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Abstract: We propose a polygonal topology optimization method combined with the alternating 
active-phase algorithm to address the multi-material problems. During the process of topology 
optimization, the polygonal elements generated by signed distance functions are utilized to discretize 
the structural design domain. The volume fraction of each material is considered as a design variable 
and mapped to its corresponding element variable through a filtering matrix. This method is used to 
solve a multi-material structural topology optimization problem of minimizing compliance, in which 
a descriptive model is established by using the alternating active-phase algorithm and the solid 
isotropic microstructure with penalty theory. This method can accomplish the topology optimization 
of multi-material structures with complex curve boundaries, eliminate the phenomena of 
checkerboard patterns and a one-node connection, and avoid sensitivity filtering. In addition, this 
method possesses fine numerical stability and high calculation accuracy compared to the topology 
optimization methods that use quadrilateral elements or triangle elements. The effectiveness and 
feasibility of this method are demonstrated through several commonly used and representative 
numerical examples. 

Keywords: multi-material structures; topology optimization; polygonal elements; signed distance 
function; alternating active-phase algorithm 
   



1192 

Electronic Research Archive  Volume 32, Issue 2, 1191–1226. 

1. Introduction 

Topology optimization is an advanced method for structural optimization which has achieved 
vast progress over the last four decades. Topology optimization is mostly utilized to confirm the 
material(s) distribution within a prescribed spatial domain during the initial design stage, and it is 
realized by applying one or several certain conditions (volume constraints, perimeter constraints, 
mass constraints, etc.) to enhance structural performance. Topology optimization methods are of 
great significance in studies of the force transmission path and the performance of materials. By 
topology optimization, an optimal structure with better performance or less material consumption 
(while the structural performance is retained) can be obtained. So far, various distinctive approaches 
have become increasingly popular and have, therefore, been widely studied and applied for topology 
optimization [1–3], such as the homogenization theory [1], the density-based scheme (e.g., solid 
isotropic microstructure with penalty (SIMP)) [2], the evolutionary structural optimization (ESO) 
concept [4], the level-set approach [5–9], the parametric level-set method [10–15], the isogeometric 
method [16,17], the bionic approach [18], the meshless method [19,20], and so on. 

Since Bendsøe and Kikuchi realized the structural topology optimization of porous materials 
successfully by applying the homogenization theory [1], structural topology optimization has 
garnered much attention for application to computational mechanics, material mechanics, and 
engineering structures. The research field of topology optimization can be mainly categorized as 
either continuum topology optimization or discrete structure topology optimization, both of which 
are closely related to finite element analysis (FEA). However, FEA is closely related to the mesh 
generation of structural design domains, so the generator of finite element meshes has significant 
influence on the efficiency of structure optimization. Most computationally oriented papers on 
topology optimization that rely on FEA apply unified low-order linear triangular meshes [21] or 
quadrilateral meshes [22] to discretize a design domain. However, numerical instability phenomena 
like the checkerboard patterns and the single-node connections often appear in the results of the 
variable density method [22,23]. Usually, a regularization scheme such as filtering [23] can be used 
to suppress such numerical instability phenomena, but regularization measures often involve the 
related parameters in the heuristic algorithm (for example, the SIMP method [23]) that can increase 
the complexity of topology optimization. A polygonal discretization method has been proposed by 
Talischi et al. [24] to achieve stable topology optimization formulations [25] by using lower-order 
polygonal elements. Jie et al. [26] extended the above method, introduced a simulated annealing 
algorithm into the process of mesh generation for finite element methods on the basis of the 
Centroidal Voronoi tessellations (CVTs), and solved the problems related to it being difficult to 
achieve convergence via the MacQueen’s method and the Lloyd’s algorithm. Recently, Bruggi [27] 
has proposed a topology optimization method that uses mixed finite elements on regular grids. The 
efficient mixed finite elements furnish accuracy and robustness on regular grids, and the topology 
optimization problem is solved only in terms of stresses. From the above references, the methods 
using the Voronoi elements have the ability to discretize the design domain with complex boundaries 
and solve the topology optimization problems of non-convex domains. Moreover, the methods have 
good numerical stability. Therefore, a topology optimization approach for multi-material structures is 
proposed on the basis of Voronoi elements in this paper. 

The research on topology optimization currently focuses on solving the problems of stress 
constraints, nonlinear problems, and dynamic problems. However, it is not difficult to address the 
problems of single-material topology optimization [5,28]. With the development of topology 
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optimization methods and engineering application requirements, research on topology optimization 
problems of multi-material structures is gradually becoming the mainstream. There are many works 
that focus on the solution of multi-material topology optimization [29–36]. In accordance with the 
concept of material distribution, Bendsøe and Sigmund put forward a SIMP method with a 
multi-material mixing principle [37], which has been successfully put to use for the compliance 
agencies of multiphysics [38]. Another method for optimizing the topology of multiple materials has 
been derived from the variable density method [39]. During the process of designing intelligent and 
sensitive structures, the multi-material topology optimization models have been used to find the 
optimal distribution of elastic and piezoelectric materials [40–42]. Hvejsel and Lund [43] proposed a 
couple of multi-material interpolation methods which summarized the well-known material 
interpolation schemes based on SIMP and the rational approximation of material properties. For 
topology optimization involving multiple materials, Tavakoli and Mohseni [44] put forward an 
alternating active-phase algorithm and a 115-line MATLAB implementation, through which a 
multi-material topology optimization problem is transformed into a range of two-material topology 
optimization sub-problems. Zhou and Wang [45] brought forward a universal method to tackle the 
multi-phase topology optimization problems on the basis of the Cahn-Hilliard equation. According to 
the penalization of objective functionals with the Ginzburg-Landau energy functional, Tavakoli [46] 
introduced a new method for multi-material topology optimization. The level-set method has been 
widely employed to multi-material structural topology optimization since the development of the 
SIMP method. For example, a “color” level-set approach was proposed by Wang and Wang [47] to 
solve the topology optimization problem involving compliance minimization with multiple materials. 
Moreover, Wang et al. [48] have put forward a level-set approach for multi-material topology 
optimization, in which M materials are expressed by M level sets with accurate mathematical 
expressions. By using the method, the redundant regions, as well as the overlaps between different 
materials, can be avoided. However, the traditional level-set method can only move or merge the 
existing holes, but not generate a new hole. Hence, it is generally decided by the initial design. The 
level-set method with moving morphable components (MMC) was proposed by Guo et al. [49] to 
realize topology optimization explicitly and geometrically. By utilizing this method, geometric and 
mechanical information can be directly combined and integrated with the topology optimization 
process. The method has greater flexibility in terms of handling topology optimization problems and 
reducing computational burden. Then, Zhang et al. [50] and Guo et al. [51] expanded the explicit 
structural topology optimization. Both of their methods are based on MMC and a level-set approach, 
which have shown great potential for use in multi-material topology optimization. Besides the SIMP 
method and the level-set approach, another procedure to address the problem of multi-material 
topology optimization is the evolutionary topology optimization involving multiple materials. For 
example, Huang and Xie [52] proposed a bi-directional ESO method which can be put to use to 
handle the binary-phase or multi-material topology optimization problem. In this article, the 
discretization method using Voronoi elements based on SIMP is considered. Therefore, a 
multi-material topology optimization method based on the alternating active-phase algorithm [44] is 
adopted as the framework to address the topology optimization problem involving multiple materials. 
The design variables are improved by using a filtering matrix and mapped to element variables so 
that the proposed method can be successfully implemented. 

