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1. Introduction

Fractional-order differential operator has become one of the most important tools for mathematical
modeling of complex mechanics and physical processes because it can describe mechanical and
physical processes with historical memory and spatial global correlation succinctly and accurately.
Additionally, and the fractional-order derivative modeling is simple, the physical meaning of
parameters is clear and the description is accurate. In recent years, fractional derivative has become
an important tool to describe all kinds of complex mechanical and physical behaviors, so the study of
a positive solutions of fractional differential equations has attracted much attention. For an extensive
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collection of such literature, readers can refer to [1,2,2-12]. Alsaedi et al. [13] investigated the
following equation

PDY(op(" Dy u(t))) = vi f(t, u(t) D u(®)) + V55, g(t, u(t)” Dy, u(t)))
with boundary value condition
w(0) = 0, u(1) = 2u(u)? Dy.u(l) = 0,0, Dy.u(0)) = Aap, (" Dy, (1))

Wheregop(t)—ltlf”‘zt1 —1p,q>11<afﬁ<2p>0§>00<,u77<10</11 pw_l),OS
A < = np)a =1, and D u and DB u denote the right and left fractional derivatives of orders @ and S with
respect to a power functlon respectively. The authors proved the uniqueness of positive solutions for
the given problem for the cases 1 < p <2 and p > 2 by applying an efficient novel approach together
with the Banach contraction mapping principle. Li and Liu [8] considered the fractional differential
equation

o DSu() + f(t,u) =0,0 <1< 1

with boundary value condition

1
x(0) =0, §Du(0) = 0, {Dyu(1) = f h(1)§ Dyu()g' (Hdt
0

where 2 < ¢ < 3,1 <v<2,a-v-1>0, f e C(0,1] xR*",R*), g >0, h € C([0,1],R"),
R* = [0, +00), and the existence of multiple solutions for the following system by the fixed point
theorem are on cone.

In recent years, more and more scientists have devoted themselves to the study of Hadamard
fractional differential systems. For the part of outstanding results of Hadamard’s research on
fractional differential systems, please refer to [14—16]. Ardjouni [14] studied the following Hadamard
fractional differential equations

DY) + ¢(t,u(t)) =" Dot u(t), 1 <t<e

with integral boundary conditions

1 ¢ d
u(l) =0, u(e) = F(oz——,B) j; (log g)a_ﬂ_lg(& X(S))?S

where l <@ <2,0<B<a-1,gf:[1,e] X[0,00) — [0, 00) are given continuous functions, ¢ is
not required for any monotone assumption, and ¢ is nondecreasing on x. The authors get the existence
and uniqueness of the positive solution by the method of upper and lower solutions and Schauder and
Banach fixed point theorems. In [15], Berhail and Tabouche studied the following fractional differential
equation

BDYu(t) = ft,u(®),u'(),1 <t<T,T <e

with integral boundary conditions

WD) =0,u®1)=0
T

T
u(l) +au’(1) = f g1(Hu(s)ds, w(T)—bu'(T) = f g (s)u(s)ds
1 1

Electronic Research Archive Volume 32, Issue 2, 928-944.



930

where 3 < a <4, g1, € C([1,T],[0, +0)), a,b > 0, and # Df, denotes the Hadamard factional order
of @. Based on the properties of Green’s function, the authors get the existence of a positive solution
for the equation in [15] by the Avery-Peterson fixed point theorem. In [16], the authors studied the
existence of a positive solution and stability analysis of the following equation

DN (p (D} 20)0) = f(t,0), 1 <1 <e
with integral boundary conditions
x(1) =" DY x(1) = /(1) = u/(e) = 0,

¢ d
¢p("Di.u(e)) = p fl ¢p(HD§’+X(t))7t

where a, 5, and u are three positive real numbers with o € (2,3],8 € (1,2], and u € [0,8), ¢,(s) =
|s|P=2s is the P-Laplacian for p > 1, s € R, f is a continuous function on [1,e] X R, and # D‘lﬂ,H D‘]i is
the Hadamard fractional differential equation.The authors get the positive solutions by using the fixed
point methods.

