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Abstract: In this paper, we study the initial boundary value problem for a class of higher-order
nonlinear pseudo-parabolic equations with a memory term. First, the blow-up results of the solution
when the initial energy is negative or positive are obtained by using concavity analysis, and an upper
bound on the blow-up time T ∗ is given. Second, a lower bound on the blow-up time T ∗ is obtained by
applying differential inequalities when the solutions blow up.
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1. Introduction

In this paper, we consider the following initial boundary value problem for higher-order nonlinear
viscous parabolic type equations.

ut + (−∆)Lu + (−∆)Kut −

∫ t

0
g(t − s)(−∆)Lu(s)ds

= a|u|R−2u, x ∈ Ω, t ≥ 0, (1.1)
u(x, 0) = u0(x) ∈ HL

0 (Ω), (1.2)
∂iu
∂vi = 0, i = 0, 1, 2, ...L − 1 x ∈ ∂Ω, t ≥ 0, (1.3)

where L,K ≥ 1 is an integer number, R ≥ max {2, 2a, 2H} where a > 0 is a real number, and Ω ⊆
RN(N ≥ 1) is a bounded domain with a smooth boundary ∂Ω .

Equation (1.1) includes many important physical models. In the absence of the memory term and
dispersive term, and with L = K = 1 and a = 0, Eq (1.1) becomes the linear pseudo-parabolic equation

ut − ∆u − βut = 0. (1.4)

http://http://www.aimspress.com/journal/era
http://dx.doi.org/10.3934/era.2024046


946

Showalter and Ting [1] and Gopala Rao and Ting [2] investigated the initial boundary value
problem of the linear Eq (1.4) and proved the existence and uniqueness of solutions. Pseudo-parabolic
equations appear in many applications for natural sciences, such as radiation with time delay [3],
two-phase porous media flow models with dynamic capillarity or hysteresis [4], phase field-type
models for unsaturated porous media flows [5], heat conduction models [6], models to describe
lightning [7], and so on. A number of authors (Showalter [8, 9], DiBenedetto and Showalter [10], Cao
and Pop [11], Fan and Pop [12], Cuesta and Pop [13], Schweizer [14], Kaikina [15, 16], Matahashi
and Tsutsumi [17, 18]) have considered this kind of equation by various methods and made a lot of
progress. Not only were the existence, uniqueness, and nonexistence results for pseudo-parabolic
equations were obtained, but the asymptotic behavior, regularity, and other properties of solutions
were also investigated.

In 1972, Gopala Rao et al. [2, 19] studied the equation ut − k∆ut − ∆u = 0. They use the principle
of maximum value to establish the uniqueness and the existence of solutions. Using the potential well
method and the comparison principle, Xu and Su [20] studied the overall existence, nonexistence, and
asymptotic behavior of the solution of the equation ut − ∆ut − ∆u = uq, and they also proved that the
solution blows up in finite time when J(u0) > d.
When L = K = 1, Eq (1.1) becomes

ut − ∆u =
∫ t

0
b(t − τ)∆u(τ)dτ + f (u). (1.5)

Equation (1.5) originates from various mathematical models in engineering and physical sciences, such
as in the study of heat conduction in materials with memory. Yin [21] discussed the problem of initial
boundary values of Eq (1.5) and obtained the global existence of classical solutions under one-sided
growth conditions. Replacing the memory term b(·) in (1.5) by −g(·), Messaoudi [22] proves the blow-
up of the solution with negative and vanishing initial energies. When f (u) = |u|q−2u, Messaoudi [23]
proved the result of the blow-up of solutions for this equation with positive initial energy under the
appropriate conditions of b and q. Sun and Liu [24] studied the equation

ut − ∆u − ∆ut +

∫ t

0
g(t − τ)∆u(τ)dτ = uq−2u. (1.6)

They applied the Galerkin method, the concavity method, and the improved potential well method to
prove existence of a global solution and the blow-up results of the solution when the initial energy
J(u(0)) ≤ d(∞), and Di et al. [25] obtained the blow-up results of the solution of Eq (1.6) when the
initial energy is negative or positive and gave some upper bounds on the blow-up time, and they proved
lower bounds on the blow up time by applying differential inequalities.

