatic conditions, traffic levels, and asphalt mixture volume characteristics. He, Zhimin 

et al. [6] collected observational data on five pavement performance indicators for the Beijing Sixth 
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Ring Expressway and performed linear regression analysis and established decay prediction models 

for these five asphalt pavement performance assessment indicators and conducted precision testing. 

The research methodologies of deterministic models generally only consider empirical predictive 

models between performance indicators and time series, failing to establish nonlinear relationships 

between pavement performance indicators and their influencing factors. This has resulted in a 

considerable gap between the deterministic models and actual pavement performance decay, with 

decreasing accuracy as the prediction period extends.  

Conversely, probabilistic models were utilized for estimating the state distribution of pavement 

condition indicators at a given time, where Markov methods, semi-Markov methods, and residual 

curve methods are commonly employed. Probabilistic models account for the stochastic development 

of pavement conditions, but due to their prediction being based on probability transition matrices, their 

expression is less intuitive than direct predictions of pavement condition indicators. Furthermore, the 

determination of state transition probabilities is subjective. Abaza KA et al. [7] introduced a novel 

technology that utilizes reverse calculation based on discrete-time Markov models to estimate 

transition probabilities used in Markov-based pavement performance prediction models. A simplified 

road surface management model has been proposed for developing a flexible long-term repair plan for 

pavement surfaces. This model deploys a discrete-time Markov model to predict the deterioration of 

the performance of the original pavement surface and the repaired pavement surface [8]. The objective 

of the proposed model is to generate the optimal annual rehabilitation cycle within the specified analysis 

period. This goal is achieved by optimizing the cost-effectiveness index, which is defined as the ratio of 

expected performance improvement to annual rehabilitation costs. Pavement performance can be regarded 

as a function associated with time series. However, subdividing pavement surfaces into smaller segments 

and describing the pavement performance of each segment solely based on time is inadequate. 

Pavement surface performance is influenced by numerous factors such as pavement-way structure, 

traffic load, and natural environment. These factors exhibit spatial variability in different pavement-

way segments. As a result, using only time to describe pavement surface performance in small 

segments cannot capture this spatial variability. Characterizing the nonlinear relationship between 

performance indicators and their influencing factors that characterize road surface performance is 

exceedingly complex. Consequently, an increasing number of artificial intelligence methods are being 

applied to predict pavement performance indicators, including artificial neural networks, support 

vector machines, and genetic algorithms. For example, Yao L et al. [9] predicted the deterioration of 

pavement conditions in Jiangsu Province, including ruts, roughness, skid resistance, transverse 

cracking, and pavement fatigue, utilizing neural networks to develop five models to predict their 

performance. Abdualaziz Ali A et al. [10] investigated the integrated impact of poor pavement 

conditions on flexible pavement performance in two climate regions of the United States and Canada, 

employing multivariate linear regression (MLR) and artificial neural network (ANN) techniques for 

modeling to predict International Roughness Index (IRI) using Long-Term Pavement Performance 

(LTPP) databases to obtain pavement performance data. Based on the Grey GM (1,1) model (a single 

variable Gray prediction model with a first order difference equation) and modified by a Markov model, 

a Grey Markov combination model was established to accurately predict the performance of highway 

pavement [11]. Based on ThunderGBM’s Ensemble learning model and Shapley’s additive 

interpretation (SHAP) method, the international roughness index (IRI) of asphalt pavement is predicted. 

Using the SHAP method to explain its potential influencing factors and their interactions [12]. Using 

evaluation data from 33 runways, the ANN was trained, validated, and optimized through a series of 
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Heavy Weight Deflectometer (HWD) tests. By estimating the simplified pavement damage index in 

ANN, the impact of service life and air traffic on runway pavement performance was analyzed [13]. 

Artificial neural network (ANN) was used to estimate Marshall test parameters (OAC, stability, flow 

rate, voids, voids in mineral aggregates) using aggregate gradation as input for the prediction process. 

Test multiple ANNs to optimize neural network hyperparameters and generate accurate predictions. 

Test different Activation function, the number of hidden layers and the number of neurons in each 

hidden layer, and generate heat maps to compare the performance of each ANN [14]. Using principal 

component analysis (PCA), factor analysis, and cluster analysis, 71 types of unsupervised machine 

learning were used to identify the principal components and common factors of climate variables, and 

the dataset was classified into different groups. Then, two supervised machine learning methods, Fisher 

discriminant analysis and artificial neural network (ANN), were used to predict climate regions based 

on climate data [15]. In order to overcome the limitations of using friction coefficient to predict 

road anti slip resistance, they developed an improved neural network (GAI-NN) based on genetic 

algorithm [16]. Utilize many machine learning (ML) techniques to create more complex models for 

predicting pavement performance, and compare different ML models to evaluate their predictive 

capabilities [17]. Hossain MI et al. [18] utilized an artificial neural network (ANN) with a 7-9-9-1 

architecture to predict the International Roughness Index (IRI) of flexible pavement by collecting 

climate and traffic data from the Long-Term Pavement Performance (LTPP) database. Rulian B et al. [19] 

developed an asphalt pavement performance model that considers traffic and climate loads, pavement 

age, initial roughness condition, and maintenance and repair (M&R) interventions based on the LTPP 

database. The model’s predictions, which used an artificial neural network (ANN), effectively captured 

the effect of M&R interventions, and the predicted International Roughness Index (IRI) values 

corresponded well with observation. Liu J et al. [20] improved current asphalt mixture design by 

introducing machine learning (ML) models to predict pavement IRI. They selected 37 input features 

related to climate conditions, traffic, pavement-way structure, and pavement material properties, 

analyzed the impact of two different dimensionality reduction techniques on ML model performance, 

and trained different ML algorithms such as support vector regression (SVR), random forest, and 

artificial neural networks (ANN) to predict IRI. The performance indicators of these ML models were 

calculated and compared. Based on actual on-site data obtained from long-term pavement performance 

databases, flexibly modify many parameters of the ANN model, such as the number of neurons, hidden 

layers, and function types, to obtain more accurate prediction models. Compared with statistical 

modeling methods, the ANN method can be used to accurately predict pavement fatigue and rutting 

distress [21]. A multi input unified prediction model [22] based on artificial neural networks has been 

developed using a mixture of numerical and classification features from in-service pavement test 

sections in the United States. The input variables include pavement age, crack length and area, 

cumulative traffic load, two functional categories of the pavement, four climate zones, and 

maintenance effectiveness, with changes in the Pavement Condition Index (PCI) as the output. Luo, Z 

et al. [23] proposed an XGBoost-based road performance model for predicting IRI and introduced 

