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Abstract: In this paper, we investigate a distributed interval optimization problem whose local func-
tions are interval functions rather than scalar functions. Focusing on distributed interval optimization,
this paper presents a distributed primal-dual algorithm. A criterion is introduced under which linear
convergence to the Pareto solution of distributed interval optimization problems can be achieved with-
out strong convexity. Lastly, a numerical simulation is presented to illustrate the linear convergence of
the algorithm that has been proposed.
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1. Introduction

Due to the theoretical significance and wide range of applications in areas such as machine learn-
ing, multi-agent system coordination, sensor networks, and smart grids, distributed optimization has
received a lot of attention from researchers in recent years. Various distributed algorithms for solving
distributed optimization problems have been introduced, and they involve agents collaborating with
their neighboring agents in order to attain global minimization, see recent works [1–7].

The aforementioned works’ objective functions are scalar functions. In practice, however, scalar
functions have been frequently incapable of expressing objective functions for distributed networks
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explicitly or precisely (see [8–10]). On the contrary, interval functions are employed to describe prob-
lems, as exemplified in the applications of smart grids and economic systems [11, 12]. To address
the challenges presented by interval functions, interval optimization problems (IOPs), have been pro-
posed [13–19]. Initial studies on IOPs were conducted by the authors of [13], and subsequently in-
vestigated in [14, 15]. Existence conditions have been presented in [11, 20] to achieve Pareto solutions
of IOPs. In addition, [21–24] detail algorithms that have been designed for centralized IOPs. Without
conducting a theoretical analysis, [11,12] present distributed applications of IOPs in economic systems
and smart infrastructures. For centralized IOPs [21–24] have presented algorithms. These line search
algorithms, nevertheless, fail in distributed environments.

Given this context, it is natural for us to consider the design of efficient algorithms to solve DIOPs
over multi-agent networks. The DIOPs, nevertheless, remain a subject of ongoing research. This may
be due to the ease with which line search algorithms (e.g., Wolfe or Lamke’s algorithms [21–24]) can
be applied in distributed settings, and very few papers [25] with related theoretical results have been
published. In addition, algorithm designs are made difficult by the partial order of interval functions.

Furthermore, there is growing interest in the convergence rates of distributed algorithms for dis-
tributed optimization with scalar functions. In fact, when local objective functions were strongly con-
vex, the algorithms of [2, 26, 27] achieved linear convergence rates for the centralized and distributed
counterparts. Local scalar functions for distributed optimization are not strongly convex in a number of
practical applications. Further investigation was undertaken by a group of scholars [1,28–30] regarding
the substitution of strongly convex conditions that dictate linear convergence rates. For example, [1]
analyzed four distinct categories of function conditions and deduced the linear convergence of numer-
ous centralized algorithms. The authors of [28, 29] respectively demonstrated the linear rates of their
distributed algorithms under metrically sub-regular and Polyak-Lojasiewicz conditions.

In this paper, we investigate the Pareto solutions of a DIOP whose local functions are interval
functions rather than scalar functions. The DIOP is given as follows:

(DIOP) min
s

G(s), G(s) =
n∑

i=1

Gi(s)

where Gi = [Li,Ri] is a convex interval function for each agent i. Li(s) ⩽ Ri(s) holds for every
given s. Still, each agent can only get the gradient information of interval function Gi. By means of
neighborhood information communication, the global Pareto solution is obtained. The contributions of
this paper are summarized as follows:

(a) We investigate the Pareto solution of a DIOP whose local functions are interval functions. By
incorporating convexity and well-defined partial orderings of interval functions, we convert the
DIOP [11, 20, 31] into a solvable distributed optimization problem scalarization (DSIOP) with
convex global constraints.

(b) In this reformulation, the optimal solutions of the DSIOP correspond to the Pareto solutions of
the DIOP. With this relationship, we propose a distributed primal-dual algorithm to find a Pareto
solution of the DIOP.

