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Abstract: Accurately predicting traffic flow is an essential component of intelligent transportation 
systems. The advancements in traffic data collection technology have broadened the range of features 
that affect and represent traffic flow variations. However, solely inputting gathered features into the 
model without analysis might overlook valuable information, hindering the improvement of predictive 
performance. Furthermore, intricate dynamic relationships among various feature inputs could 
constrain the model's potential for further enhancement in predictive accuracy. Consequently, 
extracting pertinent features from datasets and modeling their mutual influence is critical in attaining 
heightened precision in traffic flow predictions. First, we perform effective feature extraction by 
considering the temporal dimension and inherent operating rules of traffic flow, culminating in 
Multivariate Time Series (MTS) data used as input for the model. Then, an attention mechanism is 
proposed based on the MTS input data. This mechanism assists the model in selecting pertinent time 
series for multivariate forecasting, mitigating inter-feature influence, and achieving accurate 
predictions through the concentration on crucial information. Finally, empirical findings from real 
highway datasets illustrate the enhancement of predictive accuracy attributed to the proposed features 
within the model. In contrast to conventional machine learning or attention-based deep learning models, 
the proposed attention mechanism in this study demonstrates superior accuracy and stability in MTS-
based traffic flow prediction tasks. 

Keywords: intelligent transportation system; traffic flow modeling; time series analysis; deep learning; 
attention mechanism 
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1. Introduction  

In recent years, the rapid development and application of traffic sensor technology have enabled 
the acquisition of large-scale traffic data of different types, ushering us into the era of big traffic 
data [1]. Based on this, Intelligent Transportation Systems (ITS) effectively control and plan urban 
traffic by collecting, processing, and utilizing large-scale traffic big data [2]. Traffic flow prediction, 
as a crucial component of ITS, plays an essential role in reducing traffic congestion, improving air 
quality and other factors.  

There are many research findings on short-term traffic flow prediction, primarily categorized into 
parameter-based methods, traditional machine learning models, and deep learning models. Parameter-
based methods and traditional machine learning models cannot effectively process and analyze large-
scale data, limiting their prediction accuracy. In contrast, deep learning models have shown promising 
results in processing large-scale traffic data due to their powerful feature expression and modeling 
capabilities for complex problems. However, deep learning models have limitations that need to be 
addressed. On the one hand, traffic data is time-series data. while deep learning models can delve 
deeper into the temporal patterns of data, it is not rigorous to only process traffic data as time-series 
data. Traffic flow changes are affected by external factors such as holidays, traffic accidents, and more. 
Characterizing internal factors that affect traffic flow also helps the model learn the inherent patterns 
of traffic flow changes and further improve prediction accuracy. Therefore, it is necessary to identify 
related features and explore the deep relationships between features for improved prediction accuracy. 

On the other hand, with the development of traffic sensor technology, collected data is usually in 
the form of multivariate time-series data (MTS), Where complex dynamic correlations between 
different variables may exist , proving crucial for traffic flow prediction but difficult to capture and 
analyze. For MTS prediction tasks, adequate consideration of multidimensional features can enhance 
the network's prediction ability. However, in current traffic flow prediction tasks, there is a lack of 
consideration for the multidimensional feature characteristics of MTS data. 

In this article, we propose a solution to the traffic flow prediction problem, addressing the 
aforementioned limitations and requirements. The major contributions of this article are: 

(Ⅰ) Time features were generated by visualizing the data to analyze the impact of various external 
factors across different time dimensions on traffic flow. Additionally, traffic flow operation status 
features were created by combining traffic flow models to explore the inherent characteristics of traffic 
flow changes. 

(Ⅱ) Using different state variables composed of various features as input variables to investigate 
the interactions between features and their impact on traffic flow prediction. 

(Ⅲ) The proposal of an attention mechanism that weights relevant feature vectors instead of 
relevant time steps. The model’s applicability was evaluated on four benchmark datasets and compared 
with several state-of-the-art models. The results demonstrated that the proposed model outperformed 
all four datasets regarding prediction accuracy. 

The article is organized as follows: Section 2 provides an overview of the relevant research 
progress on traffic flow prediction. In Section 3, presents the dataset properties and explores the dataset 
features from two perspectives: The time dimension and the internal operation regularity of traffic flow. 
Sections 4 and 5 propose a method to use the attention mechanism based on the degree of influence of 
prediction results to weight features, while Section 6 discusses the experimental results. Finally, we 
conclude this article in Section 7. 
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2. Related work 

Traffic flow prediction is a research field that dates back to the 1970s and plays a crucial role in 
Intelligent Transportation Systems (ITS). Early studies on traffic flow prediction encountered 
limitations in datasets and models, resulting in relatively singular input features. Bor et al. successfully 
forecasted traffic flow within high-speed networks by integrating traffic flow data with the fuzzy 
autoregressive (fuzzy-AR) model [3]. Williams et al. employed seasonal autoregressive integrated 
moving average processes to model univariate traffic condition data streams for predicting traffic 
flow [4]. Luis et al. predicted short-term passenger demand distribution within taxis through the 
utilization of taxi-installed sensor data [5]. 