SHAP to enhance the interpretability of individual features in the model. Aranha, A.L et al. [24] 

analyzed the impact of different training datasets on machine learning models for road performance 

prediction. Kaya, O et al. [25] developed a road performance model based on statistical and artificial 

intelligence (AI) techniques. Xiao, M et al. [26] proposed an enhanced backpropagation neural network 

(BPNN) prediction model based on particle swarm optimization (PSO) algorithm. Saha, S et al. [27] 

proposed the development of a k-value prediction model based on artificial neural networks to improve 
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the sensitivity of subgrade to rigid pavement performance. Liu, G et al. [28] developed a novel artificial 

neural network (ANN) for predicting the lifecycle performance of rigid pavement surfaces. An 

increasing number of studies are employing the Long-Term Pavement Performance (LTPP) database 

to train deep neural network (DNN) models, aiming to learn the nonlinear and intricate relationships 

between multiple performance indicators (RD, IRI, AC, LC) of asphalt pavements and a variety of 

associated parameters (including maintenance and repair, climate, traffic, pavement structure, and 

characteristics) [29–33]. 

Currently, the Transformer model architecture is commonly employed to forecast long time-series 

data [34], through the utilization of self-attention mechanisms to learn complex patterns and dynamics 

from temporal data. Das A et al. [35] proposed a multi-layer perceptron (MLP)-based encoder-decoder 

model, dubbed as Time-series Dense Encoder (TiDE), for long-term time-series prediction. This model 

not only possesses the simplicity and speed of linear models but also can handle covariates and 

nonlinear dependencies. Furthermore, the Transformer is a versatile framework that can be applied to 

both univariate and multivariate time-series data, as well as temporal embeddings. Bai S et al. [36] 

proposed a bidirectional extended Short-term memory network model (Att-BiLSTM) based on 

attention mechanism, which uses the time series characteristics of pavement temperature and 

meteorological factors to improve the prediction performance. Guo, Feng et al. [37] proposed a Long 

Short-Term Memory (LSTM) model with attention mechanism, which efficiently and effectively 

learns time-series related features to better predict IRI. 

The impact of changes in pavement performance indicators is multifaceted and 

comprehensive [38]. There are numerous factors that affect the performance of pavement usage, and 

selecting a judicious subset of these factors can significantly influence the size of the neural network 

performance. However, it is not advisable to include all factors as prediction parameters since selecting 

too many prediction parameters during neural network training can increase the difficulty of training 

and also lead to a higher probability of overfitting. The comprehensive set of selected influencing 

factors includes pavement base information, traffic load, pavement performance, temperature, and 

maintenance information, among others, which can optimize the neural network from a global 

perspective and achieve accurate prediction of asphalt pavement usage performance [9]. Pavement 

performance mainly includes four major indicators: Damage, smoothness, strength, and skid resistance. 

Foreign pavement management systems generally do not include pavement strength and skid 

resistance as indicators, with more analysis focused on smoothness and damage indicators. Different 

indicators serve different application purposes. 

2. Methodology and objective 

2.1. Artificial neural network (ANN) 

The fully connected artificial neural network (ANN) is a network structure consisting of multiple 

layers, each composed of numerous neurons. A fundamental way to comprehend neural networks is to 

perceive them as composite functions that map input data to output results. Typically, neural networks 

consist of an input layer, hidden layers, and an output layer, as illustrated in Figure 1. The basic unit 

of this network is a neuron, which, through modeling and interconnections, sequentially inputs 

different variables. By employing specific learning algorithms, the network adjusts the weight matrices 

of its layers iteratively until convergence is reached, thereby enabling the network to adapt to the 
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requirements of its surrounding environment. 

An artificial neural network (ANN) is a computational model based on artificial neurons and 

connection weights. They are widely used in various fields of study. The fundamental architecture of 

a neural network includes several key components: 

1) Input Layer: This layer is responsible for receiving external input data, which serves as the 

initial information for the network's computations. 

2) Hidden Layers: These layers process and transform the input data through a series of 

mathematical operations. Typically, there are multiple hidden layers in a neural network, allowing for 

complex representations and feature extraction. 

3) Output Layer: The output layer receives the processed data from the hidden layers and produces 

the final results or predictions, which are then passed to the external environment. 

4) Connection Weights: These represent the strength of connections between neurons in the 

network. During the model training process, the connection weights are continuously adjusted in order 

to minimize the discrepancy between the predicted outputs and the actual outcomes, thereby 

optimizing the network's performance. 

5) Activation Function: An activation function is utilized to nonlinearly transform the inputs of a 

neuron, enabling the neuron to handle nonlinear problems effectively. 

6) Loss Function: A loss function is employed to evaluate the discrepancy between the predicted 

outcomes of a model and the actual results. It serves as a guide for optimizing the model's parameters. 

7) Backpropagation Algorithm: The backpropagation algorithm is a method used to compute the 

gradient of the model’s error. By iteratively adjusting the model's parameters through gradient descent, 

the algorithm facilitates continuous optimization. 

By combining and optimizing these components, neural networks can accomplish regression 

tasks. In this context, a neural network is developed to create a pavement surface prediction model that 

individually forecasts rutting, smoothness, longitudinal cracks, and alligator cracks. The structure and 

parameters of the model are adjusted to select the model with the highest predictive accuracy. 

 

Figure 1. Artificial neural network structure. 