Motivated by the excellent results above, in this paper, we will devote to considering the following
infinite-point singular p-Laplacian Hadamard fractional differential equation:

DY (@ ("DYu)) (1) + f(tu@®) =01 <t<e (1.1)

with infinite-point boundary condition

u(1)=0,j=0,1,2,...,n= 2" Ditute) = > 0! Dizu()),
. = (1.2)
"DY.u(1) = 0; 0, ("DY.u(e) = " Lipp(t" DY)
i=1

where @,y € R* = [0,+00), l <a<2,n—-1<y<n(n=3),r,rn <cl[2,n-2],r <r, p-Laplacian
operator ¢, is defined as ¢,(s) = |s|"%s, p, ¢ > 1, %+%} =1l,and 0 <, < 1,1 < & < e(i =
1,2,...,0), f € C([1,e] xRL, RD)(R] = [0, +00), and “ D¢, u,”” DY, u, "D} u(i = 1,2) are the standard
Hadamard fractional-order derivatives.

In this paper, we investigate the existence of positive solutions for a singular infinite-point
p-Laplacian boundary value problem. Compared with [15], the equation in this paper is a p-Laplacian
fractional differential equation and the method in which we used is a fixed point index and sequence
approximation. Compared with [16, 17], value at infinite points are involved in the boundary
conditions of the boundary value problem (1.1,1.2) and the minimal positive solution and maximal
positive solution are obtained in this paper.

2. Preliminaries and lemmas

For some basic definitions and lemmas about the theory of Hadamard fractional calculus, the reader
can refer to the recent literature such as [6,9, 18].
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Definition 2.1( [18,19]). The Hadamard fractional integral of a(a > 0) order of a function 7 : (0, c0) —
R! is given by

Hyja _ Lft Ea—l@
100 = fo | (n )™ ==ds

Definition 2.2( [18, 19]). The Hadamard fractional derivative of a(a¢ > 0) order of a continuous
function 7 : (0, 00) — R! is given by

1 ot h
HD(ll+h(f) = (ti) f L)_lds
I'nh-a)\ dt g (ln L )‘Y nt

where n = [a] + 1 and [a] denotes the integer part of the number «, provided that the righthand side is
pointwise defined on (0, co).
Lemma 2.1( [18,19]). If @, 8 > 0, then

H ja -1 _ F(ﬁ)
11+(lnx)ﬁ = rG+a)

(Inxy*** ' H D% (In )" = 'é (In xy?o!

- T@B-a)

Lemma 2.2( [19]). Suppose that @ > 0 and % € C[0, o) N L'[0, c0), then the solution of Hadamard
fractional differential equation # D¢, 7i(r) = 0 is

i) = c;(In ) ! + ¢o(In z‘)c'_2 +--+c,(In)*™,c;eRG=0,1,--- ,n),n=[a] +1

Lemma 2.3( [19]). Suppose that @ > 0, & is not a natural number and 7 € C[1, 00) N L![1, c0), then

h(t) =" 199 D h(r) + Z ci(In £)**
k=1
fort e (1,e] wherec, e R(k=1,2,--- ,n),and n = [a] + 1.
Lemma 2.4. Lety € L'(1,e) N C(1, e), then the equation of the BVPs
- Diu()=y@1), 1<t<e 2.1)

with boundary condition (1) = 0(j = 0,1,2,...,n = 2)," Dl\u(e) = X7, i DPu(¢;) has integral
representation

¢ ds
u(r) = f W, S)y(S)? (2.2)
1
where
I'(y)(Int)'E(s)(Ine —Ins)” "' = A(lnzt — In s)”",
Y(t,5)=——31<s<t<e, (2.3)
AL'(y) s i
IF'(y)Int) E(s)(Ine—1Ins)’™ ", 1 <t<s<e
in which 1
1 1 Ing; —Ins\"™"™"
E(s) = — | Ine —Ins)"' "2,
) I'(y —ry) F()f—rz);f_n](lne—lns) (ne-lns)
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(o]

R XC7 B 1¢7)
Iy —r) r()’—i’z)j:1

Proof.By means of the Lemma 2.3, we reduce (2.1) to an equivalent integral equation

n;Ing ™" 20 (2.4)

u() = "Iy + Ci(Int) ™" + Co(In ) + -+ + C,(Int) ™"
for Ci(i = 1,2,--- ,n) € R. From u(0) = 0, we have C,, = 0, then taking the first derivative, we have
1 1
wmz—Wﬁwﬁ+a@—nmﬂﬂ;+gw—mmnH7+m+“.