With the development of traffic sensor technology, an increasing number of features are being 
utilized in traffic prediction. For example, Wu et al. combined multiple external data sources to analyze 
and predict taxi demand from various dimensions, including points of interest, weather, and vehicle 
collisions [6]. Trinh et al. combined traffic flow data, local weather, and traffic location connectivity 
graph data using a multivariate model to generate traffic flow predictions [7]. Similarly, Geng et al. 
forecast lane-changing behaviors by integrating road traffic conditions and vehicle motion parameters [8]. 
Aljuaydi et al. utilized an input dataset with five features (the flow rate, the speed, the density, road 
incidents, and rainfall) to predict traffic flow during road crashes and rainy conditions [9]. In addition, 
feature mining through data analysis and relevant prediction demands has also been a research focus. 
For instance, Chen et al. applied feature engineering to mine a large amount of traffic flow data [10]. 
An et al. utilized a fuzzy reasoning mechanism to generate traffic accident information from actual 
traffic data, which improved the prediction performance of the model [11]. Li, Wang, et al. employed 
time series decomposition to extract stable sub-sequences used for model prediction [12,13]. Zhang et 
al. developed a Peak Zoom network to capture the peak effect and enhance the prediction performance 
for crucial time steps in traffic flow prediction [14]. Mendez et al. employed CNN to extract valuable 
hidden features from input data for long-term traffic flow prediction tasks [15]. 

Despite the potential benefits of incorporating more features in deep learning models, the 
collinearity between different features and their dynamic interference may lead to worse prediction 
results. To address this issue, Du et al. used factor analysis to calculate the variance contribution of 
various features to the prediction results and selected features for traffic flow prediction [16]. Wang et 
al. introduced the MC-STGCN model for assessing the correlation among distinct features within 
spatiotemporal graphs [17]. Li et al. introduced a hybrid framework named HyDCNN based on 
position-aware Dilated CNN. This framework effectively mitigates the influence of linear 
dependencies among temporal data [18]. Zhao et al. proposed the Multivariate Constraint Sample 
Entropy (McSE) as a means to integrate multivariate constraint relationships, enhancing predictive 
accuracy [19]. Compared to other feature selection models, the attention mechanism has been widely 
used in deep learning models because of its simple structure and automatic weighting of different 
features [20–23]. For example, Fang et al. introduced the attention mechanism into LSTM, weighting 
features in the time dimension and achieving better prediction results [24]. Wan et al. developed a 
multivariate temporal convolutional attention network (MTCAN) by employing 1D dilated 
convolution to enhance the extraction of input features [25]. Shih et al. proposed a temporal pattern 
attention (TPA) mechanism, which utilized one-dimensional convolution to extract deep feature 
information from LSTM hidden layer states and applied an attention mechanism for feature weighting 
to complete MTS prediction tasks [26]. Geng et al. enhanced the representation of temporal 
correlations among external features by incorporating Feature-level attention into the graph attention 
mechanism module [27]. Cao et al. developed a Spectral Temporal Graph Neural Network (StemGNN) 
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that utilizes attention mechanisms to establish dynamic correlations between features [28]. However, 
attention mechanisms often calculate the features processed by deep learning models, which may filter 
out high-value information during the deep learning model processing and fail to focus on the trends 
and dynamic interference between different features. 

In summary, how to introduce more useful features that contribute to traffic flow prediction 
remains a topic worth discussing. For traffic flow prediction tasks that involve multi-dimensional 
feature input, it is also worth exploring how to reduce the mutual influence between different input 
features to improve prediction accuracy without significantly increasing model training costs. 

3. Data analysis and feature processing 

In this section, we describe the data preprocessing and feature extraction work. The section is 
divided into three parts: First, we analyzed and preprocessed the dataset to obtain the required data for 
feature creation, and filtered out raw features. Second, we visualized the traffic flow data to mine its 
time characteristics. Last, we analyzed the inherent variation characteristics of traffic flow, in 
combination with the traffic flow model, to obtain the traffic flow operating state features for 
subsequent traffic flow prediction. 

3.1. Data preparation 

The experimental dataset used in this study is the PEMS public dataset provided by the California 
Department of Transportation, which spans over a decade and contains various information affecting 
traffic volume. Four adjacent detection stations located on the I5 and I710 interstate highways were 
selected as the research objects. The data was collected at a time interval of 5 minutes, from January 
1, 2019, to June 30, 2019, and the corresponding monitoring point locations are depicted in Figure 1. 
The dataset contains a small proportion of missing data, which was filled using the median method. 

 

Figure 1. Corresponding location of detection station. 

During the data collection process, four major aspects are considered: Time-related data, spatial 
location data, base station data, and traffic flow data. Time-related data includes information related to 
traffic flow's time, such as collection date and time. Spatial location data includes location information 
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of stations, such as station location area and road grade. Base station data refers to the machine 
information of the base stations, such as the station number and length. Traffic flow data describes the 
traffic flow state, including traffic volume and occupancy rate. Table 1 provides a detailed description 
of the dataset, which is also divided into four parts for ease of introduction 

Table 1. Dataset details. 

Type Attribute Meanings 

Time-related data Year Year of collection 

Month Month of collection 

Day Day of collection 

Time stamp The time of the beginning of the summary interval. For 

example, a time of 08:00:00 indicates that the aggregate (s) 

contain measurements collected between 08:00:00 and 

08:04:59. 