2.2. Transformer algorithm 

The Transformer model is a deep learning architecture that leverages attention mechanisms and 

commonly employs an encoder-decoder structure. The construction of the Transformer model involves 
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several essential components, including positional encoding, multi-head self-attention mechanism, 

residual connections, and layer normalization. In the following discourse, we will provide a 

comprehensive exposition of the technical intricacies involved in building a Transformer model. 

The Transformer Encoder, as an integral part of the model, takes positional encoding information 

as input, with its central layer comprising a multi-head attention mechanism. The Add and Norm layers 

perform the operations of summation and subsequent normalization on the inputs and outputs of the 

Multi-Head Attention layer. Subsequently, this processed information is propagated to the Feed 

Forward layer. Finally, another round of Add and Norm operations is conducted, culminating in the 

generation of the ultimate output of the model [39]. 

The attention mechanism serves as the cornerstone of the Transformer model. The self-attention 

mechanism addresses the scenario where a neural network receives numerous vectors of varying sizes, 

with certain relationships existing between these vectors. However, during actual training, the network 

fails to fully exploit these interdependencies, resulting in highly suboptimal training outcomes. To 

tackle this issue of the inability of fully connected neural networks to establish correlations among 

multiple related inputs, the self-attention mechanism is employed. Essentially, the self-attention 

mechanism aims to enable the machine to discern the correlations between different parts of the 

entire input. 

In the self-attention mechanism, the input matrix undergoes three distinct linear transformations, 

which map it into three sets of spatial vector matrices termed the query matrix Q, key matrix K, and 

value matrix V. Each row of the Q, K, and V matrices has a dimensionality of dk, as depicted in Figure 2. 

The computation formula for the self-attention mechanism is defined by Eqs (1)–(4): 

𝑄 = 𝐿𝑖𝑛𝑒𝑎𝑟(𝑋) = 𝑋𝑊𝑄                            (1) 

𝐾 = 𝐿𝑖𝑛𝑒𝑎𝑟(𝑋) = 𝑋𝑊𝐾                            (2) 

𝑉 = 𝐿𝑖𝑛𝑒𝑎𝑟(𝑋) = 𝑋𝑊𝑉                            (3) 

𝑆𝑒𝑙𝑓𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√𝑑𝑘
)𝑉                   (4) 

where, X is the input matrix, 𝑊𝑄 , 𝑊𝐾 , 𝑊𝑉  signify weight matrices utilized for linear 

transformations. Moreover, the Softmax normalization function is employed to facilitate the 

computation of attention weights. 

 

Figure 2. Self-attention mechanism [39]. 

The Transformer model is primarily composed of a self-attention mechanism and a fully 

connected layer as its submodules. The data is processed between the attention layer and the fully 
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connected layer through residual connections and normalization techniques. 

The residual structure ensures that the output dimensions of the data after undergoing multi-head 

attention operations remain consistent with the input, enabling the utilization of residual connections. 

These connections address the issues of gradient vanishing and degradation of weight matrices. The 

specific approach for implementing residual connections is quite straightforward. It involves simply 

adding the input and the output of the multi-head attention layer together, as depicted by Eq (5) below: 

𝑋 = 𝑋𝑖𝑛𝑝𝑢𝑡 + 𝑆𝑒𝑙𝑓𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉)                       (5) 

The purpose of normalization is to standardize the hidden variables of the model into a standard 

normal distribution, thereby accelerating convergence. The specific calculation process is illustrated 

by Eqs (6)–(8) as follows: 

𝜇𝑗 =
1

𝑚
∑ 𝑥𝑖𝑗
𝑚
𝑖=1                                   (6) 

𝜎𝑗
2 =

1

𝑚
∑ (𝑥𝑖𝑗 − 𝜇𝑗)
𝑚
𝑖=1                               (7) 

𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑥) =
𝑥𝑖𝑗−𝜇𝑗

√𝜎𝑗
2+𝜖

                              (8) 

where, 𝑥𝑖𝑗 is the value located in the i-th row and j-th column of the output matrix, 𝜇𝑗 is the mean 

of the j-th column in the output matrix, and 𝜎𝑗
2is the variance of the j-th column in the output matrix. 

The normalization process involves subtracting the mean of each column from its respective elements 

and dividing them by the standard deviation of that column. Consequently, normalized values are 

obtained. To prevent division by zero, a nonzero constant ϵ is added to the denominator in the equations. 

2.3. Objective 

We select four typical pavement performance indicators from the LTPP database: Rutting depth 

(RD), international roughness index (IRI), longitudinal crack (LC), and alligator crack (AC). 

Considering the comprehensiveness of these four data indicators, a combination of them is helpful for 

objectively evaluating pavement usage conditions based on the prediction results. By considering 

pavement performance indicators, pavement structure, environment, and maintenance measures as 

factors, two types of data inputs, namely partial input variables and overall input variables, are chosen 

to be combined with fully connected neural networks to obtain S-ANN and L-ANN models. The 

prediction results are then compared, and a pavement performance prediction method based on a fusion 

transformer decoder architecture is employed. Prediction models for rutting depth (RD), international 

roughness index (IRI), longitudinal crack (LC), and alligator crack (AC) are established based on the 

above four indicators, providing a novel approach to predicting pavement usage performance. 
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3. Pavement surface performance prediction based on two types of models 

3.1. Data preparation 

3.1.1. Data preprocessing 

The Long Term Pavement Performance (LTPP) database is an innovative project aimed at 

fulfilling diverse pavement information requirements. We utilize existing knowledge in pavement 

technology and seek to develop models that explain the behavior of pavement surfaces. The LTPP 

database stores information regarding various design features, traffic and environmental factors, 

materials, construction quality, and maintenance activities, all of which impact pavement surface 

performance. Through the analysis and prediction of pavement surface performance using a substantial 

amount of stored data, improved predictive models can be established for pavement design and 

management. Furthermore, this database enables the understanding of the influence of different 

pavement design features on pavement surface performance, facilitating research on new materials, 

construction techniques, and maintenance methods in specific projects.  

