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Abstract: In this paper, we consider the first boundary value problem for a class of steady non-
Newtonian micropolar fluid equations with heat convection in the three-dimensional smooth and
bounded domain Ω. By using the fixed-point theorem and introducing a family of penalized problems,
under the condition that the external force term and the vortex viscosity coefficient are appropriately
small, the existence and uniqueness of strong solutions of the problem are obtained.
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1. Introduction

The motion of an incompressible micropolar fluid with heat conduction and a constant density is
described by the following system of partial differential equations (see [1]):

ut + (u · ∇)u − divτ + ∇π = 2υrrot ω + f (θ)
div u = 0

ωt + (u · ∇)ω − (ca + cd)△ω − (c0 + cd − ca)∇divω = 2υr(rotu − 2ω) + g(θ)

θt + (u · ∇)θ − div(κ∇θ) = τ : D + 4υr(
1
2

rotu − ω)2 + c0(divω)2

+(ca + cd)∇ω : ∇ω + (cd − ca)∇ω : (∇ω)T + h

(1.1)

Equation (1.1) comprises the conservation laws of linear momentum, mass, angular momentum, and
energy, respectively. The unknown u = u(x, t) is the velocity vector, π(x, t) is the pressure, ω = ω(x, t)
is the angular velocity of internal rotation of a particle, and θ = θ(x, t) is the temperature. The vector-
valued functions f , g are given external forces, and the scalar-valued function h denotes the heat
source. The positive constant υr in (1.1) represents the dynamic micro-rotation viscosity, c0, ca, cd are
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constants called the coefficients of angular viscosities, and κ is the heat conductivity. The viscous stress
tensor τ = τ(D), where

D = D(u) =
1
2

(∇u + ∇uT )

is the rate of deformation tensor, is also called the shear rate tensor. If the relation between the stress τ
and the strain rateD is linear, then the fluid is called Newtonian. If the relation is non-linear, the fluid
is called non-Newtonian. For an introduction to the mechanics of non-Newtonian fluids we refer the
reader to references [2, 3].

If ω, g, and the viscosity coefficients c0, ca, cd, υr are zero, system (1.1) reduces to the system of
field equations of classical hydrodynamics. For the Newtonian case (i.e., τ = µD), several variants
of system (1.1) have been studied by several authors in the literature. One well-known simplified
model is the Oberbeck–Boussinesq approximation, which was obtained by ignoring the dissipation
term τ : D. The neglect of this term considerably simplifies the analysis, and it has been widely
studied by several authors from a theoretical perspective; we could refer the reader to [4–9] (and the
references cited therein) for related results. If the term τ : D is not neglected, the mathematical
analysis for (1.1) becomes significantly more difficult. One of the main challenges stems from the fact
that this viscous dissipation term belongs, a priori, only to L1(QT ), which makes the application of
compactness arguments problematic. Related results, such as the existence, uniqueness, regularity, and
large time behavior of solutions, have been investigated in previous studies; see, e.g., [10–16] and the
references therein. In the non-Newtonian case, a popular technique is to assume that the tensor τ has a
p-structure. Consiglieri [17] proved the existence of weak solutions to the coupled system of stationary
equations given by (1.1) with the Dirichlet boundary conditions under more general assumptions on τ
with temperature-dependent coefficients. Consiglieri and Shilkin [18] proved the existence of a weak
solution, where u possesses locally integrable second-order derivatives. Under the weak assumptions
on the data of the problem, Consiglieri [19] proved the existence of weak solutions for a class of non-
Newtonian heat-conducting fluids with a generalized nonlinear law of heat conduction. Roubı́ček [20]
has shown the existence of the distributional solution to the steady-state system of equations for non-
Newtonian fluids of the p-power type, coupled with the heat equation with heat sources to have L1-
structure and even to be measures. Beneš [21] considered the steady flow model with dissipative and
adiabatic heating and temperature-dependent material coefficients in a plane bounded domain. The
existence of a strong solution is proven by a fixed-point technique based on the Schauder theorem for
sufficiently small external forces. For more results, we refer the reader to [22–24] and the references
cited therein.

Under the condition that the angular momentum balance equation is considered (i.e., including the
ω equation in (1.1)), Kagei and Skowron [25] established the existence and uniqueness of solutions of
problem by using the Banach fixed-point argument. Amorim, Loayza and Rojas-Medar [26] analyzed
the existence, uniqueness, and regularity of the solutions in a bounded domain Ω ⊂ R3 by using an
iterative method; the convergence rates in several norms were also considered. Łukaszewicz, Waluś and
Piskorek [27] studied the stationary problem associated with (1.1), and they showed that the boundary
value problem has solutions in appropriate Sobolev spaces, provided the viscosities υr and ca + cd are
sufficiently large. The proof is based on a fixed-point argument. The above-mentioned results are all
regarding the Newtonian case and, to the best of our knowledge, related results for such a problem of
non-Newtonian type have not been considered yet.
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In this paper, we study a stationary non-Newtonian version of the full system (1.1) in a smooth
bounded domain Ω ⊂ R3. More precisely, by neglecting the dissipation term τ : D and assuming that
τ has the p-structure

τ(Du) = 2µ(1 + |Du|)(p−2)Du, µ > 0 const (1.2)

after taking the viscosity coefficients properly, we consider the following non-Newtonian micropolar
fluid equation with heat convection:

div(u ⊗ u) − divτ(Du) + ∇π = 2υrrotω + θ f , in Ω
divu = 0, in Ω

(u · ∇)ω − 2△ω − 2∇divω = 2υr(rotu − 2ω) + θg, in Ω
−div(κ(·, θ)∇θ) + (u · ∇)θ = Φ(u,ω) + h, in Ω

(1.3)

supplemented with the following first boundary value conditions:

u|∂Ω = 0, ω|∂Ω = 0, θ|∂Ω = 0 (1.4)

where, in (1.3), Φ(u,ω) =
4∑

i=1
Φi and

Φ1(u,ω) = (
1
2

rotu − ω)2, Φ2(ω) = (divω)2, Φ3(ω) = 2
3∑

i, j=1

(ωi, j)2, Φ4(ω) =
3∑

i, j=1

ωi, jω j,i

here, for a vector-valued function v(x), we denote vi, j = ∂ jvi(x). We assume that the heat conductivity
κ : Ω × R→ R is a C1 function such that 0 < κ1 ≤ κ(x, θ) ≤ κ2 almost everywhere, with x ∈ Ω and, for
all θ ∈ R, it satisfies that |κ′(·, a) − κ′(·, b)| ≤ λ′|a − b| for all a, b ∈ R and κ′(·, 0) = 0, where κ1, κ2, and
λ′ are positive constants.