In existing methods for topology optimization involving multiple materials, the unified 
quadrilateral elements are usually utilized to discretize the design domains. However, it is difficult to 
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optimize the structures with complex boundaries by using the unified quadrilateral elements, which 
confines the application range of the methods. To overcome the limitation, we propose a 
discretization method that uses the centroidal Voronoi elements to discretize the design domain of 
structures involving multiple materials. The centroidal Voronoi elements are based on the signed 
distance functions and the corresponding reflecting functions [53,54]. For an arbitrary mesh, the FEA 
routine can be implemented by using the unstructured and isoparametric polygonal elements. 
Therefore, the discretization method can deal with the design domains with complex boundaries, 
obtain good robustness, and avoid the checkerboard patterns [55,56]. 

The rest of this article is organized as follows. The polygonal meshes which can be used to 
discretize the design domain are introduced in Section 2. The model of topology optimization, 
combined with the alternating active-phase algorithm, is depicted in Section 3. The modified model 
of topology optimization is expressed in Section 4. The sensitivity analysis and the update scheme 
for design variables are described in Section 5. In Section 6, several numerical examples are 
provided to demonstrate the performance and effectiveness of this method. The conclusions are 
finally drawn in Section 7. 

2. Polygonal elements 

Inspired by References [24,25,57,58], we introduce the approximate hexagonal CVT elements to 
discretize the structural design domain with complex curve boundaries. In this section, we present 
the signed distance function, the corresponding mapping functions, the formation process for Voronoi 
elements, as well as the discretization method of the design domain. Finally, we discretize the design 
domain through the use of CVT elements. 

2.1. Distance function 

Here, the signed distance function [24] is incorporated and used to implicitly express the design 
domain. Assuming that Ω  is a subset of the two-dimensional real number space 2R , then the 
distance function d( )x  can be described as follows: 

2

min || || if Ω
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by
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where x  represents the point set of Ω , Ω  signifies the boundary of Ω , and bx  represents the 

point set of Ω . ||||   signifies the standard Euclidean norm. Hence, the distance between x  and 

bx  can be denoted by || ||bx x  here. 

In this mesh algorithm, it is necessary to judge whether the point set x  lies within the design 
domain, which is similar to the situation in which a level-set function is used to represent the design 
domain. Then, by means of Eq (1), the design domain can be represented as follows. 



1195 

Electronic Research Archive  Volume 32, Issue 2, 1191–1226. 

 
 
 

Ω | d( ) 0

Ω | d( ) 0

Ω | d( ) 0

 


 
  

x x

x x

x x

                              (2) 

Figure 1 shows a schematic diagram of the relationship between the signed distance functions 
and the design domain. The green, orange, and yellow parts represent the solid design domain Ω , 
the magenta part represents 2R \ Ω , and the indigo curve signifies the boundary of the design 
domain Ω . 

 

Figure 1. The relationship between the signed distance functions and the design domain. 

To describe the distance functions more clearly, the gradient of the signed distance function 
d( )
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direction remains the same as the normal direction of the boundary. In general, for almost all points 
2Rx , we have 
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The above-mentioned features of the gradient vector 
d( )

| d( ) |




x

x
 can be used to determine the 

mirror reflection (mapping) point R( )x  of the point x  about its closest boundary Ω . 
Correspondingly, the formula for the mirror reflection point R( )x  can be expressed as below. 
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Figure 2 explains the formation of the reflection R( )x  in the form of a diagram, where the 

distance of x  to bx  remains the same as the distance of bx  to R( )x . 

 

Figure 2. The reflection R(x) of x about the design domain boundary Ω . 

The signed distance functions and their corresponding mapping functions are used to describe 
the structural design domain in this article. Therefore, it is necessary to construct the signed distance 
functions about a given domain. For simple geometries, it is easy to confirm the signed distance 
function. For instance, the distance function of design domain Ω  can be expressed as 

0d( ) || || / 2l  x x x  in the case that Ω  indicates a quadrate with a side length l  centered at point 

0x . The level curves of the signed distance function are a series of quadrates centered at point 0x  

and with a side length less than l . For the design domains with geometric complexity, they should first 
be discretized into a series of simple geometric configurations. Then, the set operation rules, namely, 
the union, intersection, difference, and complementarity, are very suitable for the purpose of piecing 
and connecting different simple geometric configurations. Given two regions A, B and the 
corresponding distance functions Ad ( )x  and Bd ( )x  as an example, the aforementioned set operation 

rules are described as follows. 
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where A and B are the different domains of a simple geometry, such as a circle, straight line, 
rectangle, triangle, etc. The characteristics for the signed distance functions of combined geometric 
configurations are shown in Figure 1. 

For a given design domain with complex curve boundaries, it can be discretized into a series of 
simple geometric regions ( Ωi , i =1, 2, ..., n ). The distance function of the i th simple geometric 

region is defined as d ( )i ix . According to Eq (5), the signed distance function can be described by 

1 1 2 2 n nd( ) F(d ( ),d ( ),...,d ( ))x x x x                         (6) 
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where F  means an appropriate multivariate function for the set operation rules mentioned above. 