In this study, a 15 km highway segment in Texas was selected as the research area. Maintenance 

records revealed a pavement spacing interval of 154 m, which was utilized to collect data on four 

fundamental pavement surface performance indicators: rutting, roughness, cracking, and longitudinal 

cracking. Additionally, meteorological data, traffic parameters, and relevant pavement structure data 

were collected. However, it should be noted that there were instances of missing target year data, as 

well as missing data in traffic and weather parameters. The missing data, particularly in terms of 

longitudinal cracking (LC) and International Roughness Index (IRI), were addressed through 

interpolation, data imputation, or data deletion. Furthermore, under maintenance interventions, 

variations in pavement structure and materials led to abrupt changes in the trends of pavement surface 

performance. Maintenance interventions significantly influenced the deterioration of pavement surface 

performance. Additionally, certain illogical occurrences were observed in the data. For instance, errors 

were noted where IRI and rutting depth (RD) decreased over time in the absence of any maintenance 

actions. To address this issue, calibration adjustments were applied to data points between two 

consecutive maintenance action dates. Improving data quality is essential to ensure that survey results 

reflect the actual changes in pavement surface performance, rather than being influenced by poor data 

quality-induced variations.  

The pavement structure in Texas consists of the layer of asphalt, a base layer, and a subgrade. 

Different material types and thicknesses will be fed into the model as different input variables. Within 

the experimental sections in Texas, the combinations of pavement structures varied. In fact, the 

pavement structure configurations differ across states, even when the number of layers is the same, as 

there are variations in thickness. In some pavement structures, a wearing course of approximately 1.1 

cm thickness is added above the upper layer. If the wearing course is not considered separately, the 

asphalt layers are typically distributed in 2 layers, with a thickness ranging from 9.5 to 19 cm. The 

pavement structure configurations include a 4-layer structure (2 surface layers + 1 base layer + 

subgrade). The surface layer comprises the original surface layer and a bond coat layer. The base layer 

consists of two types: Treated base (TB) and granular base (GB). Additionally, information regarding 

the subbase layer is provided in Table 1.  
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Table 1. Pavement structure. 

Material type Name Material code Material thickness(cm) 

AC Friction Course 2 0.8–1.1 

AC Surface Course 1 0.7–2.5 

AC Binder Course 1, 13 1.1–8.4 

TB Treated Base 327, 350 6.9–15.2 

GB Granular Base 303, 307, 308, 309 6.3–15.6 

TS Treated Subbase 338 6.5–10.4 

GS Granular Subbase 308, 309 8.4–10 

SS Subgrade 
103, 104, 114, 118, 202, 214, 

215, 216, 217 
130–204 

Prior to network training, the following variables need to be preprocessed, as outlined in Table 2. 

The preprocessing tasks involve the following steps: First, categorical variables such as pavement 

functional material and pavement type are transformed into numerical codes using one-hot encoding. 

Second, due to the disparate magnitudes of the original variables, it is necessary to ensure that all data 

range within a common scale and improve convergence rates. This is achieved by applying min-max 

normalization to numerical data such as temperature and material thickness. By doing so, faster 

convergence rates can be achieved. Factors influencing pavement performance can be categorized 

into 24 factors, including basic information on pavement type, climate conditions, pavement age, 

maintenance information, traffic volume, and other factors. Considering the regional pavement 

conditions, multiple variables from Table 1 are employed as different input variables for the neural 

network prediction model. The output parameters of the prediction model consist of pavement surface 

performance indicators for the next year, including rutting depth (RD), International Roughness Index 

(IRI), alligator cracking (AC), and longitudinal cracking (LC).   

Table 2. Neural network input variables. 

Type Function name Variable type 

Basic Information 

Friction Course Material Nominal Variable 

Friction Course Thickness Numerical Variable 

Surface Material Nominal Variable(S-ANN) 

Asphalt Layer Thickness 
Numerical Variable(S-

ANN) 

Binder Course Material Nominal Variable(S-ANN) 

Binder Course Thickness 
Numerical Variable(S-

ANN) 

Base Material Nominal Variable(S-ANN) 

Base Layer Thickness 
Numerical Variable(S-

ANN) 

Subbase Material Nominal Variable(S-ANN) 

Subbase Layer Thickness 
Numerical Variable(S-

ANN) 

 Continued on next page 
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Type Function name Variable type 

Basic Information Subgrade Material Nominal Variable(S-ANN) 

Traffic Load 

ESAL Numerical Variable 

AADT 
Numerical Variable(S-

ANN) 

Climate 

Temperature 
Numerical Variable(S-

ANN) 

Precipitation Numerical Variable 

Humidity Numerical Variable 

Others Pavement Age 
Numerical Variable(S-

ANN) 

Maintenance Information 

Maintenance Type Nominal Variable 

Maintenance Material Nominal Variable 

Material Thickness Numerical Variable 

Previous Year Pavement 

Performance 

Rutting depth (RD) Numerical Variable 

International Roughness Index (IRI) Numerical Variable 

Alligator Cracking (AC) Numerical Variable 

Longitudinal Cracking (LC) Numerical Variable 

3.1.2. Data analysis 

The pavement information data is initially aggregated and subjected to statistical processing to 

conduct exploratory data analysis and identify significant aspects of these variables. The data is then 

visualized, as shown in Figure 3. Through visualizations, several observations can be made. The 

performance indicators exhibit a distribution centered on both sides, particularly for alligator cracking 

and longitudinal cracking, where the results on the right side tend to approach zero. This indicates that 

the overall occurrence of alligator cracking and longitudinal cracking is relatively low, implying better 

performance. On the other hand, rutting is predominantly concentrated on the right side, indicating 

poorer performance in this aspect. Moreover, higher values of International Roughness Index (IRI) are 

considered desirable, but the distribution is primarily skewed towards the left side, indicating poorer 

performance in terms of smoothness. Consequently, pavement maintenance measures must address 

these two situations and employ appropriate maintenance strategies to rectify the skewness.  
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(a)   Distribution of LC            (b)   Distribution of AC     

 

(c)   Distribution of RD            (d)  Distribution of IRI      

Figure 3. Distribution of pavement indicators. 