When m > 1, Cao and Gu [26] studied the higher order parabolic equations

ut + (−∆)mu = |u|qu. (1.7)

By applying variational theory and the Galerkin method, they obtained existence and uniqueness results
for the global solution. When the initial value belongs to the negative index critical space H−s,Rs

,Rs =
nα

w − sα
, Wang [27, 28] proved the existence and uniqueness of the local and the global solutions of
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the Cauchy problem of Eq (1.7) by using Lr − Lq estimates. Caristi and Mitidieri [29] applied the
method in [30] to prove the existence and nonexistence of the global solution of the initial boundary
value problem for higher-order parabolic equations when the initial value decays slowly. Budd et
al. [31] studied the self-similar solutions of Eq (1.7) for n = 1, k > 1. Ishige et al. [32] proved the
existence of solutions to the Cauchy problem for a class of higher-order semilinear parabolic equations
by introducing a new majority kernel, and also gave the existence of a local time solution for the initial
data and necessary conditions for the solution of the Cauchy problem, and determine the strongest
singularity of the initial data for the solutions of the Cauchy problem.

When K = L, g = 0, problem (1.1) becomes the following n-dimensional higher-order proposed
parabolic equation

ut(x, t) + (−1)M∆Mut(x, t) + (−1)M∆Mu(x, t) = a|u|q−1u. (1.8)

Equation (1.8) describes some important physical problems [33] and has attracted the attention of many
scholars. Xiao and Li [34] have proved the existence of a non-zero weak solution to the static problem
of problem (1.8) by means of the mountain passing theorem, and, additionally, based on the method
of potential well theory, they proved the existence of a global weak solution of the development in the
equations.

Based on the idea of Li and Tsai [35], this paper discusses the property of the solution of problem
(1.1)–(1.3) regarding the solution blow-up in finite time under different initial energies E(0). An
upper bound on the blow-up time T ∗ is established for different initial energies, and, additionally, a
lower bound on the blow-up time T ∗ is established by applying a differential inequality.

2. Preliminaries

To describe the main results of this paper, this section gives some notations, generalizations, and
important lemmas. We adopt the usual notations and convention. Let HL(Ω) denote the Sobolev space
with the usual scalar products and norm, Where HL

0 (Ω) denotes the closure in HL
0 (Ω) of C∞0 (Ω). For

simplicity of notation, hereafter we denote by ||.||p the Lebesgue space Lp(Ω) norm, and by ||.|| the
L2(Ω) norm; equivalently we write the norm ||DL · || instead of the HL

0 (Ω) norm ||.||HL
0 (Ω), where D

denotes the gradient operator, that is, D· = ▽· =
(
∂

∂x1
,
∂

∂x2
, ....

∂

∂xn

)
. Moreover, DL· = △ j· if L = 2 j,

and DL· = D △ j · if L = 2 j + 1.

Lp(Ω) = Lp, ||u||Lp(Ω) = ||u||p =
(∫
Ω

|u|pdx
) 1

p

,

HL
0 (Ω) = WL,2

0 (Ω) = HL
0 , ||u||HL

0 (Ω) = ||u||HL
0
=

(∫
Ω

|u|2 + |DLu|2dx
) 1

2

.

To justify the main conclusions of this paper, the following assumptions are made on K L, and the
relaxation function g(·).

(A1) 1 ≤ K < L are integers with 2a ≤ R < +∞ if n < 2L; 2a ≤ R ≤
2n

n − 2L
if n > 2L,

where a > 1
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(A2) g : R+ → R+ is a C1 function, satisfing

g(t) ≥ 0, g′(t) ≤ 0,
2a

R − 2a
< β = 1 −

∫ ∞

0
g(s) ds ≤ 1 −

∫ t

0
g(s) ds. (2.1)

Define the energy functional of problem (1.1) − (1.3) as

E(t) =
∫ t

0
∥ ut ∥

2 +
1
2

(
1 −

∫ t

0
g(s) ds

)
∥ DLu ∥2 +

1
2

(g ◦ DLu)(t)

−
a
R
∥ u ∥RR (2.2)

where
(
g ◦ DLu

)
(t) =

∫ t

0
g(t − s) ∥ DLu(t) − DLu(s) ∥2 ds.

Both sides of Eq (1.1) are simultaneously multiplied by ut and integrated over Ω, and from (A1) and
(2.1) we have that

E′(t) = − ∥ DKut ∥
2 +

1
2

(g′ ◦ DLu)(t) −
1
2

g(t) ∥ DLu ∥2< 0. (2.3)

Definition 2.1 We say that u(x, t) is a weak solution of problem (1.1) if u ∈ L∞([0,T ); HL
0 (Ω)), ut ∈

L2([0,T ); HL
0 (Ω)), and u satisfies

(ut, v) + (DLu,DLv) + (DKut,DKv) −
∫ t

0
g(t − τ)(DLu(τ),DLv)dτ = (a|u|R−2u, v)

for all test functions v ∈ HL
0 (Ω) and t ∈ [0,T ].