The goal of the present paper is to prove the existence and uniqueness of a strong solution to the
system given by system (1.2)–(1.4) under a smallness condition on the external force term and the
vortex viscosity coefficient. The procedure employs similar ideas to the ones presented in [28]. The
main idea is to use the fixed-point theorem in combination with the regularized technique.

Let us briefly sketch the proof. First, after regularizing the term |D(u)| in the stress tensor with
a parameter ε, we consider a penalized problem and rewrite it in a new form. Next, by the known
results about the linear equation, we define the mapping by linearizing the above systems. Noticing
that the first equation of the linearized systems is in a form of the Stokes type, by using the well-known
regularity resuls (see [29]), we could obtain a pair (uε, πε) ∈ W2,q(Ω) × W1,q(Ω). What needs to be
pointed out is that, if we do not regularize the stress tensor, the right-hand side of this equation does
not belong to Lq(Ω); this makes it impossible to apply the above theorem to get uε ∈ W2,q(Ω). Then,
by using the fixed-point theorem, we could prove the existence of an approximate solution (uε,ωε, θε),
and, finally, by taking ε→ 0, we prove the main result (Theorem 2.1).

Remark 1.1. In our case, in the process of proof, we use an elementary inequality: for every a, b ∈ R+,
we have

|(1 + a)p−2 − (1 + b)p−2| ≤ (|p − 2|, 1)+|a − b|(1 + (a, b)+)(p−2)+−1

If we allow the stress tensor to have singularity (i.e., τ(Du) = 2µ|Du|(p−2)Du), one similar estimate
for |ap−2 − bp−2| is needed and this is not known. Therefore, our method is not suitable for the singular
case. (See [28] for more details.)
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The paper is organized as follows. In Section 2, we introduce basic notations and some preliminary
results that will be used later; we then state the main results of this work. We prove the existence
and uniqueness of strong solutions of an approximate problem described by (1.2)–(1.4) in Section 3
by employing a fixed-point argument. Finally, in Section 4, we prove the main result by letting the
parameter ε→ 0.

2. Preliminaries and main result

Throughout the paper, we shall use the following functional spaces: Lq(Ω), Wm,q(Ω), and W1,q
0 (Ω)

are the usual Lebesgue and Sobolev spaces; the norms in Lq(Ω) and Wm,q(Ω) we respectively denote by
∥ · ∥q and ∥ · ∥m,q; W−1,q(Ω) denotes the dual space of W1,q

0 (Ω), and its norm is represented by ∥ · ∥−1,q;Ω.
We also introduce the space

V := {u| u ∈ C∞0 (Ω), div u = 0}
Vp := {u ∈ W1,p

0 (Ω) : divu = 0}
Vm,p := {u ∈ W1,p

0 (Ω) ∩Wm,p(Ω) : div u = 0, in Ω}

For x, y ∈ R, (x, y)+ = max{x, y}, x+ = max{x, 0}, and S p =
(
|p − 2|, 2

)+. We introduce the
following constants:

2rp = 1 + (p − 3)+ − (p − 4)+, γp =
[(p, 3)+ − 2](p,3)+−2

[(p, 3)+ − 1](p,3)+−1 (2.1)

we also denote Cp = Cp(n, s,Ω) as the Poincaré constant of the Poincaré inequality.
For q > r > s > 3, let us consider the convex set Bρ defined by

Bρ =
{
(ξ, η, ζ) ∈ V2,q ×W2,r(Ω) ×W2,s(Ω) : CE∥∇ξ∥1,q ≤ ρ, CẼ∥∇η∥1,r ≤ ρ, CE∥∇ζ∥1,s ≤ ρ

}
(2.2)

where ρ is a constant to be determined; CE, CẼ, and CE are the embedding constants from W1,q(Ω)
into L∞(Ω), W1,r(Ω) into L∞(Ω), and W1,s(Ω) into L∞(Ω), respectively. Also, we consider the space
V2,q × (W2,r(Ω)

⋂
W1,r

0 (Ω)) × (W2,s(Ω)
⋂

W1,s
0 (Ω)), endowed with the norm

∥(ξ, η, ζ)∥1,q,r,s := max
{
∥∇ξ∥1,q, ∥∇η∥1,r, ∥∇ζ∥1,s

}
For later use, we state some useful lemmas.

Lemma 2.1. [29] Let m ≥ −1 be an integer, and let Ω be bounded in Rn(n = 2, 3) with a boundary
∂Ω of class Ck with k = (m + 2, 2)+. Then, for any f ∈ Wm,q(Ω), the system given by

−△u + ∇π = f , in Ω
div u = 0, in Ω

u|∂Ω = 0

admits a unique (u, π) ∈ Wm+2,q(Ω) ×Wm+1,q(Ω). Moreover, the following estimate holds:

∥∇u∥m+1,q + ∥π∥m+1,q/R ≤ Cm∥ f∥m,q

where Cm = Cm(n, q,Ω) is a positive constant.
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Lemma 2.2. [28] Let γp be defined as (2.1), and let L : R+ → R be defined by

L(δ) = Aδ2 − δ + Eδℓ(δ) + D

where A,D, E are positive constants and ℓ(x) = x(1 + x)(p−3)+ . Thus, if the following assertion holds:

AD + ED(1 + D)(p−3)+ ≤ γp

then L possesses at least one root δ1. Moreover, δ1 > D, and, for every β ∈ [1, 2], the following estimate
holds:

β − 1
β
δ1 +

2 − β
β

Aδ2
1 +

2 − β
β

Eδ1ℓ(δ1) +
E(p − 3)+

β
δ3

1(1 + δ1)(p−3)+−1 ≤ D (2.3)

Lemma 2.3. [30] Let X and Y be Banach spaces such that X is reflexive and X ↪→ Y. Let B be a
non-empty, closed, convex, and bounded subset of X, and let T : B→ B be a mapping such that

∥T (u) − T (v)∥Y ≤ K∥u − v∥Y for each u, v ∈ B, 0 < K < 1

then, T has a unique fixed point in B.