When comparing differences between multiple objects and their attributes, heatmaps are 

employed. Furthermore, the correlation between continuous feature variables is explored by 

calculating the correlation among all continuous numeric variables. A heatmap is used to visualize the 

potential correlations between inputs, as depicted in Figure 4. When strong correlations between 

pavement distress responses are evident, it suggests that the presence of one type of pavement distress 

may indicate the existence of another type. The four types of pavement distress: RD, IRI, AC, and LC 

exhibit strong correlations with one another, often co-occurring. Additionally, there is a significant 

correlation between LC, IRI, and temperature. Asphalt layer thickness is the most important factor 

affecting AC, while other related variables have a more evenly distributed impact on RD. 

As shown in Figure 5, by comprehensively considering various influencing factors and utilizing 

the self-attention mechanism within the Transformer, correlations between these factors can be 

addressed. The subsequent integration with neural networks enables fitting and prediction. The aim is 

to develop a more precise predictive methodology for pavement performance indices, ultimately 

guiding pavement maintenance and management efforts. 
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Figure 4. Heatmap of pavement surface influencing factors. 

 

Figure 5. Schematic diagram of influencing factors on pavement surface indicators. 
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3.2. The construction and optimization of the prediction model 

3.2.1. Artificial neural network (ANN) prediction model 

In this study, we focus on the development of a pavement surface performance prediction model 

based on neural networks, implemented on the Python 3.7 platform. The TensorFlow framework is 

utilized to construct the neural network model. Two variations of the model are considered: The S-

ANN model, which incorporates 12 selected influencing factors from Table 2 as input neurons, and 

the L-ANN model, which includes all 24 influencing factors. The model structure is illustrated in 

Figure 6. 

Optimal models are obtained by testing different structures, with all four models designed to have 

two hidden layers. For the key hyperparameters in the prediction models of rutting depth (RD), 

International Roughness Index (IRI), longitudinal cracking (LC), and alligator cracking (AC), an 

optimization process is performed. 

After employing GridSearchCV and cross-validation for the initial selection and optimization of 

the hyperparameter ‘hidden_layer_sizes’ in the Artificial Neural Network (ANN) models, we 

considered three different hidden layer sizes: 16, 32 and 64. A total of 7 combinations were evaluated 

during the grid search. Subsequently, further refinement and fine-tuning were performed on the 

most promising parameter combinations. Table 3 summarizes the results, indicating that the 

optimal performance for the Large-scale ANN (L-ANN) model was achieved with a hidden layer 

size of (64, 64). On the other hand, the Small-scale ANN (S-ANN) model exhibited its best 

performance with a hidden layer size of (32, 32). These optimal configurations were determined 

through a systematic grid search followed by a detailed fine-tuning process. 

Since the number of training samples is nearly equal for both models, ReLU activation function 

is applied to all hidden layers, and a dropout rate of 0.1 is utilized to deactivate a fraction of neurons 

to prevent overfitting. The loss is measured using mean squared error. By utilizing Keras' Model 

Checkpoint, the weights of the best model with the minimum validation loss are stored for future 

predictions. The dataset is divided into training and testing sets with an 8: 2 ratio. Considering a trade-

off between model performance, stability, and computational efficiency, we set the learning rate 

(lr) to 0.0001, the number of epochs to 1000, and the batch size to 16, using the Adam optimizer as 

the optimal hyperparameter configuration for the prediction model. The model parameters are 

summarized in Table 4. 

Table 3. Training comparison with different numbers of neurons for L-ANN. 

Hidden-layer-sizes R² (RD) R² (LC) R² (AC) R² (IRI) 

(16, 16) 0.8919  0.8308  0.8480  0.7905  

(32, 16) 0.8916  0.8219  0.8735  0.8272  

(16, 32) 0.9023  0.8533  0.8521  0.8205  

(32, 32) 0.9034  0.8639  0.8784  0.8416  

(64, 32) 0.9028  0.8661  0.8892  0.8382  

(32, 64) 0.9025  0.8693  0.8996  0.8440  

(64, 64) 0.9186  0.8744  0.9073  0.8519  
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Table 4. ANN model parameter settings. 

Parameter name 
Parameter 

value 
Parameter name 

Parameter 

value 

Training Set:Test Set 8: 2 Loss Function MSE 

Number of Input Layers 12, 24 Activation Function ReLU 

Dropout 0.1 Optimizer Adam 

Number of Fully Connected Layers 2 
Number of Training 

Epochs 
1000 

Number of Nodes in Fully Connected 

Layers 
32, 64 Batch Size 16 

 

Figure 6. ANN prediction model architecture. 

3.2.2. Transformer prediction model 

The heatmap visually represents the strength of correlations between attributes, with darker colors 

indicating stronger correlations. From Figure 4, it can be observed that some input nodes exhibit strong 

correlations, while others have minimal or no correlations. The self-attention mechanism can be 

employed to capture the correlations between input variables. In this context, it captures the 

dependencies between elements in the sequence. By computing the attention scores between each 

element and others, self-attention can capture the dependencies between elements in the input sequence. 

These dependencies can be local or global in nature. By capturing these dependencies, the model gains 

a better understanding of the input features and improves its performance. 

Taking into account the need to capture relationships among multiple features, a Transformer-

based neural network architecture is defined for regression. The network comprises an Encoder module 

and a Multi-Layer Perceptron (MLP) module, with the self-attention mechanism serving as a feature 

extractor and the MLP functioning as the predictor. The L-ANN model is tested using the same 

Transformer architecture with identical structure. 
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The Transformer model is built using the TensorFlow framework, as shown in Figure 7. 

