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Abstract: To address the limited resources of mobile devices and embedded platforms, we propose 
a lightweight pose recognition network named HR-LiteNet. Built upon a high-resolution 
architecture, the network incorporates depthwise separable convolutions, Ghost modules, and the 
Convolutional Block Attention Module to construct L_block and L_basic modules, aiming to 
reduce network parameters and computational complexity while maintaining high accuracy. 
Experimental results demonstrate that on the MPII validation dataset, HR-LiteNet achieves an 
accuracy of 83.643% while reducing the parameter count by approximately 26.58 M and lowering 
computational complexity by 8.04 GFLOPs compared to the HRNet network. Moreover, HR-LiteNet 
outperforms other lightweight models in terms of parameter count and computational requirements 
while maintaining high accuracy. This design provides a novel solution for pose recognition in 
resource-constrained environments, striking a balance between accuracy and lightweight demands. 
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1. Introduction 

Human Pose Estimation, as a critical task in the field of computer vision, aims to accurately 
capture and analyze the posture and joint information of the human body from images or videos. This 
task finds widespread applications across various domains, including human-computer interaction, 
motion analysis, rehabilitation training, and virtual reality [1–3]. 

In recent years, the rapid development of deep learning technologies has significantly improved 
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the accuracy of deep learning models in tasks such as image classification, object detection, and human 
pose estimation. Simultaneously, it has achieved remarkable success in various fields, including 
biomedicine [4,5], natural language processing, sports and fitness. With the rapid advancement of deep 
learning technologies, especially the rapid development of Convolutional Neural Networks (CNNs) [6], 
significant breakthroughs have been made in human pose estimation, gradually transitioning from 
traditional methods based on handcrafted features to approaches built upon deep neural networks [7,8]. 
In 2014, Toshev et al. [9] introduced DeepPose, representing a pioneering attempt to apply deep 
learning to human pose estimation. Innovatively, it transformed the keypoint detection problem into a 
regression problem. The core of the network, based on AlexNet, directly regressed the coordinates of 
human body keypoints from images, outperforming other methods at the time and laying the 
foundation for subsequent developments in deep learning for pose estimation. Tompson et al. [10] 
observed that directly regressing the coordinates of human body keypoints could lead to overfitting. 
To address this issue, they introduced an approach based on Gaussian-distributed keypoint heatmaps 
as an alternative to keypoint coordinate maps. This method significantly improved the network’s 
training efficiency and accuracy. Currently, Gaussian heatmaps remain a mainstream encoding method 
for keypoints in deep CNN-based human pose estimation. Wei et al. [11] proposed a model called the 
Convolution Pose Machine (CPM). This method employed large convolutional kernels to capture 
contextual spatial relationships, and it mitigated the vanishing gradient problem through a multi-stage 
and intermediate supervision training strategy, positively impacting network performance. 

In multi-person human pose estimation, algorithms can be categorized into two processing 
paradigms: Top-down and bottom-up [12,13]. Top-down methods begin by detecting the entire human 
body within the image and subsequently perform keypoint detection for each detected individual. The 
pose model proposed by Papandreou et al. [14] consists of two stages: the first stage detects human 
bodies using Faster R-CNN [15], while the second stage utilizes a fully convolutional ResNet [16] to 
predict heatmaps and offsets for each keypoint. They introduced a novel fusion process to achieve highly 
precise keypoint predictions. The High-Resolution Network (HRNet) model, proposed by Sun et al. [17], 
is a typical example of a top-down approach. HRNet employs a parallel connection structure, starting 
with a high-resolution subnetwork as the first stage and gradually introducing parallel subnetworks 
from high to low resolution in subsequent stages. This strategy maintains high-resolution features 
while performing multiple multi-scale fusions, significantly enhancing the accuracy of human pose 
estimations. Bottom-up methods, on the other hand, directly detect all possible keypoints within the 
image, cluster these keypoints using algorithms, and finally connect different keypoints of different 
individuals to detect distinct individuals. Pishchulin et al. [18] introduced a rapid body part detector 
called DeepCut, one of the earliest two-step bottom-up approaches. It initially detects all candidate 
body parts, labels each part, and uses Integer Linear Programming (ILP) to combine these parts 
into the final pose. The OpenPose model, proposed by Cao et al. [19], is a representative bottom-
up algorithm. This model first predicts keypoint heatmaps using the CPM, introducing Part Affinity 
Fields (PAFs) to represent joint position and orientation information. By processing the detected 
keypoints and the areas of joint connections, this model rapidly associates these keypoints with 
different individuals. 

