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Abstract: This paper established a mathematical model with nonconvex bilinear terms. It formulated 

the complex material flow in the petroleum refinery scenario based on the concept of the “P model”. 

The mathematical model described the nonlinear constraints such as linear and nonlinear mass and 

volume intersection flow blending of crude and middle material physical properties. Additionally, it 

described the complex inflow and outflow in secondary devices as nonlinear constraints such as delta-

base structure and physical property transfer. It is highly difficult to determine the direction and 

quantity of each material in the network of refineries. An improved interior point algorithm with an 

initial point strategy was proposed to find a high-quality feasible solution in a short time. The real 

instances from the petroleum refinery were employed to compare and analyze the solutions from the 

improved algorithm and commercial solver. The experimental results show that the proposed algorithm 

framework can balance the solution quality and computational efficiency and perform well in different 

scenarios of refinery material flow networks. 

Keywords: material flow; process control; intersection mixture; interior point method; nonconvex 

optimization 

 

1. Introduction  

The pooling problem, also known as the mixed-flow problem, is a classic revenue maximization 

problem involving supply, storage, demand, and specified flow mixture constraints and usually appears 

in petroleum refinery and wastewater treatment scenarios [1]. Crude oils flowing into the petroleum 

refinery network are refined and processed to produce gasoline, kerosene, diesel, and other liquid fuels, 

hundreds of kinds of lubricating oil, paraffin, asphalt, and other refinery products, and tens of 
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thousands of synthetic resin, synthetic rubber, synthetic fiber, and other chemical products. Various 

physical and chemical processes, including crude oil separation, light oil, and gas processing, should 

be performed for the crude oil processing of various products. Each of these processes is relatively 

independent in constructing a refinery production unit network, such as the atmospheric-vacuum 

distillation unit and catalytic cracking, catalytic reforming, hydrocracking, coking, and other secondary 

devices. Refinery optimization refers to the overall optimization of the whole process of refinery 

enterprises, including raw material procurement, production, processing, and product delivery, for 

maximizing the economic benefits of enterprises while satisfying various production constraints. In 

terms of the pooling problem, the mixture of quality attributes often leads to nonconvex bilinear 

constraints, causing significant decision-making difficulties. Therefore, the research mainly focuses 

on the formulation and solution of nonlinear models. 

There are three classical modeling methods for the pooling problem: the “P(proportional) model” 

proposed by Haverly [2], the “Q(quantity) model” improved by Ben-Tal [3], and the “PQ(proportional 

and quatity) model” further modified by Quesada and Grossmann [4]. The “Q model” takes actual 

material inflow and product outflow of the processing system as the decision variables. The “P model” 

replaces the amount of material inflow and outflow by the transformation proportion relationship 

between all processes to obtain the equivalent form of the “Q model” with fewer variables. Based on 

the “Q model”, the “PQ model” adds constraints of proportional variables and product output to obtain 

a tighter convex envelope relaxation model [5]. 

The global optimization algorithms for solving the pooling problem in academia and industry are 

listed as follows: the nonlinear programming method based on Lagrange relaxation proposed by Ben-

Tal et al. [3,6], the branch-and-bound method based on convex relaxation proposed by Zamora and 

Grossmann [7], the branch-and-bound method for convex relaxation with enhanced lower bound based 

on discretization proposed by Ruiz and Grossmann [8], reformulation-linearization-technique(RLT) 

nonlinear method proposed by Meyer and Floudas [9], and external approximation nonlinear method 

proposed by Bergamini [10]. Although these global optimization algorithms can theoretically 

guarantee the optimality of the results, their solution’s efficiency cannot meet the practical operation 

requirements for complex problems. 

Compared with the global optimization algorithms, several local optimization algorithms have 

been proposed to solve the pooling problem. These algorithms include the continuous linear 

programming solution (SLP) designed for refinery scenarios [11–14], the nonmonotonic continuous 

linear programming (NMSLP) method [15], the nonlinear term discretization method [16–18], the 

Benders decomposition method proposed by Floudas and Aggarwal [19], the distributed recursive 

method for solving pooling problems in commercial software [20–22], and an interior-point method 

for solving nonlinear problems in commercial software [23,24]. Among them, the Benders 

decomposition and interior point methods fail to converge even for a long time. The continuous linear 

programming and distributed recursive methods easily fall into the local optimum. 

