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Abstract: In distributed edge storage, data storage data is allocated to network edge devices to achieve 
low latency, high security, and flexibility. However, traditional systems for distributed edge storage 
only consider individual factors, such as node capacity, while overlooking the network status and the 
load states of the storage nodes, thereby impacting the system’s read and write performance. Moreover, 
these systems exhibit inadequate scalability in widely adopted wireless terminal application scenarios. 
To overcome these challenges, this paper introduces a software-defined edge storage model and a 
distributed edge storage architecture grounded in software-defined networking (SDN) and the Server 
Message Block (SMB) protocol. A data storage node selection and distribution algorithm is formulated 
based on a maldistributed decision model that comprehensively considers the network and storage 
node load states. A system prototype is implemented in combination with 5G wireless communication 
technology. The experimental results demonstrate that, in comparison to conventional distributed edge 
storage systems, the proposed wireless distributed edge storage system exhibits significantly enhanced 
performance under high load conditions, demonstrating superior scalability and adaptability. This 
approach effectively addresses the scalability limitation, rendering it suitable for edge scenarios in 
mobile applications and reducing hardware deployment costs. 
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1. Introduction 

With continuous advancements in edge computing [1], edge storage [2], intelligent transportation, 
and Internet of Things (IoT) technologies, an increasing number of intelligent network devices are 
being deployed at the edge. This surge in deployment has led to a substantial increase in the demand 
for edge computing and edge storage technologies in edge scenarios, resulting in a dramatic increase 
in both traffic volume and the amount of data requiring processing at the edge [3]. The conventional 
practice of uploading data to the cloud for processing and storage presents challenges, including risks 
to user privacy and heightened data transmission delays [4]. To address these issues, distributed edge 
storage technology has emerged as a compelling solution [5,6]. This technology employs a distributed 
approach in which data are stored across multiple edge devices positioned close to the user. 
Subsequently, data are selectively transmitted to a cloud center after encoding, effectively mitigating 
concerns related to data security when transmitting sensitive information to the cloud [7]. 
Simultaneously, this approach alleviates the burden on network bandwidth, enhances the data access 
speed, reduces the data transmission latency, and diminishes the risk of a single point of failure. 

Additionally, most edge devices are mobile and access the network wirelessly [8]. The generated 
data must be flexibly deployed in the edge storage nodes, requiring that both the edge network devices 
and the edge storage nodes have wireless communication capabilities for interaction. The emergence 
of wireless 5G technology [9] has significantly decreased the latency of wireless communication and 
increased data transmission bandwidth. Thus, the development of wireless 5G technology has made it 
possible to combine distributed edge storage with wireless technology, resulting in a wireless 
distributed edge storage system (WDES). 

In summary, it is of great theoretical and practical significance to research ways to enhance the 
overall performance of WDES systems to cope with the rapid growth of edge traffic. Such a system 
can assist in alleviating the bandwidth and storage burdens of a cloud center while safeguarding private 
user data. 

In a WDES system, data are distributed on multiple nodes. Due to the diversity of the hardware 
and software structures available for edge storage nodes, such nodes are usually heterogeneous and 
have different computing and storage capabilities. When data need to be stored at the edge and a storage 
node is selected, there is a possibility that the computing and storage capabilities of the selected storage 
node may be insufficient, network bandwidth resources may be scarce, or the node may be faulty or 
under heavy load; in such a case, data storage and processing efficiency will deteriorate. Therefore, 
node selection is a key issue in WDES technology [10] that will directly affect the efficiency of data 
processing and storage and the overall performance of the system. 

Presently, several common approaches are employed for node selection in distributed edge storage 
systems, including distance-based node selection [11], data type-based node selection [12], and load 
balancing-based node selection [13]. Distance-based node selection involves selecting the nearest node 
for data processing and storage based on proximity to the request source. This approach reduces data 
transmission delays and minimizes network bandwidth utilization. However, it overlooks node computing 
and storage capabilities, leading to imbalances among storage nodes and affecting system performance. 

In data type-based node selection, the most appropriate node is selected for processing and storing 
specific data types. This approach, however, introduces complexity and computational overhead into 
the system, as it requires data type analysis. Additionally, it disregards the real-time storage node load 
status and network conditions. When there are significant disparities in data types among nodes, some 
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nodes may become overloaded, resulting in reduced system reliability, performance, and service life. 
In node selection based on load balancing, the aim is to identify the optimal node by considering 

multiple factors, such as the load status, computing capacity, storage capacity, and network conditions. 
While this approach can mitigate the limitations of the previous approaches, traditional distributed 
edge storage systems require complex and resource-intensive configurations to measure the status 
information of the storage nodes and the network [14,15]. Moreover, real-time monitoring of storage 
node load status and computing capacity often requires additional monitoring nodes, increasing the 
deployment cost. 

To overcome these limitations and develop an efficient edge storage node selection strategy, it 
is essential to consider both the states of the edge storage node devices and the network status of the 
edge network. This requires flexible configuration and management of the edge network. Therefore, 
the widely adopted Server Message Block (SMB) protocol [16] is adopted as the primary 
communication protocol in this paper, and a multiattribute decision method is employed to design 
and implement a WDES node selection algorithm and prototype system based on software-defined 
networking (SDN) [17]. 

As an innovative network architecture, SDN breaks the tight coupling between the control plane 
and the data plane in traditional network devices. Its programmability significantly facilitates the 
measurement of network system states [18]. Simultaneously, by cleverly utilizing the mechanisms of 
SDN, it is possible to achieve real-time monitoring of the storage node load status by the controller 
without the need to add additional hardware for monitoring the nodes. Applying SDN technology in a 
WDES system enables optimization of the system with a simpler hardware configuration and reduced 
measurement overhead, enhancing system performance and resource utilization. When clients perform 
file read and write operations, the system proposed in this paper comprehensively considers the current 
network state and storage node load status in the system as weighting factors for node selection. 
Through the designed multiattribute decision model, the weight of each storage node is calculated, 
ultimately allowing a ranking of the edge storage nodes to be obtained and data to be stored accordingly. 

The main contributions of this paper are as follows: 
1) In contrast to traditional distributed edge storage systems, which use a single data writing 

method and have poor scalability of storage capacity, this paper presents the design of a distributed 
edge storage architecture based on SDN and the SMB protocol that is designed to support wireless 5G 
communication modes; the design and implementation of a data storage node selection algorithm to 
address the performance and scalability problems of data writing; and the physical implementation 
of a prototype WDES system that can better cope with complex edge scenarios and has the 
advantages of flexibility in deployment in edge scenarios, low costs for installation and maintenance, 
and ease of expansion. 

2) In contrast to traditional distributed edge storage systems that consider only a single factor in 
storage node selection, this paper considers a multiattribute decision model for the storage node 
selection problem and presents the design of an improved ideal point solution algorithm. The designed 
multiattribute decision model comprehensively considers the real-time network status and the real-
time load status of the storage nodes, enabling effective enhancement of the write performance for data 
in distributed edge storage systems. 

3) In contrast to the conventional edge storage approach, which neglects the network status, this 
paper presents a novel software-defined edge storage mode by integrating SDN technology into the 
edge network. Leveraging the flexibility of SDN in dynamically measuring the network status, we 
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devise a self-reporting mechanism for monitoring the load status of storage nodes within the SDN 
architecture. This mechanism enables load status collection without requiring additional dedicated 
hardware nodes, enhancing system configuration flexibility and reducing the overall system cost. 

The remainder of this paper is structured as follows: Section II provides an overview of previous 
research on distributed edge storage systems. Section III describes the data storage process in edge 
computing, outlines the challenges of node selection, and describes the foundation for the contributions 
presented in this study. Section IV comprehensively elucidates the architecture of the proposed WDES 
system. This section also introduces the proposed storage node selection algorithm and the 
implementation details of the proposed storage node load self-reporting mechanism. The algorithms 
and implementations of all these designs are based on the principle of measuring the network state in 
an SDN-based architecture.  In Section V, the paper reports the construction and application of a 
physical system to serve as an experimental platform to validate both the effectiveness of the proposed 
algorithm and the reliability of the overall system through relevant experiments. Finally, Section VI 
provides a conclusion, highlighting the challenges encountered and presenting potential avenues for 
future research.1 

2. Related work 

This section reviews previous research pertaining to distributed edge storage systems. The 
principal distinctions between distributed edge storage systems and distributed cloud-centered storage 
systems lie in their storage locations and usage scenarios. Distributed cloud-centered storage systems 
are optimal for large-scale data storage and processing, whereas distributed edge storage systems excel 
in scenarios at the edge where low latency, high reliability, and offline support are imperative. 