Special location data District City area where the base station is located 

 Lane Type A string indicating the type of lane 

Detection station data Node Unique station identifier 

 Direction of Travel N | S | E | W 

 Station Length Segment length covered by the station 

Traffic flow data Occupancy Average occupancy over the 5-minute period expressed as a

decimal number between 0 and 1 

 Speed Flow-weighted average speed over the 5-minute period 

 Total Flow Sum of flows over the 5-minute period 

In the original dataset, valuable feature inputs are necessary to demonstrate the performance of 
non-parametric models more effectively. Spatial data represents the urban area where the base station 
is located and is used as quantitative data, but at the current research stage, it has limited impact. The 
base station data is primarily used for network node identification, and since the prediction target is 
based on a single base station, it is not processed in this paper. We consider constructing new features 
from two perspectives based on the existing features. First, time features are constructed based on the 
distribution characteristics of data in the time dimension. Second, to explore the inherent 
characteristics of traffic flow changes, traffic flow operation status is constructed by combining traffic 
flow models. 

3.2. Time feature analysis 

During the analysis of time features, the traffic flow data of the P1 station for two consecutive 
weeks was used as an example, as shown in Figure 2. Based on the daily trend analysis, there are local 
differences in traffic flow, but overall, it is associated with the time of day. Specifically, during the 
early morning period, traffic flow tends to decrease to a lower value, whereas it remains higher during 
the day. 

From the analysis of the weekly trend, it is observed that traffic flow peaks in the morning and 
evening during weekdays, whereas this trend is not evident on weekends. To quantify the impact of 
holidays on traffic flow, we employ a normalization method. Assuming that the longest continuous 
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holiday in a year lasts 𝑝 days, the two-day weekend holiday can be quantified as 2/𝑝, and other 
holidays can be quantified as 𝑝௜/𝑝 , where 𝑝௜  represents the length of the holiday. The specific 
expression is shown in Eq (1). 

  

0,

2 / ,

/ ,i

workday

holiday p weekend

p p other holidays


 



 (1) 

 

Figure 2. Two weeks traffic flow changes at the detection station. 

3.3. Traffic flow operation state analysis 

Traffic flow models aim to quantify the relationship between flow, speed, and traffic density to 
explain the basic rules and properties of actual traffic operations. To explore the inherent variability of 
traffic flow, selecting a suitable model is essential. We employ a traffic flow model presented in Table 2 
to ensure the model’s applicability. 

Table 2. Traffic flow models. 

Single-regime models Functional form 
Greenshields 𝑣 = 𝑣௙ ∙ (1 െ 𝑘/𝑘௝௔௠) 

Greenberg 𝑣 = 𝑣௖ ∙ 𝑙𝑛(𝑘௝௔௠/𝑘)  

Newell 𝑣 = 𝑣௙ ቈ1 െ 𝑒𝑥𝑝 ቆെ ఒ௩೑ ∙ ൬ଵ௞ െ ଵ௞ೕೌ೘൰ቇ቉  

5LP model 𝑣 = 𝑣௕ ൅ ௩೑ି௩್ሼଵା௘௫௣ሾ(௞ି௞೟)/ఏభሿሽഇమ  

S3 model 𝑣 = ௩೑൤ଵାቀ ೖೖ೎ቁ೘൨ మ೘ , 1 ൑ 𝑚 ൑ 8.53  

Note: Parameter explanation: 𝑣௙:free flow speed; 𝑘௝௔௠:jam density; 𝑘௖: critical density; 𝑣௖: speed at critical 

density; 𝑘௧ :transition density from free flow to synchronized flow; 𝑣௕, 𝜃ଵ, 𝜃ଶ, 𝑚: relevant coefficients in 

different models 
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In this paper, we utilize the least squares method to fit the parameters of various models. This 
mathematical optimization approach calculates the model parameters that best fit the data by 
minimizing the sum of the squared errors. As the dataset’s raw data does not contain traffic density k, 
we use the classical Equation (2) to derive it. Figure 3(a) demonstrates the fitting results of the traffic 
flow model for P1. Table 3 lists the fitting results for various detection stations, where we define the 
evaluation index using Eq (3). 

 q kv  (2) 

 
2

1

1
( )

n

v i i
i

MSE v v
n 

  
 (3) 

here, 𝑛 represents the total number of samples that need to be fitted. 𝑣ො௜ represents the speed that the 
model fitted for the i-th sample, and 𝑣௜ represents the corresponding true speed for the i-th sample. 

(a) density-speed distribution (b) density-volume distribution 

Figure 3. Distribution of traffic, density and speed of P1 detection station. 

Table 3. Fitting results of traffic flow models. 

Traffic flow models P1 P2 P3 P4 
Greenshields 117.82 83.60 103.00 109.68 
Greenberg 243.21 117.85 327.96 308.19 
Newell 1652.70 2222.75 1277.96 1366.48 
5LP model 78.15 69.04 34.67 40.28 
S3 74.47 68.48 32.74 39.39 

As presented in Table 3 and Figure 3(a), the S3 and 5LP models exhibit lower fitting errors than 
other models, and they are more closely aligned with the actual density-speed distribution at lower 
densities. While the S3 and 5LP models have comparable fitting errors overall, the discrepancy lies in 
their high-density interval fitting. To determine the optimal model, we conducted a statistical analysis 
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of the fitting deviations of the models in various density ranges, as depicted in Figure 4. The fitting 
deviation is defined as Eq (4). 

