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Abstract: Based on properties of Green’s function and the some conditions of f (t, u), we found a
minimal and a maximal positive solution by the method of sequence approximation. Moreover, based
on the properties of Green’s function and fixed point index theorem, the existence of multiple positive
solutions for a singular p-Laplacian fractional differential equation with infinite-point boundary
conditions was obtained and, at last, an example was given to demonstrate the validity of our main
results.
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1. Introduction

Fractional-order differential operator has become one of the most important tools for mathematical
modeling of complex mechanics and physical processes because it can describe mechanical and
physical processes with historical memory and spatial global correlation succinctly and accurately.
Additionally, and the fractional-order derivative modeling is simple, the physical meaning of
parameters is clear and the description is accurate. In recent years, fractional derivative has become
an important tool to describe all kinds of complex mechanical and physical behaviors, so the study of
a positive solutions of fractional differential equations has attracted much attention. For an extensive

http://http://www.aimspress.com/journal/era
http://dx.doi.org/10.3934/era.2024045


929

collection of such literature, readers can refer to [1, 2, 2–12]. Alsaedi et al. [13] investigated the
following equation

ρDα1−(φP(ρDβ0+u(t))) = v1 f (t, u(t),ρ Dβ0+u(t))) + vρ2Iξ0+g(t, u(t),ρ Dβ0+u(t)))

with boundary value condition

u(0) = 0, u(1) = λ1u(µ),ρ Dβ0+u(1) = 0, φp(ρDβ0+u(0)) = λ2φp(ρDβ0+u(η))

where φp(t) = |t|p−2 · t, 1
p +

1
q = 1, p, q > 1, 1 < α, β ≤ 2, ρ > 0, ζ > 0, 0 < µ, η < 1, 0 ≤ λ1 <

1
µρ(β−1) , 0 ≤

λ2 <
1

(1−ηρ)α−1 , and ρDα0+u and ρDβ0+u denote the right and left fractional derivatives of orders α and βwith
respect to a power function, respectively. The authors proved the uniqueness of positive solutions for
the given problem for the cases 1 < p ≤ 2 and p > 2 by applying an efficient novel approach together
with the Banach contraction mapping principle. Li and Liu [8] considered the fractional differential
equation

C
0 Dαgu(t) + f (t, u) = 0, 0 < t < 1

with boundary value condition

x(0) = 0, C
0 D1

gu(0) = 0, C
0 D1

gu(1) =
∫ 1

0
h(t)C

0 Dv
gu(t)g′(t)dt

where 2 < α < 3, 1 < v < 2, α − v − 1 > 0, f ∈ C([0, 1] × R+,R+), g′ > 0, h ∈ C([0, 1],R+),
R+ = [0,+∞), and the existence of multiple solutions for the following system by the fixed point
theorem are on cone.

In recent years, more and more scientists have devoted themselves to the study of Hadamard
fractional differential systems. For the part of outstanding results of Hadamard’s research on
fractional differential systems, please refer to [14–16]. Ardjouni [14] studied the following Hadamard
fractional differential equations

HDα1+u(t) + ϕ(t, u(t)) =H Dβ1+φ(t, u(t)), 1 < t < e

with integral boundary conditions

u(1) = 0, u(e) =
1

Γ(α − β)

∫ e

1
(log

e
s
)α−β−1g(s, x(s))

ds
s

where 1 < α ≤ 2, 0 < β ≤ α − 1, g, f : [1, e] × [0,∞) → [0,∞) are given continuous functions, ϕ is
not required for any monotone assumption, and φ is nondecreasing on x. The authors get the existence
and uniqueness of the positive solution by the method of upper and lower solutions and Schauder and
Banach fixed point theorems. In [15], Berhail and Tabouche studied the following fractional differential
equation

HDα1+u(t) = f (t, u(t), u′(t)), 1 < t < T,T < e

with integral boundary conditions

u′′(1) = 0, u(3)(1) = 0,

u(1) + au′(1) =
∫ T

1
g1(s)u(s)ds, u(T ) − bu′(T ) =

∫ T

1
g2(s)u(s)ds
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where 3 < α ≤ 4, g1, g2 ∈ C([1,T ], [0,+∞)), a, b > 0, and HDα1+ denotes the Hadamard factional order
of α. Based on the properties of Green’s function, the authors get the existence of a positive solution
for the equation in [15] by the Avery-Peterson fixed point theorem. In [16], the authors studied the
existence of a positive solution and stability analysis of the following equation

HDβ1+(ϕp(Dα1+ x))(t) = f (t, x), 1 < t < e

with integral boundary conditions

x(1) =H Dα1+ x(1) = u′(1) = u′(e) = 0,

ϕp(HDα1+u(e)) = µ
∫ e

1
ϕp(HDα1+ x(t))

dt
t

where α, β, and µ are three positive real numbers with α ∈ (2, 3], β ∈ (1, 2], and µ ∈ [0, β), ϕp(s) =
|s|p−2s is the P-Laplacian for p > 1, s ∈ R, f is a continuous function on [1, e] × R, and HDα1+ ,

H Dβ1+ is
the Hadamard fractional differential equation.The authors get the positive solutions by using the fixed
point methods.