Theorem 2.1 (Local existence) Suppose that (A1) and (A2) hold. If (u0, u1) ∈ HL
0 (Ω) × L2(Ω), then

there exists T > 0 such that problem (1.1) admits a unique local solution u(t) which satisfies

u ∈ L2([0,T ); HL
0 (Ω)), ut ∈ L2([0,T ); L2(Ω) ∩ L2([0,T ]; HK

0 (Ω)).

Moreover, at least one of the following statements holds true:∫ t

0
||u||2 + ||DLu||2 → +∞, as t → T, or T = +∞.

The existence and uniqueness of the local solution for problem (1.1) can be obtained by using Faedo-
Galerkin methods and the contraction mapping principle in [30, 36–38].

Lemma 2.1 [39]. Let q be a real number with 2 ≤ q ≤ +∞ if n ≤ 2L, and 2 ≤ q ≤
2n

n − 2L
if n > 2L.

Then there exists a constant B dependent on Ω and q such that

∥ u ∥q≤ B ∥ DLu ∥, u ∈ HL
0 (Ω). (2.4)

Remark 2.1. According to Eqs (1.1) − (1.3) and Lemma 2.1, we get
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E(t) ≥
1
2

(
1 −

∫ t

0
g(s)ds

)
∥DLu∥2 +

1
2

(g ◦ DLu)(t) −
a
R
∥u∥RR

≥
1
2
β∥DLu∥2 +

1
2

(g ◦ DLu)(t) −
aBR

R
(∥DLu∥2)

R
2

≥
1
2

[(g ◦ DLu)(t) + β∥DLu∥2] −
aBR

Rβ
R
2

[β∥DLu∥2 + (g ◦ DLu)(t)]
R
2

= Q
(
[β∥DLu∥2 + (g ◦ DLu)(t)]

1
2
)
. (2.5)

Let Q(ξ) =
1
2
ξ2 −

aBR

Rβ
R
2

ξR, ξ =
(
β∥DLu∥2 + (g ◦ DLu)(t)

) 1
2
> 0. A direct calculation yields that Q′(ξ) =

ξ −
aBR

β
R
2

ξR−1,Q′′(ξ) = 1 −
a(R − 1)BR

β
R
2

ξR−2. From Q′(ξ) = 0, we get that ξ1 =

(
β

aB2

) R
2(R−2)

. When ξ = ξ1,

direct calculation gives Q′′(ξ) = 2 − R < 0. Therefore, Q(ξ) is maximum at ξ1, and its maximum value
is

H = Q(ξ1) =
R − 2

2R

(
β

aB2

) R
(R−2)

=
R − 2

2R
ξ2

1. (2.6)

Lemma 2.2. Let conditions (A1), (A2) hold, u be a solution of ((1.1− (1.3)), E(0) < H, and β
1
2 ∥DLu0∥ >

ξ1. Then there exists ξ2 > ξ1, such that

β∥DLu∥2 + (g ◦ DLu)(t) ≥ ξ2
2. (2.7)

Proof. From Remark 2.1, Q(ξ) is increasing on (0, ξ1) and decreasing on (ξ1,+∞). Q(ξ) → −∞, (ξ →
∞). According to E(0) < H, there exists ξ′2, ξ2 such that ξ1 ∈ (ξ′2, ξ2), and Q(ξ′2) = Q(ξ2) = E(0). To
prove Eq (2.7), we use the converse method. Assume that there exists t0 > 0 such that

β∥DLu(t0)∥2 + (g ◦ DLu)(t0) < ξ2
2. (2.8)

1) If ξ′2 <
(
β∥DLu(t0)∥2 + (g ◦ DLu)(t0)

) 1
2
< ξ2, then

Q
(
[β∥DLu(t0)∥2 + (g ◦ DLu)(t0)]

1
2
)
> Q(ξ′2) = Q(ξ2) = E(0) > E(t0).

This contradicts (2.5).

2) If
(
β∥DLu(t0)∥2 + (g ◦ DLu)(t0)

) 1
2
≤ ξ′2.

As β
1
2 ||DLu0|| > ξ1, according to (2.5), Q

(
β

1
2 ∥DLu0∥

)
< E(0) = Q(ξ2), which implies that

β
1
2 ∥DLu0∥ > ξ2. Applying the continuity of

(
β∥DLu(t0)∥2 + (g ◦ DLu)(t0)

) 1
2 , we know that there exists a

t1 ∈ (0, t0) such that ξ′2 <
(
β∥DLu(t1)∥2 + (g ◦ DLu)(t1)

) 1
2

< ξ2. hence, we have

Q(
(
β∥DLu(t1)∥2 + (g ◦ DLu)(t1)

) 1
2 ) > E(0) ≥ E(t0), which contradicts (2.5).

