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Abstract: Aiming at the wedge friction damper for freight train bogie, considering Dankowicz 
dynamic friction, the mechanical model of a three-degree-of-freedom inclined impact vibration system 
with gap and dynamic friction, is simplified. The mechanical model of the system is established, the 
motion equation of the system is obtained, and the motion state and conditions of the system are 
analyzed. The Poincare map is constructed by selecting a fixed collision section, and the response of 
the system is solved by the fourth-order Runge-Kutta numerical method with variable step size. The 
transition process of the system motion and the phenomenon of sticking and chatter are analyzed by 
numerical simulation when the external excitation frequency changes. The results show that: 1) Under 
certain parameters, with the change of excitation frequency, the system undergoes periodic doubling 
bifurcation, inverse periodic doubling bifurcation, Grazing bifurcation and Hopf bifurcation, and there 
is a “periodic bubble” phenomenon in the system motion. When the system excitation frequency is 
between 3.35–3.55, 4.425–6.12, and 7.34–7.758, the system motion has chatter and sticking 
phenomena; when the system excitation frequency is between 1.75–3.24 and 3.92–4.425, the sticking 
phenomenon disappears, and only the chatter phenomenon exists. 2) When other parameters remain 
unchanged, and the mass ratio decreases from 1.15 to 0.85, nonlinear dynamic phenomena such as the 
transition between periodic bubbles and chaotic bubbles will be found. In this paper, the bifurcation 
and chaos characteristics of the impact vibration system of the wedge friction damper are studied, and 
the rich friction-induced vibration forms such as chatter and sticking are revealed, which provides a 
reference for improving the stability of vehicle operation and the selection of parameters in vehicle 
vibration reduction design in engineering practice. 
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1. Introduction 

Contact collision is a common phenomenon in engineering practice. With the deepening of 
scholars’ research, the frontal collision model cannot describe the oblique collision system with tilt 
angle more accurately. Therefore, the oblique collision system with collision angle should be studied 
in depth. In addition, friction is inevitable in the process of oblique collision. The vibration caused by 
friction affects the stability of the system, accelerates the wear failure of the parts, and has potential 
safety hazards. Duan and Ding [1] discussed the influence of collision parameters such as mass 
clearance and contact surface inclination on the vibration reduction effect of turbine shroud blade 
group system through phase trajectory diagram, bifurcation diagram, and Poincare section diagram. 
Ling et al. [2] established a mechanical model of oblique collision between freight cars and trains at 
railway crossings and studied the dynamic response and derailment mechanism of trains in this 
scenario using the multi-body dynamics method. Dong and Ding [3] established the oblique collision 
model and equation of the whole ring bladed disk system with a shroud and analyzed the dynamic 
response of the blade when the gap between the shrouds and the stiffness of the blade are misaligned. 
In [4–8], the mechanical model with oblique collision was simplified for the actual engineering model, 
and the dynamic behaviors such as oblique collision motion and bifurcation phenomenon of the system 
in engineering practice were studied. Considering the dynamic friction of LuGre, Liu et al. [9] 
established a friction model of blade crown collision, and studied the bifurcation characteristics of 
contact collision and friction motion of shrouded blades. For the single-degree-of-freedom system with 
improved LuGre dynamic friction, Saha et al. [10] analyzed the sticking phenomenon of the system 
through the phase diagram, and compared and analyzed the dynamic characteristics of the system 
under LuGre and improved LuGre dynamic friction. Zhang et al. [11] introduced the Dankowicz 
dynamic friction model into the single-degree-of-freedom vibration system, analyzed the motion state 
and judgment conditions, and studied the friction-induced system vibration and the dynamic behavior 
of the system under the influence of two parameters. 