Motivated by the excellent results above, in this paper, we will devote to considering the following
infinite-point singular p-Laplacian Hadamard fractional differential equation:

HDα1+
(
φp

(
HDγ1+u

))
(t) + f (t, u(t)) = 0, 1 < t < e (1.1)

with infinite-point boundary condition

u( j)(1) = 0, j = 0, 1, 2, . . . , n − 2;H Dr1
1+u(e) =

∞∑
j=1

ηH
j Dr2

1+u(ξ j),

HDγ1+u(1) = 0;φp(HDγ1+u(e)) =
∞∑

i=1

ζ jφp(HDγ1+u(ξ j))

(1.2)

where α, γ ∈ R+ = [0,+∞), 1 < α ≤ 2, n − 1 < γ ≤ n(n ≥ 3), r1, r2 ∈ [2, n − 2], r2 ≤ r1, p-Laplacian
operator φp is defined as φp(s) = |s|p−2s, p, q > 1, 1

p +
1
q = 1, and 0 < ηi, ζi < 1, 1 < ξi < e(i =

1, 2, . . . ,∞), f ∈ C([1, e]×R1
+,R

1
+))(R

1
+ = [0,+∞), and HDα1+u,

H Dγ1+u,
HDri

1+u(i = 1, 2) are the standard
Hadamard fractional-order derivatives.

In this paper, we investigate the existence of positive solutions for a singular infinite-point
p-Laplacian boundary value problem. Compared with [15], the equation in this paper is a p-Laplacian
fractional differential equation and the method in which we used is a fixed point index and sequence
approximation. Compared with [16, 17], value at infinite points are involved in the boundary
conditions of the boundary value problem (1.1,1.2) and the minimal positive solution and maximal
positive solution are obtained in this paper.

2. Preliminaries and lemmas

For some basic definitions and lemmas about the theory of Hadamard fractional calculus, the reader
can refer to the recent literature such as [6, 9, 18].
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Definition 2.1( [18,19]). The Hadamard fractional integral of α(α > 0) order of a function ℏ : (0,∞)→
R1
+ is given by

HIα1+ℏ(t) =
1
Γ(α)

∫ t

1
(ln

t
s
)α−1ℏ(s)

s
ds

Definition 2.2( [18, 19]). The Hadamard fractional derivative of α(α > 0) order of a continuous
function ℏ : (0,∞)→ R1

+ is given by

HDα1+ℏ(t) =
1

Γ(n − α)

(
t

d
dt

)n ∫ t

1

ℏ(s)

s
(
ln t

s

)α−n+1 ds

where n = [α]+ 1 and [α] denotes the integer part of the number α, provided that the righthand side is
pointwise defined on (0,∞).
Lemma 2.1( [18, 19]). If α, β > 0, then

HIα1+(ln x)β−1 =
Γ(β)
Γ(β + α)

(ln x)β+α−1 ,H Dα1+(ln x)β−1 =
Γ(β)
Γ(β − α)

(ln x)β−α−1

Lemma 2.2( [19]). Suppose that α > 0 and ℏ ∈ C[0,∞) ∩ L1[0,∞), then the solution of Hadamard
fractional differential equation HDα1+ℏ(t) = 0 is

ℏ(t) = c1(ln t)α−1 + c2(ln t)α−2 + · · · + cn(ln t)α−n, ci ∈ R(i = 0, 1, · · · , n), n = [α] + 1

Lemma 2.3( [19]). Suppose that α > 0, α is not a natural number and ℏ ∈ C[1,∞) ∩ L1[1,∞), then

ℏ(t) =H Iα1+
HDα1+ℏ(t) +

n∑
k=1

ck(ln t)α−k

for t ∈ (1, e] where ck ∈ R(k = 1, 2, · · · , n), and n = [α] + 1.

Lemma 2.4. Let y ∈ L1(1, e) ∩C(1, e), then the equation of the BVPs

−H Dγ1+u(t) = y(t), 1 < t < e (2.1)

with boundary condition u( j)(1) = 0( j = 0, 1, 2, . . . , n − 2),H Dr1
1+u(e) =

∑∞
j=1 η

H
j Dr2

1+u(ξ j) has integral
representation

u(t) =
∫ e

1
Ψ(t, s)y(s)

ds
s

(2.2)

where

Ψ(t, s) =
1
∆Γ(γ)


Γ(γ)(ln t)γ−1Ξ(s)(ln e − ln s)γ−r1−1 − ∆(ln t − ln s)γ−1,

1 ≤ s ≤ t ≤ e,

Γ(γ)(ln t)γ−1Ξ(s)(ln e − ln s)γ−r1−1, 1 ≤ t ≤ s ≤ e

(2.3)

in which

Ξ(s) =
1

Γ(γ − r1)
−

1
Γ(γ − r2)