Electronic Research Archive Volume 32, Issue 2, 945–961.



950

The following lemma is very important and is similar to the proof of Lemma 4.2 in [35]. Here, we
make some appropriate modifications
Lemma 2.3 [40] . Let Γ(t) be a nonincreasing function of [t0,∞], t0 ≥ 0. Satisfying the differential
inequality

Γ′2(t) ≥ ρ + ψΓ(t)2+ 1
ε , t ≥ t0 (2.9)

where ρ > 0, ψ < 0, there exists a positive number T ∗ such that

lim
t→T ∗
Γ(t) = 0. (2.10)

The upper bound for T ∗ is

T ∗ ≤ t0 +
1
√
−ψ

ln

√
ρ

−ψ√
ρ

−ψ
− Γ(t0)

(2.11)

where Γ(t0) < min{1,
√

ρ

−ψ
}, and Tmax denotes the maximal existence time of the solution

Tmax = sup{T > 0 : u(., t) ∈ [0,T ]} < +∞.

3. Upper bound on blow-up time

In this section, we will give some blow-up results for solutions with initial energy (i) E(0) < 0; (ii)

0 ≤ E(0) <
w

R − 2
H; and (iii)

w
R − 2

H ≤ E(0) <
||u0||

2 + ||DKu0|||
2

µ
. Moreover, some upper bounds

for blow-up time T ∗ depending on the sign and size of initial energy E(0) are obtained for problem
(1.1)–(1.3).
Define the functionals

Φ(t) =
∫ t

0
∥u∥2 ds +

∫ t

0
∥DKu∥2 ds, (3.1)

Γ(t) =
[
Φ(t) + (T0 − t)(∥u0∥

2 + ∥DKu0∥
2)
]−ε

(3.2)

where
1
β
≤ ε ≤

R − 2a
2a

, and T0 is positive .

Lemma 3.1. Let X,Y , and ϕ be positive, with p, q ≥ 1,
1
p
+

1
q
= 1. Then,

XY ≤
ϕpXp

p
+

Yq

qϕq . (3.3)

Lemma 3.2. Let (A1), (A2) hold, u0 ∈ HL
0 (Ω), and u be a solution of (1.1) − (1.3). Then, we have

Φ′′(t) − 4(1 + ε)
∫ t

0
∥ut∥

2 ds ≥ Π(t) (3.4)
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where Π(t) = −4(1 + ε)E(0) + w[β∥DLu∥2 + (g ◦ DLu)], w = 2ε −
1

2β
> 0.

Proof. From (3.1), a direct calculation yields that

Φ′(t) = ∥u∥2 + ∥DKu∥2

= 2
∫ t

0

∫
Ω

uut dx dτ + ∥u0∥
2 + 2

∫ t

0

∫
Ω

DKuDKut dx ds + ∥DKu0∥
2, (3.5)

Φ′′(t) = 2
∫
Ω

uut dx + 2
∫
Ω

DKuDKut dx

= 2
∫
Ω

u
[
−(−△)Lu − (−△)Kut +

∫ t

0
g(t − s)(−△)Lu(s) ds + a|u|R−2u

]
dx

+ 2
∫
Ω

DKuDKut dx

= −2∥DLu∥2 −
d
dt
∥DKu∥2 + 2

∫ t

0

∫
Ω

g(t − s)DLu(s)DLu(t) dx ds

+ 2a∥u∥RR +
d
dt
∥Dku∥2. (3.6)

We infer from (2.2), (2.3), and (3.6) that

Φ′′(t) − 4(1 + ε)
∫ t

0
∥ut∥

2 ds

= Φ′′(t) − 4(1 + ε)E(t) + (2 + 2ε)
(
1 −

∫ t

0
g(s) ds

)
∥ DLu ∥2

+ (2 + 2ε)(g ◦ DLu) −
4a(1 + ε)

R
∥ u ∥RR

≥ −4(1 + ε)E(0) + 2ε ∥ DLu ∥2 +(2 + 2ε)(g ◦ DLu) +
[
2 −

4a(1 + ε)
R

]
∥ u ∥RR

− (2 + 2ε)
∫ t

0
g(s) ds∥DLu∥2 + 2

∫ t

0

∫
Ω

g(t − s)DLu(s)DLu(t) dx ds. (3.7)

Applying Lemma 3.1 yields∫ t

0

∫
Ω

g(t − s)DLu(t)DLu(s) dx ds

=

∫ t

0

∫
Ω

g(t − s)DLu(t)[DLu(s) − DLu(t)] dx ds +
∫ t

0

∫
Ω

g(t − s)DLu(t)Dlu(t) dx ds

≥ −(g ◦ DLu)(t) +
3
4

∫ t

0
g(s) ds∥DLu(t)∥2. (3.8)

Combining (3.7) and (3.8), we get

Electronic Research Archive Volume 32, Issue 2, 945–961.