 
1 i i

i

v v
Err

n v


 


 (4) 

here, 𝑛 represents the total number of samples in the density range, 𝑣ො௜ is the model-fitted speed in 
the density range, and 𝑣௜ is the true speed in the density range. 

 

Figure 4. Distribution of fitting deviation for different density. 

Based on Figure 4, the S3 model and 5LP models show similar fitting deviations for density 
intervals less than 480 𝑣𝑒ℎ𝑠/𝑘𝑚 , while the S3 model exhibits more stable fitting deviations for 
density intervals above 480 𝑣𝑒ℎ𝑠/𝑘𝑚. When examining Figure 3(a),(b), it becomes evident that the 
sample size is extremely small when the traffic density exceeds 900 𝑣𝑒ℎ𝑠/𝑘𝑚. In addition, the 5LP 
model exhibits significantly lower fitting deviations than the S3 model for traffic densities ranging 
from 480 to 900 𝑣𝑒ℎ𝑠/𝑘𝑚. Therefore, we select the 5LP model for data set fitting considering the 
actual scenario. 

Figure 3(b) shows that as the density increases, the flow monotonically increases while the 
dispersion between data points remains small until a certain density level is reached. At this point, the 
dispersion increases significantly, indicating a transition from a stable to an unstable traffic flow state. 
Thus, traffic density can be used to some extent to characterize changes in traffic flow states. 

Critical nodes that exist during the traffic flow process can be obtained using the flow-density 
curve of the traffic flow model. The parameter 𝑘௧ in the 5LP model is theoretically proven to be the 
density at which the transition from free flow to synchronized flow occurs [29]. The corresponding 
critical point of the maximum flow rate can be found from the curve, which is the inflection point of 
the traffic capacity. The density at this point is 𝑘௠, an important indicator for evaluating whether the 
traffic flow has entered a congested state. Therefore, we classify traffic flow into three operating states: 
Free flow, synchronized flow, and congested flow based on traffic flow density, which corresponds to 



987 

Electronic Research Archive  Volume 32, Issue 2, 979–1002. 

regions I–III in Figure 3(b). Table 4 presents the transition density and critical density corresponding 
to different datasets. 

Table 4. Density nodes corresponding to different datasets. 

Density P1 P2 P3 P4 

tk  186.88 179.92 174.00 190.24 

mk  261.12 283.04 279.96 236.40 

As mentioned above, the input variables compiled in this paper are listed in Table 5: 

Table 5. Model input variables. 

Feature Meaning Range 

Total Flow 
Total flow of incoming and outgoing traffic of one 

specific station 
q 

Speed 
Flow-weighted average speed of incoming and 

outgoing traffic of one specific station 
v 

Occupancy 
Average occupancy of incoming and outgoing 

traffic of one specific station 
[0,1] 

Time section Time section of one day 
{0,1,2…95} (Take 

15 min as a section) 

Holiday Mark the data if it is collected on holiday Equation (1) 

Traffic flow operation status Classification according to traffic flow status {0,1,2} 

4. Preliminaries 

This section will briefly introduce two important related models: the LSTM model and the attention 
mechanism. Through the reasonable use of both models, the TPA-LSTM+ model will be used to 
identify the degree of influence of different features on traffic flow and in traffic flow prediction tasks. 

4.1. LSTM model 

The LSTM model, a RNN model, incorporates a “cell state” 𝐶௧ and utilizes three gate structures 
(input gate, output gate, and forget gate) to accumulate information. This design endows the LSTM 
model with the ability to capture long-term dependencies [30–33]. The detailed model structure is 
presented in Figure 5. 

Assuming that there is a set of time series information ሼ𝑥ଵ, 𝑥ଶ, … , 𝑥௧ሽ , where 𝑥௜ ∈ ℝ௡ , the 
function of the LSTM model is defined as shown in Eq (5). ℎ௧ ∈ ℝ௠ is used to represent the hidden 
state at time t. 

 1 1( , , )t t t th LSTM h c x   (5) 
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The specific definition of the LSTM structure is shown below: 
Input Gate: 

 1( )t xi t hi ti sigmoid W x W h    (6) 

Forget Gate: 

 1( )t xf t hf tf sigmoid W x W h    (7) 

Cell State: 

 1 1tanh( )t t t t xg t hg tc f c i W x W h      (8) 

Output Gate: 

 1( )t xo t ho to sigmoid W x W h    (9) 

Output hidden state and prediction results: 

 tanh( )t t th o c   (10) 

 ( )t t hl ty Linear h W h   (11) 

where 𝑖௧，𝑓௧，𝑐௧，𝑜௧ ∈ ℝ௠，𝑦௧ ∈ ℝ௪ , the learnable weight matrices 𝑊௫௜，𝑊௫௙，𝑊௫௢，𝑊௫௚ ∈ℝ௠×௡, 𝑊௛௜，𝑊௛௙，𝑊௛௢，𝑊௛௚ ∈ ℝ௠×௠，𝑊௛௟ ∈ ℝ௪×௠, ⊙ represents element-wise multiplication. 
Since sigmoid and tanh are two different activation functions, the value ranges of 𝑖௧，𝑓௧ and 𝑜௧are 
(0,1), and the value range of tanh(𝑐௧) is (-1, 1). 