1) The input section consists of 24 columns of data, of which 8 columns are standardized. Non-

numeric values are replaced with numerical values through data imputation. The processed information 

is then converted into one-hot encoded features, resulting in a total of 47 dimensions. Initially, the 

input data is serialized by transforming the vector data into a diagonal matrix of size [47, 47]. The 

pavement information variables are filled with the value of 1 in the corresponding positions, while 

non-numeric and other variables are filled with 0. This matrix is used as the input for the neural network. 

2) The sub-modules are integrated to construct a complete Transformer model. The designed 

Transformer model consists of two identical stacked sub-modules. The Encoder module primarily 

consists of a self-attention mechanism layer and an MLP module consisting of fully connected layers. 

Residual connections and normalization operations are applied within the Encoder module. The MLP 

in the Encoder module comprises a convolutional1D layer (conv1d), followed by a flattening operation. 

The flattened tensor passes through two fully connected layers (fc1 and fc2) with ReLU activation 

functions. The number of fully connected layers in the MLP remains consistent with the second part, 

i.e., two layers with 64 neurons in each hidden layer. Dropout is applied between the two fully 

connected layers. Following the Encoder module, the data proceeds to another MLP module, consisting 

of 16 neurons and one neuron, to transform the data dimensions into 1D for the output of pavement 

surface performance indicators. 

Overall, this architecture is a variant of the Transformer model, where the Encoder layer 

incorporates self-attention and an MLP layer for the fully connected neural network. The Transformer 

model stacks such blocks and applies fully connected layers at the top for the final prediction. 

Table 5 presents the parameters of the Transformer model. A single-head self-attention 

mechanism is chosen, with the dimensions of the weight matrices K, Q, and V set to dk = 47. The 

Transformer sub-module count is set to 2, and the number of nodes in the fully connected layers is set 

to 64. The dropout parameter is set to 0.1, which randomly removes a portion of the neurons to prevent 

overfitting in the fully connected layers. The model is trained for 1000 epochs using the Adam 

optimizer as the training optimizer. The ReLU activation function is applied to the fully connected 

layers. The training batch size is set to 32. In the experiment, the data is divided in an 8: 2 ratio, with 

the first 80% of the data used as the training set for model training and the remaining 20% used as the 

validation set to assess the training results. The mean squared error (MSE) is utilized as the model's 

loss function. 

Table 5. Transformer model parameter settings. 

Parameter name Parameter value Parameter name Parameter value 

Training Set:Test Set 8: 2 Optimizer Adam 

Loss Function MSE Dropout Rate 0.1 

Weight Matrix Dimension 

(dk) 
47 Number of Training Epochs 1000 

Activation Function ReLU 
Number of Nodes in Fully 

Connected Layer 
64 

Number of Submodules 2 Batch Size 32 



1255 

Electronic Research Archive  Volume 32, Issue 2, 1239–1267. 

 

Figure 7. Transformer prediction model architecture. 

3.3. Research process and criteria for assessing model performance 

We focus on the prediction of pavement performance, considering the continuous nature of the 

predictor variables. Therefore, it can be regarded as a nonlinear regression problem. To establish a 

training dataset for model construction, we incorporate comprehensive Long-Term Pavement 

Performance (LTPP) data. 

 

Figure 8. Technological approach. 

In this research, the predictive capabilities of artificial neural network models with different input 

nodes are compared with those of the Transformer model. The objective is to explore the application 
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of the Transformer model in predicting asphalt pavement performance, aiming to provide more 

accurate predictions and deeper insights. Figure 8 illustrates the proposed research workflow, 

showcasing the comprehensive utilization of LTPP pavement performance data. 

To quantitatively evaluate the predictive accuracy of the model and facilitate the comparative 

analysis of different machine learning models, several evaluation metrics are employed in this study. 

Specifically, the Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and coefficient of 

determination (R-Square) are utilized to assess the performance of the machine learning models. The 

Mean Absolute Error (MAE) is employed to measure the difference between the predicted values and 

the actual values, while the Root Mean Square Error (RMSE) is utilized to enhance the sensitivity of 

the evaluation metric to large or small errors. The first two metrics focus on measuring the proximity 

between the predicted and actual values, where lower values indicate higher predictive accuracy. On 

the other hand, R-Square assesses the predictive ability of the model relative to the actual values, with 

larger values indicating higher predictive accuracy (with a maximum value of 1). 

In summary, the selection of these three-evaluation metrics provides a comprehensive and 

accurate assessment of the performance of the neural network model. This approach ensures not only 

the evaluation of the accuracy of the model’s predictions but also the assessment of its ability to 

capture the relationship between the predicted and actual values. The Eqs (9)–(11) for these metrics 

are as follows: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

212
𝑖=1                           (9) 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦̂𝑖 − 𝑦𝑖|
𝑛
𝑖=1

2                           (10) 

𝑅2 = 1 −
∑ (𝑦̂𝑖−𝑦𝑖)

2𝑛

𝑖=1

∑ (𝑦𝑖̅−𝑦𝑖)
2𝑛

𝑖=1

                            (11) 

where, n is the number of samples in the pavement performance dataset; 𝑦𝑖 is the measured value of 

pavement performance indicator; 𝑦̂𝑖 is the predicted value of pavement performance indicator; 

𝑦𝑖̅ is the average value of pavement performance indicator. 

4. Results and analysis 

4.1. Validation and evaluation of the ANN prediction model 

To validate the feasibility and effectiveness of the proposed models in this study, the performance 

of the S-ANN and L-ANN models in predicting pavement surface performance was compared using 

the same dataset. The evaluation metrics introduced in Eqs (9)–(11) were employed to quantitatively 

compare the performance of the machine learning models proposed in this study. 

Figures 9 and 10 depict the training results of the S-ANN and L-ANN models for the prediction 

of rutting, smoothness, cracking, and longitudinal cracking. The comparison is based on the training 

and testing losses for 1000 epochs. From the figures, it can be observed that the losses for rutting and 

cracking reach almost stable values relatively quickly, indicating successful model training. For 

example, in the S-ANN model, the RD and IRI models both show a sharp decrease in losses to around 

0.05 within the first 100 epochs, with the best model achieved before the 100th epoch, where the testing 
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loss reaches approximately 0.06. The behavior of the AC model is similar to the IRI model. However, 

the LC model takes more time to converge, stabilizing at losses of around 1.6 and 1.9 after 700 epochs, 

possibly due to specific data handling techniques used to address missing data. The loss values for the 

S-ANN and L-ANN models are presented in Table 6. 