Rashid [19] et al. designed a distributed edge storage system called EdgeStore. By means of a 
game-theoretic resource incentive framework, this system addresses the problem of inconsistent 
storage system availability because edge devices tend not to share storage resources and the challenge 
of configuring all edge devices in a scalable way to integrate with the storage system. The whole 
system is divided into a device allocation module, a quality of service (QoS) regulation module, and a 
failure recovery module. However, the design of this distributed edge system does not consider 
complex mobile edge scenarios; instead, it relies on wired deployment, which is not only costly but 
also insufficiently flexible. Moreover, it considers only storage capacity as the single basis for selecting 
storage nodes, which is not conducive to load balancing of the system. Makris [20] et al. proposed a 
lightweight hybrid distributed edge storage framework in which data are migrated close to the farthest 
user to improve the quality of experience (QoE) for the farthest user, thereby reducing data transfer 
latency and network utilization. The proposed Edge Storage Component (ESC) utilizes a dynamic 
lifecycle framework to provide containerized applications with transparent and automated access to 
remote workloads. The effectiveness of the ESC was evaluated in terms of numerous resource 
utilization and QoS metrics. Nevertheless, this system is also designed based on a wired scenario, and 
consequently still suffers from a high deployment cost and a lack of flexibility. Sonbol [21] et al. 
designed a decentralized distributed storage system named EdgeKV for deployment at the network 

 
1   Our work reported in this paper won the first prize in South China and the third prize in the national final of the CHINA C4-NETWORK 

TECHNOLOGY CHALLENGE competition in 2023 (http://net.c4best.cn/newsDetail?id=5600&type=show), as well as the third prize in the national 

final of the China Future Light-Future Network Technology Innovation Competition in 2023 (www.gfnds.com/comprtition_list/125.html). 



1164 

Electronic Research Archive  Volume 32, Issue 2, 1160–1190. 

edge. Because of the distributed and heterogeneous nature of the edge and its limited resources, cloud-
centric systems and frameworks for distributed storage are not applicable at the edge; consequently, 
EdgeKV outperforms cloud-centric storage in terms of both local and global data access. Moreover, it 
provides fast and reliable storage by virtue of its location-transparent and interface-based design, 
utilizing strong consistency features to ensure data replication. However, this work does not consider 
how to improve the edge storage performance under the influence of mobile nodes in wireless network 
scenarios, although this system can support better scalability. Xing [22] et al. proposed a distributed 
multilevel model for dynamic alternative edge computing storage, in which the storage level 
corresponds to the device level at the edge; when a node’s storage space is insufficient, some of the 
data are deleted from the current node using the multiple-factors least frequently used (mLFU) 
algorithm and are uploaded to a higher storage level. This system is designed using a multilevel 
storage model, which necessitates data migration when nodes have insufficient storage space; 
however, the wired network approach restricts the flexibility of storage node expansion and increases 
costs. Qiao [23] et al. proposed a reinforcement learning-based trusted distributed edge storage 
architecture to solve the problems of heterogeneous transportation network coordination arising in 
intelligent transportation systems (ITSs). This architecture uses reinforcement learning based on 
trustworthiness and popularity to dynamically store data, thereby improving resource scheduling and 
storage space allocation. These authors also proposed an authentication protocol based on trapdoor 
hashing to protect access to the transportation network, effectively solving the problem of data 
transmission efficiency in ITSs. However, this system does not consider the heterogeneity of the 
storage nodes or the load imbalance that may result when selecting data storage nodes for distributed 
storage. Li [24] et al. employed an iterative technique to analyze malicious signals in edge wireless 
sensor networks. Li [25] et al. provides a detailed exposition of key aspects within the field of systems 
and control. Kontodimas [26] et al. developed a mechanism to perform resource allocation at the edge 
using a mixed integer linear programming approach. This mechanism considers the different 
characteristics of edge and cloud resources to decide whether to store data in either edge or cloud 
resources; additionally, corrective censoring techniques are utilized to enhance the system availability 
and lifetime. The system mainly considers the locations of applications and edge storage nodes for 
data placement to increase the access bandwidth and reduce the latency for edge data; however, this 
method does not consider the real-time load states of the storage nodes or the status information of the 
network. Moreover, the use of only location information for making data storage decisions can lead to 
problems of load imbalance and overconsumption among the nodes. Wu [27] et al. designed a new 
decentralized distributed edge storage system, DSPR, based on the provision of cryptographic proofs 
for stored data. This system can proactively find corrupted data and recover previously unrecoverable 
data in vulnerable environments. Li [28] et al. address the rapidly growing edge network storage and 
management problem by proposing an approach that utilizes both data popularity (for optimal data 
access performance) and data similarity (for optimal storage space efficiency) to jointly solve the node 
selection and data storage problems of distributed edge storage systems. The proposed algorithm was 
prototyped using Cassandra, an open-source distributed storage system, which effectively reduces the 
service request response time. Nevertheless, this method of selecting storage nodes using data types 
does not comprehensively consider the load states of storage nodes or the real-time network status and 
thus is not conducive to load balancing of the system. 

Storage node selection and load balancing are highly important for a distributed edge storage 
system, and the results of storage node selection will directly affect the overall performance of the 
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system and the lifetimes of individual devices [29]. The WDES system designed in this paper uses 
SDN technology to measure the real-time network state and node load states in the system, thereby 
providing more comprehensive decision-making information for node selection and data placement 
and reducing data access latency. Moreover, wireless 5G technology is adopted to enable smart devices 
and storage nodes to interact wirelessly with the system, greatly enhancing the system’s flexibility and 
scalability. Thus, the overall performance of the WDES system is improved, and the service life of the 
equipment is extended. 

3. The designed distributed edge data storage process based on the SMB protocol and the 
storage node selection problem 

This section delineates the devised process for distributed data storage at the network edge, 
leveraging the SMB protocol. It expounds upon the research contributions presented in this paper, 
encompassing the selection of nodes for distributed storage at the edge, the state assessment 
mechanism, and the system architecture. Given the contextual framework of edge storage, the primary 
emphasis lies in addressing the storage node selection dilemma. In this context, the wireless storage 
system designed in this study segments a file into multiple smaller entities and subsequently allocates 
them to distinct storage nodes in a nonredundant manner. It is imperative to emphasize that this 
approach does not impede the applicability of the present findings to scenarios involving multiple 
replicas or error-correcting code-based distributed storage configurations. 

 

Figure 1. Process of distributed edge data storage. 

In conventional distributed edge storage systems, the primary factor considered when selecting 
storage nodes is their storage capacity. This factor is employed to determine the final priority ranking 
of storage nodes. However, relying solely on storage capacity as the basis for node selection can give 
rise to various issues. For instance, the disparities in storage capacity among nodes can be significant, 
and some nodes may experience heavier loads than others. Such an imbalance has adverse 
repercussions on system performance, reliability, and service life, resulting in prolonged periods during 
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which certain nodes’ storage capacity remains underutilized. This idle state not only wastes storage 
resources, but also diminishes storage efficiency. Furthermore, neglecting to account for the actual 
network state and the load status of storage nodes can have detrimental consequences. In scenarios 
with heightened system loads, such as during client data read/write operations or system-wide data 
migration, when the network is congested and the storage nodes are under heavy loads, persisting in 
prioritizing storage node selection based primarily on capacity can severely impact the system’s 
read/write performance and overall storage efficiency. 

To address these shortcomings, both network state and storage node load factors are integrated 
into the node selection method in this study. The comprehensive process of distributed edge data 
storage is illustrated in Figure 1. 

Under the premise that the generated edge data constitute a sizable file, the system initially divides 
this file into a series of smaller units. Subsequently, in accordance with the prescribed node selection 
algorithm, these smaller files are allocated to selected storage nodes possessing sufficient remaining 
storage capacity to meet the stipulated criteria. 

Let M be the size of the large file F, and let the set of suitable storage nodes with available 
remaining capacity be expressed as 𝑆 ൌ ሼ𝑠ଵ, 𝑠ଶ, ⋯ 𝑠௡ሽ, where 𝑛 denotes the number of storage nodes. 
The large file must be divided into 𝑛 smaller files, where the size of small file 𝑓௜ is represented by 
𝑚௜ , such that 𝑚ଵ ൅ 𝑚ଶ ൅ ⋯ ൅ 𝑚௡ ൌ 𝑀 . To determine a reasonable file division method and the 
storage locations of the data blocks obtained after file division, it is necessary to consider the load on 
the host where each storage node is located and the network loads associated with those hosts; 
corresponding decisions cannot be made by considering only the remaining available storage space on 
each storage node. For instance, when a storage node is not performing well and the network state is 
poor, this node should be allocated less chunked file storage. Conversely, when a storage node is well 
loaded and the network is in a good state, this node should be allocated larger file chunks for storage. 
When two storage nodes have similar network states and load states, data chunks of similar size should 
be allocated to them for storage. This not only allows the load on the system to be as balanced as 
possible to reduce the time it takes to write data, but also keeps the spatial distribution of the data as 
even as possible. 