(c) We discuss a crucial criterion that, when applied to Pareto solutions of a DIOP, weaken the strict
or strong convexity required for linear convergence. Given that this paper investigates DIOPs, the
supplied criterion differ from those delineated in [1, 28, 29]. In addition, the criterion is essential
for evaluating the convergence of DIOP distributed algorithms.
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The rest of the paper is organized as follows. The preliminaries of this paper are given in Section 2.
In Section 3, the DIOP is analyzed. The primal-dual algorithm is further given to find a Pareto solution
of the DIOP in Section 4 and a numerical example is given in Section 5. Finally, the conclusion of this
paper is offered in Section 6.

Notations. Denote by R the set of real numbers, In ∈ R
n×n as the identity matrix, and 1n =

[1, 1, . . . , 1]⊤ ∈ Rn, respectively. Denote ⟨· , ·⟩ as the inner product and ∥ · ∥ as the Euclidean norm
in Rn.

2. Preliminaries

In this section, we present an introduction to convex analysis for scalar functions [32], graph theory,
and interval optimization [33].

2.1. Graph theory

Define N = {1, 2, ..., n} as the agent set and E ⊂ N × N as the set of edges between agents. The
communication between n agents is described by an undirected graph G =

(
N ,E
)
. If (i, j) ∈ E, then

the agent i can communicate with the agent j. Therefore, each agent i ∈ N can communicate with
agents in its neighborhood Ni = { j|(i, j) ∈ E} ∪ {i}.

Denote A ∈ Rn×n as the communication matrix between agents, whose elements ai j satisfy the
following conditions:

ai j =


aii, if i = j

ai j, if i , j and (i, j) ∈ E
0, otherwise.

(2.1)

Denote di by the degree of agent i, i.e., |di| =
∑n

j=1 ai j. Further, denote D by the n×n diagonal degree
matrix such that D = diag(

∑n
j=1 a1 j, . . . ,

∑n
j=1 an j). Then, the associated Laplacian matrix P ∈ Rn×n is

P := D −A.
The following assumption forms the basis of the communication topology G =

(
N ,E
)

between
agents over the network:

Assumption 1. The undirected graph G =
(
N ,E
)

is connected.

Assumption 1 is extensively employed in [28], this ensures the consensus of vectors for agents over
the network.

2.2. Convex analysis

Prior to proceeding with the discussion of interval functions, we define convexity and the Lipschitz
continuity of scalar functions.

Definition 1. (a) A scalar function f : Ω → R is convex if for any s1, s2 ∈ Ω and z ∈ [0, 1],
f (λs2 + (1 − λ)s1) ≤ λ f (s2) + (1 − λ) f (s1) holds.

(b) A scalar function f : Rn → R is κ-Lipschitz continuous with respect to a constant κ > 0 if

∥ f (s2) − f (s1)∥ ⩽ κ∥s2 − s1∥, ∀ s1, s2 ∈ R
n.
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The following lemma is crucial for the analysis of convergence in distributed optimization problems
involving scalar functions and interval functions.

Lemma 1. [32, Lemma 11, Chapter 2.2] Define {vk}k⩾1 and {wk}k⩾1 as two nonnegative scalar se-
quences. Define {hk}k⩾1 as a scalar sequence, which is bounded from below uniformly. If there exists a
nonnegative constant sequence ηk ⩾ 0 with

∑∞
k=1 η

k < ∞ and

hk+1 ⩽
(
1 + ηk)hk − vk + wk, ∀k ⩾ 1

then {hk}k⩾1 converges with
∑∞

k=1 vk < ∞.

2.3. Interval optimization problems

Let G : Rp ⇒ R be any interval map. Now, we consider the following IOP:

(IOP) min
x

G(s) s. t. s ∈ Ω

where G(x) = [L(s),R(s)] is any non-empty compact interval in R.
The Pareto optimal solution to an IOP is defined as follows:

Definition 2. [34] A point s∗ ∈ Ω is said to be a Pareto optimal solution to an IOP iff it holds that for
some s̄ ∈ Ω, L(s̄) ⩽ L(s∗) and R(s̄) ⩽ R(s∗) both hold implying that L(s∗) ⩽ L(s) and R(s∗) ⩽ R(s).