∑
s≤ξ j

η j

(
ln ξ j − ln s
ln e − ln s

)γ−r2−1

(ln e − ln s)r1−r2 ,
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∆ =
Γ(γ)
Γ(γ − r1)

−
Γ(γ)
Γ(γ − r2)

∞∑
j=1

η j ln ξγ−r2−1
j , 0 (2.4)

Proof.By means of the Lemma 2.3, we reduce (2.1) to an equivalent integral equation

u(t) = −HIγ1+y(t) +C1(ln t)γ−1 +C2(ln t)γ−2 + · · · +Cn(ln t)γ−n

for Ci(i = 1, 2, · · · , n) ∈ R. From u(0) = 0, we have Cn = 0, then taking the first derivative, we have

u′(t) = −HIγ−1
1+ y(t) +C1(γ − 1)(ln t)γ−1 1

t
+C2(γ − 2)(ln t)γ−3 1

t
+ · · · + . . .

By u′(1) = 0, we have Cn−1 = 0, and taking the derivative step by step and combining u(i)(1) = 0, (i =
2, · · · , n − 2), we have Ci = 0(i = 2, 3, · · · , n − 2). Consequently, we get

u(t) = C1(ln t)γ−1 −H Iγ1+y(t)

By some properties of the fractional integrals and fractional derivatives, we have

HDr1
1+u(t) = C1

Γ(γ)
Γ(γ − r1)

(ln t)γ−r1−1 −H Iγ−r1
1+ y(t),

HDr2
1+u(t) = C1

Γ(γ)
Γ(γ − r2)

(ln t)γ−r2−1 −H Iγ−r2
1+ y(t)

(2.5)

On the other hand, HDr1
1+u(1) =

∑∞
j=1 η

H
j Dr2

1+u(ξ j), and combining with (2.5), we get

C1 =

∫ e

1

(ln e − ln s)γ−r1−1

Γ(γ − r1)∆
y(s)

ds
s
−

∞∑
j=1

η j

∫ ξ j

1

(ln ξ j − ln s)γ−r2−1

Γ(β − r2)∆
y(s)

ds
s

=

∫ e

1

(ln e − ln s)γ−r1−1Ξ(s)
∆

y(s)
ds
s

where Ξ(s),∆ are as (2.3), then,

u(t) = C1(ln t)γ−1 −H Iγ1+y(t)

= −

∫ t

1

∆(ln t − ln s)γ−1

Γ(γ)∆
y(s)

ds
s
+

∫ e

1

(ln e − ln s)γ−r1−1(ln t)γ−1Ξ(s)
∆

y(s)
ds
s

=

∫ e

1
Ψ(t, s)y(s)

ds
s

Therefore, Ψ(t, s) is as (2.3). □

Lemma 2.5. The Green functions (2.3) have the following properties:

(i)Ψ(t, s) > 0, ∂
∂tΨ(t, s) > 0, 1 < t, s < e;

(ii) maxt∈[1,e]Ψ(t, s) = Ψ(e, s) = 1
∆Γ(γ)

[
Γ(γ)Ξ(s)(ln e − ln s)γ−r1−1 − ∆(ln e − ln s)γ−1

]
;
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(iii)Ψ(t, s) ≥ (ln t)α−1Ψ(e, s), 1 ≤ t, s ≤ e

Proof. (i) By simple calculation, we have Ξ′(s) > 0. For s ∈ [1, e], we have Ξ(s) ≥ Ξ(1), then by the
expression of Ξ(s) and ∆, we have

Γ(γ)Ξ(s) ≥ ∆ = Γ(γ)Ξ(1)

For 1 < s ≤ t < e by the preceding formula, we have

Ψ(t, s) =
1
∆Γ(γ)

[Γ(γ)(ln t)γ−1Ξ(s)(ln e − ln s)γ−r1−1 − ∆(ln t − ln s)γ−1]

=
1
∆Γ(γ)

(ln t)γ−1[Γ(γ)Ξ(s) − (ln e − ln s)γ−r1−1 − ∆(1 −
ln s
ln t

)γ−1]

≥
1
Γ(γ)

(ln t)γ−1[(ln e − ln s)γ−1 − (1 −
ln s
ln t

)γ−1] ≥ 0

For 1 < t ≤ s < e, obviously, Ψ(t, s) > 0. Furthermore, by direct calculation, we get

∂

∂t
Ψ(t, s) =

1
∆Γ(γ)



(γ − 1)Γ(γ)(ln t)γ−2Ξ(s)(ln e − ln s)γ−r1−1 − ∆(ln t − ln s)γ−1

t
,

1 ≤ s ≤ t ≤ e,

(γ − 1)Γ(γ)(ln t)γ−2Ξ(s)(ln e − ln s)γ−r1−1

t
, 1 ≤ t ≤ s ≤ e

(2.6)