The node selection problem involves determining the size 𝑚௜ of each small file 𝑓௜, as well as 
the storage node 𝑠 on which each small file is to be stored, that is, the design of a reasonable node 
mapping mechanism 𝑚𝑎𝑝. This mapping mechanism is expressed as follows (Eq (1)): 

_ ( _ , _ , )Node list map network state node state S  (1) 

Here, 𝑛𝑜𝑑𝑒_𝑙𝑖𝑠𝑡 represents the list of all storage nodes included in the results of node selection. 
The mapping function 𝑚𝑎𝑝 is designed to obtain the node selection results by considering multiple 
factors related to the nodes and will be explained in a subsequent section. 𝑆 denotes the collection of 
storage nodes that satisfy the remaining storage capacity requirements. 𝑛𝑒𝑡𝑤𝑜𝑟𝑘_𝑠𝑡𝑎𝑡𝑢𝑠  and 
𝑛𝑜𝑑𝑒_𝑠𝑡𝑎𝑡𝑢𝑠  are two key factors used in the implementation of the node selection algorithm. 
𝑛𝑒𝑡𝑤𝑜𝑟𝑘_𝑠𝑡𝑎𝑡𝑢𝑠 encompasses three aspects, namely, bandwidth, latency, and packet loss rate, while 
𝑛𝑜𝑑𝑒_𝑠𝑡𝑎𝑡𝑢𝑠 includes four aspects, namely, disk I/O load, the remaining storage capacities of the 
nodes, CPU utilization, and memory utilization. By comprehensively considering the real-time 
network status and the real-time load status of the storage nodes, a final ranking of the storage nodes 
is obtained. Based on the relative superiority and inferiority among all participating storage nodes, the 
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proportions into which the input storage file should be divided are determined for subsequent storage 
at the corresponding storage nodes. Accordingly, the sizes of the file blocks and the locations for 
storing the segmented files are determined. With this information, the indices of the segmented files 
can be saved, and when file retrieval is needed, it is sufficient to access the corresponding index table. 
Considering multiple factors in this way can alleviate the shortcomings of traditional distributed edge 
storage in terms of node selection, enhance system load balancing, and reduce data response times. 
The specific storage node selection algorithm is described in detail in Section 4.2 of this paper. 

In addition, in traditional distributed edge storage system architecture, it is very cumbersome to 
perform 𝑛𝑒𝑡𝑤𝑜𝑟𝑘_𝑠𝑡𝑎𝑡𝑢𝑠  and 𝑛𝑜𝑑𝑒_𝑠𝑡𝑎𝑡𝑢𝑠  measurements, and such measurements consume 
considerable resources and incur considerable overhead. By comparison, the emergence of SDN 
technology has greatly reduced the difficulty and overhead of obtaining this information; therefore, 
this paper considers an SDN-based approach for the fast acquisition of 𝑛𝑒𝑡𝑤𝑜𝑟𝑘_𝑠𝑡𝑎𝑡𝑢𝑠  and 
𝑛𝑜𝑑𝑒_𝑠𝑡𝑎𝑡𝑢𝑠 information at a low cost. 

Upon completion of the node selection process, the system proceeds to transmit the data blocks 
of the file to be stored to the chosen nodes via the network. For reliable data transmission, conventional 
network transmission protocols such as TCP/IP [30] may be employed. Due to the architectural 
redesign, however, several previously utilized data storage communication protocols are no longer 
applicable. As preliminary work for this study, a range of currently prevalent file transfer protocols 
were meticulously examined, and the SMB protocol [31] was ultimately chosen as the foundational 
communication protocol for the system devised herein, with the specific implementation using Samba. 
Once a data block reaches its designated node, it is stored on the node’s local storage device, which 
may be a disk, flash card, or other storage medium. Concurrently, the system maintains a data index to 
log each file block’s location and pertinent details. This ensures swift and efficient retrieval of the 
necessary data blocks when the file needs to be accessed, representing the culmination of the 
distributed edge storage process. 

One notable advantage of the WDES system presented in this study lies in its scalability. 
Traditional distributed edge storage systems tend to prioritize system reliability while inadvertently 
neglecting scalability. As such a system approaches full capacity or the complexity of the edge 
environment increases, the original hardware and deployment approach may no longer suffice. In such 
a case, the system’s adaptability to the evolving edge scenario greatly depends on its scalability. A 
primary impediment to scalability often arises from reliance on wired deployment methods. To address 
these concerns, this paper introduces a wireless communication protocol within the novel architecture 
of the distributed edge storage framework. This innovation enables storage nodes and their associated 
data to interact with the system wirelessly. In instances where the number of storage nodes needs to be 
expanded, new nodes can be seamlessly integrated using wireless 5G technology. This enhancement 
significantly improves the system’s scalability and alleviates the complexities associated with system 
deployment and maintenance. 

4. Design and implementation of the proposed wireless distributed edge storage system and 
edge storage node selection algorithm 

This section is divided into four parts. First, the overall architecture of the WDES system designed 
in this paper is discussed. Next, the storage node selection algorithm, which is designed based on a 
multiattribute decision-making model and incorporates a self-reporting mechanism for storage node 
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load status, is introduced. Finally, the specific implementation of the network state measurement 
function is described in detail. 

4.1. Design of the system architecture 

The architecture encompasses several essential components, including the control and decision plane, 
the monitoring plane, the data forwarding plane, the data storage plane, and client software. A 
comprehensive diagram depicting this structure is presented in Figure 2, detailing each of these components. 

 

Figure 2. Overall framework diagram of the WDES system. 

4.1.1. Control and decision plane 

The core component of the system framework is the control and decision plane (CDP). This 
component assumes a central role in facilitating network topology discovery [32], retrieving the global 
network link states and global storage node load states, making determinations on client requests, and 
overseeing the operation of the entire network. To achieve comprehensive management, this plane 
leverages the characteristics of decoupling and centralized control offered by SDN technology in both 
the control and data planes, accordingly utilizing a controller for global oversight. 
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The controller’s role encompasses the measurement and acquisition of comprehensive network 
link state information. Different from previous studies focusing solely on a single network state 
indicator, this paper comprehensively addresses three pivotal indicators reflecting the link state: the 
remaining bandwidth, 𝑏𝑤௥௘௠௔௜௡; the link latency, 𝑑𝑒𝑙𝑎𝑦; and the link packet loss rate, 𝑙𝑜𝑠𝑠. These 
factors collectively influence the state of a link from a data source to a storage node. When a storage 
request is initiated by a client, the system will execute the node selection algorithm based on 
multiattribute decision-making, as discussed in Section 4.2. 

Merely obtaining network state information falls short of addressing the inherent limitations of 
traditional distributed edge storage systems. Thus, the controller is defined in this paper as a central 
intelligence that is responsible not only for gathering network link state information, but also for 
aggregating critical load data from storage nodes within the monitoring scope. In this design, the 
controller does not directly measure the vital load data of the storage nodes; instead, these data are 
autonomously assessed by the storage nodes themselves and communicated through the load self-
reporting mechanism proposed in this study. Further details about this mechanism are presented in 
Section 4.3. 

4.1.2. Monitoring plane 

The monitoring plane comprises a set of functions dedicated to monitoring and overseeing both 
the performance of the SDN network and the states of the node devices in the storage plane. It 
facilitates real-time monitoring and management of the SDN network’s status, performance, traffic, 
and individual storage plane devices. 

In this paper, the monitoring plane is effectively derived from a segment of the CDP. 
Comprehensive information regarding the network link status and storage node load status is regularly 
and consistently gathered. These data are stored in the monitoring plane’s information repository, 
establishing a cohesive and continuous dataset. The monitoring plane is responsible for processing and 
retaining this information. When decision-making calls for the controller’s intervention, this 
information is retrieved from the repository and supplied to the controller, facilitating appropriate 
decision-making and the realization of corresponding functions. 

4.1.3. Data forwarding plane 

The data forwarding plane assumes the crucial role of processing and forwarding data, with its 
central components being switches. The programmability of SDN fundamentally hinges on the 
programmability of the data plane, as exemplified by OpenFlow switches [33], which serve as the 
foundation for a versatile and programmable data plane. This universal programmable data plane 
empowers users to use software programming to flexibly define data plane operations, encompassing 
packet parsing, processing, and additional functionalities. The data forwarding plane interfaces with 
both the controller above and the storage nodes below. The controller, situated within the CDP, 
administers the SDN switches (data forwarding plane) through diverse management modes, including 
in-band and out-of-band management [34]. 

The in-band management mode entails the amalgamation of management data and service data 
on a singular physical link within the network. This eliminates the necessity for a dedicated 
management channel, streamlining network management. In contrast, in the out-of-band management 
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mode, a separate physical link is employed for transmitting management data. In the in-band mode, 
management and service data traverse the same physical link but remain segregated at the software 
level. This dichotomy ensures separate transmission times, precluding interference. The primary 
advantage of the in-band mode lies in its substantial reduction in practical deployment costs for WDES 
systems. Notably, this reduction becomes more pronounced with increasingly complex network 
topologies. If management data traffic is negligible in comparison to business data, its effect on overall 
network performance can be disregarded. This scenario aligns well with edge deployment. 

Based on the above considerations, the controller of the WDES system designed in this paper 
employs the in-band approach to oversee the entire data forwarding plane. 

4.1.4. Data storage plane 

The data storage plane is responsible for file storage and retrieval operations. Additionally, the 
proactive reporting of critical load status information by each individual storage node occurs in this plane. 

In the system proposed in this paper, the SMB protocol is employed for data storage, implemented 
using dedicated Samba software. Once a client has initiated a file storage request and received the 
decision outcome from the controller, the file undergoes chunking. Subsequently, the fragmented file 
interfaces with the relevant storage nodes through Samba, utilizing multiple concurrent threads to 
facilitate efficient storage completion. 