This paper proposes a formulation of a nonlinear model suitable for refinery mixed flow based 

on the modeling of the “P model” in the pooling problem combined with complex real business 

scenarios. Furthermore, an improved interior point method algorithm is presented, which can find a 

high-quality feasible solution quickly. This algorithm has contributed to the generalized mixed-flow 

processing problems considering the complex nonlinear constraints in the refinery process and the 

generality of the interior point method. 

The main contributions of this paper are: 

1) A nonconvex and nonlinear model is established considering complex processes, such as mass 

linear, mass nonlinear, volume linear, and volume nonlinear intersection flow blending of crude and 
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middle material physical properties with delta-base structure and physical property transfer. 

2) An improved interior point method is presented to solve the nonconvex and nonlinear model 

in the allowable time. 

3) Numerical experiment shows that the result of the improved interior point method is superior 

to that of the commercial solver. 

2. Materials and methods 

2.1. Material flow in crude oil refinery 

The main difficulty of production optimization in the crude oil refinery mainly lies in the 

significant amount of different raw materials and final products and the complex mutual supply 

relationship between various devices. Also, to meet different requirements for different final products, 

it is necessary to perform secondary processing of raw materials and intermediate components for 

selecting different processing options. It is challenging to construct a detailed optimization model for 

the above system. Therefore, this paper simplifies the entire industrial production process into five 

parts: raw material procurement, atmospheric and vacuum unit processing, secondary unit processing, 

blending, and product sales. By refining the transformation relationships within and between these five 

parts, the entire system can be well described through a relatively simple and neat model. It is 

noticeable that no necessary procedure is omitted. The performed simplifications include a summary 

and refinement of the actual process. The material quantity of inflow and outflow of each device is the 

main decision variable in the optimization model. These decision variables should meet specific 

equality or inequality relations caused by production requirements. Meanwhile, there are limited 

materials processed in each device and system due to the device capacity, production technology, and 

product delivery indicators. In addition, the inflow and outflow of devices should meet specific 

constraints caused by processing capacity and physical indicators. Finally, raw materials and final 

products should meet the business operation constraints, such as purchasing, sales, and warehouse 

storage. Even after some simplification, the great number of raw materials and final products, the 

complex processing and transformation relations, and the embedded scheme selection will still lead to 

a nonconvex and nonlinear model, resulting in significant difficulties for the model’s formulation and 

solution. This paper will give the model formulation in detail in Sections 2.2.1–2.2.6 and the solution 

algorithm of the optimization model in Section 2.3. 

2.2. Modeling the pooling problem 

Symbols Definition 

E  set of device types 
sE  set of devices in link s  
MI  ( , )M

inI e m=  is the set of materials flowing into the device 

GI  ( , )G

inI e g=  is the set of the utility system flowing into the device 

G  set of the utility system types 

H  set of unit processing capacity 
sH  set of unit processing capacity in link $s$ 

M  set of material types 
sM  set of material types that should be processed in link s  

 Continued on next page 
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Symbols Definition 
MO  ( , )M

outO e m=  is the set of device output material 

GO  ( , )G

outO e g=  is the set of the device output utility system 

s

mX  The amount of material m  in link s  (104 ton), { , }s gm xs  

,s s

m gX X  The upper limit of material m  (utility system g ) in link s  (104 tons), { , }s gm xs  

,s s

m gX X  The lower limit of material m  (utility system g ) in link s  (104 tons), { , }s gm xs  

, in

s

e mX  The amount of material m  flowing into device e  in link s  is the raw material 

consumption of device e  in process s  (104 tons), { , , }s cy ec th  

, out

s

e mX  The amount of material m  outflowing into device e  in link s  is the raw material 

consumption of device e  in process s  (104 tons), { , , }s cy ec th  

, ,in

s

e m pX  The amount of material m  in link s  flowing into device e  by the processing scheme 

p , { , , }s cy ec th  

, in

s

e gX  The amount of the utility system g  of link s  flowing into device e  is the utility system 

consumption of device e  of process s  (104 tons), { , , }s cy ec th  

, out

s

e gX  The amount of the utility system g  of link s  outflowing into device e  is the utility 

system consumption of device e  of process s  (104 tons), { , , }s cy ec th  

, ,in out

s

e m mX  The amount of product outm  processed from raw material inm  in device e  of link s  