Clearly, ∂
∂tΨ(t, s) is continuous on [1, e] × [1, e]. By the similar method, for 1 < s ≤ t < e, we get

∂

∂t
Ψ(t, s) =

1
∆Γ(γ)t

[(γ − 1)Γ(γ)(ln t)γ−2Ξ(s)(ln e − ln s)γ−r1−1 − ∆(γ − 1)(ln t − ln s)γ−2]

=
γ − 1
∆Γ(γ)

(ln t)γ−2[Γ(γ)Ξ(s)(ln e − ln s)γ−r1−1 − ∆(1 −
ln s
ln t

)γ−2]

≥
γ − 1
Γ(γ)t

(ln t)γ−2[(ln e − ln s)γ−r1−1 − (1 −
ln s
ln t

)γ−2]

≥
γ − 1
Γ(γ)t

(ln t)γ−2[(ln e − ln s)γ−2 − (1 −
ln s
ln t

)γ−2] ≥ 0

(ii) By (i), we can easily get Ψ(t, s) is increasing on t; hence, we get

max
t∈[1,e]
Ψ(t, s) = Ψ(e, s) =

1
∆Γ(γ)

[Γ(γ)Ξ(s)(ln e − ln s)γ−r1−1 − ∆(ln e − ln s)γ−1], 1 ≤ s ≤ e

(iii) For 1 ≤ s ≤ t ≤ e, we have

Ψ(t, s) =
1
∆Γ(γ)

[Γ(γ)(ln t)γ−1Ξ(s)(ln e − ln s)γ−r1−1 − ∆(ln t − ln s)γ−1]

=
1
∆Γ(γ)

(ln t)γ−1[Γ(γ)Ξ(s) − (ln e − ln s)γ−r1−1 − ∆(1 −
ln s
ln t

)γ−1]

≥
1
∆Γ(γ)

(ln t)γ−1[Γ(γ)Ξ(s)(ln e − ln s)γ−r1−1 − ∆(1 − ln s)γ−1]

=(ln t)γ−1Ψ(e, s)
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For 1 ≤ t ≤ s ≤ e, we have

Ψ(t, s) =
1
∆

(ln t)γ−1Ξ(s)(ln e − ln s)γ−r1−1

=(ln t)γ−1 ·
1
∆
Ξ(s)(ln e − ln s)γ−r1−1

≥(ln t)γ−1Ψ(e, s)

Lemma 2.6. Let f ∈ C([1, e] × (0,+∞), [0,+∞)), then the BVP (1.1, 1.2) has a solution

u(t) =
∫ e

1
Ψ(t, s)φq

(∫ e

1
H(s, τ) f (τ, u(τ))

dτ
τ

)
ds
s

(2.7)

where

H(t, s) =
1

∆Γ(α)


(ln t)α−1Γ(α)Ξ(s)(ln e − ln s)α−1 − ∆(ln t − ln s)α−1,

1 ≤ s ≤ t ≤ e,

(ln t)α−1Γ(α)Ξ(s)(ln e − ln s)α−1, 1 ≤ t ≤ s ≤ e,

(2.8)

in which

Ξ(s) =
1
Γ(α)

−
1
Γ(α)

∑
s≤ξ j

ζ j

(
ln ξ j − ln s
ln e − ln s

)α−1

,

∆ = 1 −
∞∑
j=1

ζ j ln ξα−1
j , 0

Proof. Let v = φp(HDγ1+u), h(t) ∈ C[1, e], then the Eqs (1.1), (1.2) can be changed into the following
equation

HDα1+v(t) + h(t) = 0, 1 < t < e, v(1) = 0, v(e) =
∞∑
j=1

ζ jv(ξ j)

then by the similar method with Lemma 2.4, we get v(t) =
∫ e

1
H(t, s) ds

s , and H(t, s) is as (2.8). Let u(t)
be the solution of BVP (1.1, 1.2) and let κ(t) =H Dγ1+u(t). By Lemma 2.4, we have

u(t) =
∫ e

1
Ψ(t, s)κ(s)

ds
s

(2.9)

Putting v(t) = φp(κ(t)), we have

v(t) =
∫ e

1
H(t, s) f (s, u(s))

ds
s

(2.10)

Combining (2.9) and (2.10), we have (2.7). The proof of Lemma 2.6 is completed.

Lemma 2.7. The Green functions (2.8) have the following properties:

(i)H(t, s) > 0, ∂
∂t H(t, s) > 0, 1 < t, s < e;
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(ii) maxt∈[1,e] H(t, s) = H(e, s) = 1
∆Γ(α)

[
Γ(α)Ξ(s)(ln e − ln s)α−1 − ∆(ln e − ln s)α−1

]
;

(iii)H(t, s) ≥ (ln t)α−1H(e, s), 1 ≤ t, s ≤ e

Proof. The proof is similar to Lemma 2.5 of this paper and we omit it here.