Most of the aforementioned researchers have primarily focused on improving the accuracy of 
human pose algorithms, often neglecting the model parameters and computational requirements. 
However, in practical applications, due to computational and memory constraints, deploying large-scale 
network algorithms on ordinary devices is often infeasible. Therefore, reducing model parameters and 
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computational demands is crucial for practical applications [20,21]. Currently, some scholars are gradually 
conducting systematic research on the lightweighting of human pose estimation [22]. 

In this context, we introduce a lightweight pose recognition approach based on a HRNet 
framework. This approach proposes L_Block and L_Basic modules that incorporate technologies such 
as depthwise separable convolutions and Ghost modules. While maintaining a certain level of pose 
estimation accuracy, this innovative lightweight design significantly reduces the network’s 
computational complexity and parameter count. This novel lightweight design offers feasibility for 
deploying human pose estimation algorithms on resource-constrained devices. 

The major contributions of this paper are as follows: 
(1) Introducing a novel L_Block module and L_Basic module that ingeniously integrate 

lightweight technologies such as depth-wise separable convolutions and Ghost modules. The 
innovative design of these modules not only effectively reduces computational complexity but also 
enhances the model’s perception of intricate features in human pose recognition. 

(2) Employing innovative technical strategies, the paper seamlessly combines lightweight 
techniques with multi-branch parallelism and multi-scale feature fusion. This integration forms a novel 
and synergistic human pose recognition model. By simultaneously applying lightweight techniques 
and incorporating them harmoniously with multi-branch parallelism and multi-scale feature fusion, the 
model optimizes performance and computational efficiency, making it well-suited for deployment in 
resource-constrained environments. 

(3) Emphasizing precision in pose estimation, the proposed model places a particular focus on 
design considerations. Through judicious technical integration and lightweight design, the model 
achieves a balance between computational complexity and parameter count. This balanced design 
ensures high accuracy in pose estimation while addressing computational resource constraints. 

The structure of this paper is as follows: In Section 2, a comprehensive analysis and investigation 
of the HRNet are conducted. Section 3 focuses on presenting the network architecture and design 
concepts of the proposed lightweight HR-LiteNet. Section 4 presents the experimental results of our 
model on the MPII dataset and compares it with other lightweight models. Finally, in Section 5, a 
comprehensive summary of the paper is provided.  

2. HRNet 

HRNet is a network model jointly proposed by the University of Science and Technology of China 
and Microsoft Research Asia. It is widely used in computer vision tasks such as human pose estimation, 
image classification, and semantic segmentation. This network employs a multi-branch parallel 
approach, progressively fusing high-resolution features with low-resolution feature branches, thereby 
maintaining high-resolution feature representations throughout the entire process and achieving multi-
scale feature fusion. This design effectively enhances the model’s performance, leading to significant 
achievements in various tasks. 

The structure of the HRNet is illustrated in Figure 1. The network consists of four stages, each 
with branches of different resolutions. In the first stage, feature extraction is accomplished through 
repeated BottleNeck modules, with each BottleNeck module comprising two 1 × 1 convolution layers, 
one 3 × 3 convolution layer, and a skip connection, as shown on the left in Figure 2. In the second, 
third, and fourth stages, feature extraction is achieved through repeated BasicBlock modules and multi-
scale fusion structures, with each BasicBlock module consisting of two 3 × 3 convolution layers and 
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a skip connection, As shown on the right side of Figure 2. 

 

Figure 1. HRNet architecture. 

 

Figure 2. BottleNeck module and BasicBlock module. 