The wedge friction damper is one of the key components of the three-piece bogie [12], which has 
an important influence on the dynamic performance of the vehicle. Li [13] analyzed the vibration 
characteristics of a 100 t heavy-duty truck with a wedge friction damper and found the influence of 
the relative friction coefficient of the damping system on the stability of the truck. Based on vehicle 
system dynamics, Song et al. [14] used SIMPACK software to establish a nonlinear dynamic model of 
six-axle flat car and analyzed the influence and variation of different friction angles on the dynamics 
of three-axle bogie. Li et al. [12] used SIMPACK software to establish the mechanical model of the 
wedge friction damper and analyzed the spatial force and vibration reduction performance of the 
model. Liu [15] introduced the structure of wedge friction damper for three-piece bogie of freight 
train bogie, analyzed the design value of the relative friction coefficient of the product, and gave the 
value suggestion. 

On the basis of [12–15], aiming at the wedge friction damper for freight train bogie, in order to be 
closer to the actual working conditions and describe the friction-induced vibration characteristics more 
comprehensively, the dynamic friction between the wedge and the side frame is considered, and a 
three-degree-of-freedom oblique collision vibration system with Dankowicz dynamic friction and gap 
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is simplified. The motion equation of the system is established, and the motion state of the system and 
its judgment conditions are analyzed. Based on C language programming and variable step size fourth-
order Runge-Kutta algorithm, the numerical simulation analyzes the evolution process of the system 
motion and the frequency range of the viscous and flutter phenomena when the external excitation 
frequency changes, which can provide a certain reference for the selection of system structure 
parameters in engineering practice. 

2. Modeling of the wedge friction damper system 

The following Figure 1 shows a wedge friction damper. The numbers 1–9 in the figure are bolster, 
right wedge, left wedge, intermediate bolster spring, right bolster spring, left bolster spring, right sub-
wedge spring, left sub-wedge spring, and side frame. 

 

Figure 1. Wedge friction damper. 

In order to be closer to the actual working conditions and consider the influence of vibration 
reduction and lubrication, the bolster 1 is simplified into a mass block ��; the wedge blocks 2 and 3 
are simplified into block �� and block ��, respectively. The damping spring 7 and 8 connected by 
the wedge block 2 and 3 are simplified to the nonlinear spring ��  and the nonlinear spring �� , 
respectively. The lubricating oil between the bolster 1 and the wedge block is simplified as a nonlinear 
damping sum �� and ��, respectively. The bolster spring 4, 5, 6 is simplified into a nonlinear spring 
��; the air damping of the bolster is simplified to linear damping ��; the contact surfaces between the 
wedge block 2, 3 and the side frame 9 are A and B surfaces, and there is sliding friction force between 
the contact surfaces; and a dynamic model of the wedge damper with dynamic friction and gap is 
obtained, as shown in Figure 2. 

 

Figure 2. Dynamic model of wedge friction damper with friction. 
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Between two adjacent collisions, the differential equation of system motion is: 

 �
���̈� + �� − �� − �� − ��� − ��� + ���̇� = � ���( �� + �)
���̈� + �� + ��� = ��

���̈� + �� + ��� = ��
  

(1) 

In Eq (1): ��  is the dynamic friction generated between the contact surface of the 
bolster 1 and the side frame 9 during the movement of the wedge friction damper; �� is the 
nonlinear spring force of the damping spring ��, where � is a small parameter; ��� is a nonlinear 
damping force [16].  

 �� = ���� + �����
� (2) 

In Eq (2), � = 1, 2, 3 

 ��� = ��[1 + �����(�̇� − �̇�)](�̇� − �̇�)
�
� (3) 

In Eq (3), � = 2, 3 , H  is the asymmetry coefficient, which represents the unequal degree of 
damping force between the recovery stroke and the compression stroke of the shock absorber, where 

 sign(�̇� − �̇�) = � 1, �̇� − �̇� > 0
−1, �̇� − �̇� < 0

 (4) 

Select the initial displacement L� = x�(0) as the length scale, construct the time scale �� = ���
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Substituting the above dimensionless parameters into Eq (1), the dimensionless equation of the 
system motion can be obtained: 