By «’(1) = 0, we have C,_; = 0, and taking the derivative step by step and combining u”’(1) = 0, (i =
2,---,n—=2),wehave C; = 0(i = 2,3,--- ,n — 2). Consequently, we get

u(t) = Cy(In 0y~ = I y(r)

By some properties of the fractional integrals and fractional derivatives, we have

"D u(r) = %(ln Ty @),
I'(y) (2.5)
"Dy u(r)—clr(—_z)a oy ()

On the other hand, "D\ u(1) = X3, n"/ D, u(¢;), and combining with (2.5), we get

_ (“ne-Insy ™' ds S (In&; —Insy""' g
C = | 'ty —rp)A (8)— _JZ; j 1 TB—r)A y(s)?
(Ine —Ins)""1"12(s)
f A y(s )—

where E(s), A are as (2.3), then,

u(® = Ci(Iny™" =7 1 y(t)
thmn—mwyl ds (¢ (Ine—Ins)y"'(Infy"E(s)
= y(s)— +
| I'(y)A s | A

f P, S)y(S)—

Therefore, W(z, s) is as (2.3). O

d
y(S)—S
R)

Lemma 2.5. The Green functions (2.3) have the following properties:
DY, 5) >0, 2¥(,8) > 0,1 <t,5<e;

(i) max1 o P2, 5) = Ple, 5) = I'(y)Z(s)(Ine —Ins) "' —A(lne — In s)V‘l] ;

AF()[
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(i), s) > (InH* 'WP(e,s),1 <t,s<e

Proof. (i) By simple calculation, we have Z’(s) > 0. For s € [1, e], we have E(s) > Z(1), then by the
expression of Z(s) and A, we have

['(y)E(s) 2 A =T(y)E()

For 1 < s <t < e by the preceding formula, we have

¥(t, 5) :ﬁm[l“()/)(ln 1 '2(s)Ine —Ins) "' = Alnt —Ins)” 1]
= -1 = _ _ -r-1 _ _ h’l_S —1
= AT (no)" [T (y)E(s) — (Ine — In s)” A - t)y ]

L -1 _ -1 _ _ln_s -1
Zr(y)(lnt)y [(Ine —In 5)” (1 lnt)y 1>0

For 1 <t < s < e, obviously, W(¢, s) > 0. Furthermore, by direct calculation, we get

(y = DI(y)(Int)’2E(s)(Ine — Ins)* "~ ! — A(Int — In 5)*!
Q‘P(ts):; I1<s<t<e t (2.6)
ot AT(y) | =~ — 7 ’
(y = DI(y)(Int)’2E(s)(Ine — In s)7 "~
t

<t<Ls<e

2

Clearly, (%‘I’(t, s) 1s continuous on [1, e] X [1, e]. By the similar method, for 1 < s <t < e, we get

%‘P(t, s) = ATz [(y - DI(y)(n 1)’ E(s)(Ine — In sy """ = A(y — 1)(Int — In 5)" ]
:Zr;(yl)an 17 [C(y)E(s)(Ine - In sy ™"~ = Al - E—f)y-z]
Z%Gn " *[(ne —Ins)” """ — (1 - E—jy—z]
Z;/(;y)lt(ln 1 ?[(Ine —1ns) 2 —(1 - E—j)"z] >0

(ii) By (i), we can easily get (¢, s) is increasing on ¢; hence, we get
1
max W(z, 5) = P(e, s) = ——[T(y)ZE(s)(Ine —Ins)’ "' —A(lne—Ins) '],1 <s<e
te[1,e] Al'(y)

(iii) For 1 < s <t < e, we have

¥(t, s) :;[F(y)(ln 1 '2(s)Ine —1Ins) " = Adnt —In )’

AL'(y)
= -1 =(s) — _ —ri=1 _ _Inso
= AF(y)(ln D" [T(y)E(s) — (Ine — In s)” Al -+ t)y ]
> ™ (In ) '[T(»)E(s)(Ine —Ins) "' — A(l —Ins)"]

=(In )" "¥(e, s)
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For1 <t < s <e, wehave
1 1= —r—1
Y(t, s) :Z(ln 1)’ E(s)(Ine — In s)’™

1
=(ln¢)""- Z:(s)(lne —Ins)yr 17!