This design structure enables HRNet to effectively extract and fuse multi-scale features at 
different stages, allowing it to excel in various computer vision tasks. 

3. Lightweight HR-LiteNet 

3.1. Network architecture design 

HRNet is a powerful CNN known for its proficiency in handling high-resolution images and 
complex tasks. However, the extensive convolutional layers within this network result in relatively 
large parameter counts and computational requirements, posing challenges when deploying it on low 
computational power devices. 

In this paper, we utilized the HRNet framework as the foundation for network design and 
introduced two fundamental lightweight modules: The L_Block module and the L_Basic module. We 
integrated these two modules with the HRNet, creating an entirely new lightweight human skeletal 
keypoint detection network model known as HR-LiteNet. The architecture of this model is depicted in 
Figure 3. 
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Figure 3. HR-LiteNet network architecture. 

HR-LiteNet adopts a multi-branch parallel and multi-scale feature fusion approach in its 
architectural design. In the data preprocessing stage, the original input image with dimensions (H_o, 
W_o, 3) is first cropped to a fixed standard height (H) and width (W) in pixels to ensure compatibility 
with the input requirements of the HR-LiteNet model. Subsequently, the resized image is passed 
through the HR-LiteNet model. 

In the Stem stage, two 3 × 3 convolutions with a stride of 2 are employed to reduce the resolution 
of the input image by a factor of 4 and increase the channel count from 3 to 64. Then, feature extraction 
is performed in four stages, each comprising 1, 2, 3, or 4 parallel branches with different resolutions. 
In the first stage, four L_block modules are predominantly used for feature extraction, with the first 
L_block module increasing the channel count from 64 to 256.In the second, third, and fourth stages, 
there are 1, 3, and 1 swap blocks, respectively. Each swap block consists of 4 L_basic modules and a 
multi-scale feature fusion module, enabling improved feature extraction and fusion. In the latter part 
of the fourth stage, the features from branches 2, 3, and 4 are upsampled to the same resolution as 
branch 1 and then summed together to generate high-resolution features. 

The specific architectural details of the HR-LiteNet network are presented in Table 1. 

Table 1. Specific Structural Information of HR-LiteNet Network. 

Network 

Layer 

Number of 

Branches 
Output Feature Size Module Composition Channel Count 

Number of Swap 

Blocks 

Stem 1 (H/4,W/4) 
Two 3 × 3 Convolutions 

with Stride 2 
64 – 

Stage 1 1 (H/4,W/4) L_block × 4 256 – 

Stage 2 2 
(H/4,W/4) 

(H/8,W/8) 

L_basic × 4 

Feature Fusion Module 
32,64 1 

Stage 3 3 

(H/4,W/4) 

(H/8,W/8) 

(H/16,W/16) 

L_basic × 4 

Feature Fusion Module 
32,64,128 3 

Stage 4 4 

(H/4,W/4） 

(H/8,W/8) (H/16,W/16) 

(H/32,W/32) 

L_basic × 4 

Feature Fusion Module 
32,64,128,256 1 
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3.2. Introduction to key modules 

We two lightweight modules: L_Block and L_Basic. L_Block There are two structural forms 
according to the relationship between the number of output channels and the number of input channels. 
In the first form, when the output channel is four times the input channel, 1 × 1 and 3 × 3 deep separable 
convolutions are involved, fused by branches with residual connections and Ghost module operations. 
In the second form, the input and output channels are equal, simplifying the left branch, connecting 
directly, and using the Ghost module operation on the right branch. Both forms incorporate the 
Convolutional Block Attention Module (CBAM) attention mechanism. L_Basic consists of three 
branches: The bottom (CBAM attention), the middle (two depthwise separable convolutional layers), 
and the top (residual connection). Designed to enhance network understanding, feature extraction, and 
training stability. 