952

Φ′′(t) − 4(1 + ε)
∫ t

0
∥ut∥

2 ds

≥ −4(1 + ε)E(0) + 2ε∥DLu∥2 + 2ε(g ◦ DLu) −
(1
2
+ 2ε

) ∫ t

0
g(s) ds∥DLu∥2

> −4(1 + ε)E(0) + 2ε∥DLu∥2 + 2ε(g ◦ DLu) +
(1
2
+ 2ε

)
(β − 1)∥DLu∥2

> −4(1 + ε)E(0) + w[β∥DLu∥2 + (g ◦ DLu)(t)] (3.9)

where w = 2ε −
1

2β
.

Therom 3.1. Let assumptions (A1) and (A2) hold, and T0 <
1

∥u0∥
2 + ∥DKu0∥

2 . In addition, it is assumed

that one of the following conditions holds true:

(1)E(0) < 0;

(2)0 ≤ E(0) <
w

R − 2H
, β

1
2 ∥DLu0∥ > ξ1;

(3)0 <
w

R − 2H
< E(0) <

∥u0∥
2 + ∥DKu0∥

2

µ
.

Then, the solution of problem (1.1)− (1.3) blows up in finite time, which means the maximum time T ∗

of u is finite and

lim
t→T ∗

(∫ t

0
∥u∥2 ds +

∫ t

0
∥DKu∥2 ds

)
= +∞. (3.10)

Case (1). if E(0) < 0, an upper bound on the blow-up time T ∗ can also be estimated according to the
sign and size of energy E(0). Then,

T ∗ ≤

√
−(2ε + 1)

8ε2(ε + 1)E(0)
· ln

1

1 −
√

T0(∥u0∥
2 + ∥DKu0∥

2)
.

Case (2). if 0 < E(0) <
w

R − 2
H, and ξ1 < β

1
2 ∥DLu0∥, then

T ∗ ≤

√
2ε + 1

8ε2(ε + 1)[ w
R−2 H − E(0)]

.

Case (3). if
w

R − 2
H ≤ E(0) <

∥u0∥
2 + ∥DKu0∥

2

µ
, then

T ∗ ≤

√
2ε + 1

2ε2Λχ(0)
· ln

1

1 −
√

T0(∥u0∥
2 + ∥DKu0∥

2)

where χ(0) = ∥u0∥
2 + ∥DKu0∥

2 − µE(0) = Φ′(0) − µE(0), µ =
4(1 + δ)
Λ

,Λ = wβ
1
B

.
Case (1). if E(0) < 0, from (3.9) we infer that
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Φ′′(t) ≥ −4(1 + ε)E(0) + w[β∥DLu∥2 + (g ◦ DLu(t))]+

4(1 + ε)
∫ t

0
∥ut∥

2ds > 0 , t ≥ 0. (3.11)

Thus, it follows that Φ′(t) is monotonically increasing. Therefore, Φ′(t) > Φ′(0) = ∥u0∥
2 + ∥DKu0∥

2

and the second derivative of Eq (3.2) gives

Γ′(t) = −εΓ(t)1+ 1
ε [Φ′(t) − ∥u0∥

2], (3.12)

Γ′′(t) = −εΓ(t)1+ 1
ε {Φ′′(t)[Φ(t) + (T0 − t)(∥u0∥

2 + ∥DKu0∥
2)]

− (1 + ε)[Φ′(t) − ∥u0∥
2 − ∥DKu0∥

2]2}

= −εΓ(t)1+ 2
ε V(t) (3.13)

where

V(t) = Φ′′(t)[Φ(t) + (T0 − t)(∥u0∥
2 + ∥DKu0∥

2)] − (1 + ε)[Φ′(t) − ∥u0∥
2 − ∥DKu0∥

2]2.