(104 tons), { , , }s cy ec th  

,in

s

m qY  q  value of the quality attribute flowing into material m  in link s , { , , }s cy ec th  

,out

s

m qY  q  value of the quality attribute outflowing material m  in link s , { , , }s cy ec th  

, ,in

s

e m qY  q  value of the quality attribute of material m  flowing into device e  

, ,,s s

m q m qY Y  upper and lower limits of the q  value of the quality attribute of material m  in link s . 

{ , , }s cy ec th  

superscript  

s  { , , , , }s gm cy ec th xs  represents raw material procurement, atmospheric-vacuum distillation 

unit processing, secondary device processing, blending, and product sales. 

subscript  

g  Consumption of the utility system 

m  amount of material used 

In the model, the material set is M , the utility system set is G , and the device set is E . The 

superscript { , , , , }s gm cy ec th xs  can identify the corresponding production parts, representing raw 

material procurement, atmospheric-vacuum distillation unit processing, secondary device processing, 

blending, and product sales, respectively. For example, sM  represents the materials that should be 

processed in production part s  and sE  represents the devices employed in production part s. In this 

study, the consumption pairs of the device, material, and utility system comprise set I and the device’s 

output pairs. Material and utility systems consist of sets O  , ( )M MI O  , and ( )G GI O   as the 

consumption (output) sets of devices and materials and utility systems, respectively. The quantity of 

some materials is denoted as X . , ,( )
in in

s s

e m e gX X  and , ,( )
out out

s s

e m e gX X  represent the inflow and outflow 

of one material (utility system) in device e  in the production part s , respectively. In the model, 

subscripts 𝑖𝑛 and 𝑜𝑢𝑡 represent the inflow and outflow properties of the material or utility system. 
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2.2.1. Objective function 

The business requirement of refinery optimization implies optimizing the whole process from raw 

material procurement, production, and processing to product delivery to maximize the economic 

benefits of enterprises. Therefore, the following objective function is considered for the model to 

maximize profits: 

 max
xs xs gm gm

xs xs gm gm

m m g g m m g g

m M g G m M g G

p X p X c X c X
   

+ − −     (1) 

where mp  is the selling price of material m , gp  is the selling price of utility system g , mc  is 

the purchase price of raw material m, and gc  is the purchase price of utility system g . 

2.2.2. Material balance limit 

Any material must meet the material quantity balance constraint across the whole plant; that is, 

the sum of its purchased quantity and its quantity produced by all devices should equal the sum of the 

sales quantity of the material and the quantity of the material consumed by all devices: 

 
, ,

{ , , } { , , }
out in

s s

gm s xs s

m e m m e m

s cy ec th s cy ec the E e E

X X X X
  

+ = +     (2) 

The atmospheric-vacuum distillation unit is the leading device in refinery enterprises. With 

crude oil as the main raw material, the output of each side of the atmospheric vacuum device is 

determined by the amount of processed crude oil and the yield of each fraction of crude oil after 

distillation. , ,in out

cy

e m m  is the yield of the fraction outm  corresponding to the crude oil 
cy

inm M . 

For each atmospheric-vacuum distillation unit, the amount of material in and out should meet the 

following requirements: 

 

, , , ,

, ,: , , ( , ) , ( , )

out in out in
cy

in

in out
cy

in

cy cy cy

e m e m m e m

m M

cy cy M M

e m m in out

m M

X X

X e E e m I e m O






=

=    




 (3) 

The secondary unit is a general term for other processing units in refinery enterprises except 

for the atmospheric-vacuum distillation unit, including residual oil hydrogenation, catalytic 

cracking, catalytic reforming, hydrocracking, delayed coking, and other types. A set of secondary 

devices can have many production schemes, where the production process and the nature of raw 

materials determine each production scheme of raw material consumption and product yield. The 

delta-base structure of the secondary device should be established to describe the above process 

accurately [25,26]. 