Due to the SDN-based configuration, the storage nodes are incapable of direct communication 
with the controller. Thus, the conventional approach for collecting the load states of the storage nodes 
involves deploying a host device as a monitoring node. Periodically, this monitoring node establishes 
connections to the storage nodes, retrieves their load state information through remote commands, and 
subsequently stores these data within an information pool. Upon completion of data retrieval, the 
corresponding connection is terminated. When the controller must make a decision based on the 
storage node load states, the necessary information is retrieved from the information pool to facilitate 
decision-making. However, this conventional approach has several limitations: 

1) The deployment of a dedicated monitoring node substantially increases the system deployment 
cost and enlarges the system’s physical footprint. 

2) Frequent interactions between the monitoring and storage nodes necessitate continuous 
controller involvement in sensing and transmitting associated flow tables, consuming a nonnegligible 
amount of network resources. 

3) In the absence of hardware alterations, the storage node load data remain confined to the 
monitoring node. Consequently, the controller is unable to access this information. When researchers 
require these load data for designing decision-making algorithms, such algorithms must be deployed 
on the monitoring node. This disperses functionality and diminishes system cohesion. 

To address the aforementioned problems, the packet_in mechanism of the controller [35] is 
innovatively leveraged in this paper to devise an improved solution. This approach circumvents both 
the issue of network resource consumption for downstream flow tables and the concern of escalating 
costs due to hardware augmentation. Furthermore, it empowers the controller to access information 
concerning the load states of storage nodes. This integration facilitates the uniform implementation of 
diverse researcher-designed algorithms at the controller, thereby enhancing system cohesion. The 
details of this mechanism are expounded upon in Section 4.3. 
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4.1.5. Client software 

The client software, also referred to as the client for brevity, serves as the actual operating 
software of the WDES system and is provided to users for their usage. In this study, the proposed client 
software has been adapted to different operating systems, ensuring its normal operation on both Linux 
and Windows. The client software primarily accomplishes two functionalities: file storage and file 
retrieval. Users need to use only the client software for storage and retrieval operations. The client 
software simply executes the results obtained by the controller when running the node selection 
algorithm and does not participate in the algorithm’s execution. The specific implementation details of 
the client are discussed in Section 5.1.4. 

4.2. Edge storage node selection algorithm based on multiattribute decision-making 

The foremost advantage of the WDES system lies in its distributed file storage capabilities. The 
distributed approach not only ensures high reliability, scalability, and performance, but also provides 
fault tolerance by dispersing data across multiple nodes. However, in conventional distributed edge 
storage systems, node selection is based solely on a single factor, namely, the storage capacity. This 
approach, while ensuring the spatial distribution uniformity of the data, overlooks the crucial influence 
of both the storage nodes’ internal states and the network conditions on the storage performance. In 
scenarios with strongly heterogeneous nodes, some nodes may possess substantial remaining capacity 
but suffer high load and exhibit subpar performance due to their internal states. Nevertheless, their 
large capacity alone may cause them to be prioritized for selection, resulting in a pronounced drop in 
overall storage system performance. 

This section introduces the edge storage node selection algorithm based on multiattribute 
decision-making that is developed in this study to rectify the shortcomings of the node selection 
process in conventional distributed edge storage systems. The ultimate goal is to enhance the system’s 
write performance. 

4.2.1. Selection of decision variables in the multiattribute decision model 

A standard edge storage node essentially operates as a computer. Consequently, the assessment of 
elements impacting the performance and state of a storage node is analogous to the evaluation of 
factors affecting a computer’s performance and operational load. To accurately gauge the performance 
and load status of a storage node, this paper employs several metrics to represent the factors influencing 
the node’s performance and load state. The specific names of these metrics and the rationales for their 
selection are listed as follows: 

1) 𝐿, the disk I/O load, represents the level of input and output operations being performed on 
the storage node’s disk. A high disk I/O load signifies intensive read and write operations. An elevated 
load can result in delayed response times to client data requests and, in extreme cases, could lead to 
failure of the storage node, resulting in data loss. Given that the primary hardware component engaged 
in client file interaction is the disk, along with other storage devices, the disk I/O load is the most 
significant factor influencing the process of data read and write operations. 

2) 𝑉 , signifying the available disk capacity, reflects the amount of data that the node can 
accommodate. When the remaining capacity is approaching zero, persisting in file storage may lead to 
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data loss, severe performance decline, and potential disk damage. This aspect aligns with 
considerations in conventional distributed storage systems, and the available storage capacity is 
consequently retained as a pivotal factor in this study. 

3) 𝐶, denoting the CPU utilization rate, serves as a crucial gauge of the available performance 
capacity of the storage node. Excessive background program operations can lead to a notable surge in 
the CPU utilization rate, resulting in sluggish data processing. In cases of excessively high utilization 
rates, system crashes and failures may occur. 

4) 𝑅, represents memory utilization. While the memory utilization rate does not have a direct 
impact on client read/write performance, excess memory occupation can impede the data caching 
speed on the storage node. Additionally, memory and CPU operations are interdependent. In scenarios 
involving files with high bandwidth transfer demands, storage nodes with greater memory capacity 
and lower utilization may be needed. 

The aforementioned influencing factors were chosen based on a comprehensive assessment of the 
intrinsic load state of a storage node. Moreover, since data must ultimately traverse the network, 
neglecting to account for network conditions can also impact read/write performance under specific 
circumstances. For instance, during data migration between storage nodes, there may be an increase in 
the disk I/O load. However, assessing solely this rise in load while neglecting the real-time 
transmission bandwidth may not adequately reflect the situation. The increase in the disk I/O load 
might be relatively minor, yet the link bandwidth for network transmission could be approaching its 
limit. Given rapid advancements in hardware, the read and write bandwidths of storage devices 
typically surpass the network transmission capacity. Therefore, in this study, both a storage node’s load 
state and the associated network conditions are considered in the node selection process. Key metrics 
for evaluating the state of a network link typically include the residual bandwidth 𝑏𝑤௥௘௠௔௜௡, 𝑑𝑒𝑙𝑎𝑦, 
and the packet loss rate 𝑙𝑜𝑠𝑠. Therefore, these three factors are also included among the input factors 
for the multiattribute decision model, ensuring a comprehensive evaluation. 

In a complex network topology, numerous potential paths exist from a data source to a given 
storage node, necessitating a decision on which transmission path to employ. To address this issue, in 
the method proposed in this paper, all link states in the network are initially acquired. Subsequently, 
the Dijkstra [36] routing algorithm is applied considering parameters such as the residual link 
bandwidth 𝑏𝑤௥௘௠௔௜௡, the link delay 𝑑𝑒𝑙𝑎𝑦, and the link packet loss rate 𝑙𝑜𝑠𝑠 to identify the optimal 
route from the data source to the target storage node, which is then taken as the data transmission path 
to this node. The remaining link bandwidth 𝑏𝑤௥௘௠௔௜௡, link delay 𝑑𝑒𝑙𝑎𝑦, and packet loss rate on this 
path are extracted. Finally, the values of these three factors are summed to determine the network state 
of the storage node, as specified in Eq (2). Notably, among these factors, the remaining link bandwidth 
serves as a positive indicator, with a higher value being more desirable. In contrast, the link delay and 
packet loss rate serve as negative indicators, with smaller values being preferable, and a minimum 
value of zero. 

𝑃 ൌ 𝑠𝑐𝑎𝑙𝑒ሺ𝑏𝑤ሻ െ 𝑠𝑐𝑎𝑙𝑒ሺ𝑑𝑒𝑙𝑎𝑦ሻ െ ሺ𝑙𝑜𝑠𝑠ሻ                              (2) 

where scale(x) denotes a function used to normalize the variable x. 
The five influencing factors selected in this study offer a comprehensive evaluation of the overall 

state of a storage node and its network environment. This approach is particularly pertinent in cases of 
node heterogeneity, where it effectively addresses disparities among storage nodes. Through a 
thorough assessment of their respective impacts on the performance of the WDES system, the weight 
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rankings of the five indices, in descending order, can be determined as follows: disk I/O load, network 
state P, remaining disk capacity, CPU utilization, and memory utilization. Additionally, a threshold is 
established for the remaining disk capacity; should it fall below 5%, the corresponding node will be 
excluded from the storage process. Failing to do so may adversely affect read/write performance, 
potentially resulting in data loss. 

4.2.2. Implementation of the node selection algorithm based on multiattribute decision-making 

Once the five indicators representing the load status of the storage nodes and the network state 
have been accurately identified, the subsequent step is to perform a comprehensive evaluation based 
on the attribute values of each storage node. This evaluation entails sorting the nodes based on their 
states and performance, essentially framing the issue as a multiattribute decision-making problem 
within the domain of mathematical integration methods. Multiattribute decision-making is firmly 
rooted in systems engineering, and the Technique for Order Preference by Similarity to Ideal Solution 
(TOPSIS) [37] method has emerged as a particularly effective approach. TOPSIS involves establishing 
both positive and negative ideal solutions from a normalized raw data matrix; then, the distances 
between each solution and these benchmarks can be calculated to form a basis for evaluation. 