The main result of our paper is as follows:

Theorem 2.1. Let f ∈ Lq(Ω), g ∈ Lr(Ω), and h ∈ Ls(Ω), where q > r > s > 3, p > 1, and µ > 0.
There exist positive constants λ = λ(C0,C−1,C3, λ

′

, κ1,CE,CẼ,CE,Cp), m1 = m1(C1,Cp,CE,CẼ, νr),
and m2 = m2(C, λ

′

,Cp,CE,CẼ,CE) such that, if ∥g∥r < m1, ∥h∥s < m2k2
1, υr > 0 small enough, and

(1
µ
+ 2

)2λ
2(
∥ f∥2q + νr

)
µ

+
(1
µ
+ 1

)
λνr + λ

∥ f∥q
µ
+ λ∥g∥r

+ S pλ
2 ∥ f∥2q + νr

µ
·

1 + λ(∥ f∥2q + νr
)

µ

(p−3)+

<
1

4(p−2,1)+

(2.4)

then the problem given by (1.2)–(1.4) has a unique strong solution (u,ω, θ) ∈ V2,q ×

(W2,r(Ω)
⋂

W1,r
0 (Ω)) × (W2,s(Ω)

⋂
W1,s

0 (Ω)).

Remark 2.1. As usual, the pressure π has disappeared from the notion of the solution. Actually, the
pressure may be recovered by the de Rham theorem, at least in L2(Ω), such that (u, π,ω, θ) satisfies
(1.2)–(1.4) almost everywhere (see, e.g., [31]).

3. Existence of the approximate solution

For 0 < ε < 1, we consider the following family of penalized problems
−div

(
2µ(1 +

√
ε2 + |Du|2)p−2Du

)
+ ∇π + div(u ⊗ u) = 2υrrot ω + θ f , in Ω

div u = 0, in Ω
−2△ω + (u · ∇)ω − 2∇divω = 2υr(rotu − 2ω) + θg, in Ω
−div(κ(·, θ)∇θ) + (u · ∇)θ = Φ(u,ω) + h, in Ω
u|∂Ω = 0, ω|∂Ω = 0, θ|∂Ω = 0

(3.1)

The following result holds true.
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Theorem 3.1. Let f ∈ Lq(Ω), g ∈ Lr(Ω), and h ∈ Ls(Ω), where q > r > s > 3, p > 1, µ >
0, and 0 < ε < 1. There exist positive constants λ = λ(C0,C−1,C3, λ

′

, κ1,CE,CẼ,CE,Cp), m1 =

m1(C1,Cp,CE,CẼ, νr), and m2 = m2(C, λ
′

,Cp,CE,CẼ,CE) such that, if ∥g∥r < m1, ∥h∥s < m2k2
1, υr > 0

is small enough, and

(1
µ
+ 2

)2λ
2
(∥ f∥2q + νr)

µ
+ (

1
µ
+ 1)λνr + λ

∥ f∥q
µ
+ λ∥g∥r

+ S pλ
2 ∥ f∥2q + νr

µ
·

1 + λ(∥ f∥2q + νr)

µ

(p−3)+

<
1

4(p−2,1)+ (3.2)

then problem (3.1) has a unique strong solution:

(uε,ωε, θε) ∈ V2,q × (W2,r(Ω) ∩W1,r
0 (Ω)) × (W2,s(Ω) ∩W1,s

0 (Ω))

Proof. We use a fixed-point argument to prove Theorem 3.1, and the proof will be divided into four
steps.

Step 1: Linearization of the problem and construction of the mapping.

Reformulate the problem (3.1) as follows:

−µ(1 + ε)(p−2)△u + ∇π = 2υrrot ω + θ f − div(u ⊗ u) + div(2µσε(|Du|2)Du)
div u = 0

−2△ω − 2∇divω = 2υrrot u + θg − 4υrω − (u · ∇)ω
−κ(·, θ)△θ = κ

′

(·, θ)|∇θ|2 − (u · ∇)θ + Φ(u,ω) + h
u|∂Ω = 0, ω|∂Ω = 0, θ|∂Ω = 0

(3.3)

where σε(x2) =
(
1 +

√
ε2 + |x|2

)(p−2)
− (1 + ε)(p−2).

We define the operator

Tε : V2,q × (W2,r(Ω) ∩W1,r
0 (Ω)) × (W2,s(Ω) ∩W1,s

0 (Ω))

7→ V2,q × (W2,r(Ω) ∩W1,r
0 (Ω)) × (W2,s(Ω) ∩W1,s

0 (Ω))

given by Tε(ξ, η, ζ) = (uε,ωε, θε), where (uε,ωε, θε) is the solution of the following problem:

−µ(1 + ε)(p−2)△uε + ∇πε = 2υrrot η + ζ f − div(ξ ⊗ ξ) + div(2µσε(|Dξ|2)Dξ)
div uε = 0

−2△ωε − 2∇divωε = 2υrrot ξ + ζ g − 4υrη − (ξ · ∇)η
−κ(·, θε)△θε = κ

′

(·, ζ)|∇ζ |2 − (ξ · ∇)ζ + Φ(ξ, η) + h
uε|∂Ω = 0, ωε|∂Ω = 0, θε|∂Ω = 0

(3.4)

Step 2: Proving Tε maps Bρ onto itself.

In this part, we will prove that there exists a constant ρ > 0 such that Tε maps Bρ onto Bρ. We formulate
the result as follows.
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Proposition 3.1. Let f ∈ Lq(Ω), g ∈ Lr(Ω), and h ∈ Ls(Ω), where q > r > s > 3, p > 1, and
µ > 0. There exist positive constants λ1 = λ1(C0,CpCE,CẼ), m1 = m1(C1,CE,CẼ,Cp, νr), and m2 =

m2(C, λ
′

,CE,CẼ,CE,Cp) such that, if ∥g∥r < m1, ∥h∥s < m2k2
1, υr > 0 is small enough, and

λ
2
1

(
∥ f∥2q + νr

)
µ2 +

λ
2
1S p

µ

(
∥ f∥2q + νr

) 1 + λ1(∥ f∥2q + νr)

µ

(p−3)+

≤ γp (3.5)

then Tε(Bρ) ⊆ Bρ for some ρ > 0.