The example of the DIOP is presented below. There is no solution other than the Pareto solution in
the example that follows.

Example 1. The IOP illustrated in Figure 1 does not have a solution. However, the Pareto optimal
solutions to the given problem are [s1, s2].

(a) For y ⩽ s1, we have that R(y) ⩾ R(s1) and L(y) ⩾ L(s1), and s1 is a Pareto solution to the IOP.
(b) For y ⩾ s2, we have that R(y) ⩾ R(s2) and L(y) ⩾ L(s2), and s2 is a Pareto solution to the IOP.
(c) For s1 ⩽ y ⩽ s2, we have that R(y) ⩽ R(s1), L(y) ⩾ L(s1), R(y) ⩾ R(s2) and L(y) ⩽ L(s2). For

s1 ⩽ y ⩽ s2, s̄ ∈ Ω, L(s̄) ⩽ L(y) and R(s̄) ⩽ R(y) could not hold concurrently.

According to Definition 2, [s1, s2] are Pareto optimal solutions to this given problem.

Figure 1. L(x) and R(x) for vector x.

To investigate the Pareto solutions of an IOP, let us consider the following IOP in conjunction with
its scalarization (SIOP):
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(S IOP) min
x

λL(x) + (1 − λ)R(x)

s. t. x ∈ Ω

where λ ∈ [0, 1]. The following lemma holds for Pareto solutions of IOPs and solutions of SIOPs
according to [34]. Furthermore, it remains valid in distributed settings.

Lemma 2. [34] We assume that G is compact-valued and convex with respect to x:

(a) If there exists a real number λ ∈ (0, 1) such that s∗ ∈ Ω is a solution to the SIOP, then s∗ ∈ Ω is a
Pareto optimization of the IOP.

(b) If a point s∗ ∈ Ω is a Pareto optimization of the IOP, then there exists a real number λ ∈ [0, 1]
such that s∗ ∈ Ω is an optimal solution of the SIOP.

3. Optimization model and algorithm

In this section, we consider a DIOP and introduce its distributed primal-dual algorithm.

3.1. Optimization model

Consider the following DIOP:

(DIOP) min
s

G(s), G(s) =
n∑

i=1

Gi(si)

s. t. si = s j (3.1)

where s =
[
s⊤1 , s

⊤
2 , . . . , s

⊤
n
]⊤
∈ Rnp, si ∈ R

p, and Gi = [Li,Ri]. Li,Ri : Rp → R are convex functions.
For any given si, Li(si) ⩽ Ri(si) holds. Each agent i knows its local interval function Gi.

Define L(s) and R(s) as

L(s) =
n∑

i=1

Li(si), R(s) =
n∑

i=1

Ri(si). (3.2)

With (3.2), the definition of Pareto solutions is then given to the DIOP.

Definition 3. [34] s∗ ∈ Ω is a Pareto solution of the DIOP, iff for some s̄ ∈ Ω, L(s̄) ⩽ L(s∗) and
R(s̄) ⩽ R(s∗) both hold implying that L(s∗) ⩽ L(s̄) and R(s∗) ⩽ R(s̄).

The existence of Pareto solutions for the DIOP is guaranteed by Assumption 2 which is consistent
with the centralized counterpart [35].

Assumption 2. (a) Li(s) and Ri(s) are strongly convex, continuous functions.
(b) Problem (3.1) has at least one Pareto solution.
(c) Gradients of Li(s) and Ri(s) are Lipschitz continuous.