As seen in Figure 4, based on the relationship between the number of input and output channels, 
there are two structural forms of the L_block module: 

(1) When the output channel count is four times the input channel count, the L_block module 
appears as shown in Figure4(a). Its structure exhibits the following characteristics: 

The left branch employs a 1 × 1 convolution operation to adjust the input channel count to match the 
output channel count. This branch is part of the residual connection to maintain network stability. The right 
branch first performs a 1 × 1 convolution followed by a 3 × 3 depthwise separable convolution operation. 
Subsequently, the right branch further divides into two sub-branches: one sub-branch processes a portion 
of features using a 1 × 1 convolution, while the other sub-branch generates a portion of feature maps using 
ghost module operations. These branches are then fused and stacked through Add and Concat operations. 
Finally, the network introduces the CBAM attention mechanism to better extract critical features. 

(2) When the output channel count is equal to the input channel count, the L_block module appears 
as shown in Figure 4(b). Its structure differs from that of Figure 4(a) as follows: The left branch does not 
require a 1 × 1 convolution operation and is directly connected. The right branch performs a 1 × 1 
convolution followed by a 3 × 3 depthwise separable convolution operation and exclusively employs ghost 
module operations to generate feature maps. The rest of the structure remains consistent. These descriptions 
outline the two variations of the L_block module based on the relationship between input and output 
channel counts. 

  
(a) (b) 

Figure 4. L_Block network structure. 
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Figure 5 illustrates the L_basic network structure, primarily comprising three branches, each 
serving distinct functions. First, the lower branch undergoes the CBAM attention mechanism [23], 
aiding the network in better understanding and focusing on crucial feature information from the input 
data. Next, the middle branch passes through two depthwise separable convolution layers, employed 
to extract features from the input data for improved adaptability to task requirements. Finally, the upper 
branch connects to the rest of the network through a residual connection, ensuring the stability of 
network training. 

 

Figure 5. L_Basic network structure. 

The above two modules primarily rely on depthwise separable convolution and the Ghost model 
for construction. The core idea behind depthwise separable convolution is to decompose the traditional 
convolution operation into two independent steps: Depthwise convolution and pointwise convolution. 
Depthwise convolution independently convolves each channel of the input feature, with each channel 
being operated on by a separate convolution kernel [24]. In comparison to traditional convolution, this 
method significantly reduces the parameter count because it no longer requires operations with all 
convolution kernels. Pointwise convolution employs 1 × 1 convolution kernels to convolve the output 
of depthwise convolution, integrating and interacting with features from different channels to generate 
the final output feature map. 

Depthwise separable convolution, compared to traditional convolution, can substantially reduce 
the utilization of parameters. Assuming that depthwise separable convolution and regular convolution 
have the same input feature size (H_in, W_in, C_in) and output feature size (H_out, W_out, C_out), 
the operation of traditional convolution is as shown in Figure 6, where C_out convolution kernels of 
size (D, D, C_in) are used. The parameter count for traditional convolution is calculated as follows: 

 𝑃𝑎𝑟𝑎𝑚 ൌ 𝐷 ൈ 𝐷 ൈ 𝐶_𝑖𝑛 ൈ 𝐶_𝑜𝑢𝑡  (1) 

H_in

W_in
D

D

C_in

C_in

C_in

C_in

H_out

W_out

Input Feature Map Output Feature MapConvolution Kernel

 

Figure 6. Convolution process in traditional convolution. 

The two steps of depthwise separable convolution are as follows: Depthwise Convolution, as shown 
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in Figure 7(a), employs C_in convolution kernels of size (D,D,1). The calculation of its parameter count 

is as described in Eq 2. Pointwise Convolution, as shown in Figure 7(b), uses C_out convolution kernels 

of size (1,1,C_in). The calculation of its parameter count is as described in Eq 3. 

 𝑃𝑎𝑟𝑎𝑚_𝑑 ൌ 𝐷 ൈ 𝐷 ൈ 𝐶_𝑖𝑛  (2) 

 𝑃𝑎𝑟𝑠𝑚_𝑝 ൌ 𝐶_𝑖𝑛 ൈ 𝐶_𝑜𝑢𝑡  (3) 

  

(a) Depthwise convolution (b) Pointwise convolution 

Figure 7. Depthwise separable convolution process. 

The parameter count of a single depthwise separable convolution is calculated as shown in Eq 4. 