 

Figure 5. Basic Architecture of LSTM Model. 

In summary, the LSTM model incorporates an input gate, a forget gate, and an output gate to 
regulate the degree of information accumulation and update the “cell sta” 𝑐௧. The updated “cell state” 
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𝑐௧ is combined with the output gate to produce the corresponding hidden state ℎ௧ at the next time 
step. The predicted value𝑦௧ is obtained by a fully connected layer based on the output hidden state ℎ௧. 
Compared to the RNN model, the LSTM model’s gate structure and “cell state” can preserve long-
term information and prevent issues like gradient explosion or vanishing during the gradient descent 
algorithm [30]. 

4.2. Attention mechanism 

The attention mechanism was initially used in machine translation [34] to identify critical 
information by assigning weights to different parts of the input sequence, facilitating the model in 
making more precise predictions. In the LSTM model, the output hidden state is denoted as 𝐻 =(ℎଵ, ℎଶ, … , ℎ௧ିଵ), where 𝑓(ℎ௜, ℎ௧) = ℎ௜் ℎ௧ represents the scoring function of the attention mechanism. 
The weighted sum of each hidden state ℎ௜  in 𝐻 , denoted as 𝑣௧ , is then used to represent the 
correlation between the previous state information and the current state ℎ௧. Finally, the combination 
of 𝑣௧ and ℎ௧ is utilized to predict the next time step. 

 1

1

exp( ( , ))
( , )

exp( ( , ))

i t
i i t t

j t
j

f h h
softmax h h

f h h
 



 


 (12) 

 
1

1

t

t i i
i

v h




  (13) 

5. The TPA-LSTM+ model 

Previous research has focused on incorporating attention mechanisms into various model 
structures to enhance model performance for diverse tasks. In the LSTM model, the attention 
mechanism extends the scope of information consideration by applying a weighted sum to the hidden 
state 𝐻 [35]. However, in MTS prediction, this attention mechanism is incapable of filtering out noisy 
features that could have an adverse impact on the prediction, and averaging over multiple output states 
makes it challenging to choose effective features for accurate prediction results. 

 

Figure 6. TPA-LSTM+ model architecture diagram. 
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The model structure proposed in this paper is illustrated in Figure 6, where the model employs an 
attention mechanism on the row vectors of the input data. The calculation of attention weights enables 
the model to select the variables that contribute to the prediction and obtain the context vector 𝑣௧, 
representing the weighted sum of the input row vectors. 

5.1. problem formulation 

In the task of predicting traffic flow in MTS, 𝑋 = ሼ𝑥௧ି௪, 𝑥௧ି௪ାଵ, … , 𝑥௧ିଵሽ represents the input 
data of traffic flow, where 𝑥௜ ∈ ℝ௡  indicates 𝑛  features acquired at time 𝑖 , and 𝑤  signifies the 
length of the time window. The corresponding predicted value, denoted as 𝑦ො௧ିଵା∆, is compared to the 
ground-truth value, denoted as 𝑦௧ିଵା∆, where ∆ represents a fixed horizon. Assuming the learning 
function is represented as 𝑓ఏ(∙) and the loss function as 𝑙(∙), the MTS traffic flow prediction task can 
be formulated as: 𝑓ఏ∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛 𝑙(𝑓ఏ(𝑋), 𝑦௧ିଵା∆), where 𝑓ఏ∗ denotes the learning function with the 
optimal learned parameters. 

5.2. Proposed attention mechanism 

The attention mechanism proposed in this study consists of three parts: 
1) Computing the relevant hidden layer state ℎ௧ of the input data 𝑋 using the LSTM model. 

Since ℎ௧ includes the accumulated information of the input data from the previous 𝑤 time steps and 
is utilized for the prediction component of the model, the output 𝑦௧ᇱ from the fully connected layer 
provides a comprehensive consideration of both the input data values and the prediction results, where 𝑦௧ᇱ ∈ ℝ௪. 

 ( )th LSTM X  (14) 

 ( )t ty Linear h   (15) 

2) The scoring function is defined as ℝ௪ × ℝ௪ → ℝ and is utilized to compute the relevance 
between the row vector 𝑥௝ of the input 𝑋 and 𝑦௧ᇱ, thereby evaluating the influence of features on the 
prediction results and the overall input data. The attention mechanism weight 𝛼௜  is calculated 
according to Eq (17), while the context vector 𝑣௧ is derived from the weighted row vector 𝑥௝, where 𝑣௧ ∈ ℝ௪. 

 ( , ) ( )j t j tf x y x y   (16) 

 ( , )i j tsoftmax x y   (17) 

 
1

n

t i j
j

v x


  (18) 

Notably, when computing attention scores, we adopt the feature vectors 𝑥௝ ∈ ℝ௪ to capture the 
significance of features for𝑦௧ᇱ , instead of utilizing the input vectors 𝑥௜ ∈ ℝ௡  at each time step. 
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Specifically, we consider every row of the input matrix 𝑋 ∈ ℝ௡ × ℝ௪ as the input for the scoring 
function, rather than each column. 