 

⎩
⎪
⎨

⎪
⎧�̈� = � ���( �� + �) − ���̇� − ���� − �����

� + ���� + �����
� + ���� + �����

�

+��[1 + � ���( �̇� − �̇�)](�̇� − �̇�)�/� + ��[1 + � ���( �̇� − �̇�)](�̇� − �̇�)�/�

�̈� = �
��

[−���� − �����
� + �� − ��[1 + � ���( �̇� − �̇�)](�̇� − �̇�)�/�]

�̈� = �
��

[−���� − �����
� + �� − ��[1 + � ���( �̇� − �̇�)](�̇� − �̇�)�/�]

 (5) 

The dimensionless expression Eq (6) of Dankowicz dynamic friction model is [17]: 

 �� = ��(����/� �
�

+ ����
����(��)(1 − �

��
)���/�) + ���̇ (6) 

In Eq (6), �� represents the normal total load on the contact surface, � represents the friction 
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coefficient, � represents the standard deviation of the roughness height, � represents the maximum 
allowable asperity deformation, �� = �̇� − �̇� represents the relative slip velocity between mass 1 and 
mass 2 or mass 3, y� represents the separation distance from the radius of the asperity to the normal 
direction, �� is the bristle damping, �� is an ordinary parameter, and �̇ is the internal damping term. 
The evolution of the internal variable � of the dynamic friction model is dominated by Eq (7): 

 �̇ = ��(1 − �
�

���(��)) (7) 

In Eq (7), for �� > 0, z tends to �; for �� < 0, z tends to −�; therefore � ∈ [−�, �]. 
The motion of the state variable y is dominated by Eq (8): 

 �̈ = ��(����/� − 1) + ��(���
��1 − �

��
���/� − �|��|�̇���/�) (8) 

In Eq (8): � > 0, � > 0 are free parameters. The first term on the right side of Eq (8) becomes 
from the asperity shape in the normal direction, and the second term is the normal component of the 
force generated by the collision of the asperities. 

When the displacement difference |�� − ��| = �, the system collides. Since the nonlinear system 
contains collision and friction, the motion state of the system will be converted between chatter, 
sticking and collision. In order to more fully understand the changes in the motion process of the 
system, according to the force and velocity changes of the mass 1, the motion process of the system is 
divided into the following situations. 

Case 1: Mass �� moves under the action of harmonic excitation force � ���(�� + �), and the 
system force analysis of mass �� is carried out. Let �� represent the resultant force of mass ��, the 
�� = ����(�� + �) − ���̇� − ���� − �����

� + ���� + �����
� + ���� + �����

� + ��[1 + ����(�̇� −

�̇�)](�̇�−�̇�)�
�� + ��[1 + ����(�̇� − �̇�)](�̇�−�̇�)�

��  . When the difference between the motion 

displacement of the mass �� and the mass �� or the mass �� is equal to gap d, the system collides, 
due to the symmetry of the left wedge and the right wedge, the resultant force on mass �� is the 
resultant force in the vertical direction as shown in the Figure 3, and the judgment expression is: 

 |�� − ��| = �   (i = 2, 3) (9) 

 

Figure 3. Collision force composite diagram. 

According to the law of conservation of momentum and the relationship between the velocity 
before and after the collision, it can be obtained that: 
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 �
���̇�� + �̇�� = ���̇�� + �̇��
�̇�� − �̇�� = −�(�̇�� − �̇��)    (i = 2, 3) (10) 

Among them, R is the collision recovery coefficient. 
Case 2: If the resultant force of the mass �� is greater than zero or equal to zero and the relative 

velocity of mass ��  and mass ��  or ��  is not zero, the mass ��  performs accelerated slip 
motion, and then �� ≥0, |�̇� − �̇�| ≠0. 