Proof. Let (ξ, η, ζ) be in Bρ (see 2.2). Using Lemma 2.1, we obtain that uε ∈ V2,q and

∥∇uε∥1,q ≤
C0

(1 + ε)(p−2)µ

(
∥ζ f∥q + ∥ξ · ∇ξ∥q + ∥2νrrotη∥q + ∥div[2µσε(|Dξ|2)Dξ]∥q

)
(3.6)

First, we have

∥2νrrotη∥q ≤ 2νrC∥∇η∥q ≤ Cνr∥∇η∥1,r ≤
Cνr

CẼ
ρ (3.7)

∥ζ f∥q ≤ ∥ζ∥∞∥ f∥q ≤ CE(Cp + 1)∥∇ζ∥s∥ f∥q ≤ ρ(Cp + 1)∥ f∥q ≤
ρ2(Cp + 1)2

2
+
∥ f∥2q

2
(3.8)

Reasoning as in [28], we obtain

∥ξ · ∇ξ∥q + ∥div[2µσε(|Dξ|2)Dξ]∥q ≤
Cp

CE
ρ2 +

8µS p

CE
ρℓ(ρ) (3.9)

Combining (3.6)–(3.9), we conclude that

∥∇uε∥1,q ≤
C0

µ

∥ f∥2q2
+

Cνr

CẼ
ρ +

( (Cp + 1)2

2
+

Cp

CE

)
ρ2 +

8µS p

CE
ρℓ(ρ)


≤
λ1

µ

(
∥ f∥2q + νrρ + ρ

2 + µS pρℓ(ρ)
)

(3.10)

where λ1 = C0max
{

1
2 ,

C
CẼ
,

(Cp+1)2

2 +
Cp

CE
, 8

CE

}
, ℓ(x) = x (1 + x)(p−3)+ , S p = (|p − 2|, 1)+ 2(p−3)+ .

On the other hand, by the theory of elliptic equations, there is a positive constant C1 such that

∥∇ωε∥1,r ≤ C1[∥ζ g∥r + ∥2νrrotξ∥r + ∥4νrη∥r + ∥ξ · ∇η∥r]
≤ C1[∥ζ∥∞∥g∥r + 2νrC∥∇ξ∥r + 4νrCp∥∇η∥r + ∥ξ∥∞∥∇η∥r]
≤ C1[CE(Cp + 1)∥∇ζ∥s∥g∥r +Cνr∥∇ξ∥1,q + 4νrCp∥∇η∥1,r +CE∥ξ∥1,q∥∇η∥1,r]
≤ C1[ρ(Cp + 1)∥g∥r +Cνr∥∇ξ∥1,q + 4νrCp∥∇η∥1,r +CE(Cp + 1)∥∇ξ∥q∥∇η∥1,r]

≤ C1

[
∥g∥2r

2
+
ρ2(Cp + 1)2

2
+Cνr∥∇ξ∥1,q + 4νrCp∥∇η∥1,r +CE(Cp + 1)∥∇ξ∥1,q

ρ

CẼ

]
≤ C1

[
∥g∥2r

2
+
ρ2(Cp + 1)2

2
+

Cνr

CE
ρ +

4νrCp

CẼ
ρ +

(Cp + 1)
CẼ

ρ2
]

≤
C1(Cp + 1)[(Cp + 1)CẼ + 2]

2CẼ
ρ2 + 2λ2νrρ +

C1

2
∥g∥2r

(3.11)
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where λ2 = C1max
{

C
CE
,

4Cp

CẼ

}
.

Also, from the elliptic equations of (3.4), there exists a positive constant C2 such that

∥∇θε∥1,s ≤
C2

κ1
∥κ
′

(·, ζ)|Dζ |2∥s +
C2

κ1
∥Φ(ξ, η)∥s +

C2

κ1
∥ξ · ∇ζ∥s +

C2

κ1
∥h∥s

=
C2

κ1
∥κ
′

(·, ζ)|Dζ |2∥s +
C2

κ1
∥

4∑
i=1

Φi(ξ, η)∥s +
C2

κ1
∥ξ · ∇ζ∥s +

C2

κ1
∥h∥s

(3.12)

By the assumptions of κ(·, θ), it follows that

∥κ
′

(·, ζ)|Dζ |2∥s = ∥(κ
′

(·, ζ) − κ
′

(·, 0))|Dζ |2∥s ≤ λ
′

∥ζ∥∞∥∇ζ∥
2
2s

≤ λ
′

CE(Cp + 1)∥∇ζ∥s∥∇ζ∥22s ≤
λ
′

C(Cp + 1)
C2

E

ρ3 (3.13)

Since

∥Φ1(ξ, η)∥s = ∥(
1
2

rotξ − η)2∥s ≤ C
(∫
Ω

((∇ξ)2 + η2)sdx
)1/s

≤ C(∥∇ξ∥22s + ∥η∥
2
2s)

and

∥Φ2(η)∥s + ∥Φ3(η)∥s + ∥Φ4(η)∥s = ∥(divη)2∥s + ∥

3∑
i=1

(ηi, j)2∥s + ∥

3∑
i=1

ηi, jη j,i∥s

≤ C
(∫
Ω

((∇η)2)sdx
)1/s

+C
(∫
Ω

((∇η)2)sdx
)1/s

+C
(∫
Ω

((∇η)2)sdx
)1/s

≤ C∥∇η∥22s

it follows that

∥Φ(ξ, η)∥s ≤ C(∥∇ξ∥22s + ∥∇η∥
2
2s) ≤ C(∥∇ξ∥21,q + ∥∇η∥

2
1,r) ≤

Cρ2

C2
E

+
Cρ2

C2
Ẽ

(3.14)

Finally,
∥ξ · ∇ζ∥s ≤ ∥ξ∥∞∥∇ζ∥s ≤ CE∥ξ∥1,q∥∇ζ∥s ≤ (Cp + 1)CE∥∇ξ∥q∥∇ζ∥s

≤ (Cp + 1)CE∥∇ξ∥1,q∥∇ζ∥1,s ≤
(Cp + 1)

CE
ρ2 (3.15)

Combining (3.12)–(3.15), we obtain

∥∇θε∥1,s ≤
C2λ

′

C(Cp + 1)
κ1C2

E

ρ3 +
C2(Cp + 1)
κ1CE

ρ2 +
C2

κ1

 C
C2

E

+
C
C2

Ẽ

 ρ2 +
C2

κ1
∥h∥s

≤
C2λ

′

C(Cp + 1)
κ1C2

E

ρ3 + 2
λ3

λ1
ρ2 +

C2

κ1
∥h∥s (3.16)
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where λ3 = C2max
{

(Cp+1)
CE
, C

C2
E
+ C

C2
Ẽ

}
.