The primary computational steps of a multiattribute decision-making algorithm are as follows: 
Initially, the considered indicators undergo normalization and are assigned weights based on their 
respective importance, yielding a weighted normalization matrix. Subsequently, positive and 
negative ideal schemes are established by identifying the maximum and minimum values of the 
indicator parameters within the weighted normalization matrix. Next, the distances to both the 
positive and negative ideal schemes are calculated to ascertain relative proximity. Finally, the results 
are sorted accordingly. 

In this study, out of the five factors chosen for assessing storage node status, the remaining disk 
capacity 𝑉 and the network state 𝑃 are considered positive indicators, with higher values signifying 
better performance. On the other hand, the I/O load, CPU utilization, and memory utilization serve as 
negative indicators, with lower values indicating higher storage node performance. Within the 
established multiattribute decision model, a negative sign is employed to denote negative indicators, 
as detailed in Algorithm 1. In the subsequent discussion, the algorithm is elucidated based on the 
provided diagram. 

Step 1 consists of the operations on lines 1–14, which serve primarily to construct the decision 
matrix 𝑀 for the storage node weight factors. This matrix is formulated as depicted in Eq (3), where 
𝑉  represents the residual capacity, 𝑃  denotes the network state, 𝐿  signifies the disk I/O load, 𝐶 
represents the CPU utilization rate, and 𝑅 refers to the memory utilization rate. Subsequently, the 
normalized decision matrix 𝑀’ is derived through the normalization process outlined in Eq (4). Here, 
𝑓௜௝ represents the element in the 𝑖th row and 𝑗th column of the matrix 𝑀, and 𝑛 represents the total 
number of storage nodes. The next step involves assessing the number of participating nodes and 
evaluating their remaining capacity. If the remaining capacity of a storage node falls below 5%, this 
node is immediately eliminated from consideration. In a case in which only one node remains that can 
participate in storage, further calculations are unnecessary, and the storage node is directly returned. 
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In Step 2, spanning lines 15–25, the five factors influencing storage node performance are 
assigned varying weights, with the residual capacity and I/O load bearing considerable significance. 
To this end, suitable weighting coefficients 𝑤 are determined, and a normalized weighted decision 
matrix 𝑍 is formulated in accordance with Eq (6). The specific values of the weights in Eq (5) are 
typically established through a series of experimental iterations. 

 V P L C RW W W W W W  (5) 

'   1,2 ;  1,2,3,4,5j ijZ W M i n j     (6) 

Step 3, encompassing lines 26–30, is dedicated to determining the positive and negative ideal 
solutions from the weighted decision matrix 𝑍, as outlined in Eqs (7) and (8). 

1 2 3 4 5( , , , , ) max{ | 1,2,3,4,5}ij
i

Z Z Z Z Z Z Z j         (7) 

1 2 3 4 5( , , , , ) min{ | 1,2,3,4,5}ij
i

Z Z Z Z Z Z Z j         (8) 

Step 4, consisting of lines 31–34, involves computing the distances 𝐷ା  and 𝐷ି  from each 
storage node to the positive and negative ideal solutions, as expressed in Eq (9). 
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Step 5, spanning lines 35–41, involves the computation of the relative closeness of each storage 
node to the optimally composed ideal storage node, denoted by 𝐶௜

ା, as shown in Eq (10). A higher 
closeness value signifies better performance of the corresponding storage node. 
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                                   (10) 

Through the steps outlined above, a hierarchical ranking of each storage node is ultimately 
established within the storage plane. 
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Algorithm 1 Multiattribute decision-making for node selection 

Input: 
remaining capacity 𝑉; disk I/O load 𝐿; CPU usage rate 𝐶; 
memory usage rate 𝑅; weighting coefficients 𝑊௏, 𝑊௅, 𝑊஼, and 𝑊ோ.
Output:  
relative closeness[ ] - A list of the relative closeness values 
between each storage node and the ideal node possessing 
each optimal decision factor value. 
1   initialize 𝑊௏, 𝑊௅, 𝑊஼, 𝑊ோ; 
2   initialize 𝑛𝑜𝑑𝑒𝑠_𝑎𝑙𝑙_𝑠𝑡𝑎𝑡𝑠_𝑙𝑖𝑠𝑡ሾሿ; 
3   initialize 

𝐶ℎ𝑒𝑐𝑘 𝑖𝑓 𝑡ℎ𝑒 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑖𝑠 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 5% 𝑎𝑛𝑑 𝑟𝑒𝑚𝑜𝑣𝑒 𝑖𝑡 𝑓𝑟𝑜𝑚 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑓 𝑠𝑜;
4   initialize 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑒_𝑖𝑛_𝑠𝑡𝑜𝑟𝑎𝑔𝑒_𝑛𝑜𝑑𝑒𝑠_𝑙𝑖𝑠𝑡ሾሿ; 
5   if  𝐶𝑙𝑖𝑒𝑛𝑡 ℎ𝑎𝑠 𝑠𝑒𝑛𝑡 𝑎 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑡𝑜 𝑠𝑡𝑜𝑟𝑒 𝑎 𝑓𝑖𝑙𝑒 ൌൌ 𝑡𝑟𝑢𝑒 then 
6          if 𝑛𝑜𝑑𝑒_𝑙𝑖𝑠𝑡. 𝑙𝑒𝑛𝑔𝑡ℎሺሻ  ൌൌ  1 then 
7     return 1; 
8          end 
9    do 𝑈𝑠𝑖𝑛𝑔 𝑉, 𝐿, 𝐶, 𝑎𝑛𝑑 𝑅, 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 𝑎 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑓𝑎𝑐𝑡𝑜𝑟 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑀; 
10          for 𝑒𝑎𝑐ℎ_ℎ𝑜𝑠𝑡_𝑠𝑡𝑎𝑡𝑠 in 𝑀 do 
11         for 𝑒𝑎𝑐ℎ_𝑠𝑡𝑎𝑡𝑠 in 𝑒𝑎𝑐ℎ_ℎ𝑜𝑠𝑡_𝑠𝑡𝑎𝑡𝑠 do
12      𝑀′௜௝ ൌ ඥ∑ 𝑒𝑎𝑐ℎ_𝑠𝑡𝑎𝑡𝑠ଶ; 
13           end 
14          end 
15    𝑶𝒃𝒕𝒂𝒊𝒏 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑀′;  
16          for 𝑒𝑎𝑐ℎ_ℎ𝑜𝑠𝑡_𝑠𝑡𝑎𝑡𝑠 in 𝑀’ do 
17          for 𝑒𝑎𝑐ℎ_𝑠𝑡𝑎𝑡𝑠 in 𝑒𝑎𝑐ℎ_ℎ𝑜𝑠𝑡_𝑠𝑡𝑎𝑡𝑠 do
18      𝑍௜௝ ൌ 𝑀′௜௝ 𝑥 𝑊௝; 
19      disk_load_list.append(load_value); 
20      remain_capacity_list.append(capa_value); 
21      cpu_utilization_list.append(cpu_value); 
22      mem_utilization_list.append(mem_value); 
23          end 
24    end 
25          𝑶𝒃𝒕𝒂𝒊𝒏 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑍; 
26          load_best = max(disk_load_list);
27    remain_capa_best = max(disk_load_list);
28    cpu_uti_best = min(disk_load_list);
29    mem_uti_best = min(disk_load_list);
30          for 𝑒𝑎𝑐ℎ_ℎ𝑜𝑠𝑡_𝑠𝑡𝑎𝑡𝑠 in 𝑍 do  
31     

𝐷ା ൌ ට∑ ሺ𝑍௜௝ െ 𝑍௝
ାሻଶ௦௧௔௧௦_௡௨௠

௝ ; 

32     
𝐷ା ൌ ට∑ ሺ𝑍௜௝ െ 𝑍௝

ାሻଶ௦௧௔௧௦_௡௨௠
௝ ; 

33          end 
34    𝑪𝒓𝒆𝒂𝒕𝒆 𝒂𝒍𝒍 𝒉𝒐𝒔𝒕𝒔′ 𝒓𝒆𝒍𝒂𝒕𝒊𝒗𝒆_𝒄𝒍𝒐𝒔𝒆𝒏𝒆𝒔𝒔_𝒍𝒊𝒔𝒕ሾሿ; 
35    for 𝑒𝑎𝑐ℎ_ℎ𝑜𝑠𝑡_ in 𝑛𝑜𝑑𝑒𝑠_𝑙𝑖𝑠𝑡 do 
36     𝐶௜

ା ൌ
஽೔

ష

஽೔
శା஽೔

ష; 

37     Relative_closeness_list.append(𝑐௜
ା);

38          end 
39          return relative_closeness_list; 
40   end 
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4.3. Design and implementation of the self-reporting mechanism for storage node load status 

In the system proposed in this paper, the global network link status is periodically obtained 
through requests sent by the controller and subsequent measurements. This is an active acquisition 
method. In contrast, the load status information of all storage nodes is self-measured and reported to 
the controller by the storage nodes themselves. Communication between the controller and SDN 
switches is facilitated by the OpenFlow protocol, but direct communication between the controller and 
the storage nodes connected to the SDN switches is not possible. As mentioned earlier, deploying a 
separate monitoring node would result in many negative consequences. 