Lemma 2 also establishes a theoretical framework for Pareto solutions for the DIOP. Consider the
following scalarization of the DIOP as well. Define f : Rnp × Rn → R and fi : Rp × [0, 1]→ R as

F
(
s, z
)
≜

n∑
i=1

fi
(
si, zi
)

(3.3)
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fi
(
si, zi
)
≜ ziLi(s) + (1 − zi)Ri(s) (3.4)

where z =
[
z1, z2, . . . , zn

]⊤
∈ (0, 1)n and s =

[
s⊤1 , s

⊤
2 , . . . , s

⊤
n
]⊤
∈ Rnp. Let z = z01n with z0 ∈ (0, 1). The

DSIOP (3.1) can be rewritten as follows:

(DSIOP) min
s

F
(
s, z
)
, F

(
s, z
)
=

n∑
i=1

fi
(
si, zi
)

s. t. si = s j, zi = z j (3.5)

where each agent i possesses the following information: ∇ fi, si, zi ∈ (0, 1) and s j ∈ Ni. The given
problem (3.5) can be modeled as a distributed optimization problem [28, 36, 37] with scalars when z
represents a common vector to each agent i. Additionally, under Assumption 2, the following lemma
remains valid:

Lemma 3. [34, 35]

(a) fi
(
s, z
)

is linear with respect to z and fi
(
s, z
)

is convex with respect to s .
(b) There are Lipschitz constants ki1 and K1 such that the partial derivative ∇ fix

(
s, z
)

is Lipschitz con-
tinuous with respect to s with ki1 and ∇Fs

(
s, z
)

is Lipschitz continuous with respect to s with K1.
(c) There are Lipschitz constants ki2 and K2 such that fi

(
s, z
)

is Lipschitz continuous with respect to z
with constant ki2 and F

(
s, z
)

is Lipschitz continuous with respect to z with constant K2.
(d) There are Lipschitz constants ki3 and K3 such that the partial derivative ∇ fix

(
s, z
)

is Lipschitz
continuous with respect to z with constant ki3 and ∇Fs

(
s, z
)

is Lipschitz continuous with respect
to z with constant K3.

It should be noted that although fi(si, zi) is convex with respect to s and z, fi(si, zi) is not a convex
function. Owing to the non-convexity of fi(si, zi), the criteria for linear convergence rates of algorithms
are no longer applicable to the DIOP.

3.2. Algorithm

During distributed optimization processes, s1, . . . , sn, z1, . . . , zn are not necessarily equal all of the
time. Therefore, it is natural to treat those variables separately and impose the soft constraints s1 =

. . . = sn, z1 = . . . = zn . By using the Laplacian matrix P, these constraints are equivalent to Ps = 0 and
Pz = 0, where z =

[
z1, z2, . . . , zn

]⊤
∈ (0, 1)n, s =

[
s⊤1 , s

⊤
2 , . . . , s

⊤
n
]⊤
∈ Rnp, and P = P⊗Ip. Consequently,

problem (3.5) is reformulated as follows:

min
s

F
(
s, z
)
, F

(
s, z
)
=

n∑
i=1

fi
(
si, zi
)

s. t. Ps = 0, Pz = 0, z ∈ (0, 1)n. (3.6)

Let t =
[
t1, t2, . . . , tn

]⊤. Recall that the dual problem of (3.6) is

min
s∈Rnm

[
F(s, z) +max

t∈Rnp

〈
t, Ps
〉]

s. t. Pz = 0, z ∈ (0, 1)n. (3.7)
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and the augmented Lagrangian function of (3.7) with respect to s is

L̃(s, z, t) = F(s, z) + ⟨t, Ps⟩ +
1
2
⟨s, Ps⟩. (3.8)

Define by z̄0 = 1
n

∑n
i=1 z0

i , z̄0 = [(z̄0)⊤, (z̄0)⊤, . . . , (z̄0)⊤] ∈ Rnp, where z0
i ∈ (0, 1) is an initial value

for any agent i. For the vector z̄0, denote S ∗ as the optimal solution set of problem (3.6) and T ∗ as the
saddle point set of problem (3.7), respectively. According to Assumption 2, for a proper given z0, there
exists t∗ such that (s∗, t∗) ∈ S ∗ × T ∗. (s∗, t∗) ∈ S ∗ × T ∗ also satisfies the following lemma, which is also
a basis for the analysis of convergence:

Lemma 4. (Karush-Kuhn-Tucker condition, [38, Theorems 3.25–3.27]) With Assumption 2, for a par-
ticular given z̄0 = z̄0 ⊗ 1n ∈ (0, 1)n, (s∗, t∗) is a solution to (3.7) if 0 = −∇sL̃(s∗, t∗) = −∇Fs∗(s∗, z̄0) − Ps∗ − Pt∗,

0 = ∇tL̃(s∗, t∗) = Ps∗.