From Lemma 3.2,we have

Φ′′(t)[Φ(t) + (T0 − t)(∥u0∥
2 + ∥DKu0∥

2)]

≥

[
Π(t) + 4(1 + ε)

∫ t

0
∥ut∥

2 ds
]

[∫ t

0
∥u∥2 ds +

∫ t

0
∥DKu∥2 ds + (T0 − t)(∥u0∥

2 + DKu0∥
2)
]

≥ Π(t)Γ(t)−
1
ε + 4(1 + ε)

∫ t

0
∥ut∥

2 ds
∫ t

0
∥u∥2 ds

+ 4(1 + ε)
∫ t

0
∥ut∥

2 ds
∫ t

0
∥DKu∥2 ds. (3.14)

Therefore,

[Φ′(t) − ∥u0∥
2 − ∥DKu0∥

2]2

= 4
(∫ t

0

∫
Ω

uut dx ds
)2

+ 4
(∫ t

0

∫
Ω

DKuDKut dx ds
)2

+ 8
∫ t

0

∫
Ω

uut dx ds
∫ t

0

∫
Ω

DKuDKut dx ds. (3.15)

Applying Holder’s inequality, Lemma 3.1 yields

4
(∫ t

0

∫
Ω

uut dx ds
)2

≤ 4
∫ t

0
∥u∥2 ds ·

∫ t

0
∥ut∥

2 ds, (3.16)

4
(∫ t

0

∫
Ω

DKu · DKut dx ds
)2

≤ 4
∫ t

0
∥DKu∥2 ds ·

∫ t

0
∥DKut∥

2 ds, (3.17)
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8
∫ t

0

∫
Ω

uut dx ds ·
∫ t

0

∫
Ω

DKu · DKut dx ds

≤ 4
∫ t

0
∥u∥2 ds ·

∫ t

0
∥DKut∥

2 ds + 4
∫ t

0
∥DKu∥2 ds ·

∫ t

0
∥ut∥

2 ds. (3.18)

Substituting (3.14) − (3.18) into (3.13) yields

V(t) > Π(t)Γ(t)−
1
ε + 4(1 + ε)

∫ t

0
∥ut∥

2 ds
∫ t

0
∥u∥2 ds

+ 4(1 + ε)
∫ t

0
∥ut∥

2 ds
∫ t

0
∥DKu∥2 ds

− 4(1 + ε)
∫ t

0
∥DKu∥2 ds

∫ t

0
∥DKut∥

2 ds − 4(1 + ε)
∫ t

0
∥u∥2 ds

∫ t

0
∥ut∥

2 ds

− 4(1 + ε)
∫ t

0
∥u∥2 ds

∫ t

0
∥DKut∥

2 ds − 4(1 + ε)
∫ t

0
∥DKu∥2 ds

∫ t

0
∥ut∥

2 ds

> Π(t)Γ(t)−
1
ε . (3.19)

From the definitions of (3.12), (3.19), and Π(t), it follows that

Γ′′(t) ≤ −εΠ(t)Γ(t)1+ 1
ε ≤ ε(1 + ε)E(0)Γ(t)1+ 1

ε . (3.20)

From Φ′(t) > Φ′(0) = ∥u0∥
2 + ∥DKu0∥

2 > 0 and (3.12), we get Γ′(t) < 0, Γ′(0) = 0. (3.20) multiplied
by Γ′(t) and integrated over (0, t) gives

Γ′(t)2 ≥ −
8ε2(1 + ε)

1 + 2ε
E(0)Γ(0)2+ 1

ε +
8ε2(1 + ε)

1 + 2ε
E(0)Γ(0)2+ 1

ε

= ρ + ψΓ(t)2+ 1
ε (3.21)

where

ρ = −
8ε2(1 + ε)

1 + 2ε
E(0)Γ(0)2+ 1

ε > 0, (3.22)

ψ =
8ε2(1 + ε)

1 + 2ε
E(0) < 0 (3.23)

where Γ(0) =
[
T0(∥u0∥

2 + ∥DKu0∥
2)
]−ε

.
Combining (3.21) − (3.23) and Lemma 2.3 shows that there exists T ∗ such that lim

t→T ∗
Γ(t) = 0. I.e.

lim
t→T ∗

(∫ t

0
∥u∥2 ds + ∥DKu∥2 ds

)
= +∞.

Furthermore, according to Lemma 2.3, the upper bound on the blow-up is given by

T ∗ ≤

√
−(2ε + 1)

8ε2(1 + ε)E(0
ln

1

1 −
√

T0(∥u0∥
2 + ∥DKu0∥

2)
. (3.24)
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Case (2). if 0 < E(0) <
w

R − 2
H, and β

1
2 ∥DLu0∥ > ξ1, by Lemma 2.2 and the definition of ξ1

Π(t) = −4(1 + ε)E(0) + w[β∥DLu∥2 + (g ◦ DLu)(t)]
≥ −4(1 + ε)E(0) + wξ2

2

≥ −4(1 + ε)E(0) + wξ2
1

> −4(1 + ε)E(0) + w
4(1 + ε)

r − 2
H

= 4(1 + ε)
[ w
r − 2

H − E(0)
]
> 0.