>(In 1) "¥(e, s)

Lemma 2.6. Let f € C([1, e] X (0, +0), [0, +00)), then the BVP (1.1, 1.2) has a solution

e e d d
u(t) = f ¥(1, 5)p, ( f H(s, D) f (1, u(r)){) FS 2.7)
1 1
where . .
(In ) 'T(@)Z(s)(Ine — In 5)*' — A(lnz —In 5)*°!,
H(t,s):_; I1<s<t<e, (2.8)
AF(Q’) a-1 = a-1
(In)* T'(@)ZE(s)(Ine—1Ins)* ", 1 <t<s<e,
in which
= 1 Ing&; —Ins\*"'
“ " T " Tw & f(—lne_ms)

A=1- Zgjlng;*-l £ 0
j=1

Proof. Letv = <pp(HD¥+u),E(t) € C[1,e], then the Egs (1.1),(1.2) can be changed into the following
equation

HD%y(t) + h(t) = 0,1 < t < e,v(1) = 0, v(e) = Z Lv(E)

J=1

then by the similar method with Lemma 2.4, we get v(f) = fle H(t, s)%, and H(z, s) is as (2.8). Let u(r)
be the solution of BVP (1.1, 1.2) and let x(¢) = D? u(t). By Lemma 2.4, we have

u(t) = fe (2, s)K(s)d—SS (2.9)
1

Putting v(1) = ¢, (k(1)), we have

v(t) = fe H(t, s)f(s, u(s))d—; (2.10)
1

Combining (2.9) and (2.10), we have (2.7). The proof of Lemma 2.6 is completed.

Lemma 2.7. The Green functions (2.8) have the following properties:

(DH(t,s) >0, 2H(t,5) > 0,1 <1,5 <¢;

Electronic Research Archive Volume 32, Issue 2, 928-944.
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(if) maX e, H(t, 5) = H(e, 5) = = [r(a)i(s)(ln e—Ins)* ' —A(lne —In s)a—l] :

(iiD)H(t,s) > (Int)* 'H(e,s),1 <t,s<e
Proof. The proof is similar to Lemma 2.5 of this paper and we omit it here.

Lemma 2.8 [20]. Let £ Be a real Banach space, P C E be a cone, and Q, = u € P : ||u|| < r. Let the
operator 7 : P N Q, — P be completely continuous and satisfy Tx # x, Vx € 9Q,, then

@) If |Tx]| < ||x]l, Vx € 0Q,, then i(T,Q,, P) = 1;

@) If |T x]| > ||x]|, Vx € 0Q,, then i(T,,,P) =0

3. Main results

Now, we define the Banach space E = C([1, e],R), which is assigned a maximum norm, that is,
llull = sup,_,, lu(?)|. Let P = {u € Elu(t) > 0}, then P is a cone in E. Define an operator T : P — P by

4 4 d d
(Tu)(t) = f T(t,sxoq( f H(s,ﬂf(r,u(r)){)f (3.1)
1 1

then equation (1.1, 1.2) has a solution if, and only if, the operator 7" has a fixed point.
Lemma 3.1 If f € C([1, e] X [0, +00), [0, +0)), then the operator T : P — P is completely continuous.

Proof. From the continuity and nonnegativeness of W(¢, s) and f(z, u(t)), we know that T : P — P is
continuous. Let Q C P be bounded, then for all # € [1, e] and u € Q, there exists a positive constant M
such that |f(z, u(t))| < M. Thus,

|(Tu)(®)] =

f W, e, ( f CH(sf(r, u(T))d—T) ds
1 1

T s

4 4 d d
f Y(e, s)p, (f H(e,T)_T) as x M4
1 1 T S

—wM? 'L

L= fe‘l’(e, s)ﬁ, w= cpq(feH(e,T)d—T)
1 s 1 T

which means that 7'(€Q) is uniformly bounded.