Without loss of generality, it can be assumed that ρ ≤ 1. To ensure that Tε(Bρ) ⊆ Bρ, it is sufficient
to require that

∥∇uε∥1,q ≤
λ1

µ

[
∥ f∥2q + νrρ + ρ

2 + µS pρℓ(ρ)
]
≤
λ1

µ

[
∥ f∥2q + νr + ρ

2 + µS pρℓ(ρ)
]
≤ ρ (3.17)

∥∇ωε∥1,r ≤
C1(Cp + 1)[(Cp + 1)CẼ + 2]

2CẼ
ρ2 + 2λ2νrρ +

C1

2
∥g∥2r ≤ ρ (3.18)

∥∇θε∥1,s ≤
C2λ

′

C(Cp + 1)
κ1C2

E

ρ3 + 2
λ3

κ1
ρ2 +

C2

κ1
∥h∥s ≤

C2λ
′

C(Cp + 1)
κ1C2

E

+ 2
λ3

κ1

 ρ2 +
C2

κ1
∥h∥s ≤ ρ (3.19)

Applying Lemma 2.2 with A = λ1
µ

, E = λ1S p, and D =
λ1(∥ f∥2q+νr)

µ
, there exists ρ1 >

λ1(∥ f∥2q+νr)
µ

such
that

λ1

µ

[
∥ f∥2q + νr + ρ

2
1 + µS pρ1ℓ(ρ1)

]
≤ ρ1

moreover, by taking β = 2 in (2.3), we have

ρ1 ≤
2λ1(∥ f∥2q + νr)

µ

Reformulate (3.18) as follows

C1(Cp + 1)[(Cp + 1)CẼ + 2]
2CẼ

ρ2 + (2λ2νr − 1)ρ +
C1

2
∥g∥2r ≤ 0 (3.20)

since the discriminant ∆ = (2λ2νr − 1)2 −
C2

1(Cp+1)[(Cp+1)CẼ+2]
CẼ

∥g∥2r > 0, namely,

∥g∥2r <
(2λ2νr − 1)2CẼ

C2
1(Cp + 1)[(Cp + 1)CẼ + 2]

≡ m1

we deduce that the inequality (3.20) is valid for some ρ .
Take a constant D satisfying that ρ−2 < D < ρ+2 , where

ρ±2 =
CẼ

C1(Cp + 1)[(Cp + 1)CẼ + 2]

·

[
(1 − 2λ2νr) ±

√
(2λ2νr − 1)2 −

C2
1(Cp + 1)[(Cp + 1)CẼ + 2]

CẼ
∥g∥2r

]

=
C1m1

1 − 2λ2νr

[
1 ±

√
1 −
∥g∥2r
m1

]
since, for every ρ ∈ [ρ−2 , ρ

+
2 ], (3.20) holds true, we could choose ρ2 ∈ (ρ−2 ,D) such that

C1(Cp + 1)[(Cp + 1)CẼ + 2]
2CẼ

ρ2
2 + 2λ2νrρ2 +

C1

2
∥g∥2r ≤ ρ2
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On the other hand, we rewrite (3.19) as followsC2λ
′

C(Cp + 1)
κ1C2

E

+ 2
λ3

κ1

 ρ2 − ρ +
C2

κ1
∥h∥s ≤ 0 (3.21)

since ∆ = 1 − 4
(

C2λ
′
C(Cp+1)
κ1C2

E

+ 2λ3
κ1

)
C2
κ1
∥h∥s > 0, namely,

∥h∥s
k2

1

<
C2

E

4C2[C2λ
′C(Cp + 1) + 2λ3C2

E
]
≡ m2

it follows that (3.21) is valid for some ρ.
The above D could also be selected to satisfy that ρ−3 < 2D < ρ+3 , where

ρ±3 =
κ1C2

E

2[C2λ
′C(Cp + 1) + 2λ3C2

E
]
·

1 ±
√√

1 − 4(
C2λ

′C(Cp + 1)
κ1C2

E

+ 2
λ3

κ1
)
C2

κ1
∥h∥s


=

2m2

κ1

1 ±
√

1 −
∥h∥s
k2

1m2


since (3.21) is valid for every ρ ∈ [ρ−3 , ρ

+
3 ], we can choose ρ3 ∈ (2D, ρ+3 ) such thatC2λ

′

C(Cp + 1)
κ1C2

E

+ 2
λ3

κ1

 ρ2
3 +

C2

κ1
∥h∥s ≤ ρ3

In conclusion, we have obtained

ρ2 <
λ1(∥ f∥2q + νr)

µ
< ρ1 ≤

2λ1(∥ f∥2q + νr)

µ
< ρ3 (3.22)

which completes the proof by taking ρ = ρ1.

Step 3: Proving Tε : Bρ 7→ Bρ is a contraction.
In this step, we concentrate on proving that the map Tε : Bρ 7→ Bρ is a contraction. Our aim is to

prove the following result.

Proposition 3.2. There is a positive constant λ0 = λ0(C−1,C3, λ
′

, κ1,Cp,CE,CẼ,CE) such that, if

λ0

[ (
1
µ
+ 2

)2λ1(∥ f∥2q + νr)

µ
+ (

1
µ
+ 1)νr +

∥ f∥q
µ
+ ∥g∥r

+ S p
λ1(∥ f∥2q + νr)

µ
·

1 + λ1(∥ f∥2q + νr)

µ

(p−3)+ ]
<

1
4(p−2,1)+

(3.23)

then Tε : Bρ 7→ Bρ is a contraction in W1,q
0 (Ω) ×W1,r

0 (Ω) ×W1,s
0 (Ω).
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Proof. Let (ξ, η, ζ), (̂ξ, η̂, ζ̂) ∈ Bρ, and let [uε,ωε, θε], [̂uε, ω̂ε, θ̂ε] be their respective images under
Tε. Then, from (3.4), we obtain

−µ(1 + ε)(p−2)△(uε − ûε) + ∇(pε − p̂ε) = Fε
div (uε − ûε) = 0

−2△(ωε − ω̂ε) − 2∇div(ωε − ω̂ε) = G
−κ(·, θε)△θε + κ(·, θ̂ε)△θ̂ε = H + κ

′

(·, ζ)|∇ζ |2 − κ
′

(·, ζ̂)|∇ζ̂ |2

(uε − ûε)|∂Ω = 0, (ωε − ω̂ε)|∂Ω = 0, (θε − θ̂ε)|∂Ω = 0

(3.24)

where

Fε := div(̂ξ ⊗ ξ̂ − ξ ⊗ ξ) + 2νrrot(η − η̂) + 2µdiv[σε(|Dξ|2)Dξ − σε(|Dξ̂|2)Dξ̂] + (ζ − ζ̂) f

G := 2νrrot(ξ − ξ̂) − 4νr(η − η̂) − (ξ · ∇)η + (̂ξ · ∇)̂η + (ζ − ζ̂)g

H := Φ(ξ, η) − Φ(̂ξ, η̂) − (ξ · ∇)ζ + (̂ξ · ∇)̂ζ

From Lemma 2.1, we obtain

∥∇(uε − ûε)∥q ≤
C−1

µ

[
∥div(̂ξ ⊗ ξ̂ − ξ ⊗ ξ)∥−1,q + 2νr∥rot(η − η̂)∥−1,q

+ 2µ∥div[σε(|Dξ|2)Dξ − σε(|Dξ̂|2)Dξ̂]∥−1,q + ∥(ζ + ζ̂) f∥−1,q

] (3.25)