2.2. Voronoi meshes and correlation calculations 

Define the set of seeds N
1{ }i iP p  which assembles the x and y coordinates of all N points of 

meshes into an N-by-2 array in the design domain 2Ω R . The Voronoi tessellation of 
i

p  (
i

p  is a 

seed in the set P ), denoted by 
i

V  (as shown in Figure 3), can be defined by 

{ Ω| || || || ||, \{ }, },i i j j i j i       V x x p x p p P p  , 1,..., ni j           (7) 

where ||||   is the distance function (i.e., the standard Euclidean norm). In other words, the Voronoi 

tessellation 
i

V  consists of the points nearer to the point 
i

p  than the others inside P . The 

properties of Voronoi diagrams mainly include the following: 1) Each V-polygon has a generator 
element inside it; 2) The distance from the inner point of each V-polygon to the generating element is 
shorter than the distance to other generating elements; 3) The distance between each of the points on 
the polygon boundary and the generating element that generates this boundary is equal; 4) The 
Voronoi polygon boundaries of adjacent graphics are subsets of the original adjacent boundaries. It is 
worth noting that Voronoi diagrams are bounded convex polygons and play an important role in 
computational geometry due to their ability to partition regions based on point sets with the closest 
distance to points, making them essential in the FEA. 

If each seed is coincident with the centroid of the corresponding Voronoi element, then the 
Voronoi tessellation 

i
V  will be centroidal. Then, the distribution of discrete seeds is optimal, and 

Voronoi diagrams have minimal energy [59] that promotes the regularization of Voronoi 
tessellation. Additionally, a discretization method based on CVT elements can be used to prevent 
such imperfections as grid slivers and crossovers, which is very advantageous for the FEA in the 
future. Therefore, a multi-material topology optimization method combined with the CVT elements 
is put forward. 

According to References [57,58], a minimum distance method of the interior points can 
eliminate the clustering of randomly generated points and generate the graded meshes. However, 
many distorted elements may be produced near the complex curve borders and affect the FEA. 
Taking inspiration from References [25] and [59], a method is proposed here, in combination with 
Lloyd’s algorithm, to make the obtained Voronoi elements centroidal and consequently ensure the 
quality of meshes. The edge lengths of each polygonal element are employed as evaluation metrics 
for the quality of meshes. In addition, all edge lengths corresponding to each CVT element are equal. 
In terms of the quality of meshes, the CVT elements have clear and significant advantages over the 
triangular and quadrilateral elements. Lloyd’s algorithm, which is used to update the seeds P  and 
gain the CVTs, is expressed as follows. 

( )

( )
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
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V P Δ

V P Δ
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L P
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where ρ( )x  represents a defined density function that exists throughout the entire design domain; 

k  denotes the k th iteration. It can be observed that the seed set P  is mapped by L  to the seed 
set corresponding to the centroids of Voronoi elements. From Eqs (8) and (9), it is obvious that the 
Voronoi elements are CVTs if the seeds satisfy that )(PLP  . 

Once the set of discrete points P  is determined, the set of reflections will be established by 
Eq (4), which enables the construction of the Voronoi diagram of R( )P P . With Lloyd’s algorithm, 

the convergence criterion is set to depend upon the motion of the seeds or the energy gradient 
function during the iterative process; meanwhile, the centroid set P  takes the place of the original 
point set P  until the iterative process ultimately reaches convergence. Here, the energy gradient 
function with the CVT point ip  is chosen as the convergence criterion: 

V (

1/2

|| ε || || 2( ) ρ( )d ||

| |
: ρ( )d
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i
i i 




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 
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A “non-dimensional” error parameter is defined by Eq (11): 

1/2

Ω

N || ε ||
E

| Ω | ρ( )d
r




 x x
                              (11) 

The convergence criterion is described as follows: 

E r  ξ r ，0 ξ 1r                                (12) 

 

Figure 3. Illustration of the Voronoi tessellation 
i

V  and the approximate boundary of 

 . (Note that the Voronoi edge shared between each seed 
i

p  and its reflection R( )ip  

is a segment of the approximate boundary of  .) 

In this work, the discretization for the interior of design domains is achieved through the 
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relevant calculations corresponding to the discrete point set P , while the discretization for the 
boundary of design domains is achieved by using the Voronoi diagrams corresponding to the seeds 
P  and their reflections R( )P  (i.e., R( )P P ). It is assumed that this work involves a bounded 

convex design domain Ω , and that, consequently, the mapping points are located outside of Ω . As 
for the design domain boundary, it approximates an edge which is formed by many tangents across the 
boundary points (as shown in Figure 3). Therefore, the boundary discretization approximation 
approach can be used to tackle the issue of complex curve boundaries by the Voronoi elements. For the 
specified set of points P , the design domain discretized by Voronoi diagrams is expressed below. 

 ΩD ( ) V (( R( )) Ω) | ,i i  P P P p P   1,..., Ni                  (13) 

3. Alternating active-phase algorithm 

 

Figure 4. Illustration of alternating active-phase algorithm with four materials (A, B, C, and D). 

Due to the fact that the grid discretization method using Voronoi elements is grounded in the 
variable density concept, this work adopts the use of a topology optimization method combined with 
the alternating active-phase algorithm [44], which decomposes a multi-phase topology optimization 
problem into a series of two-phase topology optimization problems and solves them step by step. It 
should be pointed out that we consider the void as a separate phase (or material) when expressing the 
formulas. The distribution of each material can be determined via the fields of local volume fraction, 
namely, j  (note that ( )j j   y ) ( 1, 2, , Mj   ), i.e., the local volume fraction of the 

corresponding material can be defined as the design variable. It is assumed that j  satisfies that 

V(Ω)j   ( 1, 2, , Mj   ), and V  represents a function space that is sufficiently regular. Thus, 

the boundary constraints on each j  ( 1, 2, , Mj   ) are as follows: 

j j j  l u ， j j  0 l u 1 , 
M

1j
j

                       (14) 

where ju  and jl  indicate the lower and upper limits of design variables j , respectively. 

One global volume constraint is usually defined as the constraint of topology optimization. 
Considering the volume fractions for all materials, the global volume constraint can be expressed 
as below. 

Ω
d Λ | Ω |, 1, 2,..., Mj j j   y                          (15) 
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where y  signifies a point in Ω  (here, Py  and 
ii

ppy  ); Λ j  
is a customization parameter; 

obviously, 0 Λ 1j  , and 
M

1

Λ 1j
j

 . 

In order to facilitate the process of solving the two-dimensional topology optimization problems, 
all design variables j  ( 1, 2, , Mj   ) are compressed into one vector field which is marked with 

J , namely, 1 M{ ,..., ,..., }j   J . After the discretization for the design domain is finished, the 

admissible design space [44] Π  can be defined as below. 