After computing the vector 𝑣௧, which considers the impact of different features within the input 
window length 𝑤 on the prediction result, it is important to note that the influence of the input on the 
prediction result can also change over time. Therefore, employing the LSTM model to extract the 
pertinent temporal information from 𝑣௧  we acquire ℎ௧ᇱ ∈ ℝ . Finally, ℎ௧ᇱ   is concatenated with ℎ௧ 
and used to make predictions in the fully connected layer. 

 ( )t th LSTM v   (19) 

 1ˆ ( ( , ))t t ty Linear concat h h    (20) 

The TPA-LSTM+ model weights the different input features through an attention mechanism, 
where the weight of the feature that is more relevant to the prediction result will increase accordingly. 
By further extracting the weighted information of 𝑣௧, the model obtains critical information in both 
the feature and time dimensions. This resolves the limitation of attention mechanisms that can only 
select and weigh in the time dimension in the past. 

6. Experimental results and analysis 

6.1. Evaluation metric selection 

Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute Percentage 
Error (MAPE) are standard metrics used for evaluating the performance of prediction models. While 
MAE and RMSE measure the overall error between predicted and actual values, MAPE assesses the 
overall accuracy of the model’s predictions. The definitions of these metrics are shown in Eqs (21)–
(23) below. 
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here, 𝑛 represents the total number of samples to be predicted, 𝑦ො௜ is the predicted value of the i-th 
data, and 𝑦௜ is the corresponding true value of the i-th data. 

6.2. Experimental settings 

In this study, we focus on short-term traffic flow volume prediction with a prediction time 
interval of 15 minutes. The time step length of the input model determines the amount of information 
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used for prediction. For example, if the time step length is set to 3, the model uses the traffic flow data 
from the previous 45 minutes before the desired prediction time point t. We investigate the impact of 
different time step lengths on the model prediction results and the optimal input traffic flow sequence 
length by adjusting the time step length from 2 to 18, i.e., from 30 minutes to 4.5 hours. 

In this experiment, the dataset was divided into two parts, with the first four months as the training 
set and the rest as the testing set. The Adam algorithm was used as the optimization algorithm for 
gradient descent, with an initial learning rate of 0.001. The hyperparameters optimized included the 
number of hidden layers and batch size. Following the study by LV [36], the number of hidden layers 
in the model should not exceed 4 for short-term traffic flow prediction tasks. Thus, the range for the 
hidden layers was set to {1, 2, 3, 4}. Batch size represents the number of training samples used in one 
gradient descent algorithm optimization process, and the range was set to {16, 32, 64, 128}. To reduce 
the impact of random factors on the model's prediction results, the prediction results were the average 
of five predictions using the same model and conditions. The experiment used early stopping to 
terminate the training process. 

We compared the prediction results of our TPA-LSTM+ model with those of seven other widely-
used advanced models: autoregressive model (AR), support vector regression model (SVR), random 
forest regression model (RF), StemGNN, LSTM, TPA-LSTM, and AM-LSTM. Whereas StemGNN 
calculates the feature correlations by employing a self-attention mechanism on the input features, TPA-
LSTM can select input features, and AM-LSTM selects time features through an attention mechanism. 

In the autoregressive model (AR), the model order p was set to 17. In the support vector machine 
regression (SVR) model, the kernel function used the radial basis function (RBF), and the kernel width 
was set to 3 × 10ିଶ, with a regression level set to 8. In the random forest regression (RF) model, the 
mean squared error (MSE) was used to measure regression tree quality. For the TPA-LSTM model, the 
number of 1D CNN filters was set to 6, and other hyperparameters were set according to [34]. 

In terms of hardware, the experiment was conducted on an Intel i5-7300 2.5GHz CPU and an 
NVIDIA GTX1050 GPU. The model was run on the open-source frameworks Python 3.8.12 and 
PyTorch 1.11.0. 

6.3. Experimental results and analysis 

In this section, we first compared the effect of different feature variables on the model prediction 
by constructing various state variables as input variables. Next, we experimentally compared the 
impact of different time steps on the model prediction to select appropriate hyperparameters. Finally, 
we compared the proposed TPA-LSTM+ model with the latest methods to demonstrate its superiority. 

6.3.1. Analysis of the impact of different feature combinations on model prediction 

In this section, we constructed five different state variables, A, B, C, D, and E, based on the feature 
factors obtained, in order to investigate the impact of different factor combinations on the prediction 
results of traffic flow volume. State variable A contains only flow factors, state variable B contains 
flow, speed, and occupancy factors obtained from the original dataset, state variable C includes time 
feature factors in addition to B, state variable D adds traffic flow operation status feature factors to B, 
and state variable E contains all feature factors. 
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To ensure a fair comparison of the prediction performance, we used commonly used LSTM 
prediction models to analyze the effect of different feature selections on the model prediction, with P1 
traffic flow volume as the predicted object. The results are presented in Table 6. 

Table 6. The impact of different state variables on prediction results. 