With Lemma 4, we introduce a distributed primal-dual algorithm as follows:

sk+1
i =sk

i − h
(
∇ fisk

i
(sk

i , z
k
i ) +

m∑
j=1

ai j
(
sk

i − sk
j
)
+

m∑
j=1

ai j
(
tk
i − tk

j
))

(3.9a)

zk+1
i =

m∑
j=1

ai jzk
j (3.9b)

tk+1
i =tk

i + h
( m∑

j=1

ai j
(
sk

i − sk
j
))

(3.9c)

where the step-size h satisfies that 0 < h < 2
L+4σ , σ is the largest eigenvalue of the Laplacian matrix

P. At the k-th iteration, for all i ∈ V = {1, 2, . . . , n}, each agent i only obtains a partial gradient in
the form of ∇ fisk

i
(sk

i , z
k
i ) for its local function fi(sk

i , z
k
i ), and it is cooperative with neighbors to achieve a

Pareto solution of problem (3.1).
The constraint P limk→∞ z(k) = 0, zi ∈ (0, 1) in (3.6), is satisfied through (3.9b) and the initialization

of zi(0) ∈ (0, 1) in (3.9), while the constraint P limk→∞ x(k) = 0 and the minimization of F
(
x, z
)

are satisfied through (3.9a) and (3.9c) in (3.9). Define sk = col{sk
1, . . . , s

k
n}, t k = col{tk

1, . . . , t
k
n} and

zk = col{zk
1, . . . , z

k
n}. Then, with w ≜ col{s, t} ∈ R2qn, w∗ ≜ col{s∗, t∗} ∈ W∗ ⊂ S ∗ × T ∗ for a proper

given z̄0, where W∗ is the primal-dual solution set of problem (3.7). Algorithm (3.9) can be rewritten
in a compact form in terms of {w, z}:w(k + 1) = w(k) − hI(w(k), z(k))

z(k + 1) = Az(k)
(3.10)

where

I(w, z) ≜
[
I1(w, z)
I2(w, z)

]
=

[
∇Fs(s, z) + Ps + Pt

−Ps

]
. (3.11)

We have the following basic result, whose proof is in the Appendix.

Electronic Research Archive Volume 32, Issue 2, 857–873.



864

Theorem 1. Under Assumptions 1 and 2, {sk, t k} converges to the Pareto solution set W∗.

Consider a Lyapunov function

V(w, z) = Va(w, z) + Vb(w, z) + Vc(w, z) (3.12)

where Va(w, z) = σd2(w,W∗), Vb(w, z) = F(s, z) − F(s∗, z̄0) + 1
2⟨s, Ps⟩ + ⟨s, Pt⟩, Vc(w, z) = K2∥z − z̄0

∥∥∥
and K2 is a Lipschitz constant given in Lemma 3. Theorem 1 is based on Lemmas 5 and 6, whose proof
are also given in Appendix.

Lemma 5. With Assumption 1,
{
zk} converges to z̄0 with a linear convergence rate γ1 whose elements

belong to (0, 1): limk→∞ zk = z̄0,
∥∥∥zk − z̄0

∥∥∥ ⩽ γ1

∥∥∥zk−1 − z̄0
∥∥∥. ∥∥∥zk − z̄0

∥∥∥ is also summable with respect
to k:

∑∞
k=1

∥∥∥zk − z̄0
∥∥∥ < ∞.