 

M

{1,2,...,M}
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: { V Ω } d Λ | Ω |, 1,2,...,M
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j j j j

j j j
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 
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 

   
  



 y

l u

            (16) 

In this article, the performance parameters of each material are given in advance. Here, M( )  

represents the material performance interpolation functions for the volume fraction. The solutions to 
the partial differential equation (PDE) constraints are represented by U( ) Θ( ( ))   y , where Θ  

indicates a function space that is sufficiently regular. The partial differential operator subject to PDE 
constraints can be represented by the operator Γ(...) . Accordingly, the discrete form for PDE 

constraints is expressed below. 

Γ(M( ),U( )) 0                                  (17) 

Considering the above terminology, the structural minimum compliance is defined as the 
objective of topology optimization. Generally speaking, the objective function  , which is 
dependent upon   and U , can be expressed as an integral spanning the entire region of Ω . 
Therefore, the discrete mathematical model for each multi-material topology optimization problem 
can be abstractly represented as follows. 

min ( , U( ))

R(M( ), U( )) 0


  


  

                              (18) 

According to the alternating active-phase topology optimization algorithm, the optimization 
process can be implemented by the nested inner and outer loops. In the outer loop, it is necessary to 
solve M(M 1) / 2  two-phase topology optimization sub-problems, that is, to solve the 0-1-type 

single-material topology optimization problem shown in the inner loop. 
All topology optimization sub-problems in the inner loop are solved via the modified density 

method. Therefore, in each topology optimization of the inner loop, M 2  materials are fixed, and 
the remaining two materials are handled by the binary phase method (as illustrated in Figure 4). The 
two active materials are represented by subscripts “ a ” and “ b ”, respectively, and the corresponding 
volume fractions of the two active materials are represented by a  and b . The volume fraction 

field of the two active materials is represented by abr . 
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M

ab
1
a,b

j
j
j



  r 1                               (19) 

Since 
M

1

1j
j

   (i.e., 
M

1

v 1j
j

 ), the volume fraction of material a is required as the design 

variable for the topology optimization sub-problem of binary phases (material a and material b). 
After the sub-problem of material a is solved, the volume fraction field of material b can be 
calculated by solving b ab a  r . 

Considering Eqs (14) and (19), in the sub-problem of binary-phase topology optimization, the 
temporary upper limit of material a, a,tempu  (which is adopted for updating the design variables), can 
be calculated as follows: 

a,temp
a abmin( , )u u r                             (20) 

where au  denotes the upper limit of the volume fraction corresponding to material a (as described 

by Eq (14)), and the lower bound of material a does not need to change. With the “active phases” a 
and b, the parameter ab  denotes the design vector of the active materials (a and b) and fixed 

materials ( j a,b ). Thus, the topology optimization sub-problem corresponding to the inner loop 

becomes a 0-1-type (binary phase) counterpart, which is formulated as below. 

ab ab Ω

ab ab

1
min : ( , U( )) ( : D( )) : D( )d

2 ,

s.t. : (M( ), U( )) 0

    

    

 E u u y
 within Ω          (21) 

In this work, the objective function of topology optimization is set to minimize the structural 
compliance, and the material property function M  is obtained via analogy by using the elasticity 
tensor ( )= ( ( ))E y E y . Note that E  is a fourth-order super-symmetric tensor (symmetric in both the 

right and the left Cartesian index pair, together with symmetry under the interchange of the pairs). 
According to References [44] and [45], the SIMP version, as improved by linear interpolation, can be 
applied in multi-material interpolation as follows. 

M

j 1

( ) q
j j



  E E                              (22) 

where jE  indicates the constant elasticity tensor corresponding to material j  ( 1, 2, , Mj   ); q 

signifies a power in the SIMP interpolation; ( )E  represents the structural stiffness to be used for 

subsequent FEA and sensitivity analyses. 
For a given volume fraction vector of each material, the PDE operator can be formulated as below. 

( : D( )) ( ) within

ˆ( ) ( ) on
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ˆ( : D( )) ( ) on

u

f

t

  
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  
  

E u f y

u y u y

E u n

E u n t y

γ

γ

γ

                       (23) 
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where u  represents the displacement field corresponding to the PDE constraints; f  represents the 
volumetric body force; û  indicates the prescribed displacement of boundaries uγ ; fγ  indicates 

the traction-free part of boundaries; t̂  indicates the traction of a structure through the traction 
boundaries tγ ; the integrated boundary of the design domain is Ω u f t   γ γ γ . Furthermore, 

1
D( ) : ( ( ) )

2
T   u u u . 

4. Topology optimization model involving multiple materials 

In this work, the design domain with the complex curve boundaries is discretized by using the 
CVT elements, and the main framework for handling topology optimization involving multiple 
materials is the alternating active-phase algorithm. To overcome the challenges of applying CVT 
elements in topology optimization involving multiple materials, the design variables denoted by j  

( 1, 2, , Mj   ) are improved and regularized by the filtering matrix 
t

F  and consequently mapped to 

the element variables denoted by jz  ( 1, 2, , Mj   ). Taking inspiration from References [23–25,44], 

we propose a new model which combines the alternating active-phase algorithm with centroidal 
Voronoi elements. 

The improved design variables and the filtering sub-matrix are defined as follows: 

* *

* *

( )

max(0,| V | (1 | | /R))
( )

| V |(1 | | /R)

t

k
l k

t lk k
l kk S l

 
        

z F

F
                      (24) 

where z  indicates the improved design variables; tF  represents the global filtering matrix which is 

derived from the classic filtering formulas, corresponding to the linear hat filter [23]; 
lkt

)(F  indicates 

the sub-matrix of tF ; R  indicates the filtering radius; | V |k  represents the kth Voronoi element. 

According to optimization criteria of the SIMP method and the filtered elements, the structural 
volume fraction is described as follows: 

Ω Ω
V( ) d dt    z y F y                            (25) 

There are obvious similarities between the volume fraction for each material [44] and the 
element density in the SIMP method [23,60]. Therefore, the optimal model with the objective 
function to minimize compliance can be specified as follows: 

[ , ]

*

Ω

min :

1
s.t. : (M( ), U( )) d V

Ω

T

l u

ab ab






    
 

F U

z y
                     (26) 

where *V  represents the upper limit of the structural volume fraction. 
Figure 5 describes the specific implementation steps in a topology optimization process for the 

proposed method. In this work, all CVT elements are generated by random seeds, so the optimal 
structures may be slightly different from each other for the same numerical example. Nevertheless, 
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the very little difference can be neglected. Thus, topology optimization for all of the following 
numerical examples is addressed by using random seeds. 

 

Figure 5. The implementation steps in the topology optimization process according to 
the proposed method. 