 MAE RMSE MAPE (%) 
StateA 291.96 385.08 11.06 
StateB 288.32 379.72 10.49 
StateC 274.80 360.76 10.56 
StateD 284.32 376.20 10.15 
StateE 275.88 361.12 10.18 

Table 6 presented in the preceding section demonstrates that the overall prediction accuracy of 
the model tends to increase with an increase in the number of input factors. Notably, the prediction 
error and accuracy for state variable A, which has only a single factor input, is significantly worse than 
that for other state variables. Although the addition of speed and occupancy rate leads to slight 
improvements in the model’s prediction error and accuracy, these improvements are insignificant. In 
contrast, the inclusion of time feature factors for state variable C reduces the mean absolute error (MAE) 
by 13.52 compared to state variable B, indicating that this addition is helpful for reducing the overall 
prediction error. Furthermore, the addition of traffic flow operation status feature factors for state 
variable D leads to a decrease in the mean absolute percentage error (MAPE) by 0.34 compared to 
state variable B, suggesting that the model is closer to the actual value in predicting results. However, 
the inclusion of all factors for state variable E does not lead to better results, which may be due to the 
collinearity and dynamic interference between different feature factors, leading to a decrease in the 
model’s prediction performance. 

To further validate the effect of the added traffic flow operation state feature on model prediction, 
we conducted statistics on the prediction results of different state variables and obtained the prediction 
result ratios within the range of 20 and 10% error, as shown in Figure 7. 

 

Figure 7. The influence of traffic flow operation status feature on prediction results. 
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Figure 7 indicates that state variables StateD and StateE, which include the traffic flow operating 
state feature, have a higher proportion of predicted results within the 10 and 20% error ranges 
compared to the state variables without this feature. This finding suggests that the added feature can 
improve the model’s prediction accuracy. 

6.3.2. Impact of different input sequence lengths on model prediction 

The length of the input sequence in the LSTM model significantly impacts its prediction 
performance [33]. To explore how the input sequence length influences the attention mechanism and 
to determine the optimal performance of TPA-LSTM+, this study assessed the performance of LSTM, 
TPA-LSTM, and TPA-LSTM+ using nine different input sequence lengths. The results are presented 
in Figures 8–10, with the horizontal axis denoting the input length and the vertical axis representing 
the mean absolute error (MAE), root mean square error (RMSE), and mean absolute percentage error 
(MAPE), respectively. The colored lines in the figures represent the MAE, RMSE and MAPE of the 
three models for each input sequence length. 

 

Figure 8. MAE under different time steps. 

 

Figure9. RMAE under different time steps. 
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Figure 10. MAPE under different time steps. 

The Figures above display that the prediction errors of the models decrease as the input time steps 
increase within a specific range; however, they increase when the time steps exceed this range. The 
impact of time steps on TPA-LSTM+ is the most significant. The TPA-LSTM+ and TPA-LSTM models 
have the minimum prediction errors when the time step is 12, with MAE values of 248.32 and 267.60 
and RMSE values of 330.20 and 353.16, respectively, whereas the LSTM model has the lowest 
prediction errors when the time step is 10, with MAE and RMSE values of 275.88 and 361.12, respectively. 

In contrast, the model prediction accuracy shows a downward trend within a specific range, even 
though there is some fluctuation with the increase in the time step length, as shown in Figure 10. TPA-
LSTM+ achieved the lowest value of 9.82 at a time step length of 12. TPA-LSTM achieved the lowest 
value of 10.04 at a time step length of 14 and the second-best value of 10.12 at a time step length of 12. 
LSTM achieved the lowest value of 10.16 at a time step length of 8 and the second-best value of 10.18 
at a time step length of 10. 

By considering the results from Figures 8–10, it is apparent that TPA-LSTM+ is more affected by 
the time step length than other models, possibly due to the two-part input of the dataset, with the 
optimal input time step length being 12. As the difference in the optimal and second-best solutions in 
model prediction accuracy between TPA-LSTM and LSTM is not significant, the optimal input time 
step lengths for these models are set to 12 and 10, respectively. 

6.3.3. Different model prediction results comparison 

In the prediction experiment, we compared the proposed TPA-LSTM+ model with six other 
commonly used advanced prediction models across four datasets, namely P1, P2, P3 and P4, to validate 
its performance. The results of the comparison are presented in the table below. 

Table 7 illustrates that TPA-LSTM+ performs better than traditional and other deep learning 
methods regarding overall prediction error and accuracy. Parametric methods have fixed structures and 
parameters, making them incapable of capturing the nonlinear relationships within traffic flows, 
resulting in poor performance. On the other hand, non-parametric and deep learning methods 
determine the parameters after training, making it challenging to modify them based on the input data’s 
characteristics during testing. As traffic flow data is affected by various factors, achieving better 
performance is difficult. The embedding of the attention mechanism allows the model to capture input 
data changes and perform better. 
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(a) P1 

 
(b) P2 

 
(c) P3 

 
(d) P4 

Figure 11. TPA-LSTM+ model prediction results and error display. 
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Table 7. Comparison of model prediction results. 