 𝑃𝑎𝑟𝑎𝑚_𝑑𝑝 ൌ 𝐷 ൈ 𝐷 ൈ 𝐶_𝑖𝑛 ൅ 𝐶_𝑖𝑛 ൈ 𝐶_𝑜𝑢𝑡  (4) 

The ratio of the parameter count of depthwise separable convolution to that of standard 
convolution is given by Eq 5. 

 
௉௔௥௔௠_ௗ௣

௉௔௥௔௠
ൌ ஽ൈ஽ൈ஼_௜௡ା஼_௜௡ൈ஼_௢௨

஽ൈ஽ൈ஼_௜௡ൈ஼_௢௨௧
ൌ ଵ

஼_௢௨௧
൅ ଵ

஽ൈ஽
  (5) 

In the above equation, D represents the size of the convolution kernel, and C_out is the number 
of output feature map channels. For convolutions with large kernels and multiple channels, depthwise 
separable convolution operations can significantly reduce the number of parameters during 
convolution operations. 

The Ghost Module is a key component in the lightweight deep learning network GhostNet 
proposed by Huawei Noah’s Ark Lab [25]. Its core idea is to divide the convolution operation into 
three steps, as illustrated in Figure 8: 1) First, the Ghost Module employs a regular convolution 
operation to generate feature maps with fewer channels. 2) Then, by applying the Cheap Operation, it 
computes additional feature maps based on the ones generated in the previous step. 3) Finally, it 
concatenates the different feature maps generated in steps 1) and 2) to build a more diverse and 
powerful feature representation. 

 

Figure 8. Ghost module structure. 
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The reduction in its parameter count is given by Eq 6. 

 𝑟௖ ൌ
௡⋅௖⋅௞⋅௞

೙
ೞ
⋅௖⋅௞⋅௞ାሺ௦ିଵሻ⋅೙

ೞ
⋅ௗ⋅ௗ

ൎ ௦⋅௖

௦ା௖ିଵ
ൎ 𝑠  (6) 

In the above equation, where 𝑟௖ represents the reduction factor in parameter count, c is the input 
channel size, n is the output channel size, k denotes the convolution kernel size, s represents the scaling 
factor, and d is the size of the Cheap Operation’s convolution kernel。 

Therefore, the design of the L_Block and L_Basic modules proposed in this paper, based on 
depthwise separable convolution and the Ghost model, effectively reduces the model’s parameter count 
and computational complexity. 

4. Experimental results and analysis 

4.1. Dataset 

In this experiment, we chose the MPII dataset [26] to evaluate the performance of our model. The 
MPII Human Pose dataset is one of the leading benchmarks for evaluating joint-based human pose 
estimation. It contains approximately 25000 images, defines 16 types of human keypoint annotations, 
covers 410 common human activity scenarios, and annotates over 40000 skeletal keypoints of 
individuals. The MPII dataset is widely recognized in the field of human pose estimation, and many 
excellent pose estimation models use the Percentage of Correct Keypoints (PCK) metric to evaluate 
their performance on this dataset. Therefore, we selected the MPII dataset as the evaluation benchmark 
for our experiments to ensure the effectiveness of our model in this domain. 

4.2. Evaluation 

PCK is one of the commonly used performance evaluation metrics in the field of human pose 
estimation. It is employed to gauge the accuracy of a model in predicting the positions of key points 
on the human body. PCK measures the model’s performance by calculating the ratio of detected 
keypoints to true keypoints within a normalized distance threshold. If the distance falls within the 
predefined threshold, the detected keypoint location is considered correct. A higher PCK value 
indicates better model performance. The threshold for PCK is typically set based on the relative size 
of body parts. A common practice is to use the diameter of the head or body as the reference size. This 
approach ensures a fair comparison of PCK across different human poses and sizes. Therefore, we 
adopt PCK as the evaluation metric for algorithm accuracy. In the MPII dataset, the head length is used 
as a normalization reference, and the calculation of PCK is as given in Eq 7. 