We estimate each term on the right-hand side of (3.25) as follows:

∥div(̂ξ ⊗ ξ̂ − ξ ⊗ ξ)∥−1,q ≤ C∥ξ̂ ⊗ ξ̂ − ξ ⊗ ξ∥q ≤ 2CCp(Cq
p + 1)

1
qρ1∥∇(ξ − ξ̂)∥q (3.26)

2µ∥div[σε(|Dξ|2)Dξ − σε(|Dξ̂|2)Dξ̂]∥−1,q ≤ Cµ∥σε(|Dξ|2)Dξ − σε(|Dξ̂|2)Dξ̂∥q

≤ CµS pℓ(2ρ1)∥∇(ξ − ξ̂)∥q (3.27)

2νr∥rot(η − η̂)∥−1,q ≤ Cνr∥η − η̂∥q ≤ Cνr∥η − η̂∥1,r ≤ C(Cp + 1)νr∥∇(η − η̂)∥r (3.28)

∥(ζ − ζ̂) f∥−1,q ≤ C∥(ζ − ζ̂) f∥q ≤ C∥ζ − ζ̂∥∞∥ f∥q ≤ CCE(Cp + 1)∥ f∥q∥∇(ζ − ζ̂)∥q (3.29)

Inserting (3.26)–(3.29) into (3.25), we obtain

∥∇(uε − ûε)∥q ≤
CC−1

µ

[
2Cp(Cq

p + 1)
1
qρ1∥∇(ξ − ξ̂)∥q + (Cp + 1)νr∥∇(η − η̂)∥r

+ µS pℓ(2ρ1)∥∇(ξ − ξ̂)∥q +CE(Cp + 1)∥ f∥q∥∇(ζ − ζ̂)∥s
]

≤ λ4

[1
µ
ρ1+

1
µ
νr + S pℓ(2ρ1)

]
·max

{
∥∇(ξ − ξ̂)∥q, ∥∇(η − η̂)∥r, ∥∇(ζ − ζ̂)∥s

} (3.30)

where λ4 = CC−1max
{
2Cp(Cq

p + 1)
1
q ,Cp + 1, 1,CE(Cp + 1)

}
.

On the other hand, by the theory of elliptic equations, there exists a positive constant C3 such that

∥∇(ωε − ω̂ε)∥r ≤ ∥∇(ωε − ω̂ε)∥1,r

≤ C3

[
∥2νrrot(ξ − ξ̂)∥r + ∥4νr(η − η̂)∥r + ∥(̂ξ · ∇)̂η − (ξ · ∇)η∥r∥(ζ − ζ̂)g∥r

] (3.31)
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For each term on the right-hand side of (3.31), we have

∥2νrrot(ξ − ξ̂)∥r ≤ Cνr∥∇(ξ − ξ̂)∥r ≤ Cνr∥∇(ξ − ξ̂)∥q (3.32)
∥4νr(η − η̂)∥r ≤ 4νrCp∥∇(η − η̂)∥r (3.33)

∥(ζ − ζ̂)g∥r ≤ ∥ζ − ζ̂∥∞∥g∥r ≤ CE(Cp + 1)∥∇(ζ − ζ̂)∥s∥g∥r (3.34)

∥ξ̂ · ∇η̂ − ξ · ∇η∥r = ∥(̂ξ − ξ)∇η̂ + ξ∇(̂η − η)∥r

≤ ∥(̂ξ − ξ)∇η̂∥r + ∥ξ∇(̂η − η)∥r

≤ ∥ξ̂ − ξ∥∞∥∇η̂∥r + ∥ξ∥∞∥∇(̂η − η)∥r

≤ CE∥ξ̂ − ξ∥1,q∥∇η̂∥r +CE∥ξ∥1,q∥∇(̂η − η)∥r

≤ CE(Cp + 1)∥∇(̂ξ − ξ)∥q∥∇η̂∥r +CE(Cp + 1)∥∇ξ∥q∥∇(̂η − η)∥r

≤ CE(Cp + 1)∥∇(̂ξ − ξ)∥q∥∇η̂∥1,r +CE(Cp + 1)∥∇ξ∥1,q∥∇(̂η − η)∥r

≤
CE(Cp + 1)

CẼ
ρ1∥∇(̂ξ − ξ)∥q + (Cp + 1)ρ1∥∇(̂η − η)∥r

(3.35)

Combining (3.31)–(3.35), it follows that

∥∇(ωε − ω̂ε)∥r ≤ λ5(2νr + 2ρ1 + ∥g∥r) ·max
{
∥∇(̂ξ − ξ)∥q, ∥∇(̂η − η)∥r, ∥∇(ζ − ζ̂)∥s

}
(3.36)

where λ5 = C3max
{
4Cp, C, CE(Cp+1)

CẼ
, Cp + 1, CE(Cp + 1)

}
.

Noticing that

−κ(·, θε)△θε + κ(·, θ̂ε)△θ̂ε = κ(·, θ̂ε)△(̂θε − θε) + (κ(·, θ̂ε) − κ(·, θε))△θε (3.37)

it follows from (3.24)4 that

∥∇(θε − θ̂ε)∥s ≤
1
κ1
∥H∥s +

1
κ1
∥κ
′

(·, ζ)|∇ζ |2 − κ
′

(·, ζ̂)|∇ζ̂ |2∥s +
1
κ1
∥(κ(·, θ̂ε) − κ(·, θε))△θε∥s (3.38)

Recall that H = Φ(ξ, η) − Φ(̂ξ, η̂) − (ξ · ∇)ζ + (̂ξ · ∇)̂ζ and Φ(u,ω) =
4∑

i=1
Φi. In the sequel, we shall

derive estimates for each term on the right-hand side of (3.38) one by one.
The first term can be estimated as follows.