<

where

On the other hand, from the continuity of Y¥(z, s) on [1,e] X [1,e], we have Y(z, s) is uniformly
continuous on [1, e] X [1, e]. Hence, for fixed s € [1, e] and for any € > 0, there exists a constant 6 > 0
such that 1,1, € [1,¢e] and |t; — 15| < 6, |¥(#1, s) — P(t2, )| < mg, then for all u € Q, we have

Electronic Research Archive Volume 32, Issue 2, 928-944.
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|(Tu)(t2) — (Tu)(t1)|
ds

4 e d
< f |¥(t2,s)—w<r1,s)|¢q( f H(s,r)f(r,u(m{)—
1 1

S
¢ d
< oM f |T(t2,s>—T(r1,s)|§
1

<é&

which implies that 7(Q2) is equicontinuous. By the Arzela-Ascoli theorem, we have that 7 : P — P is
completely continuous. The proof is complete.

Theorem 3.1 If f € C([1, e] X [0, +00), [0, +0)), f(t,u) is nondecreasing in u, and A € (0, +o0), then
BVP(1.1,1.2) has a minimal positive solution v in B, and a maximal positive solution o in B,. Moreover,
V() = V(t),0,,(t) — 0(t) as m — oo uniformly on [1, e], where

vm(t) = fle Y(1, )¢, (fle H(s, 7)f(, Vm—l(T))?)% (3.2)
and

om(t) = fle ¥(1, )¢, (fle H(s, T)f(T,Qm-l(T))dTT)d—; (3.3)
Proof. Let

B, ={ueP:|ul|<r

_ ¢ d
r>wM! ! f P(e, s)—s
1 S

For u € B,, there exists a positive constant M; such that | f(z, u(¢))| < M,

fe P(z, 5)p, (fe H(s,7)f(x, u(T))d—T)ﬁ
1 1 T S

¢ ¢ dr\d .
f (e, 5)¢, (f H(e,T)_T)_S x M7
1 1 T S

_ ¢ d
=wM! lf Ge, s)—s <r
1 S

[(Tu)(0)] =

<

hence,
T:B, — B,

By Lemma 3.1, we get that T : B, — B, is completely continuous. Therefore, by the Schauder fixed
point theorem, the operator 7 has at least one fixed point, and so BVP(1.1,1.2) has at least one solution
in B,. Next, we show that BVP(1.1,1.2) has a positive solution in B,, which is a minimal positive
solution.

From (3.1) and (3.2), we have that

V(&) = (Tv,-1)(@),t € [1,e]l,m=1,2,3,... (3.4)

Electronic Research Archive Volume 32, Issue 2, 928-944.
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This, together with f(z, u) being nondecreasing in u, yields that
O=vo@®) <vi) <...2vu(O < ..., te]l,e]

Since T is compact, we have that {v,,} is a sequentially compact set. Hence, there exists v € B, such
that v,, = v(m — o).
Let u(t) be any positive solution of BVP(1.1,1.2) in B,. Obviously, 0 = vy(¢) < u(t) = (Tu)(t); thus,

V(t) < u(t),m=0,1,2,.... (3.5)

Taking limits as m — oo in (3.5), we have v(t) < u(¢t) for ¢t € [1,e]. Thus, v is a minimal positive
solution, then, we show BVP(1.1,1.2)has a positive solution in B,, which is a maximal positive solution.
Let oo(t) = r,t € [1,e] and 0,(¢) = Toy(t). From T : B, — B,, we get 0; € B,. Therefore,

0<o0i(t) <7 =00
This, together with f(¢, u) being nondecreasing in u, yields that
v Som() L. L 01(8) S 00(0), L €[, €]
Using a proof similar to that of the above, we can show that
om(t) = o(t)(m — oo)

and e € d d
o(r) = f ‘P(t,s)goq( fl H(S,T)f(T,E(T)); TS
1

Let u(r) be any positive solution of BVP(1.1,1.2) in B,. It is obvious that

u(t) < 0o(1)
SO
u(t) < om(t) (3.6)

Taking limits as m — oo in (3.6), we have u(t) < o(t) for ¢ € [1, e]. The proof is complete.
Define

0 . f(t’ M) . f(t’ l/t)

= lim sup ——, fo = lim sup ———,

= e iy T M Sue O i)

. f(t,u) . f(t,u)
= lim sup ————, foo, = lim sup ——

S s Gy T SR )

Let
ds

B, = f Gle, s)(In s)@~ V=D
1 s

Theorem 3.2 If f € C([1, e] X [0, +00), [0, +00)) and the following conditions hold:
(Hy) fo = foo = +o0.