 
, , , , , ( , )

e p in
ec

in

ec ec M

e m p in

m M

ecX X e E e m I


=     (4) 

 
( )

( )
, , ,, , , , , ,q , , , ,

, , ,

Y , ( , )
e m out e p in in in e pout

in

ec ec ec M

e p m e p d m m e p d m q out

p P p d m q

X X X e m O  


= + −     (5) 

where P  is the set of alternative processing options, q  is the quality attribute, d  is the delta-

base, , , oute p m  is the benchmark yield of material m  processed by scheme p  of refinery unit e , 
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, , , ,ine p d m q  is the reference value of the quality attribute of feed, and , , , ine p d m  is the change rate of the 

product yield with the feed’s quality attribute. The above constraints indicate that the product yield is 

based on the base and can change with the feed’s quality attribute. 

The feed of the atmospheric-vacuum distillation unit and the secondary device is usually mixed 

with multiple strands of materials with different properties. Limited by the production process, the 

properties of mixed raw materials should meet upper and lower ranges. Additionally, gasoline, diesel, 

and other final products produced by refinery enterprises are usually mixed with various components. 

The mixed product properties should meet specific upper and lower limits to meet national or industrial 

standards. In this paper, the above mixing processes are collectively referred to as blending and are 

characterized by a virtual device called blending pools. For each blending pool, the amount of material 

in and out should meet the following constraints: 

 
, , ,

out in

in

th th th

e m e m

m

X X e E=    (6) 

2.2.3. Processing capacity of the device 

The processing capacity of the device defines the maximum and minimum processing capacities 

of the production device. The device is not allowed to operate beyond the upper or lower capacities in 

the actual production process to ensure safe production. 

In this paper, the processing capacity set of the device is denoted by H   and sH   is the 

processing capacity set of all devices in link s . The upper and lower limits of processing capacity h  

of device e are denoted as s

hJ ,
s

hJ . Generally, the consumption of primary raw materials characterizes 

the processing capacity of a device, then for each device, the processing capacity required for 

processing all major raw materials should not exceed the upper and lower limits; that is, it must meet 

the following constraints: 

  , ,, , , ( , )
in

in

s s s s M

h e m h

m

s

inJ X J s cy ec h H e E e m I        ，  (7) 

2.2.4. Physical properties limit 

Since the quality attribute calculation between the lateral line and the blending discharge is similar, 

the blending equation is adopted to characterize the quality attribute calculation. Specifically, for the 

atmospheric-vacuum distillation unit, the quality attribute of one lateral line is equal to the weighted 

average of the quality attribute of the lateral line produced by each processed crude oil. For the 

blending pooling, the quality attributes of the discharge are equal to the weighted average of the quality 

attributes of each feed.  

In this paper, Q   is the set of quality attributes and ,

s

m qY   is the q value of the quality 

attribute of material m in link s . The set of quality attributes satisfying the blending relation of 

the weight is denoted as 
weightQ  and the set of quality attributes satisfying the volume blending 

relation is 
volumeQ  . The quality attribute calculation in the blending process should satisfy the 

following equality constraints: 

 ( ), , , , , ,

( , )

,
out out in out in

s
in

s s s s weight

m q e m e m m q e m q

e me E

Y X X Y q Q


=      (8) 
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 ( ), , , , , ,

( , )

,
out out in out in

s
in

s s s s volume

m q e m e m m q e m q

e me E

Y Y q QZ Z


=      (9) 

 , , , ,out out out

s

e m e m e mZ Y X =  (10) 

 , , , , ,in out in in out

s

e m m e m e m mZ Y X =  (11) 

where , ,e mY   is the material density. The introduction of variable volume Z  instead of a fractional 

expression (volume= weight/density) reduces the nonlinear constraints. ( )s

q Y  is the q  value of the 

quality attribute after link s . If the quality attributes conform to a linear blending law, ( )s

q Y Y = ; 

otherwise, this function is determined by the specific physical law.  

According to the requirements of the factory standards or the device’s tolerance to the raw 

materials, the physical properties of the blended materials should meet specific upper and lower limits. 