∥Φ1(ξ, η) − Φ1(̂ξ, η̂)∥s ≤ C
(∫
Ω

|[∇(ξ − ξ̂) + (̂η − η)][∇(ξ + ξ̂) − (̂η + η)]|sdx
)1/s

≤ sup
x∈Ω

[
|∇(ξ + ξ̂)| + |(̂η + η)|

] (∫
Ω

|[∇(ξ − ξ̂) + (̂η − η)]|sdx
)1/s

≤ (Cρ1 +Cρ1)
(
∥∇(ξ − ξ̂)∥s + ∥η − η̂∥s

)
≤ Cρ1

(
∥∇(ξ − ξ̂)∥q + ∥η − η̂∥∞

)
≤ Cρ1∥∇(ξ − ξ̂)∥q +Cρ1CẼ(Cp + 1)∥∇(η − η̂)∥r

4∑
i=2

∥Φi(η) − Φi(̂η)∥s ≤ Cρ1∥∇(η − η̂)∥s ≤ Cρ1∥∇(η − η̂)∥r
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∥(̂ξ · ∇)̂ζ − (ξ · ∇)ζ∥s = ∥(̂ξ − ξ)∇ζ̂ + ξ∇(̂ζ − ζ)∥s

≤ ∥(̂ξ − ξ)∇ζ̂∥s + ∥ξ∇(̂ζ − ζ)∥s

≤ ∥ξ̂ − ξ∥∞∥∇ζ̂∥s + ∥ξ∥∞∥∇(̂ζ − ζ)∥s

≤ CE∥ξ̂ − ξ∥1,q∥∇ζ̂∥s +CE∥ξ∥1,q∥∇(̂ζ − ζ)∥s

≤
CE(Cp + 1)

CE
ρ1∥∇(̂ξ − ξ)∥q + (Cp + 1)ρ1∥∇(̂ζ − ζ)∥s

(3.39)

it follows that
∥H∥s ≤ λ6(4ρ1) ·max

{
∥∇(̂ξ − ξ)∥q, ∥∇(̂η − η)∥r, ∥∇(̂ζ − ζ)∥s

}
(3.40)

where λ6 = max
{
C,C[1 +CẼ(Cp + 1)], CE(Cp+1)

CE
,Cp + 1

}
.

For the second term

∥κ
′

(·, ζ)|∇ζ |2 − κ
′

(·, ζ̂)|∇ζ̂ |2∥s = ∥(κ
′

(·, ζ) − κ
′

(·, ζ̂))|∇ζ |2 + κ
′

(·, ζ̂)(|∇ζ |2 − |∇ζ̂ |2)∥s

≤ λ
′

∥ζ − ζ̂∥∞∥|∇ζ |
2∥s + ∥(κ

′

(·, ζ̂) − κ
′

(·, 0))(|∇ζ |2 − |∇ζ̂ |2)∥s

≤ λ
′

∥ζ − ζ̂∥∞∥|∇ζ |
2∥s + λ

′

∥̂ζ∥∞∥(|∇ζ |2 − |∇ζ̂ |2)∥s

≤ λ
′

CE(Cp + 1)C∥∇ζ∥1,s∥∇(ζ − ζ̂)∥s + λ
′

CE ∥̂ζ∥1,s∥∇(ζ − ζ̂) · ∇(ζ + ζ̂)∥s

≤ λ
′

(Cp + 1)Cρ1∥∇(ζ − ζ̂)∥s + 2λ
′

(Cp + 1)ρ2
1∥∇(ζ − ζ̂)∥s

(3.41)
Finally, because |κ(·, a) − κ(·, b)| ≤ λ

′

(|a| + |b|),∀a, b ∈ R and ∥△θε∥s ≤ ∥∇θε∥1,s, we have

∥(κ(·, θ̂ε) − κ(·, θε))△θε∥s ≤ 2λ
′

ρ2
1(Cp + 1)2∥∇(θε − θ̂ε)∥s (3.42)

Combining (3.38) and (3.40)–(3.42), we obtain

(1 −
2
κ1
λ
′

ρ2
1(Cp + 1)2)∥∇(θε − θ̂ε)∥s ≤

4λ6

κ1
ρ1max

{
∥∇(̂ξ − ξ)∥q, ∥∇(̂η − η)∥r, ∥∇(̂ζ − ζ)∥s

}
+
λ
′

κ1
C(Cp + 1)ρ1∥∇(ζ − ζ̂)∥s +

2λ
′

κ1
(Cp + 1)ρ2

1∥∇(ζ − ζ̂)∥s

≤ ρ1λ7max
{
∥∇(̂ξ − ξ)∥q, ∥∇(̂η − η)∥r, ∥∇(̂ζ − ζ)∥s

}
where λ7 =

3
κ1

max
{
4λ6, λ

′

C(Cp + 1), 2λ
′

(Cp + 1)
}
.

Combining the above estimates, taking ρ1 such that 2
κ1
λ
′

ρ2
1(Cp + 1)2 ≤ 1

2 , we conclude that

max
{
∥∇(uε − ûε)∥q, ∥∇(ωε − ω̂ε)∥r, ∥∇(θε − θ̂ε)∥s

}
≤

λ4ρ1

µ
+
λ4νr

µ
+ λ4S pℓ(2ρ1) +

λ4

µ
∥ f∥q + 2λ5νr + 2λ5ρ1 + λ5∥g∥r + 2λ7ρ1


·max

{
∥∇(̂ξ − ξ)∥q, ∥∇(̂η − η)∥r, ∥∇(̂ζ − ζ)∥s

}
Choosing λ0 = max

{
λ4, 2λ5, λ7

}
, noticing that ρ1 ≤

2λ1(∥ f∥2q+νr)
µ

, and taking into account that the
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function ℓ is nondecreasing, and ℓ(4y) ≤ 4(p−2,1)+ℓ(y), we finally obtain

max
{
∥∇(uε − ûε)∥q, ∥∇(ωε − ω̂ε)∥r, ∥∇(θε − θ̂ε)∥s

}
≤ λ0

[ρ1

µ
+
νr

µ
+ S pℓ(2ρ1) +

∥ f∥q
µ
+ ∥g∥r + νr + 2ρ1

]
·max

{
∥∇(̂ξ − ξ)∥q, ∥∇(̂η − η)∥r, ∥∇(̂ζ − ζ)∥s

}
≤ λ0

[
(
1
µ
+ 2)

2λ1(∥ f∥2q + νr)

µ
+ (

1
µ
+ 1)νr +

∥ f∥q
µ
+ ∥g∥r + S p4(p−2,1)+

(λ1(∥ f∥2q + νr)

µ

)
·
(
1 +
λ1(∥ f∥2q + νr)

µ

)(p−3)+
]
·max

{
∥∇(̂ξ − ξ)∥q, ∥∇(̂η − η)∥r, ∥∇(̂ζ − ζ)∥s

}
≤ 4(p−2,1)+λ0

[
(
1
µ
+ 2)

2λ1(∥ f∥2q + νr)

µ
+ (

1
µ
+ 1)νr +

∥ f∥q
µ
+ ∥g∥r + S p

(λ1(∥ f∥2q + νr)