Electronic Research Archive Volume 32, Issue 2, 928-944.
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(H3) There exists constants A,h > 0 such that f(t,u) < /14‘1¢p(15||u||)f0r tel,el,u € [0,#], then

BVP(1.1,1.2)has at least two positive solutions u, and u, such that

0 <llmll < <|lusll

for

1 1 1 1
ZaS T = |N 1 e
(LB k (IsL)+7 k (4B1)7 7k (Ish7Tk
where
lzBl > lsL and l4Bl > l5L

Proof. Since o)
t,u
= lim sup ———— =
Jo= Jip. sup o Gl
there is 7y € (0, /1) such that
ft,u) > @p(Lllull) for £ € [1, e],u € [0, 7]

Let
-Q'ho = {Lt epP: ||u|| < ho}

then, for any u € 0€;,, it follows from Lemma 2.4 that
(Tu)(r) = fle Y1, $)eq (fle H(s, 1)f(x, M(T))d%) d—ss
>0 fl e(ln 1) "W(e, s)g, ( fl e H(s, T)go,,(zznun)d{) d—:
>1971, fle(ln 0 '¥(e, )@, (ﬁe(ln $)* ' Hee, T)?) d—SSIIuII

=27 Lpy(k) fl (In 1y ¥(e, s)(In s)("_l)(q_l)d—:lluﬂ
="' 1LB1,(®)lul
where e is as (3.8), k = [ H(e, 1), By = [ W(e, s)(In 5)@VeD< Thys,
ITull > 27 LB1g, (®)llul
This, together with (3.7), yields that
1T u|l > [lull, Yu € 0Qy,

By Lemma 2.6, we get
i(T,€y,,P) =0

In view of

u=+00 ey o) @p(Lalluel])

(3.7)

(3.8)

(3.9)

Electronic Research Archive Volume 32, Issue 2, 928-944.
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there is 5, iy > 7, such that
f(t,u) > A7, (Lallull), for 7 € [1,e],u € [A, +00)

Let
Qha ={uelP:|ul< hg}

then, for any u € Gth, it follows from Lemma 2.4 that

¢ ¢ dr\d
(T = fl (. 5)e, ( fl H(m)f(m(r)){){

>97! j;e(ln £y 1We, 8@, (j;e H(s, T)QDP(Z4||M||)?) %

>, f (Int)"¥(e, s)g, ( f (In s)“-lH(e,T)d—T)@
1 1 T

N
e d
=19 140y (k) f (In ty""¥(e, 5)(In )~ = |
1
=7 1By, ()|l

Thus, by (3.7), we have
ITull > A7 LyBo,(0)l|ull

This, together with (3.7), yields that
ITull = [lull, Yu € 02

By Lemma 2.6, we get
(T, s, P) =0

Finally, let Q; = {u € P : ||u|| < R}. For any u € 9€);, it follows from Lemma 2.3 and (H,) that
¢ ¢ dr\ds
(Tu)(®) = f W(t, ), ( f H(s, 1) f(r, u(T»?) ~
1 1
N ¢ dr\ds
<" f We, s)¢, (f H(e,T)QDp(lillu”)_)
1 1

T

4 4 d
<27 f ‘I’(e,s)goq( f H(e,r)d—T)—s-nun
1 1 T R

~ ¢ ds
2 s, () f e, 9l
1
=2 s L, (0

where e is as (3.8), L = [ W(e, s)£. Thus,
ITull < 27" s Lepg (1) lu]
This, together with (3.7), yields that

ITull < llull, Yu € 0,

(3.10)
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By Lemma 2.6, we get
i(T,Q4,P) =1 (3.11)

From (3.9)-(3.11) and i) < /i < i}, we get
i(T, Q5 \Q, P) = —1,i(T, Q3 \Qy,, P) = 1

Hence, T has a fixed point u; € QF \5;»,0 and a fixed point u, € Q,’{O\Q_n- Obviously, u;,u, are both
positive solutions of BVP (1.1,1.2) and 0 < ||uy|| < & < ||u,||. The proof of Theorem 3.2 is completed.
In a similar way, we get the following result.