,

s

m qY  and ,

s

m qY  are the upper and lower limits of the q  value of the quality attribute of material m  

in link s . The material's physical value should meet the following constraints: 

  ,, , , , ,,
outout out

ss s s
m qm q m qY Y Y s cy th e E q Q        (12) 

The nature of the secondary plant discharge, the primary feed source for the blending pool, usually 

varies with the processed raw material nature. It is necessary to establish the quality attribute transfer 

structure of the secondary device to describe the above process accurately [25,26]: 

 
, , , , , , , ,

( , )
out in out in in out

in

ec ec

m q e m m q m q e m m q

e m

Y a Y b= +  (13) 

where , , ,in oute m m qa  and , , ,in oute m m qb  are the transfer coefficients of the transfer equation of the quality 

attribute q   between the feed inm   and the discharge outm   of secondary device e  . Physical 

properties in secondary devices are not subject to upper and lower limits. 

2.2.5. Restrictions on the utility system 

The utility system is a general term for auxiliary facilities to maintain the normal operation of 

refinery production and processing equipment, also known as supporting works, usually covering the 

water supply and drainage system, power supply system, compressed air system, steam power system, 

and wind power system. The production and consumption of the utility system occupy the main 

variable processing cost of the refinery, which should be modeled and optimized. To reflect the 

production and marketing process of the refinery utility system, the structures of procurement, utility 

sales and production, and consumption of the utility system are established in the optimization model 

of the refinery planning. Common utility systems include fresh water, recycled water, desalted water, 

deoxygenated water, power, steam, industrial air, instrument air, nitrogen, fuel gas, and fuel oil. In this 

scenario, the utility system is produced and consumed only in the atmospheric-vacuum distillation unit 

and secondary plant. The output or consumption of the utility system and the material consumption of 

the process are expressed with linear relations: 

 ( ), , , , ,
in

cy
in

cy cy cy cy cy

e g e m e g in

m M

X X e E e m I g G


   =  ， ，  (14) 
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 ( ), , , , ,
in

cy
in

ec ec ec e

e g e m

m

c ec

e g in

M

X X e E e m I g G


   =  ， ，  (15) 

where   represents the correspondence between the produced or consumed utility system and the 

number of processed materials.  

The utility system of the whole plant should balance the output and consumption: 

 
, ,

( . ) ( . )
in out

G G
in out

s s

e g e g

e e g I e e g O

X X
 

= 
∣ ∣

 (16) 

2.2.6. Operational limits 

In practice, raw material procurement and finished product sales should be within a given upper 

and lower range: 
 

, , { , }s s s s

m m mX X X m M s gm xs      (17)

 

The set of the utility system to be procured is gmG  and the set of the utility system available 

for sale is xsG . The procurement and sales volume of the utility system should meet the upper and 

lower limits: 

 
, , , , { , }

gy gy

s cy ec s s

g e g e g g

e E e E

X X X X g G s gm xs
 

 +       (18) 

Accordingly, the optimization model for this problem is established. The solution algorithm is 

presented in the next section. 

2.3. Algorithm design 

To facilitate the discussion of algorithm design, the optimization model is summarized in the 

following form: 

 

( )

( )
1

2

1

2

1

( ) max

. . 0

0

( ) 0

( ) 0

( , ) 0

,

X
P a X b

s t f X

f X

h Y

h Y

g X Y

X R Y R+

+

=



=



=

 

 

where a   and b   are parameters in Eq (1); the decision variable X   corresponds to 
s

mX  , ,

s

e mX  , 

, ,

s

e m pX , 
s

gX , ,

s

e gX  in the model; the decision variable Y  corresponds to ,

s

m qY  and , ,

s

e m qY  in the 

model; 1f  is a linear equality constraint on X  corresponding to Eqs (2)–(4), (6) and (14)–(16); 

2f  is a linear inequality constraint on X  corresponding to Eqs (7), (17) and (18); 1h  is a linear 

equality constraint on Y   corresponding to Eq (13); 2h   is a linear inequality constraint on Y  

corresponding to Eq (12); and 1g  is a nonlinear equality constraint on X  and Y  corresponding 

to Eqs (5) and (8)–(11). 
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The optimization model is nonconvex and nonlinear because the chemical reactions can be 

generally described with a nonlinear model in actual industrial production, such as the delta-base 

structure in secondary devices and the quality attribute calculation of blending pools. The above 

problem coupled with the huge number of raw materials and final products makes it challenging to 

solve the model. Although many commercial or open-source solvers provide nonconvex optimization 

model solving, their solving efficiency is insufficient to deal with large industrial optimization 

problems. Therefore, to reduce the solving time of the model, a high-quality initial solution-finding 

method is proposed based on the problem structure and actual business logic, then this method is 

combined with the classical interior point method to solve the problem. The interior point method has 

a guarantee of convergence efficiency [27,28], especially if the initial solution is good. 