Table 6. ANN model Loss function. 

Model type 
loss 

Train set Test set 

S-ANN 

RD model 0.0324 0.0625 

IRI model 0.0376 0.0655 

AC model 0.0675 0.1179 

LC model 1.6099 1.9154 

L-ANN 

RD model 0.0582 0.1000 

IRI model 0.0068 0.0073 

AC model 0.0104 0.0175 

LC model 0.0568 0.1283 

 

   

(a)   RD train and validation loss       (b)    IRI train and validation loss 

  

(c)    AC train and validation loss      (d)    LC train and validation loss 

Figure 9. S-ANN model Loss function diagram. 
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(a)   RD train and validation loss       (b)    IRI train and validation loss 

     

(c)   AC train and validation loss     (d)   LC train and validation loss 

Figure 10. L-ANN model Loss function diagram. 

      

(a)   Predict RD scatter plots         (b)   Predict IRI scatter plots 

      

(c)   Predict LC scatter plots         (d)   Predict AC scatter plots 

Figure 11. S-ANN model scatter plots. 
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(a)    Predict RD scatter plots     (b)    Predict IRI scatter plots 

 

(c)    Predict LC scatter plots       (d)    Predict AC scatter plots 

Figure 12. L-ANN model scatter plots. 

Figures 11 and 12 present scatter plots of the predicted pavement surface performance indicators 

versus the target indicators on the testing dataset. The L-ANN model exhibits a favorable distribution 

of points around the diagonal line y = x, indicating a strong alignment between the proposed L-ANN 

model and the actual pavement surface performance. Most of the predicted performance values 

closely align with the target values, demonstrating superior predictive accuracy compared to the 

other S-ANN models. 

Table 7 presents the RMSE, MAE, and R2 values for the two prediction models, S-ANN and L-

ANN. Due to the presence of missing data, the LC and IRI models show relatively poorer performance. 

It can be observed that the L-ANN model exhibits stronger learning and generalization capabilities 

than the S-ANN model on both the testing and training datasets, resulting in higher levels of acceptable 

accuracy in predicting pavement surface performance indicators. For instance, the RD model in the S-

ANN model has an RMSE of 0.2496 and an MAE of 0.2614 on the testing dataset, while in the L-

ANN model, the RD model has an RMSE of 0.1862 and an MAE of 0.1132 on the training dataset, 

demonstrating superior learning capabilities compared to the S-ANN model. Overall, the L-ANN 

prediction model demonstrates significantly improved generalization capabilities. For the RD model, 

the L-ANN model achieves a reduction of 25.4% in RMSE and a decrease of 49.1% in MAE on the 

testing dataset compared to the S-ANN model. Furthermore, the R2 value increases by 8.8% for the 

L-ANN model. Similar improvements are observed for the other three performance indicator models, 

indicating that the predicted values of the L-ANN model closely approximate the actual values. 
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Table 7. Summary of evaluation indicators. 

Model type 
MAE RMSE R-square 

Train set Test set Train set Test set Train set Test set 

S-ANN 

RD 

model 
0.2261 0.2614 0.1740 0.2496 0.8556 0.8374 

IRI 

model 
0.2845 0.2968 0.4763 0.5078 0.8298 0.7364 

AC 

model 
0.2705 0.2894 0.2540 0.3434 0.8296 0.8111 

LC 

model 
0.4890 0.5499 1.3436 1.3840 0.6465 0.6337 

L-ANN 

RD 

model 
0.0867 0.1132 0.1595 0.1862 0.9288 0.9186 

IRI 

model 
0.1093 0.1221 0.3208 0.3568 0.8915 0.8519 

AC 

model 
0.0804 0.1035 0.1859 0.2459 0.9202 0.9073 

LC 

model 
0.0903 0.1437 0.2261 0.3582 0.8873 0.8744 

4.2. Validation and evaluation of the Transformer prediction model 

To validate the feasibility and rationality of the pavement surface performance prediction using the 

L-ANN and Transformer models proposed in this study, a comparative analysis was conducted using the 

same set of sample data. Figure 13 illustrates the training and validation loss for each model at every 

training epoch, showing rapid changes followed by convergence and stabilization. It is worth noting that 

the models exhibit early convergence and achieve low loss values. As shown in Figure 7, the scatter plot 

of the predicted pavement surface performance indicators versus the target indicators for the Transformer 

model shows a closer alignment compared to the L-ANN model. This suggests that the Transformer model 

effectively captures nonlinear relationships, resulting in superior model fitting after training. 

     

(a)    RD train and validation loss     (b)    IRI train and validation loss 

Continued on next page 

Figure 13. Transformer model Loss function diagram. 
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(c)    AC train and validation loss      (d)    LC train and validation loss 

Figure 13. Transformer model Loss function diagram. 

     

(a)   Predict RD scatter plots        (b)    Predict IRI scatter plots 

     

(c)    Predict LC scatter plots         (d)   Predict AC scatter plots 

Figure 14. Transformer model scatter plots. 

Table 8 presents the relative importance scores of the RD, IRI, AC, and LC model indicators 

predicted by the two models. It can be observed that the Transformer model outperforms the fully 

connected neural network (L-DNN) in terms of performance prediction. Using the evaluation metrics 

proposed in Eqs (9)–(11), the performance of the deep learning models proposed in this study is further 

quantitatively compared. The MAE, RMSE, and R2 values of different prediction models are provided, 

taking into account the presence of missing data in LC and IRI, which contributes to relatively poorer 

performance in these two prediction categories, aligning with the nature of the data itself. The 

Transformer model demonstrates stronger learning and generalization abilities than the L-ANN model 

on both the training and testing sets, resulting in acceptable accuracy in pavement surface performance 
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prediction. Overall, the prediction accuracy on the training set is generally higher than that on the 

corresponding testing set. Specifically, the R2 values for L-ANN on the testing set are 0.9186, 0.8519, 

0.9073, and 0.8744, while the R2 values for the Transformer model on the testing set are 0.9653, 

0.9718, 0.9738, and 0.9642, all higher than those of the L-ANN model. Additionally, the other two 

performance indicators also surpass those of the L-DNN model. Therefore, the Transformer model 

exhibits superior learning ability and generalization performance in the prediction task. 