5. Sensitivity analysis and update scheme 

The discrete problems are solved by using the gradient-based optimization algorithm in this 
article. Therefore, it is necessary to calculate the cost function gradient with respect to the original 
design variables. Note that the sensitivity analysis only involves its own internal parameters E  and 
V , and these two parameters are functions of the design variables. The sensitivity analysis of the 
cost function is separated along the same line. The sensitivity analysis of the linear separation cost 
function is usually performed by using the gradient-based algorithms, and it can be described by a 
chain rule as follows. 

    
 

    
E V

E V
                             (27) 

In the compliance problem C T F U , according to References [23] and [25], there are the 
expressions of sensitivities that are given below. 
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Thus, the design sensitivities are converted into the following expressions: 
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'
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                           (29) 

According to the methods for updating design variables under the condition of variable 
density [23,60], and combined with Eq (29), the new active-phase design variable new

a  which 

satisfies the box constraints is defined as follows: 

η
min min

η
min min

C

min( , m), z ( z )( ) min( , m)

C

max( , m), z ( z )( ) max( , m)

C

, otherwise

a a a a a
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         (30) 

where m is a constant, m 0.2 ; minz  denotes the minimum value of z ; η  denotes the damping 

coefficient;   denotes the Lagrange multiplier, which can be solved via the bisection method. 

6. Demonstrative examples 

To demonstrate the effectiveness and feasibility of the proposed method, several typical 
numerical examples of topology optimization are provided in this section. It should be noted that the 
maximum number of iterations to discretize the structural design domain was set to 500 so as to 
ensure the quality of Voronoi elements. In addition, the termination criterion for topology 
optimization was set such that a change in the volume fraction is less than the user-defined threshold. 
However, it is hard to achieve the termination criterion at times due to the numerical oscillation, so 
we set the user-defined maximum iteration number to 800, which serves as an additional termination 
criterion for topology optimization iterations to save program running time. 

6.1. Semi-MBB beam 

Taking a semi-Messerschmitt-Bölkow-Blohm (semi-MBB) beam as this numerical example, 
Figure 6 shows its design domain and boundary conditions with an aspect ratio of 3:1. The horizontal 
displacement at the left boundary of the design domain and the vertical displacement at the 
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bottom-right corner of the design domain are both constrained. Moreover, there is an external 
downward force 1F  at the top-left corner of the design domain. In this section, to explore the 
impact of different factors on the optimization results from different perspectives, we divided the 
examples into different cases (i.e., the following cases 1–6). The topology optimization design of a 
semi-MBB beam involving three different materials (where voids are considered as one material) was 
first studied (i.e., case 1). In case 1, for materials 1, 2, and 3 (void), their corresponding Young’s moduli 
were set to 3, 1, and 910 , respectively. For all the materials involved, a Poisson’s ratio of 0.3 was 
equally set. The filtering radius used here was set to 0.08. In addition, for materials 1, 2, and 3, their 
corresponding volume fractions were set to 0.3, 0.1, and 0.6, respectively. 

 

Figure 6. Initial design domain of semi-MBB beam. 

 

Figure 7. Discrete structure of semi-MBB beam in the form of polygonal elements. 

Figure 7 shows the discretization of the initial design domain, as obtained by utilizing 4000 
Voronoi elements. For the polygonal elements and seeds, especially those on the boundaries, their 
distribution is uniform. 

Figure 8 illustrates the topology optimization process corresponding to the semi-MBB beam with 
three materials in case 1, where red regions denote material 1, indigo blue regions denote material 2, 
and the light green regions denote material 3 (void). The solutions after 50, 100, 200, 400, 600, and 800 
iterations are shown in Figure 8(a)–(f), respectively. The minimum compliance of the semi-MBB 
beam with three materials is C 22.8265   after 800 iterations, which corresponds to the optimal 
structure in Figure 8(f). The results in Figure 8 indicate that a reasonable distribution of materials can 
be obtained by using the proposed method under volume constraints. Therefore, the feasibility and 
effectiveness of the proposed method are verified. Figure 9 illustrates the convergence history for 
structural compliance in the topology optimization design process for the semi-MBB beam with three 
materials in case 1. Figure 10 illustrates the changes in volume fraction of the three materials in the 
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topology optimization process for the semi-MBB beam with three materials in case 1. The results in 
Figures 9 and 10 indicate that the compliance value (i.e., objective function) can be quickly 
minimized and a reasonable material distribution can be obtained under volume constraints by using 
the proposed method, with little change in the volume fraction of each material. Therefore, the 
feasibility and effectiveness of the proposed method are further confirmed. 

It is necessary to study the influence of different parameters, such as the number of elements, 
filtering radius, different stiffness ratios, and different volume fraction ratios of three-material 
structures. Therefore, other cases of the semi-MBB beam are further provided to investigate the 
influence of the above-mentioned parameters on the results with the same seeds P . 

   

(a)                                (b) 

   

(c)                                (d) 

   

(e)                                (f) 

Figure 8. Topology optimization design results in case 1 for different iterations. (a) The 
result corresponding to 50 iterations; (b) The result corresponding to 100 iterations; (c) 
The result corresponding to 200 iterations; (d) The result corresponding to 400 iterations; 
(e) The result corresponding to 600 iterations; (f) The optimal design, namely, the result 
corresponding to 800 iterations. 

All parameters set in case 2 remained the same as those set in case 1, except that the semi-MBB 
structure was initially discretized into 2000 and 5000 Voronoi elements, as respectively illustrated in 
Figure 11(a),(c). The optimal structures obtained in case 2 are illustrated in Figure 11(b),(d), 
respectively. The results in Figure 11 indicate that, although the structure is discretized into different 
numbers of Voronoi elements, the material distributions with little difference under volume 
constraints can still be obtained by using this method. Specifically, in the case of the optimal 
structure, the distribution of the material with a high elastic modulus (material 1) remains basically 
unchanged, whereas the distribution of the material with a low elastic modulus (material 2) is slightly 
different. Therefore, it can be concluded that different numbers of Voronoi elements have little 



1207 

Electronic Research Archive  Volume 32, Issue 2, 1191–1226. 

impact on the optimization results obtained via this method. 

 

Figure 9. Convergence history for structural compliance in case 1. 

    
    (a)                                  (b) 

 
  (c) 

Figure 10. Changes in volume fraction of the three materials in case 1. (a) Volume 
fraction curve for material 1; (b) Volume fraction curve for material 2; (c) Volume 
fraction curve for material 3. 