Lemma 2.8 [20]. Let E Be a real Banach space, P ⊂ E be a cone, and Ωr = u ∈ P : ∥u∥ ≤ r. Let the
operator T : P ∩Ωr → P be completely continuous and satisfy T x , x,∀x ∈ ∂Ωr, then

(i) If ∥T x∥ ≤ ∥x∥,∀x ∈ ∂Ωr, then i(T,Ωr, P) = 1;

(ii) If ∥T x∥ ≥ ∥x∥,∀x ∈ ∂Ωr, then i(T,Ωr, P) = 0

3. Main results

Now, we define the Banach space E = C([1, e],R), which is assigned a maximum norm, that is,
∥u∥ = sup1≤t≤e |u(t)|. Let P = {u ∈ E|u(t) ≥ 0}, then P is a cone in E. Define an operator T : P→ P by

(Tu)(t) =
∫ e

1
Ψ(t, s)φq

(∫ e

1
H(s, τ) f (τ, u(τ))

dτ
τ

)
ds
s

(3.1)

then equation (1.1, 1.2) has a solution if, and only if, the operator T has a fixed point.

Lemma 3.1 If f ∈ C([1, e]× [0,+∞), [0,+∞)), then the operator T : P→ P is completely continuous.

Proof. From the continuity and nonnegativeness of Ψ(t, s) and f (t, u(t)), we know that T : P → P is
continuous. Let Ω ⊂ P be bounded, then for all t ∈ [1, e] and u ∈ Ω, there exists a positive constant M
such that | f (t, u(t))| ≤ M. Thus,

|(Tu)(t)| =

∣∣∣∣∣∣
∫ e

1
Ψ(t, s)φq

(∫ e

1
H(s, τ) f (τ, u(τ))

dτ
τ

)
ds
s

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫ e

1
Ψ(e, s)φq

(∫ e

1
H(e, τ)

dτ
τ

)
ds
s
× Mq−1

∣∣∣∣∣∣
=ωMq−1L

where

L =
∫ e

1
Ψ(e, s)

ds
s
, ω = φq

(∫ e

1
H(e, τ)

dτ
τ

)
which means that T (Ω) is uniformly bounded.

On the other hand, from the continuity of Ψ(t, s) on [1, e] × [1, e], we have Ψ(t, s) is uniformly
continuous on [1, e] × [1, e]. Hence, for fixed s ∈ [1, e] and for any ε > 0, there exists a constant δ > 0
such that t1, t2 ∈ [1, e] and |t1 − t2| < δ, |Ψ(t1, s) − Ψ(t2, s)| < 1

ωMq−1ε, then for all u ∈ Ω, we have
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|(Tu)(t2) − (Tu)(t1)|

≤

∫ e

1
|Ψ(t2, s) − Ψ(t1, s)|φq

(∫ e

1
H(s, τ) f (τ, u(τ))

dτ
τ

)
ds
s

≤ ωMq−1
∫ e

1
|Ψ(t2, s) − Ψ(t1, s)|

ds
s

< ε

which implies that T (Ω) is equicontinuous. By the Arzela-Ascoli theorem, we have that T : P → P is
completely continuous. The proof is complete.

Theorem 3.1 If f ∈ C([1, e] × [0,+∞), [0,+∞)), f (t, u) is nondecreasing in u, and λ ∈ (0,+∞), then
BVP(1.1,1.2) has a minimal positive solution v in Br and a maximal positive solution ϱ in Br. Moreover,
vm(t)→ v(t),ϱm(t)→ ϱ(t) as m→ ∞ uniformly on [1, e], where

vm(t) =
∫ e

1
Ψ(t, s)φq

(∫ e

1
H(s, τ) f (τ, vm−1(τ))

dτ
τ

)
ds
s

(3.2)

and

ϱm(t) =
∫ e

1
Ψ(t, s)φq

(∫ e

1
H(s, τ) f (τ, ϱm−1(τ))

dτ
τ

)
ds
s

(3.3)

Proof. Let
Br = {u ∈ P : ∥u∥ ≤ r},

r ≥ ωMq−1
1

∫ e

1
Ψ(e, s)

ds
s

For u ∈ Br, there exists a positive constant M1 such that | f (t, u(t))| ≤ M1,

|(Tu)(t)| =

∣∣∣∣∣∣
∫ e

1
Ψ(t, s)φq

(∫ e

1
H(s, τ) f (τ, u(τ))

dτ
τ

)
ds
s

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫ e

1
Ψ(e, s)φq

(∫ e

1
H(e, τ)

dτ
τ

)
ds
s
× Mq−1

1

∣∣∣∣∣∣
=ωMq−1

1

∫ e

1
G(e, s)

ds
s
≤ r

hence,
T : Br → Br

By Lemma 3.1, we get that T : Br → Br is completely continuous. Therefore, by the Schauder fixed
point theorem, the operator T has at least one fixed point, and so BVP(1.1,1.2) has at least one solution
in Br. Next, we show that BVP(1.1,1.2) has a positive solution in Br, which is a minimal positive
solution.