Case 3: If the resultant force of the mass �� is less than zero and the relative velocity of mass 
M� and mass �� or �� is not zero, the mass �� performs decelerated slip motion, and then �� ≤0，
|�̇� − �̇�| ≠0. 

Case 4: If the resultant force of mass �� is less than zero and the relative velocity between mass 
�� and mass �� or mass �� is zero, that is, �� <0, |�̇� − �̇�| =0, mass �� is in a sticking state. 

Based on the above four cases, the numerical simulation of the wedge friction damper oblique 
collision system with gap and friction is carried out to analyze its dynamic behavior. In order to study 
the periodic motion and bifurcation characteristics of the wedge damper system, the Poincaré section 
� = {(��, �̇�, ��, �̇� , �) ∈ R� × S, �� − �� = �, �̇� = �̇��, �̇� = �̇��} is selected. 

The Poincare mapping is established: 

 �(���) = ����, �(�)� (11) 

Of which: 

�(�) = ��(�), ��
(�), �̇��

(�)�̇��
(�)�

�
 

 �(���) = ��(���), ��
(���), �̇��

(���), �̇��
(���)�

�
 (12) 

In Eqs (11) and (12), � = 2, 3, � ∈ R� , �  is a real parameter. The periodic motion in the 
following discussion is represented by n-p-q-l, where n represents the number of excitation periods, p 
represents the number of collisions, q represents the number of chatters, and l represents the number 
of stickings. 

3. The influence of Dankowicz friction on the system 

In advance, through a large number of data simulation experiments, we find the different dynamic 
behavior of the system under different parameters, and select the system parameters of the wedge 
friction damper combined with the engineering practice: �� = 489 kg, �� = 537.9 kg, � = 112 N, 
�� = 2.4 × 104 N/mm, �� = �� = 2.04 × 104 N/mm, �� = 171 N∙s/m, �� = ��= 643 N∙s/m. Take 
the parameters into Eq (1), and calculate the dimensionless parameters of the system: �� = 0.8, �� = 0.85, 
�� = 0.85, �� = 1.1, �� = 1.1, � = 0.85, �� = 0.05, �� = 0.15, �� = 0.15, �� = 0.4, � = 0.2, 
� = 100, �� = 2000, � = 0.0001, � = 3000, � = 0.01, �� = 2.2, � = 1, �� = 0.2, � = 53. Set the 
initial value: �� = 0, �� = 0, �̇� = 0, �̇� = 0. Taking the dimensionless frequency as the bifurcation 
control parameter, the global and local bifurcation diagrams of the system motion obtained by 
numerical simulation are shown in Figure 4. From the bifurcation diagram in Figure 4, it can be seen 
that as the frequency ω increases from 1 to 8, the system motion undergoes inverse periodic doubling 
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bifurcation, periodic doubling bifurcation, Grazing bifurcation, and Hopf bifurcation to each other between 
single-period, multi-period, quasi-period, and chaos. As shown in Figure 4(a), when ω∈[1, 1.454], the 
system is in a chaotic state, and when ω∈[1.454, 3.2], the system is in period three motion. As shown 
in Figure 4(b), when ω∈[3.2, 4.1], the system is in chaotic and multi-period motion. As shown in 
Figure 4(c), when ω∈[4.3, 4.66], the system is in period six motion and period nine motion successively, 
and then Hopf bifurcation occurs. When ω∈[4.66, 4.93], the system is in almost periodic motion. As 
shown in Figure 4(a), when [4.93, 6.33], the system transitions between periodic three motions, 
periodic six motions and periodic twelve motions. As shown in Figure 4(d), when [7, 8], the system 
transitions between multi-period motion and chaos. By analyzing the motion process of the system 
with frequency change, it is found that the system is a stable periodic motion in the parameter interval 
ω∈[1.75,3.24], ω∈[4.029,4.65], ω∈[5,6.33] and ω∈[6.6,7.225]. The elastic force, damping force, 
and external excitation force are coupled to each other due to collision and friction in the motion system 
of the wedge shock absorber, which leads to chatter. Through the phase diagram, poincare section 
diagram, and time history diagram of the system motion with the change of bifurcation control 
parameters, the chatter, collision, and sticking of the wedge damper during the train operation are 
studied in detail. 