Substituting (3.25) into (3.9) yields

Φ′′(t) ≥ Π(t) + (4 + 4ε)
∫ t

0
∥ut∥

2 ds

> (4 + 4ε)
[ w
R − 2

H − E(0)
]
+ (4 + 4ε)

∫ t

0
∥ut∥

2 ds > 0. (3.25)

Hence, Φ′(t) > Φ′(0) = ∥u0∥
2 + ∥DKu0∥

2 ≥ 0.
Similar to case (1), we get

Γ′′(t) = −εΓ(t)1+ 2
ε · V(t),V(t) ≥ Π(t)Γ(t)−

1
ε . (3.26)

From (3.25) and (3.26), we get

Γ′′(t) ≤ −εΠ(t)Γ(t)1+ 1
ε

≤ −4ε(1 + ε)
[ w
R − 2

H − E(0)
]
Γ(t)1+ 1

ε , t ≥ 0. (3.27)

Similar to case (1) , we have Γ′(t) < 0, Γ(0) = 0. (3.27) Multiply by Γ′(t) and integratig over (0, t) gives

Γ′(t)2 ≥
8ε2(ε + 1)

2ε + 1

[ w
R − 2

H − E(0)
] [

H(0)2+ 1
ε − H(t)2+ 1

ε

]
= ρ1 + ψ1Γ(t)2+ 1

ε (3.28)

where

ρ1 =
8ε2(ε + 1)

2ε + 1

[ w
R − 2

H − E(0)
]
Γ(0)2+ 1

ε > 0, (3.29)

ψ1 =
8ε2(ε + 1)

2ε + 1

[ w
R − 2

H − E(0)
]
> 0. (3.30)

By Lemma 2.3 and (3.28) − (3.30), there exists T ∗ such that

lim
t→T ∗
Γ(t) = 0,

lim
t→T ∗

(∫ t

0
∥u∥2ds +

∫ t

0
∥DKu∥2 ds

)
= +∞
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and

T ∗ ≤

√
2ε + 1

8ε2(ε + 1)[ w
R−2 H − E(0)]

ln
1

1 −
√

T0(∥u0∥
2 + ∥DKu0∥

2)
. (3.31)

Case (3) :
w

R − 2
H ≤ E(0) <

∥u0∥
2 + ∥DKu0∥

2

µ
.

Define

χ(t) = ∥u∥2 + ∥DKu∥2 − µE(0) = Φ′(t) − µE(0) (3.32)

where µ =
4(1 + ε)
Λ

, Λ = wβ
1
B
.

d
dt
χ(t) = Φ′′(t)

≥ −4(1 + ε)E(0) + w[β∥DLu∥2 + (g ◦ DLu)(t)] + 4(1 + ε)
∫ t

0
∥ut∥

2 ds

− 4(1 + ε)E(0) + wβ
1
β
∥u∥2 + 4(1 + ε)

∫ t

0
∥ut∥

2 ds

=
wβ
β

[∥u∥2 −
4(1 + ε)B

wβ
E(0)] + 4(1 + ε)

∫ t

0
∥ut∥

2 ds

> Λ[∥u∥2 + ∥DKu∥2 − µE(0)] + 4(1 + δ)
∫ t

0
∥ut∥

2 ds

= Λχ(t) + 4(1 + ε)
∫ t

0
∥ut∥

2 ds. (3.33)

According to (3.31) and

∥u0∥
2 + ∥DKu∥2 − µE(0) = Φ′(0) − µE(0) = χ(0) > 0 (3.34)

we have
d
dt
χ(t) ≥ Λχ(t), i.e., χ(t) ≥ χ(0)eΛt. Thereby, we have

χ(t) = Φ′(t) − µE(0) ≥ χ(0)eΛt ≥ χ(0) > 0, t ≥ 0. (3.35)

By (3.33) − (3.35), we obtain

d
dt
χ(t) = Φ′′(t) ≥ Λχ(t) ≥ Λχ(0) > 0. (3.36)

Thus, we get
Φ′(t) > Φ′(0) = ∥u0∥

2 + ∥DKu0∥
2 > 0, t > 0.

Similar to the process in case (1), it is possible to derive

Γ′′(t) ≤ −εΠ(t)Γ(t)1+ 1
ε , t ≥ 0. (3.37)
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By (3.33) − (3.35),we conclude that

Π(t) ≥ Λχ(t) ≥ Λχ(0).