From (3.1) and (3.2), we have that

vm(t) = (Tvm−1)(t), t ∈ [1, e],m = 1, 2, 3, . . . (3.4)
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This, together with f (t, u) being nondecreasing in u, yields that

0 = v0(t) ≤ v1(t) ≤ . . . ≤ vm(t) ≤ . . . , t ∈ [1, e]

Since T is compact, we have that {vm} is a sequentially compact set. Hence, there exists v ∈ Br such
that vm → v(m→ ∞).

Let u(t) be any positive solution of BVP(1.1,1.2) in Br. Obviously, 0 = v0(t) ≤ u(t) = (Tu)(t); thus,

vm(t) ≤ u(t),m = 0, 1, 2, . . . . (3.5)

Taking limits as m → ∞ in (3.5), we have v(t) ≤ u(t) for t ∈ [1, e]. Thus, v is a minimal positive
solution, then, we show BVP(1.1,1.2)has a positive solution in Br, which is a maximal positive solution.

Let ϱ0(t) = r, t ∈ [1, e] and ϱ1(t) = Tϱ0(t). From T : Br → Br, we get ϱ1 ∈ Br. Therefore,

0 ≤ ϱ1(t) ≤ r = ϱ0

This, together with f (t, u) being nondecreasing in u, yields that

. . . ≤ ϱm(t) ≤ . . . ≤ ϱ1(t) ≤ ϱ0(t), t ∈ [1, e]

Using a proof similar to that of the above, we can show that

ϱm(t)→ ϱ(t)(m→ ∞)

and

ϱ(t) =
∫ e

1
Ψ(t, s)φq

(∫ e

1
H(s, τ) f (τ, ϱ(τ))

dτ
τ

)
ds
s

Let u(t) be any positive solution of BVP(1.1,1.2) in Br. It is obvious that

u(t) ≤ ϱ0(t)

so
u(t) ≤ ϱm(t) (3.6)

Taking limits as m→ ∞ in (3.6), we have u(t) ≤ ϱ(t) for t ∈ [1, e]. The proof is complete.
Define

f 0 = lim
u→0+

sup
t∈[1,e]

f (t, u)
φp(l1∥u∥)

, f0 = lim
u→0+

sup
t∈[1,e]

f (t, u)
φp(l2∥u∥)

,

f∞ = lim
u→+∞

sup
t∈[1,e]

f (t, u)
φp(l3∥u∥)

, f∞ = lim
u→+∞

sup
t∈[1,e]

f (t, u)
φp(l4∥u∥)

Let
B1 =

∫ e

1
G(e, s)(ln s)(α−1)(q−1) ds

s

Theorem 3.2 If f ∈ C([1, e] × [0,+∞), [0,+∞)) and the following conditions hold:
(H1) f0 = f∞ = +∞.
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(H2) There exists constants λ, ℏ > 0 such that f (t, u) ≤ λq−1φp(l5∥u∥) for t ∈ [1, e], u ∈ [0, ℏ], then
BVP(1.1,1.2)has at least two positive solutions u1 and u2 such that

0 < ∥u1∥ < ℏ < ∥u2∥

for

λ ∈

 1

(l2B1)
1

q−1 κ
,

1

(l5L)
1

q−1 κ

 ∩  1

(l4B1)
1

q−1 κ
,

1

(l5l)
1

q−1 κ

 (3.7)

where
l2B1 > l5L and l4B1 > l5L

Proof. Since
f0 = lim

u→0+
sup

t∈[1,e]

f (t, u)
φp(l2∥u∥)

= +∞

there is ℏ0 ∈ (0, ℏ) such that

f (t, u) ≥ φp(l2∥u∥) for t ∈ [1, e], u ∈ [0, ℏ0]

Let
Ωℏ0 = {u ∈ P : ∥u∥ ≤ ℏ0}

then, for any u ∈ ∂Ωℏ0 , it follows from Lemma 2.4 that

(Tu)(t) =
∫ e

1
Ψ(t, s)φq

(∫ e

1
H(s, τ) f (τ, u(τ))

dτ
τ

)
ds
s

≥λq−1
∫ e

1
(ln t)γ−1Ψ(e, s)φq

(∫ e

1
H(s, τ)φp(l2∥u∥)

dτ
τ

)
ds
s

≥λq−1l2

∫ e

1
(ln t)γ−1Ψ(e, s)φq

(∫ e

1
(ln s)α−1H(e, τ)

dτ
τ

)
ds
s
∥u∥

=λq−1l2φq(κ)
∫ e

1
(ln t)γ−1Ψ(e, s)(ln s)(α−1)(q−1) ds

s
∥u∥

=λq−1l2B1φq(κ)∥u∥

(3.8)

where e is as (3.8), κ =
∫ e

1
H(e, τ)dτ

τ
, B1 =

∫ e

1
Ψ(e, s)(ln s)(α−1)(q−1) ds

s . Thus,

∥Tu∥ ≥ λq−1l2B1φq(κ)∥u∥

This, together with (3.7), yields that

∥Tu∥ ≥ ∥u∥,∀u ∈ ∂Ωℏ0

By Lemma 2.6, we get
i(T,Ωℏ0 , P) = 0 (3.9)