         

(a) Global bifurcation of system motion            (b) Local bifurcation of system motion 

         

(c) Local bifurcation of system motion           (d) Local bifurcation of system motion 

Figure 4. System motion bifurcation diagram. 
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When the system frequency is � = 1.75, as shown in Figure 5(a),(b), the corresponding phase 
diagram and displacement-time history diagram of the system are in the 1-3-2-0 periodic motion. 
Under the action of an external excitation, the system has three collisions and two chatters. As the 
external excitation frequency of the system increases, the system undergoes a period-doubling 
bifurcation and transits to a short period of twelve motions. When the system frequency � = 3.24, as 
shown in phase diagram 5(c) and displacement-time history diagram 5(d), the system is in a 1-12-9-0 
periodic motion. Under the action of an external excitation, the system undergoes twelve collisions 
and nine chatters. As the system frequency continues to increase, when � ∈ [3.35, 3.55] is selected, 
the sticking phenomenon occurs, and the system motion state is converted between sticking and chatter. 
As shown in Figure 5(e)–(p), the amplitude of the system chatter first decreases from large to small, 
reaches the minimum value at � = 3.395, and then decreases from small to large. Furthermore, the 
duration of the sticking phenomenon first increases from less to the longest at � = 3.395, and then 
the phenomenon gradually weakens until it disappears. The excitation frequency � = 3.922  is 
selected, as shown in Figure 5(q),(r). The system is in a 1-8-6-0 periodic motion. Under the action of 
an external excitation, the system has eight collisions and six chatters. When the excitation frequency 
� = 4.029, it can be seen from Figure 5(s),(t) that the system has a Grazing bifurcation. Because the 
displacement difference between mass �� and mass �� and mass �� is exactly d, the direction of 
the resultant force of mass �� suddenly changes, and under the action of the resultant force, it moves 
away from mass �� and mass ��. At this time, the system is in a 1-6-6-0 periodic motion. Under 
the action of an external excitation, the system has six collisions and six chatters. 

                 
(a) Phase diagram (� = 1.75)    (b) Displacement-time history diagram    (c) Phase diagram (� = 3.24) 

                  

(d) Displacement-time history diagram    (e) Phase diagram (� = 3.35)  (f) Displacement-time history diagram 

Continued on next page 



970 

Electronic Research Archive  Volume 32, Issue 2, 962-978. 

                   

 (g) Velocity-time history diagram         (h) Poincare cross section         (i) Phase diagram (� = 3.395) 

                    

  (j) Displacement-time history diagram   (k) Velocity-time history diagram         (l) Poincare cross section 

                    

  (m) Phase diagram (� = 3.55)   (n) Displacement-time history diagram    (o) Velocity-time history diagram 

                    

      (p) Poincare cross section        (q) Phase diagram (� = 3.922)   (r) Displacement-time history diagram 

Continued on next page 
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   (s) Phase diagram (� = 4.029)    (t) Displacement-time history diagram 

Figure 5. System motion diagram. 

When the excitation frequency � = 4.187  is selected, as shown in Figure 6(a),(b), the 
corresponding phase diagram and displacement-time history diagram of the system are in the 1-3-3-0 
periodic motion. Under the action of an external excitation, the system has three collisions and three 
chatters. Then, the system undergoes periodic doubling bifurcation, as shown in Figure 6(c)–(e). It can 
be seen that the system is in a 1-6-4-1 periodic motion. Under the action of an external excitation, 
the system undergoes six collisions, four chatters and one sticking. When the excitation frequency 
� = 4.4258, as shown in Figure 6(f)–(h), the system enters the period 1-9-7-2 motion, and the system 
appears the Grazing collision behavior through the Grazing bifurcation. When the excitation frequency 
� ∈ [4.65, 4.9] , as shown in Figure 6(i)–(l), with the increase of � , the inverse Hopf bifurcation 
occurs in the system, and the system enters the periodic 1-3-2-1 motion through phase locking. Under 
the action of an external excitation, the system undergoes three collisions, two chatters and one sticking. 