Corollary 3.1 If f € C([1, e] X [0, +c0), [0, +0)), and the following conditions hold:

(Hy) f°=f>=0

(Hy4) There exists constants A, i, > 0 such that f(t,u) > /lq_lgop(lﬁllull)for te[l,e],u € [0,h,], then
BVP(1.1,1.2)has at least two positive solutions u, and u, such that

0 <llmll <z < luall

for

/le( L 1])0( L 1]] (3.12)
(leB1)* 'k (l3L)+ Tk (leB1)+ Tk (L1 L)+«

lﬁB] > l3L and l6B] > L

where

4. An example

Example. Consider the following infinite-point p—Laplacian fractional differential equations
3 3

"D}, (¢4 (HDlau)) O+ ftu®) =0, 1 <t <e,

u(l) = u'(1) = 0" DiLu(l) = an’D” ;). 4.1)

D% u(1) = 0; ¢, (HD%u(e)) = Z Livp (HDéu(m))
=1

1

Where'y: %,a/: %’rl = %,}’2: %,p:&q: %,77].: 2—;2,§j:efj,§j: #,
|u(2)|
t,u)=(Unr+2
S, u) = (In )3+|u(t)|
Clearly, for f € C([1,e] X [0, ), [0, o)), one can have
0 = 0+ 20
+ lu(r)]
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By simple calculation, we have

(o)

__ Iy Ty
Ty-r) Tly—-n)is

G r3g < 1(1)2
CTG-D) F(%—%>Z2

—r—1
njlng "

~ 38.18,

=1-> 4ng ' = —Z§,1n§2— - = —4~1—05411—04589

i=1 i=1

1 lnfj—lns
e Do
Ty-r) Ty—r)4 " \Ine-Ins

y—r2—1
P(s) = ) (Ine — In 5)1 "

5.1

1 272
1 ! ! [7—1“) Ly
= - | (Ine—Ins)272
5_3 5_ 1 —
F(E_E) F(z—z)gzj Ine—1Ins
1
1 j—4—lns
=1-— - (1 -
25<€.(lne—lns]( S

e 1 e 1 "
L= f Y(e, S)ﬁ :—f P(s)(Ine —Ins) " 'ds — — f (Ine —In S)v—lﬁ
! s A T(y) Ji s

Ins ds
3s1sf[ 22(1n€_1 ]ﬂne—lns)]ane—lns)T

¢ .d
(Ine—1Ins)i
S

r'Q)
~0.5600,
e d l ¢
K= H(e,s)—s fP(s)(lne—lns)“ l_s__f(lne lns)al
1 s A s T
1 e 1 1 lné‘:j—lns 2 lds
~ - i\ 7. 1 1 —1 7
O25ﬁ {F(é) I“(é);n](lne_lns) ](ne nS) 5
(lne—lns)z_
)
~5.08
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and

¢ d
B = f W(e, 5)(In )@V HE
1 N

- f ) (e, s)(In s)%@
1 S

I
1 ) 1 _.—4—lns 1dS
~ 1-7 - Ine—1 Ine — In s)(In s)* —
38.18]; [ 2S<§_[ln6—lns)(ne ns)](ne ns)(In s) ;

1
T Ty
I'3)
~3.0235
Hence, take I, = 10,l5 = 8, L = 0.56, [, = 6, and we have

¢ d
f (Ine —Ins)3(n s)t L
1 S

LB =10x%x3.0235 > [sL =8 X 0.56,14B; = 6 X 3.0235 > IsL = 8 x 0.56,

then there exists 4 = 0.005 such that

1 1 1 1
(LB "k (IsL)+ T« 4Bk (IsD) Tk
= (0.00022,0.01) N (0.0006,0.01),

Hence, all the conditions of Theorem 3.2 hold and boundary value problem (4.1) has two positive

solutions uy, u,.
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