In view of
f∞ = lim

u→+∞
sup

t∈[1,e]

f (t, u)
φp(l4∥u∥)

= +∞
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there is ℏ⋆0 , ℏ
⋆
0 > ℏ, such that

f (t, u) ≥ λq−1φp(l4∥u∥), for t ∈ [1, e], u ∈ [ℏ⋆0 ,+∞)

Let
Ωℏ⋆0 = {u ∈ P : ∥u∥ ≤ ℏ⋆0 }

then, for any u ∈ ∂Ωℏ⋆0 , it follows from Lemma 2.4 that

(Tu)(t) =
∫ e

1
Ψ(t, s)φq

(∫ e

1
H(s, τ) f (τ, u(τ))

dτ
τ

)
ds
s

≥λq−1
∫ e

1
(ln t)γ−1Ψ(e, s)φq

(∫ e

1
H(s, τ)φp(l4∥u∥)

dτ
τ

)
ds
s

≥λq−1l4

∫ e

1
(ln t)γ−1Ψ(e, s)φq

(∫ e

1
(ln s)α−1H(e, τ)

dτ
τ

)
ds
s

=λq−1l4φq(κ)
∫ e

1
(ln t)γ−1Ψ(e, s)(ln s)(α−1)(q−1) ds

s
∥u∥

=λq−1l4B1φq(κ)∥u∥

Thus, by (3.7), we have
∥Tu∥ ≥ λq−1L4B1φq(κ)∥u∥

This, together with (3.7), yields that

∥Tu∥ ≥ ∥u∥,∀u ∈ ∂Ωℏ⋆0

By Lemma 2.6, we get
i(T,Ωℏ⋆0 , P) = 0 (3.10)

Finally, let Ωℏ = {u ∈ P : ∥u∥ ≤ ℏ}. For any u ∈ ∂Ωℏ, it follows from Lemma 2.3 and (H2) that

(Tu)(t) =
∫ e

1
Ψ(t, s)φq

(∫ e

1
H(s, τ) f (τ, u(τ))

dτ
τ

)
ds
s

≤λq−1
∫ e

1
Ψ(e, s)φq

(∫ e

1
H(e, τ)φp(l5∥u∥)

dτ
τ

)
ds
s

≤λq−1l5

∫ e

1
Ψ(e, s)φq

(∫ e

1
H(e, τ)

dτ
τ

)
ds
s
· ∥u∥

=λq−1l5φq(κ)
∫ e

1
Ψ(e, s)

ds
s
∥u∥

=λq−1l5Lφq(κ)∥u∥

where e is as (3.8), L =
∫ e

1
Ψ(e, s)ds

s . Thus,

∥Tu∥ ≤ λq−1l5Lφq(κ)∥u∥

This, together with (3.7), yields that

∥Tu∥ ≤ ∥u∥,∀u ∈ ∂Ωℏ
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By Lemma 2.6, we get
i(T,Ωℏ, P) = 1 (3.11)

From (3.9)–(3.11) and ℏ0 < ℏ < ℏ
⋆
0 , we get

i(T,Ω⋆ℏ0
\Ωℏ, P) = −1, i(T,Ω⋆ℏ \Ωℏ0 , P) = 1

Hence, T has a fixed point u1 ∈ Ω
⋆
ℏ \Ωℏ0 and a fixed point u2 ∈ Ω

⋆
ℏ0
\Ωℏ. Obviously, u1, u2 are both

positive solutions of BVP (1.1,1.2) and 0 < ∥u1∥ < ℏ < ∥u2∥. The proof of Theorem 3.2 is completed.
In a similar way, we get the following result.

Corollary 3.1 If f ∈ C([1, e] × [0,+∞), [0,+∞)), and the following conditions hold:
(H3) f 0 = f∞ = 0.
(H4) There exists constants λ, ℏ2 > 0 such that f (t, u) ≥ λq−1φp(l6∥u∥) for t ∈ [1, e], u ∈ [0, ℏ2], then

BVP(1.1,1.2)has at least two positive solutions u1 and u2 such that

0 < ∥u1∥ < ℏ2 < ∥u2∥

for

λ ∈

 1

(l6B1)
1

q−1 κ
,

1

(l3L)
1

q−1 κ

 ∩  1

(l6B1)
1

q−1 κ
,

1

(l1L)
1

q−1 κ

 (3.12)

where
l6B1 > l3L and l6B1 > l1L

4. An example

Example. Consider the following infinite-point p−Laplacian fractional differential equations