In case 3, the filtering radius was changed from 0.08 to 0.03 and 0.1, respectively. The initial 
discretized semi-MBB beam structure is also shown in Figure 7. Figure 12(a),(b) illustrate the 
optimal structures with the different filter radii (0.03 and 0.1, respectively). The results in Figure 12 
indicate that significantly different material distributions in the optimal structure can be obtained by 
using the proposed method under the condition of setting different filtering radii. Specifically, in the 
optimal structure, setting a smaller filtering radius leads to a more dispersed distribution of materials, 
while setting a larger filtering radius leads to a more concentrated distribution of materials. Therefore, 
it can be concluded that different filtering radii have a significant impact on the optimization results 
obtained via this method. 
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(a)                                  (b) 

   

(c)                                  (d) 

Figure 11. Topology optimization design domains and results in case 2. (a) Design 
domain which is initially discretized into 2000 Voronoi elements; (b) Optimal design, 
namely, the result corresponding to 669 iterations, with a minimum compliance of 
C 22.7302 ; (c) Design domain which is initially discretized into 5000 Voronoi 
elements; (d) Optimal design, namely, the result corresponding to 623 iterations, with a 
minimum compliance of C 22.5797 . 

   

(a)                                  (b) 

Figure 12. Optimal structures with different filtering radii. (a) Optimal structure with 
filtering radius of 0.03 and objective function value of C 24.3989 , corresponding to 62 
iterations; (b) Optimal structure with filtering radius of 0.1 and objective function value 
of C 22.9340 , corresponding to 800 iterations. 

In case 4, the stiffness ratios (i.e., Young’s modulus ratios) between different materials are 
changeable. Under the condition that the values of the Young’s modulus of material 2 remained the 
same as that in case 1, the values of the Young’s modulus of material 1 were set to 10 and 50, 
respectively. The optimal structures with different stiffness ratios for material 1 to material 2 are 
illustrated in Figure 13(a),(b), respectively. The results in Figure 13 indicate that the proposed 
method can realize significantly different material distributions and structural compliance in the 
optimal structure by setting different material stiffness ratios. Specifically, in the optimal structure 
with the unchanged Young’s modulus of material 2, setting a smaller Young’s modulus of material 1 
results in greater structural compliance, while setting a larger Young’s modulus of material 1 results 
in smaller structural compliance. Therefore, it can be concluded that different material stiffness ratios 
have a significant impact on the optimization results obtained via this method. 
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(a)                                  (b) 

Figure 13. Optimal structures with different stiffness ratios (i.e., Young’s modulus ratios). 
(a) Optimal structure with stiffness ratio of 10, and objective function value of C 7.3658  
corresponding to 800 iterations; (b) Optimal structure with stiffness ratio of 50, and 
objective function value of C 1.4893  corresponding to 471 iterations. 

   

(a)                                  (b) 

Figure 14. Optimal structures with different volume fractions for the three materials. (a) 
Optimal structure with volume fractions of three materials equal to 0.2, 0.2, and 0.6, and 
objective function value of C  29.3784 , corresponding to 800 iterations; (b) Optimal 
structure with volume fractions of three materials equal to 0.1, 0.3, and 0.6, and objective 
function value of C 35.8576 , corresponding to 800 iterations. 

In case 5, the values of volume fraction that were set for the three materials differ from each 
other, and the corresponding optimal solutions are shown in Figure 14. The optimal structure with 
values of volume fraction for the three materials equal to 0.2, 0.2 and 0.6 is shown in Figure 14(a). 
The optimal structure with values of volume fraction for the three materials equal to 0.1, 0.3 and 0.6 
is shown in Figure 14(b). The results in Figure 14 indicate that the proposed method can realize 
significantly different material distributions and structural compliance in the optimal structure by 
setting different values of volume fractions for the three materials. Specifically, the larger the volume 
fraction of a strong material (i.e., material 1 with a high Young’s modulus) and the smaller the 
volume fraction of a weak material (i.e., material 2 with a low Young’s modulus), the smaller the 
objective function (structural compliance) of the optimal structure. In other words, the distributions 
of the strong material (i.e., material 1) and weak material (i.e., material 2) are changed by setting 
different material volume fractions. Therefore, it can be concluded that different material volume 
fractions have a significant impact on the optimization results obtained via this method. 

To investigate the effect of material quantity on the optimization design results, another new 
numerical case (i.e., case 6) is given here. The parameters in case 6 were set as follows. The 
quantity of materials involved in this case is 4, and the Young’s moduli for the materials were 
respectively set to 4, 2, 1, and 910 . The values of volume fraction for the materials were 
respectively set to 0.24, 0.08, 0.08, and 0.6. Moreover, the Poisson’s ratio, filtering radius, and 
quantity of polygonal elements were set to the same as those in case 1. 
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(a)                                 (b) 

   

(c)                                 (d) 

   

(e)                                 (f) 

Figure 15. Topology optimization design process for the semi-MBB beam with four 
materials in case 6. (a) The result corresponding to 50 iterations; (b) The result 
corresponding to 100 iterations; (c) The result corresponding to 200 iterations; (d) The 
result corresponding to 400 iterations; (e) The result corresponding to 600 iterations; (f) 
The optimal structure, namely, the result corresponding to 731 iterations. 

 

Figure 16. Convergence history for structural compliance in case 6. 

Figure 15 illustrates the topology optimization process for the semi-MBB beam involving four 
materials in case 6, where the red area represents material 1, the indigo blue area represents material 2, 
the green area represents material 3, and the black area represents material 4 (void). The solutions 
after 50, 100, 200, 400, 600, and 731 iterations are shown in Figure 15(a)–(f), respectively. The 
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minimum compliance is C 18.8914  after 731 iterations. The change in structural compliance for the 
semi-MBB beam with four materials in the optimization process of case 6 is illustrated in Figure 16. 
The variation in the volume fraction of each of the four materials in the optimization process of case 6 
is illustrated in Figure 17. The results in Figures 15–17 indicate that the structural compliance (i.e., 
objective function) can be quickly minimized and a reasonable material distribution can be obtained 
via the proposed method under volume constraints, with little change in the volume fraction of each 
material. Therefore, the feasibility and effectiveness of the proposed method are further confirmed. 

    

      (a)                                  (b) 

    

      (c)                                  (d) 

Figure 17. Change in volume fractions of four materials in case 6. (a) Volume fraction 
curve for material 1; (b) Volume fraction curve for material 2; (c) Volume fraction curve 
for material 3; (d) Volume fraction curve for material 4. 