The similarity between the initial and optimal solutions can significantly influence the efficiency 

of the interior point method. This paper generates the initial solution from two linear sub-models, 

whose solutions are combined to form the initial solution. The proposed algorithm consists of three 

parts: the material (linear model) for solving the initial value corresponding to model ( 2P ), the solution 

of initial values of quality attributes (linear model) corresponding to questions ( 3P ), and the entire 

model corresponding to model ( P ). Among them, the model ( 2P ) ignores the quality attribute based 

on the model P . Based on constraints such as the raw material purchasing prices, selling price of the 

product, upper and lower limits of purchase quantity, and upper and lower limits of sales, material 

balance, the raw material purchasing amount to maximize revenue, product sales, and the flow 

distribution between devices are determined. Model ( 3P ) relaxes the nonlinear constraints based on 

model ( P ), and to avoid obtaining solutions that are grossly infeasible, we refer to the idea of penalty 

functions [29]. Additionally, based on the material quantity calculated in the ( 2P ) model, the quality 

attribute value that meets the quality attribute constraints is calculated. Finally, the model P takes the 

solutions of ( 2P ) and ( 3P ) as the initial points and employs the interior point method. The ( 2P ) and 

( 3P ) models are described as follows: 

 
( )

( )

2

1

2

( ) max

. . 0

0

X
P a X b

s t f X

f X

X R+

+

=





 

 

( )

( )

( )

1 1

3 1 1

2

, ,

1

1 1 1

1 1

( ) min

. . 0

ˆ , 0

,

0

Y SL SL
P SL SL

s t h Y

g X Y SL SL

SL SL R

h Y

+ −

+ −

+ −

+ − +

+ − =



+

=



 

where ( 2P ) is the initial model P without quality attribute variables and constraints; 3P  is a model in 

which the initial model P fixes a certain set of material values and only considers quality attribute 

constraints. In the model ( 3P ), 1SL+
 and 1SL−

 are the positive and negative relaxation variables of 

function 1g  , respectively. The relaxation cost is taken as the objective function. Minimizing the 
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relaxation cost ensures the satisfaction of the physical constraints as much as possible. The physical 

constraints can be satisfied by minimizing the slack cost under the determined raw material, product 

yield, and flow rate between the devices. 

For the complete algorithm framework based on the interior point method, we present the solution 

approach in the form of the following pseudocode: 

Improved interior point method algorithm 

Initialization: model ( P ) is established according to actual business scenarios and parameters.  

1) Based on model P , the models ( 2P ) and ( 3P ) are generated 

2) The optimal solution X̂  is obtained by solving model ( 2P ) 

3) X̂  is kept fixed, and the optimal solution Ŷ  is obtained by solving model ( 3P ) 

4) 0 ˆX X ; 0 ˆY Y  

5) Taking 0X  and 0Y  as the initial solutions of the interior point method, the model ( P ) is 

solved.  

Output: the optimal solution *X  and *Y  

3. Case study 

This section employs some actual data to establish the model and applies the above algorithm to 

solve the model. The simulation results indicate the superiority of the proposed algorithm to 

commercial solvers. 

3.1. Experimental instances 

The examples come from two refiners owned by an oil company. These refiners should consider 

more than 30 kinds of physical properties when optimizing the production plans, including density, 

sulfur content, acid content, residual carbon content, metal content, octane number, olefin content, 

aromatics content, freezing point, and viscosity. This paper selects the refining and petrochemical 

processes of two refineries A and B for the optimization process. Refinery A contains 36 kinds of 

physical properties and 79 sets of units, including 3 sets of atmospheric-vacuum distillation units, 50 

sets of secondary units, and 26 sets of blending pools. Refinery B contains 54 kinds of physical 

properties and 58 sets of units, including 2 sets of atmospheric-vacuum distillation units, 40 sets of 

secondary units, and 16 sets of blending pools. After applying the proposed model, Case 1 (refinery A) 

has 7229 continuous variables and 3926 constraints, 1827 of which are bilinear. Case 2 (refinery A) 

has 7230 continuous variables and 3308 constraints, 1851 of which are bilinear. Case 3 (refinery B) 

includes 5365 continuous variables and 2339 constraints, 379 of which are bilinear. The above 

information is summarized in Table 3. 