To address these issues, this paper presents a mechanism for storage nodes to autonomously report 
their load status. This mechanism innovatively utilizes the packet_in functionality of the controller. 
When a storage node needs to report its load status to the controller, it measures its own real-time disk 
I/O load, remaining disk space, CPU usage, and memory usage through its own commands. It then 
constructs an empty data packet and encapsulates these load metrics within this packet, which is 
subsequently sent with its destination IP pointing to the controller. Since there are no matching flow 
tables in the SDN switches for this packet, it triggers the packet_in mechanism, which directly sends 
the packet to the controller. With the repetition of this process at regular intervals, the controller can 
periodically obtain load status information from each storage node device, thereby achieving 
autonomous load status reporting for the storage nodes. Additionally, this enables the implementation 
of the multiattribute decision-making algorithm at the controller. The operation of the autonomous 
reporting mechanism is illustrated in Algorithm 2, and below we provide a further explanation of this 
mechanism based on the algorithm’s flow. 

1) Lines 2–7 iterate through all storage nodes, and each storage node autonomously retrieves its 
four key load status indicators via a local terminal window. 

2) On line 8, using the Scapy library [38], an empty TCP packet is constructed, and the values of 
the four key status indicators are appended to this packet as its payload. 

3) On lines 9 and 10, the storage node’s IP address and the controller’s IP address are established 
as the source and destination IP addresses, respectively, for the constructed packet, followed by 
packet transmission. 

4) As described on lines 11 and 12, the packet cannot be matched with any preexisting flow 
tables at the switches and thus immediately triggers a packet_in event, causing the packet to be 
forwarded to the controller. The controller, at this point, does not initiate flow table actions but rather 
stores the packet. 

5) Lines 13–17 describe the controller-side process of parsing the packet to extract the payload 
data containing the values of the four key status indicators. After a 3-second delay, the algorithm 
proceeds to the next data acquisition cycle, continuing in an infinite loop, thus completing the 
autonomous reporting process for the storage nodes. 

Should the controller need to make decisions and issue decision results, the reverse approach is 
used. An empty TCP packet is constructed, with the decision result appended as the payload. The 
controller then uses the packet_out functionality to specify the SDN switch port connected to the client 
requesting file operations, facilitating the forwarding of the decision result to that client. 
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Algorithm 2 Storage node self-reporting mechanism 
Input: All storage node objects 

Output: Load status information for all storage nodes sent to the controller 

1   While 𝑇𝑟𝑢𝑒 do: 

2    for 𝑒𝑎𝑐ℎ_𝑛𝑜𝑑𝑒 in 𝑎𝑙𝑙_𝑛𝑜𝑑𝑒𝑠_𝑙𝑖𝑠𝑡 do 

3     Storage node: get remaining capacity 𝑉, disk I/O load 𝐿, CPU usage rate 𝐶, 

memory usage rate 𝑅; 

4     Storage node: Terminal(df -lm, obtain 𝑉); 

5     Storage node: Terminal(iostat -x 1 -t 3, obtain 𝐿); 

6    
 

Storage node: Terminal(top -bn 1 -i -c, obtain 𝐶); 

7    Storage node: Terminal(cat /proc/meminfo, obtain 𝑅); 

8    Storage node: construct an empty TCP packet, loading 𝑉, 𝐿, 𝐶, and 𝑅; 

9    Storage node: set packet.src_ip = nodes_ip and packet.dst ip = Controller_ip; 

10    Storage node: send(TCP packet); 

11    Controller: trigger Controller.ofp_event.EventOFPPacketIn; 

12    Controller: save TCP packet; 

13    Controller: analyze TCP packet and extract load data; 

14    Controller: obtain this node’s 𝑉, 𝐿, 𝐶, and 𝑅; 

15    end 

16     

17    delay 3 s; 

18   end 

4.4. Implementation of node load and network status measurement functionality 

The storage node operating system used in this study is Linux. The measurement of the four 
indicators of node load is relatively straightforward. The disk I/O load can be obtained by continuously 
reading with the ‘iostat’ tool for 3 seconds. The remaining disk capacity can be acquired in Linux using 
the ‘df -lm’ command. Similarly, the CPU usage and memory usage can be obtained by using the ‘top 
-bn 1 -i -c’ and ‘cat /proc/meminfo’ commands, followed by the application of regular expressions. 

For the measurement of the residual bandwidth on a link, it is assumed that the current need is to 
measure the link bandwidth between switch 𝑠𝑤𝐴 and switch  𝑠𝑤𝐵. Let the current moment in time 
be denoted by  𝑡 െ 1. The controller simultaneously issues a request to both 𝑠𝑤𝐴 and  𝑠𝑤𝐵. Upon 
receiving the request, 𝑠𝑤𝐴 and 𝑠𝑤𝐵 each immediately return their respective total sent byte count 
𝑡𝑥 and total received byte count  𝑟𝑥, as well as the timestamp 𝑡𝑖𝑚𝑒௧ିଵ corresponding to the current 
time 𝑡 െ 1 to the controller. After waiting for approximately 1 second, i.e., at time  𝑡, the controller 
issues another request for the retrieval of  𝑡𝑥, 𝑟𝑥, and 𝑡𝑖𝑚𝑒௧. To calculate the bandwidth utilized by 
𝑠𝑤𝐴 during this time interval from 𝑡𝑖𝑚𝑒௧ିଵ to 𝑡, the total bytes transmitted and received at time 
𝑡𝑥 ൅ 𝑟𝑥 are subtracted from the corresponding values at 𝑡𝑖𝑚𝑒௧ିଵ, yielding the total traffic for 𝑠𝑤𝐴 
during this period. Then, the utilized bandwidth of 𝑠𝑤𝐴 can be determined in accordance with Eq (11). 
As indicated in Eq (12), the remaining bandwidth for 𝑠𝑤𝐴   is then calculated by subtracting the 
utilized bandwidth from the maximum link bandwidth of the switch port. The remaining bandwidth 
for 𝑠𝑤𝐵 can be determined in a similar manner. In this study, a rigorous approach in which the link 
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bandwidth between 𝑠𝑤𝐴 and 𝑠𝑤𝐵 is determined as the minimum value between the two, as per 
Eq (12), is employed for all data calculations. 
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remain max usedbw bw bw                                                                (12) 

 

Figure 3. The controller sends packet out packets. 

 

Figure 4. The controller sends Echo request packets. 

For the measurement of link latency, the controller issues a packet_out message to 𝑠𝑤𝐴. The data 
segment of the message contains the timestamp at the time the controller issued the message. The 
action specified in the packet_out message instructs the switch to either flood the network with this 
message or forward it to a specific port. When 𝑠𝑤𝐵 subsequently receives the data packet from 𝑠𝑤𝐴, 
no corresponding flow table entry can be matched, triggering the sending of a corresponding packet_in 
packet to the controller. Upon receiving this data packet, the controller calculates the time difference 
𝑇ଵ by subtracting the current time from the timestamp in the received packet. This time difference is 
approximately equal to the latency from the controller to 𝑠𝑤𝐴, plus the latency from 𝑠𝑤𝐴 to 𝑠𝑤𝐵, 
and finally the latency from 𝑠𝑤𝐵  back to the controller, as illustrated in Figure 3. Similarly, the 
controller performs the reverse operation to obtain the time difference 𝑇ଶ, as also shown in Figure 3. 
The controller then sends Echo request messages to 𝑠𝑤𝐴  and 𝑠𝑤𝐵 , each containing the current 
timestamp. Upon receiving these messages, the switches immediately reply with reply packets that 
carry the same timestamp. By subtracting the timestamps in the reply packets from the times of packet 
reception, the controller can determine the round-trip latencies 𝑅𝑇஺ and 𝑅𝑇௕ between the controller 
and 𝑠𝑤𝐴  and between the controller and 𝑠𝑤𝐵 , respectively, as depicted in Figure 4. Under the 
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assumption that these round-trip latencies are equal, Equation (13) can be used to calculate the link 
latency 𝐷𝑒𝑙𝑎𝑦஺஻ between 𝑠𝑤𝐴  and 𝑠𝑤𝐵. 

1 2

2
A B

AB

T T RT RT
delay

  
                                                           (13) 

The measurement method for the link packet loss rate is similar to that for the residual bandwidth. 
Taking 𝑠𝑤𝐴 as an example, the controller periodically issues requests to obtain the total number of 
bytes sent (𝑠𝑤𝐴௧௫) and received (𝑠𝑤𝐴௥௫) by 𝑠𝑤𝐴 during the time interval 𝑇ଶ െ 𝑇ଵ. The total numbers 
of sent bytes (𝑠𝑤𝐵௧௫) and received bytes (𝑠𝑤𝐵௥௫) for 𝑠𝑤𝐵 can be determined similarly. Let 𝑙𝑜𝑠𝑠஺஻ 
denote the packet loss rate in the direction from 𝑠𝑤𝐴 to 𝑠𝑤𝐵. The final link packet loss rate between 
𝑠𝑤𝐴 and 𝑠𝑤𝐵 can be calculated in accordance with Eq (14). 

(1 ,1 )*100%rx rx
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loss max

swA swB
                                                   (14) 

5. Implementation and testing of an edge distributed wireless storage system 

5.1. Experimental platform design and realization 

To validate the efficacy of the suggested multiattribute decision-based node selection algorithm 
integrated with the node load self-reporting mechanism within the context of the WDES, this section 
assesses the influence of the devised system and algorithm on the system’s read and write performance 
using a real-world experimental platform. 