HD
3
2
1+

(
φ3

(
HD

5
2
1+u

))
(t) + f (t, u(t)) = 0, 1 < t < e,

u(1) = u′(1) = 0;H Dr1
1+u(1) =

∞∑
j=1

ηH
j Dr2

1+u(ξ j),

HDα1+u(1) = 0;φp

(
HD

5
2
1+u(e)

)
=

∞∑
j=1

ζiφp

(
HD

5
2
1+u(ηi)

) (4.1)

where γ = 5
2 , α =

3
2 , r1 =

3
2 , r2 =

1
2 , p = 3, q = 3

2 , η j =
1

2 j2 , ξ j = e
1
j4 , ζ j =

1
2 j2 ,

f (t, u) = (ln t + 2)
|u(t)|

3 + |u(t)|

Clearly, for f ∈ C([1, e] × [0,∞), [0,∞)), one can have

| f (t, u)| = |(ln t + 2)
|u(t)|

3 + |u(t)|
| ≤ 3
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By simple calculation, we have

∆ =
Γ(γ)
Γ(γ − r1)

−
Γ(γ)
Γ(γ − r2)

∞∑
j=1

η j ln ξγ−r2−1
j

=
Γ( 5

2 )

Γ(5
2 −

3
2 )
−
Γ( 5

2 )

Γ(5
2 −

1
2 )

∞∑
j=1

1
2 j2

(
1
j4

)2

≈ 38.18,

∆ = 1 −
∞∑

i=1

ζi ln ξα−1
i = 1 −

∞∑
i=1

ζi ln ξ
1
2
i = 1 −

1
2

∞∑
i=1

1
j4 ≈ 1 − 0.5411 = 0.4589,

P(s) =
1

Γ(γ − r1)
−

1
Γ(γ − r2)

∑
s≤ξ j

η j

(
ln ξ j − ln s
ln e − ln s

)γ−r2−1

(ln e − ln s)r1−r2

=
1

Γ(5
2 −

3
2 )
−

1
Γ(5

2 −
1
2 )

∑
s≤ 1

j4

1
2 j2

 1
j4 − ln s

ln e − ln s


5
2−

1
2−1

(ln e − ln s)
3
2−

1
2

= 1 −
1
2

∑
s≤ξ j

 1
j4 − ln s

ln e − ln s

 (1 − s),

L =
∫ e

1
Ψ(e, s)

ds
s
=

1
∆

∫ e

1
P(s)(ln e − ln s)γ−r1−1ds −

1
Γ(γ)

∫ e

1
(ln e − ln s)γ−1 ds

s

≈
1

38.18

∫ e

1

1 − 1
2

∑
s≤ξ j

 1
j4 − ln s

ln e − ln s

 (ln e − ln s)

 (ln e − ln s)
ds
s

−
1
Γ(5

2 )

∫ e

1
(ln e − ln s)

3
2
ds
s

≈0.5600,

κ =

∫ e

1
H(e, s)

ds
s
=

1

∆

∫ e

1
P(s)(ln e − ln s)α−1 ds

s
−

1
Γ(α)

∫ e

1
(ln e − ln s)α−1 ds

s

≈
1

0.25

∫ e

1

 1
Γ( 3

2 )
−

1
Γ( 3

2 )

∑
s≤ξ j

η j

(
ln ξ j − ln s
ln e − ln s

) 1
2

 (ln e − ln s)
1
2
ds
s

−
1
Γ( 3

2 )

∫ e

1
(ln e − ln s)

1
2
ds
s

≈5.08
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and
B1 =

∫ e

1
Ψ(e, s)(ln s)(α−1)(q−1) ds

s

=

∫ e

1
Ψ(e, s)(ln s)

1
4
ds
s

≈
1

38.18

∫ e

1

1 − 1
2

∑
s≤ξ j

 1
j4 − ln s

ln e − ln s

 (ln e − ln s)

 (ln e − ln s)(ln s)
1
4
ds
s

−
1
Γ(5

2 )

∫ e

1
(ln e − ln s)

3
2 (ln s)

1
4
ds
s

≈3.0235

Hence, take l2 = 10, l5 = 8, L = 0.56, l4 = 6, and we have

l2B1 = 10 × 3.0235 > l5L = 8 × 0.56, l4B1 = 6 × 3.0235 > l5L = 8 × 0.56,

then there exists λ = 0.005 such that

λ ∈

 1

(l2B1)
1

q−1 κ
,

1

(l5L)
1

q−1 κ

 ∩  1

(l4B1)
1

q−1 κ
,

1

(l5l)
1

q−1 κ


= (0.00022, 0.01) ∩ (0.0006, 0.01),

Hence, all the conditions of Theorem 3.2 hold and boundary value problem (4.1) has two positive
solutions u1, u2.
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