   

(a)                                 (b) 

Figure 18. Optimal structures with the quadrilateral elements. (a) Optimal structure for 
the semi-MBB beam with three materials, and objective function value of C 107.2710 , 
corresponding to 151 iterations; (b) Optimal structure for the semi-MBB beam with four 
materials, and objective function value of C 83.3352 , corresponding to 234 iterations. 

Figure 18 shows the different optimal semi-MBB structures for three and four materials with 
quadrilateral elements, both of which were discretized by using  quadrilateral elements. In 
this case, the filtering radius was set to 1.5. Comparing the objective function values, the results were 
obtained as follows: 3 3 4.6994q pC C   , 4 4 4.4113q pC C   . Additionally, M elC   denotes the 

objective function value, M signifies the material number, and  (  or ) signifies the 

2060

el qel  pel 
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discretization method (i.e.,  signifies the discretization method with quadrilateral elements, or  

signifies the discretization method with polygonal elements). 
From the above numerical cases, the effectiveness and feasibility of this method are verified. 

Moreover, a reasonable distribution of materials is shown in each optimal structure, where the strong 
material mainly undertakes the task of power transmission, and the other materials assume auxiliary 
roles. It certifies that the proposed method can be used for the topology optimization of 
multi-material structures with linear boundaries. 

6.2. Hook structure 

 

Figure 19. Initial design domain of hook structures. 

 

Figure 20. The discretization of hook structure using polygonal elements. 

The hook structures with three and four materials were studied as another example. The design 
domain, constraints, and loads for this example are shown in Figure 19. For the first case, the hook 
structure involves three different materials (where voids are considered as one material), i.e., M = 3. 

q p
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The Young’s moduli for the materials were respectively set to 3, 1 and (for voids), respectively. 
For all materials involved, a Poisson’s ratio of 0.3 was equally set. The filtering radius used here was 
set to 4. In addition, for materials 1, 2 and 3, their corresponding volume fractions were set to 0.3 
(for solid material), 0.1 (for solid material), and 0.6 (for voids), respectively. Here, 4000 Voronoi 
elements were used to discretize the design domain, as shown in Figure 20. 

           

(a)                    (b)                     (c) 

           

(d)                     (e)                     (f) 

Figure 21. Topology optimization design process for the hook structure with three 
materials. (a) The result corresponding to 20 iterations; (b) The result corresponding 
to 100 iterations; (c) The result corresponding to 200 iterations; (d) The result 
corresponding to 400 iterations; (e) The result corresponding to 600 iterations; (f) The 
optimal structure, namely, the result corresponding to 800 iterations. 

Figure 21 demonstrates the topology optimization design process for the hook structure with three 
materials, where the red area represents material 1, the indigo blue area represents material 2, and the 
green area represents material 3 (void). The solutions after 20, 100, 200, 400, 600 and 800 iterations 
are shown in Figure 21(a)–(f), respectively. For the case of 800 iterations, the optimal solution is shown 
in Figure 21(f), with the minimum compliance of C 311.3395 . The change in structural compliance 
in the optimization process for the three-material hook structure is illustrated in Figure 22. The 
variation in the volume fraction corresponding to three materials in the optimization process for this 

910
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case is illustrated in Figure 23. The results in Figures 21–23 indicate that the structural compliance (i.e., 
objective function) can be quickly minimized and a reasonable material distribution can be obtained 
via the proposed method under volume constraints, with little change in the volume fraction of each 
material. Therefore, the feasibility and effectiveness of this method are further confirmed. 

 

Figure 22. Convergence history for compliance of hook structure with three materials. 

    

    (a)                                  (b) 

 

(c) 

Figure 23. Change in volume fraction for the three materials in the hook structure. (a) 
Volume fraction curve corresponding to material 1; (b) Volume fraction curve 
corresponding to material 2; (c) Volume fraction curve corresponding to material 3. 

To further examine the performance of this method, similar to the hook structure with three 
materials in the first case, a hook structure with four materials (M = 4) was considered as another 
case. The Young’s moduli for the materials were set to 9, 3, 1, and , respectively. The volume 
fractions were set to 0.24, 0.08, 0.08, and 0.6, signifying that the total volume fraction for solid 

910



1215 

Electronic Research Archive  Volume 32, Issue 2, 1191–1226. 

materials was 40%. The Poisson’s ratios, filtering radius, and number of polygonal elements were the 
same as those in the first case. 

           

(a)                      (b)                      (c) 

           

(d)                      (e)                     (f) 

Figure 24. Topology optimization design process for the hook structure with four 
materials. (a) The result corresponding to 20 iterations; (b) The result corresponding 
to 100 iterations; (c) The result corresponding to 200 iterations; (d) The result 
corresponding to 400 iterations; (e) The result corresponding to 600 iterations; (f) The 
optimal structure, namely, the result corresponding to 800 iterations. 

Figure 24 describes the topology optimization design process for the hook structure with four 
materials, where the red area represents material 1, the indigo blue area represents material 2, the 
green area represents material 3, and the gray area represents material 4 (void). The solutions 
after 20, 100, 200, 400, 600 and 800 iterations are shown in Figure 24(a)–(f), respectively. The 
minimum compliance is C 119.0761  after 800 iterations. Moreover, it is clear that a reasonable 
distribution of material can also be obtained via this method under volume constraints for each 
material. The change in structural compliance in the optimization process for the four-material hook 
structure is illustrated in Figure 25. The variation in the volume fraction for the four materials in the 
optimization process for this case is illustrated in Figure 26. The results in Figures 24–26 indicate 
that the structural compliance (i.e., objective function) can be quickly minimized and a reasonable 
material distribution can be obtained via the proposed method under volume constraints, with little 
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change in the volume fraction of each material. Therefore, the feasibility and effectiveness of this 
method are further confirmed. 

From the above two numerical cases for the hook structure, it is found that this method can 
effectively address the structural topology optimization problem involving multiple materials with 
complex curve boundaries, eliminate the checkerboard patterns, and realize a reasonable solution for 
topology optimization. 

 

Figure 25. Convergence history for compliance of hook structure with four materials. 

    
    (a)                                  (b) 

    
    (c)                                  (d) 

Figure 26. Change in volume fraction for the four materials in the hook structure. (a) 
Volume fraction curve corresponding to material 1; (b) Volume fraction curve 
corresponding to material 2; (c) Volume fraction curve corresponding to material 3; (d) 
Volume fraction curve corresponding to material 4. 

6.3. Serpentine beam 

A serpentine beam structure was considered as another example to further confirm the feasibility 
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and effectiveness of this method. The design domain, constraints, and loading situation are shown in 
Figure 27. Similar to the example above (the hook structure), this example for the serpentine beam 
structure was also studied by analyzing two cases: one with three materials and the other with four 
materials. In both cases, the serpentine beam was discretized into 4000 Voronoi elements as shown 
in Figure 28. 