In contrast to conventional distributed edge storage systems, this study strategically selects and 
deploys hardware to suit the edge-end scenario, thereby distinctively differentiating all hardware 
components from other systems. This emphasis on alignment with the edge-end scenario is pivotal. 
The prototype system encompasses one controller, three storage nodes, and fourteen switches. The 
software ecosystem includes OpenWrt [39] version 22.03, Open vSwitch [40] version 2.1.3, Ryu 
version 4.8, OpenFlow version 1.3, and Samba version 4.13. The controller operates on Ubuntu 20.04 
LTS, while the storage nodes run on Debian 10. The subsequent section offers detailed insights into the 
hardware design and implementation, along with an analysis of the conclusive experimental outcomes. 

5.1.1. Controller hardware design and implementation 

In SDN, controllers have two primary control methods for switches: single-controller control and 
multi-controller control. In this paper, the focus is primarily on single-controller control. However, 
considering the system’s subsequent upgrade to multi-controller control, the enhancement algorithm 
amplifies system performance. Consequently, emphasis is bestowed upon multi-port hardware devices. 
Moreover, given the edge positioning of the system, compact device dimensions are paramount, while 
performance remains a prerequisite. 

Considering the aforementioned criteria, this study ultimately opts for the N5105 six-network 
port soft routing host from the Smooth Network Micro-Controller Company to serve as the hardware 
platform for the controller. The soft routing host comes equipped with six 2.5G wired ports and 
wireless WiFi functionality, with compact dimensions, measuring only 17.8 cm (length) * 12.5 cm 



1180 

Electronic Research Archive  Volume 32, Issue 2, 1160–1190. 

(width) * 5 cm (height). This aligns seamlessly with the edge-end system design paradigm. The 
physical depiction of the host is illustrated in Figure 5. 

 

Figure 5. Physical drawing of N5105 soft route mainframe. 

5.1.2. SDN Switch hardware design and implementation 

The primary function of an SDN switch is to oversee data forwarding within the physical system, 
and its performance attributes significantly impact the overall network performance. Presently, SDN 
switches available in the market cater primarily to expansive cloud storage centers due to their size, 
rendering them less suitable for mobile applications. Furthermore, the cost of these SDN switches is 
substantial, often reaching tens of thousands of dollars per unit. As a result, this study confines the 
hardware selection for SDN switches to commonplace home routers. These routers are compact in 
design and generally cost-effective, aligning effectively with real-world edge scenarios. Nonetheless, 
it is important to note that, while home routers are used, they do not inherently possess the capabilities 
of SDN switches. To harness SDN functionality, a transformation process is requisite. 

OpenWrt, a Linux-based open-source embedded operating system, is specifically designed for 
routers and embedded devices. It offers a flexible, customizable, and scalable platform, serving as a 
replacement for stock firmware to enhance functionality and control for routers and embedded devices. 
Open vSwitch (OVS), an open-source virtual switch software, serves as a tool to construct and oversee 
networks within virtualized environments. It furnishes an extensive array of network features and 
management utilities for establishing connections with physical networks. The combination of 
OpenWrt and Open vSwitch constitutes pivotal components in the process of converting routers into 
SDN switches. 

To convert a router using the aforementioned components, several factors must be considered. 
First, the router should fall within the spectrum of models supported by the OpenWrt system. Second, 
in real-world distributed edge storage scenarios, SDN switches contend with substantial real data 
traffic and data forwarding demands. Following the router’s transformation, the original dedicated data 
forwarding chip might encounter performance limitations, or, in some cases, become unusable. Finally, 
upon integration with Open vSwitch, the router’s background resource consumption experiences a 
significant surge. If the chosen router possesses inadequate performance capabilities, potential 
consequences include tardy data forwarding responses, excessive resource usage, heightened heat 
generation, and even system crashes. 

To address potential issues arising from router modifications, this study has selected the Xiaomi 
AX6000 router as the physical SDN switch for this system, as depicted in Figure 6. This router boasts 
a robust 2GHz CPU frequency, generous RAM and ROM capacities, as well as a compact form factor, 
aligning seamlessly with the system’s edge-end positioning and design philosophy. They provide the 
critical performance metrics of the router in Table 1. The transformation of the router into an SDN 
switch is achieved via successive stages, including OpenWrt source code modification, firmware 
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compilation, overriding the original system with burn-in procedures, and installing the Open vSwitch 
plug-in. This process adeptly equips the router to fulfill SDN switch functions. 

Table 1. Xiaomi AX6000 router performance parameters. 

model number CPU Model CPU frequency Flash size 

AX6000 MT7986A 2 GHz 128 MB 

 

Figure 6. Xiaomi AX6000 router. 

5.1.3. Edge storage node hardware design and implementation 

Hardware design for storage nodes should align with authentic edge-side scenarios. In practical 
settings, storage nodes often exhibit heterogeneity, a key distinction from simulation systems, 
attributed to the following factors: 

1) Within identical equipment types, inherent process variations result in certain performance 
disparities; complete uniformity of performance cannot be attained. 

2) Divergent installation sites for storage node devices, varying environmental conditions, and 
external factors such as heat dissipation lead to progressive performance divergence among these 
devices over time. 

3) In a deployed edge distributed storage system, which may undergo equipment updates and 
iterations, new and existing equipment coexists within the same distributed storage system, giving rise 
to a situation of storage node heterogeneity. 

Based on the preceding analysis, the heterogeneous nature of storage nodes aligns better with 
real-world edge scenarios. Consequently, this paper adopts a heterogeneous design for the storage 
nodes. When selecting hardware, it becomes imperative to opt for devices featuring varying levels of 
performance to achieve this heterogeneity. 

After a thorough comparison, three devices—Asus Tinker Board 2S (No.1), Raspberry Pi 4B 
(No.2), and Raspberry Pi 3B+ [41] (No.3)—have been chosen as the designated hardware platforms 
for the storage nodes in the edge-distributed wireless storage system proposed in this paper. The 
devices are ranked in order of performance: No.1, No.2, and No.3. Their essential parameters are 
tabulated in Table 2, while they depict their physical embodiments in Figure 7. 



1182 

Electronic Research Archive  Volume 32, Issue 2, 1160–1190. 

Table 2. Comparison of performance parameters of three embedded single-board computers. 

Equipment Model CPU Model CPU frequency RAM type RAM size 
Tinker Board 2S RK3399 2 GHz DDR4 4 GB 
Raspberry 4B BCM2711 1.5 GHz DDR4 2–4 GB 
Raspberry 3B+ BCM2837 1.4 GHz DDR2 1 GB 

 

Figure 7. Physical diagrams of the three storage nodes. 

5.1.4. Network topology design and physical deployment 

The client software interface design is illustrated in Figure 8. Below is a detailed and 
comprehensive description of the file storage process: 

1) Users initiate the relevant client software on their Linux or Windows devices, establishing a 
wireless connection to the SDN switch through a 5G WiFi connection. 

2) Users opt for the storage function, inputting the complete file path (e.g., video file) within the 
storage window. 

3) The client software automatically computes both the file size and filename. Subsequently, it 
constructs a packet and appends the file size and filename data to the packet as load data before 
transmitting it. 

4) Given that none of the switches within the network topology possesses a flow table entry that 
aligns with the packet, the packet corresponds to the lowest table miss flow table. As a consequence, 
the controller side initiates a packet_in event, leading to the packet being conveyed to the controller 
side. Subsequently, an unpacking procedure is undertaken by the controller to extract the file size and 
file name, thereby culminating in the comprehensive reporting of the information requested by the 
client for storage purposes. 

5) Upon reception of the storage request from the client, the controller commences the execution 
of the node selection algorithm (elaborated upon in Section 4.2). Ultimately, the controller attains a 
result encompassing the file’s requisite partitioning into chunks, the individual chunk sizes, and the 
pertinent IP addresses of the designated storage nodes. Once more, the controller formulates a packet, 
integrating the obtained result as load data within the packet. This packet is subsequently dispatched 
back to the client utilizing the packet_out function of the controller. 

6) Upon receiving the decision result from the controller, the client promptly initiates the relevant 
file chunking program. This program generates a chunking information file in TXT format, designed 
for future file retrieval, and subsequently activates a multi-threaded concurrent transmission program 
to dispatch the corresponding chunking file to the designated storage node. At this juncture, the switch 
lacks a flow table. The controller identifies the connection request between the client and the storage 
node, promptly accessing comprehensive network link state data within the information pool. 
Employing the Dijkstra routing algorithm, the controller determines an optimally efficient routing and 
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forwarding path, facilitating data transmission from the client (source) to the storage node (destination). 
The execution of the flow table assignment operation follows this. Sequential storage of the individual 
chunk files culminates in the successful execution of the complete storage function. 

Retrieving stored files involves the following comprehensive process: 
1) The client inputs the complete path of a segmentation information file. This file contains details 

about the file to be retrieved, including the file name, total file size, as well as the names, sizes, and 
corresponding IP addresses of the segmented files on storage nodes. 