                     
(a) Phase diagram (� = 4.187)  (b) Displacement-time history diagram  (c) Phase diagram (� = 4.425) 

                    
(d) Displacement-time history diagram  (e) Velocity-time history diagram  (f) Phase diagram (� = 4.4258) 

Continued on next page 
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(g) Displacement-time history diagram   (h) Velocity-time history diagram   (i) Phase-lock (� = 4.68) 

                     

     (j) Phase diagram (� = 5)    (k) Displacement-time history diagram   (l) Velocity-time history diagram 

Figure 6. System motion diagram. 

The excitation frequency � = 6.12 is selected, such as Figure 7(a)–(c), which shows that the 
system is in period 1-12-12-1 motion. Under the action of an external excitation, the system has twelve 
collisions, twelve chatters and one sticking. The excitation frequency � = 6.34 is selected, as shown 
in Figure 7(d),(e), which shows that the system enters the period 1-6-6-0 motion through the grazing 
bifurcation, and the sticking phenomenon disappears. Select the excitation frequency � = 7.05. As 
shown in Figure 7(f),(g), the system is in periodic 1-3-3-0 motion. Under the action of an external 
excitation, the system undergoes three collisions and three chatters. When the excitation frequency 
� = 7.276, the system enters the period 1-5-5-0 motion. Under the action of an external excitation, 
the system has five collisions and five chatters. As the system frequency continues to increase, when 
� ∈ [7.34, 7.578] is selected, the system motion state is converted between sticking and chatter. As 
shown in Figure 7(e)–(p), the amplitude of the system chatter first decreases from large to small, 
reaches the minimum value at � = 3.395, and then decreases from small to large. At the same time, 
the duration of the sticking phenomenon increases from less to more, and the duration is the longest 
when � = 3.395 , and then the phenomenon gradually weakens until it disappears. When the 
excitation frequency � = 7.877 is selected, the inverse Hopf bifurcation occurs in the system, and 
the chaotic state enters the periodic motion state through phase locking. When the excitation frequency 
� = 7.905, the system enters a period of 1-4-4-0 motion. Under the action of an external excitation, 
the system undergoes four collisions and four chatters. 
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 (a) Phase diagram (� = 6.12)   (b) Displacement-time history diagram  (c) Velocity-time history diagram 

                     
 (d) Phase diagram (� = 6.34)   (e) Displacement-time history diagram     (f) Phase diagram (� = 7.05) 

                     
(g) Displacement-time history diagram  (h) Phase diagram (� = 7.276)  (i) Displacement-time history diagram 

                     
(j) Phase diagram (� = 7.34)    (k) Displacement-time history diagram   (l) Velocity-time history diagram  

                     
    (m) Poincare cross section       (n) Phase diagram (� = 7.419)    (o) Displacement-time history diagram 

Continued on next page 
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 (p) Velocity-time history diagram      (q) Poincare cross section         (r) Phase diagram (� = 7.578) 

                     
(s) Displacement-time history diagram  (t) Velocity-time history diagram        (u) Poincare cross section 

                     
(v) Phase-lock (� = 7.877)        (w) Phase diagram (� = 7.905)   (x) Displacement-time history diagram 

Figure 7. System motion diagram. 