Model Criteria P1 P2 P3 P4 

AR MAE 313.56 255.28 271.16 282.44 

 RMSE 427.2 376.32 366.36 408.28 

 MAPE 11.27 11.15 8.65 12.36 

SVR MAE 339.36 333.36 295.56 377.12 

 RMSE 432.24 420.08 379.44 469.12 

 MAPE 11.86 14.68 9.32 15.6 

RF MAE 283.88 245.12 284.32 297.56 

 RMSE 373.4 339 363.28 370.64 

 MAPE 10.39 8.86 8.83 10.91 

StemGNN MAE 270.90 252.67 258.20 285.00 

 RMSE 368.80 347.27 350.28 367.32 

 MAPE 10.24 10.17 10.23 10.56 

LSTM MAE 275.88 237.84 268.56 274.6 

 RMSE 361.12 322.36 352.72 365.88 

 MAPE 10.18 8.75 8.77 10.43 

TPA-LSTM MAE 267.60 231.68 263.4 264.16 

 RMSE 353.16 315.16 344.52 359.12 

 MAPE 10.12 8.27 8.12 9.88 

AM-LSTM MAE 263.08 231.64 258.16 259.64 

 RMSE 348.68 317.56 339.96 354.36 

 MAPE 9.97 8.78 8.06 10.1 

TPA-LSTM+ MAE 248.32 214.52 249.04 252.08 

 RMSE 330.20 298.84 330.32 346.08 

 MAPE 9.82 8.02 8.03 9.94 

Table 7 shows that TPA-LSTM+ outperforms TPA-LSTM and AM-LSTM in all datasets in terms 
of overall error indicators. TPA-LSTM+ performs worse than TPA-LSTM in dataset P4 in terms of 
overall accuracy indicators. However, for the other models, the MAPE values in dataset P4 are higher 
than in other datasets. Figure 11 shows that traffic flow changes more drastically in dataset P4 than in 
the other three datasets. The TPA attention mechanism employs one-dimensional CNN to extract deep 
features from the input data, making it perform better in dataset P4, where traffic flow changes are 
more volatile. 

6.3.4. The TPA-LSTM+ model prediction results 

Figure 12 shows the weight allocation of different feature factors during the training process of 
the TPA-LSTM+ model, where the horizontal axis represents the iteration times and the vertical axis 
represents the weight allocation of different feature factors. In the four datasets, the overall weight 
allocation gradually stabilizes with the increase in iteration times. For different datasets, the model 
assigns different weights to different factors, but the traffic flow operation status factor has the largest 
weight allocation in different datasets and has the greatest impact on the model prediction. The traffic 
flow volume factor has a relatively large weight allocation. It changes slightly during the iteration 
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process, indicating that the model has already focused on this factor, which is essential for the 
prediction result. 

(a) P1 (b) P2 

(c) P3 (d) P4 

Figure 12. TPA-LSTM+ model weight allocation. 

The distribution of base stations in Figure 1 shows that the traffic flow external influence are 
minimal in P1 and P2 datasets located on the main road of the interstate highway, with minor 
differences in weight allocation. P3 and P4 datasets are located in the interwoven area, and the traffic 
flow changes are unstable and greatly affected by the inflow and outflow of vehicles. Therefore, there 
are different emphases in weight allocation. As shown in Figure 11(c), the traffic flow in the P3 dataset 
shows similar trends on weekends and weekdays, so the model assigns a lower weight to the holiday 
factor in weight allocation. In Figure 11(d), the traffic flow in the P4 dataset shows dissimilar trends 
on weekends and weekdays, and the changes are large, so the model increases its attention to the 
holiday factor. This indicates that the model can automatically weigh different features and calculate 
their impact according to the characteristics of the dataset, and it has certain practicality. 

Figure 11 shows the fitting performance of the proposed TPA-LSTM+ model and the LSTM 
model used for comparison on four datasets. The blue solid line represents the actual traffic flow, the 
orange and black solid lines represent the predicted traffic flow and error of the TPA-LSTM+ model, 
and the green and red dashed lines represent the predicted traffic flow and error of the LSTM model. 
In most cases, the error between the predicted data and the actual value is small. When the traffic flow 
data changes rapidly, the error of the TPA-LSTM+ model is smaller than that of the LSTM model, and 
it can adapt to this change more quickly, demonstrating stronger robustness. 
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7. Conclusions and perspective 

In this study, we initially extract the temporal patterns underlying changes in traffic flow. 
Simultaneously, we introduce a traffic flow model to explore the intrinsic variation patterns within 
traffic flow, capturing features associated with traffic flow operational states. Subsequently, we 
construct a multi-feature input dataset and assess the efficacy of the added features in improving 
prediction performance through experimental validation. Regarding the input of multi-feature traffic 
flow data, we propose a novel method for utilizing attention mechanisms in this study. This method 
eliminates the shortcomings of previous attention mechanisms, which only weighted features on the 
temporal dimension and lacked attention to the original input data features, demonstrating the 
flexibility to select suitable features for different datasets in experiments. The proposed model has 
excellent performance in different datasets. However, there are some urgent issues to be addressed. On 
the one hand, some datasets representing external environmental features are needed to improve the 
features used for prediction. On the other hand, The application of optimization algorithms can enable 
deep learning models to more quickly discover optimal hyperparameters, thus reducing model training 
time [37]. Currently, there are numerous optimization algorithms such as the Diffused Memetic 
Optimizer (DMO) [38], Adaptive Polyploid Memetic Algorithm (APMA) [39], Ant-based Generation 
Constructive Hyper-heuristic, and more [40,41], which are worth considering and utilizing. 
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