2) Upon clicking the pull button, the client autonomously initiates the reading program, which 
endeavors to establish connections with corresponding storage node hosts for sequential file retrieval. 
During this process, the switch lacks a relevant flow table, prompting the triggering of the controller’s 
packet_in mechanism. Subsequently, the controller promptly accesses comprehensive network link 
state information stored in the information pool. Employing the Dijkstra routing algorithm based on 
these link states, the controller ascertains the optimal short route for data forwarding, spanning from 
the client (source) to the storage node (destination). This culminates in the execution of the operation 
to dispatch the requisite flow table. 

3) Upon retrieving the chunk file, the file merge program is executed, considering the order of 
file names (e.g., video_1.mp4, video_2.mp4). The file operation function is utilized to sequentially 
read each chunk file in binary mode and write it into a new file. Eventually, the complete file name 
provided within the chunk file’s information serves as the designation for the pulled file, ensuring 
accurate sizing to achieve successful file retrieval. 

 

Figure 8. Client software interface. 

5.1.5. Network topology design and physical deployment 

To enhance complexity and replicate a highly realistic edge-end setting, this study configures 14 
switch nodes, thereby establishing the comprehensive network framework illustrated in Figure 9. 
Interconnecting the devices, all SDN switches establish wired connections with each other to bolster 
reliability. Moreover, while they equipped the physical SDN switches with hardware provisions for 
wireless networking capabilities, direct utilization is unfeasible. Additionally, an examination of the 
topology reveals the presence of multiple loop-formed network links, which could potentially trigger 
broadcast storms [42]. 
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This paper addresses the aforementioned issues by implementing Virtual Local Area Network 
(VLAN) isolation technology [43]. VLAN divides the physically established LAN into distinct logical 
subnets, isolating data link layer broadcast messages within these subnets to create individual broadcast 
domains. Each logical subnet constitutes a VLAN. Terminal devices accessing the VLAN are assigned 
to specific VLANs, preventing direct communication between devices in different VLANs through the 
data link layer. By utilizing VLAN technology, broadcast message transmission is confined, mitigating 
the impact of broadcast storms and enhancing network security. Employing VLAN, the wireless 
network card within the physical SDN switch can be partitioned into separate VLANs and integrated 
into the SDN switch, enabling devices beyond the SDN switch to join the distributed edge wireless 
storage system via wireless network connections. Each connected device operates within its own 
distinct LAN, preventing mutual interference and effectively mitigating broadcast storm issues within 
the network. 

In the implemented system outlined in this paper, the controller devices, storage nodes, and client 
devices establish connections to the SDN switch through WiFi wireless 5G connections. This design 
choice brings the system in closer alignment with edge-end environments, enhancing system scalability. 
The tangible manifestation of the implemented configuration is depicted in Figure 10. 

 

Figure 9. Network topology. 

 

Figure 10. Overall physical picture. 
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5.2. Performance testing and analysis of results 

To evaluate the system’s read and write performance for objects of different sizes, the experiment 
used a comparative method [44] and incorporates three file sizes: 10, 100, and 1000 MB, subjected to 
storage testing. Each file size undergoes 30 rounds of storage testing. The initiation of storage was 
marked by the moment the client clicked the storage button, and the completion of file storage marked 
the end time. The total storage time for each file was obtained by subtracting the start time from the 
end time. A comparative analysis of the test results was conducted between the wireless distributed 
edge storage system (WDES) developed in this study and the traditional Edge Distributed Storage 
System (TEDS). 

As this paper is built upon the Samba communication protocol, the performance comparison is 
conducted within the framework of the Samba protocol [45] to validate the performance of the 
designed node selection algorithm. 

The overall experimental phase is divided into two parts. The first part involves comparing storage 
times for different file sizes when the network is uncongested and the nodes are in the normal state. 
The second part includes comparing storage times for different file sizes when the network bandwidth 
resources are reduced and some of the nodes are in a high load state. This testing approach 
comprehensively reflects the system’s performance in both normal and stressed states. 

The first is the test with normal network state and node load, where the horizontal coordinate 
of Figure 11 is the number of tests and the vertical coordinate is the total storage consumption time. 
Figure 11(a) is a comparison chart of the storage time tested in two different systems under the 
condition of file size of 10 MB respectively, where the green line is the test result of the system 
designed in this paper, and the red line is the test result of the traditional edge-distributed storage 
(without SDN). It can be seen from the experimental results that, in terms of the storage of small files, 
although there is not a big difference in the time effect of the two comparisons, the overall view of the 
system designed in this paper's storage time is lower than that of the traditional edge distributed storage 
system. Figure 11(b) is a comparison chart of the storage time tested in two different systems under the 
condition of the file size of 100 MB, from which it can be seen that the storage time of the system 
designed in this paper is lower than that of the traditional edge-distributed storage system for the first 15 
times, and from the 15th time onwards there is be an occasional increase in time, which is because the 
transformed SDN switch does not mobilize the dedicated data forwarding chip aggressively and the 
long-running time leads to heat generation, which makes the switch processor downclocked and slows 
down the processing data resulting in longer time. Figure 11(c) illustrates a comparative graph of 
storage times under the condition of a file size of 1000 MB in two distinct systems. Upon examining 
the three plots, it becomes evident that, with the increase in storage file size, the storage time curves 
of the two systems gradually diverge. This implies that, as storage involves progressively larger files, 
the advantages of the wireless distributed edge storage system designed in this study become more 
pronounced. This phenomenon arises due to the extended operation of certain physical switches in the 
network, resulting in heat generation, frequency reduction, and, consequently, temporary processing 
slowdowns in specific switch nodes. During such instances, the controller measures the bandwidth, 
latency, and packet loss rates for all links, identifying this phenomenon. Subsequently, based on the 
measured data, the controller reevaluates the situation, issues new flow tables, and directs data 
transmission through more optimal links, thereby mitigating the performance degradation associated 
with hardware issues. 
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(a) Comparison of storage latency in a 10 MB file        (b) Comparison of storage latency in a 100 MB file        (c) Comparison of storage latency in a 1000 MB file 

Figure 11. Comparison of storage latency in a 10, 100, and 1000 MB file. 

The second part of the experiment is a test in the case of poor network status and increased load 
on certain nodes. here a program will be written to implement a looped video playback in storage node 
No.2 (Raspberry Pi 4B) to increase the CPU and memory usage of this storage node. During the test, 
separate file storage is performed in storage node No.2 through other clients to increase the disk IO 
load of this node and reduce the state of the network. Figure 12 demonstrates the experimental result 
graphs for this condition. 

  

(a) Comparison of storage latency in a 10 MB file        (b) Comparison of storage latency in a 100 MB file        (c) Comparison of storage latency in a 1000 MB file 

Figure 12. Comparison of storage latency in a 10, 100, and 1000 MB file. 

As can be seen from the figure, when the network state is poor and the load of storage node No.2 
is large, the storage time of the three different file sizes increases to a certain extent, but the system 
designed in this paper still demonstrates better performance and a shorter storage time than the 
traditional edge-distributed storage system, and the advantage is more obvious than that of the case 
where the network and the storage node are well loaded. This is because the edge-distributed wireless 
storage system designed in this paper does not only take the remaining capacity of the storage node as 
an index when selecting the storage node, but also considers the state of the network and the load state 
of the storage node comprehensively. When the performance of the No.2 storage node and the state of 
the network decreases, the controller obtains the network state and the load state of the No.2 storage 
node before doing the file chunking and the selection of the storage node, and comprehensively judges 
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that this storage node state is poor, at which point the decision of splitting files will allocate more file 
size to storage nodes 1 and 3, reducing the file storage size of storage node No.2 and increasing the 
overall system performance. The performance of the distributed edge wireless storage system designed 
in this paper is verified by the above two parts of the experiments. 

6. Conclusions 

In this paper, a distributed edge wireless storage system architecture based on SMB and software-
defined networking is designed and a prototype physical system is fabricated. The system utilizes 
software-defined networking technology to sense and measure the real-time network link state, and at 
the same time obtains the real-time load state of the nodes through the storage node load state self-
reporting mechanism, combines the two information to establish a multiattribute decision model, and 
completes the selection of storage nodes by solving the model. Through the write performance test of 
the actual system, compared with the traditional edge distributed storage system, the system designed 
in this paper has obvious improvement in write operation performance, and compared with the edge 
distributed storage system that needs to deploy monitoring nodes individually, it has the advantages of 
being lightweight and sporting a low deployment cost. It is believed that the work in this paper can 
help promote the development of distributed edge storage systems. 

Currently, the architecture of our edge distributed wireless storage system in the data forwarding 
plane utilizes a wired approach, representing a limitation in our current work. In subsequent research, 
we plan to explore the deployment of the data forwarding plane using wireless Mesh, thereby achieving 
comprehensive wireless connectivity for the system. On another note, the adoption of wireless Mesh 
connectivity allows for convenient changes in network topology. Strategically placing and connecting 
these SDN switches can maximize the system’s transmission efficiency, making it more suitable for 
certain industrial physical network applications. 

Finally, while the primary focus of this paper is at the edge, future work could involve exploring 
collaborative data storage at the cloud-edge interface. These aspects represent the directions that our 
future research endeavors will take. 
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