Consequently,

Γ′′(t) ≤ −εΠ(t)Γ(t)1+ 1
ε ≤ −εΛχ(0)Γ(t)1+ 1

ε , t > 0. (3.38)

Multiplying both sides of (3.38) by Γ(t), and integrating over [0, t], we have

Γ′(t)2 ≥
2ε2Γχ(0)

2ε + 1

[
Γ

2+ 1
ε

0 − Γ(t)2+ 1
ε

]
= ρ2 + ψ2Γ(t)2+ 1

ε , (3.39)

ρ2 =
2ε2Γχ(0)

2ε + 1
Γ(0)2+ 1

ε > 0, ψ2 =
2ε2Γχ(0)

2ε + 1
> 0. (3.40)

By Lemma 2.3 and (3.39) − (3.40), there exists a time T ∗ such that

lim
t→T ∗

(∫ t

0
∥u∥2 ds +

∫ t

0
∥DKu∥2 ds

)
= +∞

and

T ∗ ≤

√
2ε + 1

2ε2Λχ(0)
ln

1

1 −
√

T0(∥u0∥
2 + ∥DKu0∥

2)
.

4. Lower bound on blow-up time

This section investigates a lower bound on the blow-up time T ∗ when the solution of Eqs (1.1)−(1.3)
occurs in finite time.
Theorem 4.1. Let A1 and A2 hold, u0 ∈ HL

0 (Ω), and u be a solution of Eqs (1.1) − (1.3). If u blows up
in the sense of HL

0 (Ω), then the lower bound T ∗ of the blow-up can be estimated as

T ∗ ≥
∫ +∞

R(0)

1

K1 +
a(4+2R)

r BRK
R
2

1 + 4E(0)
dK1.

Proof. Let

R(t) = ∥u∥2 + ∥DLu∥2. (4.1)

Differentiating (4.1) with respect to t, we know from (1.1) that

R′(t) = 2
∫
Ω

u · ut dx +
d
dt
∥DLu∥2

= 2
∫
Ω

u[−(−∆)Lu − (−∆)Kut] (4.2)

+ 2
∫
Ω

u[
∫ t

0
g(t − s)(−∆)Lu(s) ds + a|u|R−2u +

d
dt
∥DLu∥2]
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= −2∥DLu∥2 + 2
"
Ω

g(t − s)DLu(s)DLu(t) dx ds (4.3)

+ 2a∥u∥RR −
d
dt
∥DKu∥2 +

d
dt
∥DLu∥2. (4.4)

By Lemma 3.1, we have

2
∫ t

0

∫
Ω

g(t − s)DLu(s)DLu(t) dx ds

≤ 2(g ◦ DLu∥2 +
1
2

∫ t

0
g(s) ds∥DLu∥2 + 2

∫ t

0
g(s)∥DLu∥2

= 2(g ◦ DLu∥2 +
5
2

∫ t

0
g(s) ds∥DLu∥2. (4.5)

Substituting (4.5) into (4.4) yields

R′(t) ≤
[
5
2

∫ t

0
g(s) ds − 1

]
∥DLu∥2 +

1
2
∥DL∥2 + 2(g ◦ DLu)(t) + 2a∥u∥RR

−
d
dt
∥DKu∥2 +

d
dt
∥DLu∥2

<
1
2
∥DL∥2 + 4

∫ t

0
∥ut∥

2 ds + 2
(
1 −

∫ t

0
g(s) ds

)
∥DLu∥2 + 2(g ◦ DLu)(t)

−
4a
R
∥u∥RR +

(4a
R
+ 2a

)
∥u∥RR

< R(t) + 4E(0) + a
( 4
R
+ 2

)
BR∥DLu∥R

< R(t) + 4E(0) + a
( 4
R
+ 2

)
BRR(t)

R
2 . (4.6)

Integrating (4.6) over [0, t] yields∫ R(t)

R(0)

1

K1 + a4+2R
R BRK

R
2

1 + 4E(0)
dK1 ≤ t. (4.7)

If u blows up with HL
0 , then T ∗ has a lower bound

T ∗ ≥
∫ +∞

R(0)

1

K1 + a4+2R
R BRK

R
2

1 + 4E(0)
, (4.8)

which thereby completes the proof of Theorem 4.1.

5. Conclusions

By using concavity analysis, we get the blow-up results of the solution when the initial energy is
negative or positive and an upper bound on the blow-up time T ∗. In addition, a lower bound on the
blow-up time T ∗ is obtained by applying differential inequalities in the case where the solution has a
blow-up.
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