Table 8. Summary of evaluation indicators. 

Model type 
MAE RMSE R-square 

Train set Test set Train set Test set Train set Test set 

L-ANN 

RD 

model 
0.0867 0.1132 0.1595 0.1862 0.9288 0.9186 

IRI 

model 
0.1093 0.1221 0.3208 0.3568 0.8915 0.8519 

AC 

model 
0.0804 0.1035 0.1859 0.2459 0.9202 0.9073 

LC 

model 
0.0903 0.1437 0.2261 0.3582 0.8873 0.8744 

Transformer 

RD 

model 
0.0799 0.1215 0.1883 0.2985 0.9931 0.9653 

IRI 

model 
0.0239 0.0260 0.0697 0.0798 0.9871 0.9718 

AC 

model 
0.0209 0.0274 0.0724 0.0728 0.9942 0.9738 

LC 

model 
0.0625 0.0970 0.2022 0.2355 0.9794 0.9642 

The variation in model prediction results can be attributed to the use of the Transformer 

architecture, which combines self-attention mechanism and multi-layer perceptron (MLP) networks 

for regression prediction tasks. The self-attention mechanism enables the extraction of relevant 

features from the input data, while the MLP maps the output of the self-attention mechanism to the 

prediction target for forecasting. During the training process, the model automatically adjusts the 

parameters of the self-attention mechanism and MLP to minimize the discrepancy between the 

predicted results and the actual results. 

5. Discussions and conclusions 

After considering the impact of different input variables on the prediction model, we propose a 

method based on the Transformer architecture to improve the data quality of LTPP (Long-Term 

Pavement Performance) pavement performance prediction. Our aim is to enhance the quality of LTPP 

pavement performance prediction data. Several conclusions can be drawn as follows: 

1) Based on the pavement structure features, weather features, traffic parameter features, and 

pavement performance in the LTPP database, with asphalt pavement performance indicators as the 
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research objective, a neural network model, S-ANN and L-ANN, is constructed with 12 and 24 input 

variable nodes, respectively. A comparison reveals that selecting a larger number of appropriate input 

variables can effectively improve the prediction accuracy of pavement performance. By considering 

all the major factors that influence pavement performance, the models have significant potential for 

accurately predicting pavement condition indicators. The selection of the S-ANN architecture is based 

on a preliminary analysis of pavement performance data, revealing that certain performance attributes 

exhibit relatively straightforward relationships and patterns. The compact structure of S-ANN is well-

suited for capturing these direct relationships, effectively identifying fundamental patterns within the 

data. In pavement performance studies, there may be limitations in data, such as restricted 

environmental information or details about pavement infrastructure. In such situations, the simplified 

structure of S-ANN has proven to be robust under limited data conditions. On the other hand, the 

choice of the L-ANN architecture considers a more comprehensive dataset. In pavement performance 

prediction, a wealth of foundational and environmental information with potential interdependencies 

is encountered. Employing a deep model like L-ANN enhances the capacity to capture complex 

relationships and nonlinear features, thereby improving the model's fitting capability to the dataset. L-

ANN's larger architecture, featuring 24 input variable nodes, provides a higher capacity to capture 

intricate and nonlinear patterns within the data. This is crucial in pavement performance modeling 

where the relationships between various factors can be complex and multifaceted. 

2) To further improve the performance and interpretability of the prediction model, we introduce 

the Transformer algorithm. Traditional neural networks have failed to consider interactions between 

input variables, and the presence of influences between factors can lead to poor network performance 

or overfitting. The Transformer model structure, consisting of self-attention mechanism, normalization, 

and residual connections with L-DNN, is utilized to predict pavement performance. Through a 

comparative analysis of evaluation metrics, it has been demonstrated that the Transformer model 

exhibits stronger learning and generalization capabilities. The evaluation metrics on both the training 

and testing sets outperform those of the L-DNN prediction model. Compared to traditional fully 

connected neural network models, neural network models incorporating the self-attention mechanism 

offer greater flexibility and memory capacity. Self-attention enables the model to adaptively focus on 

different features in the input during the learning process. In the context of pavement performance, 

certain environmental conditions or road structures may have a more significant impact on 

performance. Self-attention allows the model to autonomously adjust its focus on specific features in 

different contexts, improving its understanding of the complexity of pavement conditions. Pavement 

conditions may be influenced by various factors, some of which may introduce uncertainty. Self-

attention assists the model in handling changes and uncertainties in the input data, enhancing the 

model’s adaptability to complex and dynamic environments. However, the self-attention mechanism 

may also introduce some challenges. First, it can increase the complexity of the model, requiring more 

computational resources. Additionally, since the self-attention mechanism processes different parts of 

the input data, it may necessitate a larger training dataset to learn the model parameters. Last, the self-

attention mechanism, involving multiple input data interactions, may require longer training time. The 

attention mechanism can be effectively integrated into neural networks to enhance the performance 

and interpretability of regression prediction models. The proposed approach, based on the fused 

Transformer architecture, demonstrates superior prediction of LTPP pavement performance and holds 

potential for significant practical applications. 

3) Predicting pavement performance is an essential component of pavement maintenance 
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management. The utilization of a pavement performance prediction model based on the Transformer 

algorithm enables efficient and accurate forecasting of future changes in pavement performance during 

pavement usage. This enhances the scientific basis of maintenance decision-making. An accurate 

prediction model provides more reasonable guidance for the planning of asphalt pavement 

maintenance and the allocation of maintenance funds. 
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