µ

)
·
(
1 +
λ1(∥ f∥2q + νr)

µ

)(p−3)+
]
·max

{
∥∇(̂ξ − ξ)∥q, ∥∇(̂η − η)∥r, ∥∇(̂ζ − ζ)∥s

}
(3.43)

Considering the space Y := W1,q
0 (Ω) ×W1,r

0 (Ω) ×W1,s
0 (Ω) with the norm max

{
∥∇ · ∥q, |∇ · ∥r, |∇ · ∥s

}
,

(3.43) implies that

∥Tε(̂ξ, η̂, ζ̂) − Tε(ξ, η, ζ)∥Y ≤ 4(p−2,1)+λ0

[
(
1
µ
+ 2)

2λ1(∥ f∥2q + νr)

µ
+ (

1
µ
+ 1)νr +

∥ f∥q
µ
+ ∥g∥r

+ S p

(λ1(∥ f∥2q + νr)

µ

)
·
(
1 +
λ1(∥ f∥2q + νr)

µ

)(p−3)+
]
· ∥(̂ξ, η̂, ζ̂) − (ξ, η, ζ)∥Y

From this and hypothesis (3.23), we obtain that Tε : Bρ 7→ Bρ is a contraction in W1,q
0 (Ω) ×W1,r

0 (Ω) ×
W1,s

0 (Ω).

Step 4: Proof of Theorem 3.1.

We observe that, for p ≤ 3, γp =
1
4 =

1
4(p−2,1)+ , and, for p > 3, γp >

1
4(p−2,1)+ . Thus, by taking λ = (λ0, λ1)+,

and because (3.2) implies (3.5) and (3.23), taking X = V2,q× (W2,r(Ω)∩W1,r
0 (Ω))× (W2,s(Ω)∩W1,s

0 (Ω)),
Y = W1,q

0 (Ω)×W1,r
0 (Ω)×W1,s

0 (Ω), and B = Bρ1 , according to Lemma 2.3, we know that Tε has a unique
fixed point on Bρ1 . This completes the proof of Theorem 3.1.

4. Proof of Theorem 2.1

Notice that for each ε > 0, (uε,ωε, θε) satisfies the following weak formula:∫
Ω

2µ(1 +
√
ε2 + |Duε|2)(p−2)Duε : D(Ψ)dx −

∫
Ω

(uε ⊗ uε) : D(Ψ)dx

= 2νr

∫
Ω

rotωε ·Ψdx +
∫
Ω

θε f ·Ψdx, ∀Ψ ∈ V

(4.1)

∫
Ω

∇ωε · ∇ψdx +
∫
Ω

(uε · ∇)ωε · ψdx + 4νr

∫
Ω

ωε · ψdx −
∫
Ω

divωεdivψ

=2νr

∫
Ω

rotuε · ψdx +
∫
Ω

θεg · ψdx, ∀ψ ∈ C∞0 (Ω)
(4.2)
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Ω

κ(x, θε)∇θε · ∇ϕdx +
∫
Ω

ϕuε · ∇θεdx =
∫
Ω

Φ(uε,ωε)ϕdx +
∫
Ω

hϕdx, ∀ϕ ∈ C∞0 (Ω) (4.3)

From (3.10), (3.11), (3.16), and (3.22), we have that the sequence
{
(uε,ωε, θε)

}
ε is uniformly

bounded in V2,q × (W2,r(Ω) ∩ W1,r
0 (Ω)) × (W2,s(Ω) ∩ W1,s

0 (Ω)). Then, there exists a subsequence of{
(uε,ωε, θε)

}
ε, still indexed by ε, and (u,ω, θ) such that

((uε,ωε, θε)⇀ (u,ω, θ) weakly in V2,q × (W2,r(Ω) ∩W1,r
0 (Ω)) × (W2,s(Ω) ∩W1,s

0 (Ω))

((uε,ωε, θε)→ (u,ω, θ) strongly in C1,α1(Ω) ×C1,α2(Ω) ×C1,α3(Ω)

α1 < 1 −
3
q
, α2 < 1 −

3
r
, α3 < 1 −

3
s

Therefore, noticing that κ : Ω × R → R is a C1-function and letting ε tend to 0 in (4.1)–(4.3), we
have ∫

Ω

2µ(1 + |Du|)(p−2)Du : D(Ψ)dx −
∫
Ω

(u ⊗ u) : D(Ψ)dx

= 2νr

∫
Ω

rotω ·Ψdx +
∫
Ω

θ f ·Ψdx, ∀Ψ ∈ V
(4.4)

∫
Ω

∇ω · ∇ψdx +
∫
Ω

(u · ∇)ω · ψdx + 4νr

∫
Ω

ω · ψdx −
∫
Ω

divωdivψ

=2νr

∫
Ω

rotu · ψdx +
∫
Ω

θg · ψdx, ∀ψ ∈ C∞0 (Ω)
(4.5)

∫
Ω

κ(x, θ)∇θ · ∇ϕdx +
∫
Ω

ϕu · ∇θdx =
∫
Ω

Φ(u,ω)ϕdx +
∫
Ω

hϕdx, ∀ϕ ∈ C∞0 (Ω) (4.6)

The regularity of (u,ω, θ) follows from (3.10), (3.11), and (3.16). Theorem 2.1 is proved.

5. Conclusions

In this paper, we proved the existence and uniqueness of strong solutions for a class of steady non-
Newtonian micropolar fluid equations with heat convection. As far as we can see, the known results
are all regarding the Newtonian case, and related results for such a problem of non-Newtonian type
have not been considered yet. The results in this paper are new and generalize many related problems
in the literature.
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16. E. Zadrzyńska, W. M. Zaja̧czkowski, On stability of solutions to equations describing incompress-
ible heat-conducting motions under Navier’s boundary conditions, Acta Appl. Math., 152 (2017),
147–170. https://doi.org/10.1007/s10440-017-0116-3

17. L. Consiglieri, Stationary weak solutions for a class of non-Newtonian fluids with energy transfer,
Int. J. Nonlinear Mech., 32 (1997), 961–972. https://doi.org/10.1016/S0020-7462(96)00087-X

18. L. Consiglieri, T. Shilkin, Regularity of stationary weak solutions in the theory of gen-
eralized Newtonian fluids with energy transfer, J. Math. Sci., 115 (2003), 2771–2788.
https://doi.org/10.1023/A:1023369819312

19. L. Consiglieri, Weak solutions for a class of non-Newtonian fluids with energy transfer, J. Math.
Fluid Mech., 2 (2000), 267–293. https://doi.org/10.1007/PL00000952
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