 𝑃𝐶𝐾௜
௞ ൌ

∑ ఋቆ
೏೛೔

೏೛
೏೐೑ஸ்ೖቇఋ൫௩೛೔வ଴൯೛

∑ ఋ൫௩೛೔வ଴൯೛೔
  (7) 

In Eq 7, 𝑃𝐶𝐾௜
௞  represents the PCK metric for keypoint with id i under the threshold 𝑇௞ . 𝑑௣௜ 

represents the Euclidean distance between the predicted ith keypoint for the current person p and the 
ground truth, while 𝑑௣

ௗ௘௙ represents the head diameter. 𝑣௣௜  indicates the visibility of the ith keypoint 
for person p. 𝑇௞ represents the manually set threshold. 
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We employ the number of parameters and computational complexity as evaluation metrics for 
model complexity. The number of parameters refers to the quantity of adjustable weights and 
parameters in the model that need to be learned. It is typically an important indicator for assessing 
model size and complexity. Computational complexity, on the other hand, refers to the number of 
computational operations that the model needs to perform during inference (prediction). Higher 
computational complexity may require more computational resources such as CPU, GPU, or TPU for 
efficient inference in real-world applications. Thus, evaluating computational complexity helps 
determine whether a model is suitable for specific hardware and application scenarios. 

4.3. Experimental environment and details 

4.3.1. Experimental environment 

The software and hardware environment used in this experiment is shown in Table 2. 

Table 2. Experimental environment configuration. 

Hardware/Software Configuration Description 

Operating System Windows10 

Deep Learning Framework Pytorch 

Programming Language Python 

Memory 32GB DDR4 

Processor Intel Core i5-12490F Six-Core 

GPU NVIDIA GeForce RTX 3060Ti 

4.3.2. Experimental details 

During the data preprocessing stage, we resize the input images to 256 × 256 pixels and apply 
image scaling, rotation, and flipping for data augmentation. In the training process, we have chosen to 
use Gaussian heatmaps as the target type. This indicates that the model’s output adopts a heatmap 
representation based on Gaussian distribution, where high probability regions correspond to accurate 
locations of the human body pose. This design enables the model to learn and predict the positions of 
keypoints in a probabilistic manner, enhancing its flexibility to adapt to various pose expressions. The 
model’s output consists of 64 × 64 heatmaps, reducing computational complexity while retaining 
sufficient information to capture the structure and relationships between joints. 

In the training configuration, we set the batch size to 32 and conducted a total of 210 training 
epochs. Adam was employed as the optimizer, with a learning rate (LR) set to 0.001. To further refine 
the model’s learning process, we introduced a LR scheduling strategy. Specifically, at the 170th 
and 200th epochs, we adjusted the LR by a factor of LR_FACTOR (0.1). Additionally, we configured 
the weight decay (WD) to be 0.0001, aiming to impose regularization control on the model parameters. 
The momentum was set to 0.9, facilitating the consideration of historical gradients during the 
parameter update process. 
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4.4. Experimental results and analysis 

Table 3 presents the performance results of our proposed method HR-LiteNet and other methods 
on the MPII validation dataset. The compared algorithms, Ghostnet_pose, shufflenetv2_pose, 
mobilenetv2_pose, and efficientnet_pose, are lightweight human pose models built on popular 
lightweight network architectures such as Ghostnet, shufflenetv2 [27], mobilenetv2 [28], and 
efficientnet [29], where the classification layers of the original models are replaced with 
deconvolutional and fully connected layers for human pose estimation. 

Our method achieved an accuracy of 83.6%on the MPII validation dataset while reducing the 
parameter count by 26.58 M and decreasing the computation cost by 8.04 GFLOPs compared to the 
Hrnet_W32 network. In comparison to shufflenetv2_pose and efficientnet_pose networks, which 
maintain similar accuracy, HR-LiteNet reduced the parameter count by 5.63 M and 9.43 M, 
respectively, and decreased the computation cost by 0.24 GFLOPs and 0.61 GFLOPs, respectively. 
Compared to the mobilenetv2_pose network, HR-LiteNet improved accuracy by 2.45%, reduced the 
parameter count by 7.65 M, and decreased the computation cost by 0.51 GFLOPs. Our approach 
demonstrates satisfactory results in various performance metrics, parameter count, and computational cost, 
providing valuable insights for the research and application of lightweight human pose recognition models. 