First, one case of a three-material serpentine beam structure is considered in this example. In this 
case, several parameters were set as follows: the Young’s moduli for the materials were set to 3, 1, 
and , respectively; the filtering radius was set to 0.3; the material volume fractions were set 
to 0.3, 0.1, and 0.6, respectively; Poisson’s ratio was set to 0.3 for all materials. 

 

Figure 27. Initial design domain of serpentine beam. 

 

Figure 28. The discrete structure of serpentine beam using polygonal elements. 

Figure 29 describes the topology optimization design process for the serpentine beam structure 
with three materials, where the red regions indicate material 1, the indigo blue regions indicate 
material 2, and the green regions indicate material 3 (void). The solutions after 20, 100, 200, 400, 600, 
and 800 iterations are shown in Figure 29(a)–(f), respectively. The minimum compliance is 
C 186.0482  after 800 iterations. The change in the structural compliance in the optimization 
process for the three-material serpentine beam structure is illustrated in Figure 30. The variation in 
the volume fraction for the three materials in the optimization process for this case is illustrated in 
Figure 31. The results in Figures 29–31 indicate that the structural compliance (i.e., objective 
function) can be quickly minimized and a reasonable material distribution can be obtained via the 
proposed method under volume constraints, with little change in the volume fraction of each material. 
Therefore, the feasibility and effectiveness of this method are further confirmed. 

910
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(a)                                      (b) 

   
(c)                                      (d) 

   
(e)                                     (f) 

Figure 29. Topology optimization design process for the serpentine beam with three 
materials. (a) The result corresponding to 20 iterations; (b) The result corresponding 
to 100 iterations; (c) The result corresponding to 200 iterations; (d) The result 
corresponding to 400 iterations; (e) The result corresponding to 600 iterations; (f) The 
optimal structure, namely, the result corresponding to 800 iterations. 

 

Figure 30. Change in structural compliance of the serpentine beam with three materials. 
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(a)                                (b) 

 

(c) 

Figure 31. Change in volume fraction for the three materials in the serpentine beam 
structure. (a) Volume fraction curve corresponding to material 1; (b) Volume fraction 
curve corresponding to material 2; (c) Volume fraction curve corresponding to material 3. 

Then, we consider the other case of a serpentine beam with four materials in this example. In 
this case, the Young’s moduli for the materials were set to 4, 2, 1, and , respectively; the 
material volume fractions were set to 0.24, 0.08, 0.08, and 0.6, respectively. The Poisson’s ratios, 
filtering radius, and quantity of polygonal elements were the same as those in the case above. 

   

(a)                                   (b) 

   
(c)                                   (d) 

Continued on next page 
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(e)                                    (f) 

Figure 32. Topology optimization design process for the serpentine beam with four 
materials. (a) The result corresponding to 20 iterations; (b) The result corresponding 
to 100 iterations; (c) The result corresponding to 150 iterations; (d) The result 
corresponding to 200 iterations; (e) The result corresponding to 300 iterations; (f) The 
optimal structure, namely, the result corresponding to 362 iterations. 

Figure 32 describes the topology optimization design process for the serpentine beam 
structure with four materials, where the red area indicates material 1, the indigo blue area indicates 
material 2, the green area indicates material 3, and the gray area indicates material 4 (void). The 
solutions after 20, 100, 150, 200, 300, and 362 iterations are shown in Figure 32(a)–(f), respectively. 
The optimal result is realized at 362 iterations, with the corresponding structural compliance of 
C  149.4421 . The change in the structural compliance in the optimization process for the 
four-material serpentine beam structure is illustrated in Figure 33. The variation in the volume 
fraction for the four materials in the optimization process for this case is illustrated in Figure 34. The 
results in Figures 32–34 also indicate that the structural compliance (i.e., objective function) can be 
quickly minimized and a reasonable material distribution can be obtained via the proposed method 
under volume constraints, with little change in the volume fraction of each material. Therefore, the 
feasibility and effectiveness of this method are further confirmed. 

 

Figure 33. Change in structural compliance of the serpentine beam with four materials. 

From the above numerical cases for the serpentine beam structure, it is also found that this 
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method can effectively solve the structural topology optimization problem involving multiple 
materials and complex curve boundaries, eliminate the checkerboard patterns, and realize a 
reasonable distribution of materials. 

    

     (a)                                 (b) 

    

     (c)                                 (d) 

Figure 34. Change in volume fraction for the four materials in the serpentine beam 
structure. (a) Volume fraction curve corresponding to material 1; (b) Volume fraction 
curve corresponding to material 2; (c) Volume fraction curve corresponding to material 3; 
(d) Volume fraction curve corresponding to material 4. 

For all of the above examples, it should be noted that the objective function is pursued in the 
optimization process and multiple materials contribute to the stiffness of the structure as a whole. 
Therefore, the volume convergence law for structural materials is related to the type of structure, the 
number of materials, and the type of load. Therefore, the convergence law for structural material 
volume during the optimization process varies for different examples due to different structural types, 
material quantities, and load types. 

7. Conclusions 

A topology optimization method for the multi-material problems has been developed in this 
work, and it combines the polygonal discretization method with the alternating active-phase 
algorithm. The topology optimization objective function serves to minimize structural compliance, 
with the volume fraction as the constraint condition. The volume fraction of each material is 
considered as a design variable, which is mapped to its corresponding element variable through a 
filtering matrix. The structural design domain for topology optimization involving multiple materials 
has been discretized by using the CVT elements. The feasibility and effectiveness of the proposed 
method have been verified and confirmed via topology optimization of semi-MBB beam, hook, and 
serpentine beam structures, respectively. All numerical examples involve three-material and 
four-material problems, which were divided into multiple cases to study the impact of various factors 



1222 

Electronic Research Archive  Volume 32, Issue 2, 1191–1226. 

on the obtained results. By means of this method, the problems of topology optimization involving 
structures with complex curve boundaries can be effectively solved. Therefore, the applicability 
scope of this method for structural topology optimization has been substantively expanded. In 
addition, with the proposed method using polygonal elements, the results of multi-material topology 
optimization have better numerical stability and higher calculation accuracy than those obtained via 
topology optimization methods using quadrilateral elements or triangle elements. Furthermore, the 
sensitivity filtering is avoidable and a relatively concise optimal structure can be obtained via this 
method, so this work is innovative and contributes to the development of multi-material structural 
topology optimization design. 
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