4. Effect of mass ratio on system motion 

The change of the system motion transfer process and the parameter interval of the system stable 
motion is analyzed further. Through numerical simulation, it is found that the periodic bubble 
phenomenon of the system is very sensitive to parameter m�, and the slight change of parameter m� 
makes the number of periodic bubbles of the system change or disappear. In order to better understand 
the influence of parameters on the dynamic behavior of the system, the system parameters �� = 1.15, 
�� = 1.125, �� = 1.1, �� = 1.05, �� = 1, �� = 0.95, �� = 0.9, �� = 0.85 are taken, and the 
remaining parameters remain unchanged. As the mass ratio decreases, when �� ∈ [1.1, 1.15] , as 
shown in Figure 8(a)–(c), the number of periodic bubble structures in the system increases from 4 to 
7 and then to 11. When �� ∈ [1, 1.05], as shown in Figure 8(d),(e), the periodic bubble structure 
disappears, and the system presents six chaotic bubble structures. When �� ∈ [0.85, 0.95], as shown 
in Figure 8(f)–(h), the chaotic bubble structure disappears and the periodic bubble structure appears. 
The number of periodic bubble structures is 17, 6, and 3, respectively. Moreover, with the decrease of 
mass ratio, the transition region between flutter and viscosity of the system gradually moves to the left, 
and the period of period three motion window in the low frequency band is reduced. The Hopf 
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bifurcation phenomenon before the periodic bubble phenomenon or the chaotic bubble phenomenon 
gradually weakens until it disappears, and the window period of the periodic motion in the 
corresponding frequency band gradually increases. 

     
(a) Global bifurcation diagram   (b) Global bifurcation diagram   (c) Global bifurcation diagram 

     
(d) Global bifurcation diagram   (e) Global bifurcation diagram    (f) Global bifurcation diagram 

   
   (g) Global bifurcation diagram   (h) Global bifurcation diagram 

Figure 8. Bifurcation diagram of system motion under different mass ratio parameters. 

5. Conclusions 

In this paper, the dynamic model of a kind of wedge damper with dynamic friction is simplified, 
and the differential equation of system motion is established. According to the change of mass force, 
the motion situation of the system and the judgment conditions of each situation are discussed. The 
dynamic characteristics of the system are analyzed by a large number of data simulation. The 
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simulation results show that: 
Under certain parameters, with the change of excitation frequency, the system undergoes periodic 

doubling bifurcation, inverse periodic doubling bifurcation, Grazing bifurcation and Hopf bifurcation 
between single period, multi period, quasi period, and chaos. In addition, when the excitation frequency 
of the system is between [5.2, 6.1], there is a periodic bubble phenomenon in the system motion. When 
the excitation frequency of the system is between [3.35, 3.55], [4.425, 6.12], and [7.34, 7.758], there are 
chatter and sticking phenomena in the system motion. When the excitation frequency of the system is 
between [1.75, 3.24] and [3.92, 4.425], the sticking phenomenon disappears, and only the chatter 
phenomenon exists. 

When other parameters remain unchanged, as the mass ratio decreases, the number of periodic 
bubble structures of the system motion increases exponentially, that is, the number of cycles of the 
system motion increases exponentially. Then, the periodic bubble structure disappears and the chaotic 
bubble structure appears. Finally, the chaotic bubble structure disappears and the system enters 
periodic motion. 

Through the theoretical analysis and numerical simulation of the wedge friction damper oblique 
collision system with Dankowicz dynamic friction, it provides a certain reference basis for the 
selection of structural parameters and system motion process control of wedge friction damper for 
freight train bogies in practical engineering. Furthermore, the method of applying the bifurcation 
theory of mapping to study the stability, bifurcation, and chaos formation process of periodic motion 
of multi-degree-of-freedom impact vibration system can also be used to study the periodic motion, 
stability and bifurcation of other types of impact vibration systems, such as double-mass impact 
vibration molding machine, pile driver, vibration hammer, wheel-rail collision of high-speed train, 
etc., and can also be applied to the dynamic analysis of some mechanical systems with clearance and 
elastic constraints. 
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