Table 3 provides a comparison of the experimental results on the validation dataset for various models. 

Table 3. Experimental comparison of multiple algorithms. 

Method Input Pretrain Params (M) GFLOPs PCK 

Hrnet_W32 256 × 256 Y 28.50 9.50 90.300 

Ghostnet_pose 256 × 256 N 8.71 1.68 85.428 

shufflenetv2_pose 256 × 256 N 7.55 1.70 84.065 

mobilenetv2_pose 256 × 256 N 9.57 1.97 81.194 

efficientnet_pose 256 × 256 N 11.35 2.07 83.851 

HR-LiteNet 256 × 256 N 1.92 1.46 83.643 

 

Figure 9. Keypoint accuracy of the lightweight network. 

Figure 9 illustrates the keypoint accuracy performance of our proposed HR-LiteNet method 
compared to other lightweight methods on the MPII validation dataset. As observed from the figure, 
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our constructed lightweight model performs well in the recognition of challenging keypoints such as 
the Elbow, Wrist, and Hip. 

Table 4 presents the performance results of HR-LiteNet and other lightweight methods on the 
MPII test set. HR-LiteNet achieved an accuracy of 85% on the test set, which is 1.9% higher than that 
of mobilenetv2_pose. While reducing the number of parameters by 7.65 M and the computational cost 
by 0.51 GFLOPs compared to mobilenetv2_pose. In comparison to efficientnet_pose, HR-LiteNet 
achieved nearly identical accuracy while reducing the number of parameters by 9.43 M and lowering 
the computational cost by 0.61 GFLOPs.  

Figure 10 displays the visual recognition results of our proposed human pose recognition method 
on a series of human image samples. As seen in the images, our method has achieved good performance 
in identifying human key points. However, we also need to acknowledge some limitations: First, our 
method currently supports only single-person recognition; second, under conditions of high occlusion, 
there may be instances of misidentification. In light of these limitations, we will strive for further 
improvements and exploration in our future work. 

The experimental results demonstrate that in scenarios with low occlusion, we ensure the 
accuracy of model performance while successfully reducing the model’s parameter count and 
computational complexity. Regarding practical video recognition applications, our model achieves a 
high efficiency of 15 frames per second on a device equipped with a 3060ti graphics card, ensuring 
smooth and stutter-free recognition of video frames. This provides a viable solution for real-time video 
recognition under constrained hardware conditions. 

Table 4. Comparative experimental results of various models on the MPII test set. 

Method Params (M) GFLOPs Head Shoulder Elbow Wrist Hip PCK 

Ghostnet_pose 8.71 1.68 97.4 94.0 86.7 80.6 86.2 86.5 

shufflenetv2_pose 7.55 1.70 97.1 93.7 85.5 78.7  85.4 85.4 

mobilenetv2_pose 9.57 1.97 96.7  92.3  83.2 76.1  84.2 83.1 

efficientnet_pose 11.35 2.07 97.0 93.5 84.7 79.0 85.8 85.1 

HR-LiteNet 1.92 1.46 97.2 93.3 85.7 79.6 86.1 85.0 

 

Figure 10. Some visualization result graphs of our method. 
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5. Conclusions 

In practical applications, deploying large-scale network algorithms on regular devices can be 
challenging due to computational and memory constraints. To make models more lightweight and 
suitable for resource-limited environments, this study introduced a novel lightweight human skeleton 
keypoint detection network model, HR-LiteNet, based on the HRNet. HR-LiteNet incorporates 
lightweight L_Block and L_Basic modules. Experimental results on the MPII dataset demonstrate that 
HR-LiteNet maintains high accuracy compared to other lightweight networks while significantly 
reducing the number of parameters and computational complexity. This design provides a new solution 
for pose recognition in resource-constrained environments, striking a balance between accuracy and 
lightweight requirements. 
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