Table 1. The model scale. 

Case ID The number of 

physical 

properties 

The number of 

devices 

The number of 

variables 

The number of 

constraints 

The number of 

bilinear 

constraints 

1 22 58 7229 3926 1827 

2 36 79 7230 3308 1851 

3 22 58 5365 2339 379 
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3.2. Result 

As shown in Table 1, all three examples in the numerical experiment have more than 5000 

continuous variables and more than 2000 constraints, many of which are bilinear. Since a nonlinear model 

with such a scale is extremely challenging for a general solver, this paper selects the Gurobi 9.5.1 for 

comparative evaluation. It improves the original spatial branch-and-bound algorithm and optimizes the 

solving efficiency of the pooling problem in the refinery. Gurobi’s built-in spatial branch-and-bound 

algorithm can guarantee global optimality theoretically. The proposed algorithm is evaluated by 

combining the initial solution module with the interior point method solver IPOPT 3.14.5. The test 

environment is an Intel 2GHz i5 processor with 16 GB memory and MacOS operating system. The results 

are displayed in Table 2. For Cases 1 and 2, Gurobi cannot find feasible solutions within 1000 s, while the 

proposed improved interior point algorithm provides feasible solutions within 1 min. Meanwhile, the 

results of model 3 indicate that the proposed algorithm only needs 8 s to find a feasible solution, and 

the objective function value of the algorithm is nearly 10% higher than that obtained by Gurobi. 

Moreover, for Case 3, the theoretical upper bound of the spatial branch-and-bound is also obtained to 

evaluate the optimality of the proposed algorithm. The difference between the objective function value 

and the theoretical optimal value is less than or equal to 2.3%. 

Table 2. Comparison between the results obtained by the solver and the proposed algorithm. 

Case ID 

Objective 

function_solver 

(RMB) 

Upper limit of the 

objective 

function_solver (RMB) 

Objective 

function_ 

algorithm (RMB) 

Solution 

time_solver 

(s) 

Solution 

time_algorithm 

(s) 

1 —— —— 85,920.37 1000 16.73 

2 —— —— 1,443,410.4 1000 63.75 

3 34,326.95 38,700.55 37,801.59 1000 7.8 

Furthermore, in the experimental process, this paper also verifies the improvement degree of the 

initial solution module to the solving efficiency of the interior point method. As shown in Table 3, 

when the initial solution is not set in Cases 1–3 while directly employing the interior point method to 

solve the problem, a feasible solution cannot be obtained within 1000 s. It can be concluded that the 

designed initial solution module significantly improves the computational efficiency of the overall 

interior point method. 

Table 3. Comparison of the results of the interior point method algorithm with and without 

the initial solution. 

Case ID 

Objective function 

_without solver (RMB) 

Objective function 

_solver (RMB) 

Solution time _ 

without solver (s) 

Solution time _ 

solver (s)  

1 —— 85,920.37 1000 16.73 

2 —— 1,443,410.4 1000 63.75 

3 —— 37,801.59 1000 7.8 

4. Conclusions 

This paper employed the traditional P model to formulate the pooling structure in the complex 

refinery material flow network. Furthermore, an algorithm framework composed of an initial solution 

strategy and interior point method was designed to obtain and improve the efficiency of the solution. 
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The main conclusions are as follows: 

a) Compared with the commercial solver (Gurobi), the proposed solution approach can produce 

high-quality feasible solutions of the instances we adopt in 1 minute, increasing the revenue of the 

refinery plant by nearly 10%.  

b) The experimental results demonstrate robustness, which improves the stability of the solution 

under complex scenarios with differences. 

c) Although we can generate satisfactory solutions in a reasonable time, there is still much work 

to improve efficiency and optimality in the initial points generation strategy. 
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