Lemma 6 is additionally presented to illustrate the minimum and maximum values of V(w, z).

Lemma 6. With Assumptions 1 and 2, the following inequality holds for the Lyapunov function V(w, z):

σ

2

[
∥s − s∗∥2 + ∥t − t∗∥2

]
⩽ V(w, z) ⩽

K1 + 4σ
2

[
∥s − s∗∥2 + ∥t − t∗∥2

]
+ 2K2

∥∥∥z − z̄0
∥∥∥

where K1,K2 are Lipschitz constants given in Lemma 1, andσ is the largest eigenvalue of the Laplacian
matrix P.

The asymptotic convergence of (3.9) is demonstrated by Theorem 1, which is consistent with that
of [28] for distributed optimization. It should be noted that the inclusion of the partial gradient term
∇Fs(s, z) renders inapplicable the contraction mapping principle. In contrast to numerous distributed
algorithms that rely on the contraction mapping principle for their proofs [26, 28, 37, 39], this awork
involves employing the martingale convergence theorem (Lemma 1) in Theorem 1.

4. Main results

In this section, we present our main results. A criterion without strong convexity is first introduced
for the DIOP, which, together with (3.9) will imply linear convergence. Our criterion for (3.9) to
achieve exponential convergence is as follows.

Criterion. The continuously differentiable function L̃ > 0 has a restricted quadratic gradient
growth. That is, if there exists a constant κL such that for any w, w∗ = PW∗(w), we have〈

I(w, z̄0) − I(w∗, z̄0),w − w∗
〉
⩾ κL∥w − w∗∥2 (4.1)

where L̃ is the augmented Lagrangian function defined in (3.8).

The criterion given in this paper differs from the quadratic convex condition given in [1] and the
metrically irregular condition discussed in [28] for distributed optimization problems with scalar func-
tions. This criterion is given for DIOPs. On the other hand, regarding the dynamics given by (3.9), we
will show that (4.1) is sufficient to achieve linear convergence.
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Theorem 2. Under Assumptions 1 and 2 and (4.1), {sk, t k} converges linearly to the optimal set W∗.

Proof. If w = w∗, we have that
∥∥∥I(w, z)

∥∥∥ ⩾ 0. Further, consider the case when w , w∗. With Lemma 5,
we obtain 〈

I(w, z),w − w∗
〉
=
〈
I(w, z) − I(w∗, z),w − w∗

〉
+
〈
I(w∗, z) − I(w∗, z̄0),w − w∗

〉
⩾κL
∥∥∥w − w∗

∥∥∥2 − K3

∥∥∥z − z0
∥∥∥ · ∥∥∥w − w∗

∥∥∥ (4.2)

where the last inequality holds by ⟨a, b⟩ ⩽ ∥a∥
2+∥b∥2

2 . Still,〈
I(w, z),w − w∗

〉
⩽
∥∥∥I(w, z)

∥∥∥ · ∥∥∥w − w∗
∥∥∥. (4.3)

Equations (4.2) and (4.3) indicate that
∥∥∥I(w, z)

∥∥∥ ⩾ κL∥∥∥w−w∗
∥∥∥−K3

∥∥∥z− z̄0
∥∥∥. Therefore, if Assumption

2 holds,
∥∥∥I(w, z)

∥∥∥ ⩾ κL∥∥∥w − w∗
∥∥∥ − K3

∥∥∥z − z0
∥∥∥. By Lemma 6,

∥∥∥I(wk, zk)∥∥∥2 ⩾κ2L∥∥∥wk − w∗
∥∥∥2 + K2

3

∥∥∥zk − z0
∥∥∥2 − 2κLK3

∥∥∥wk − w∗
∥∥∥ · ∥∥∥zk − z0

∥∥∥
⩾

2κ2L
K1 + 4σ

[
V
(
wk, zk) − 2K2∥zk − z̄0∥

]
− 2κLK3

∥∥∥wk − w∗
∥∥∥ · ∥∥∥zk − z0

∥∥∥ + K2
3

∥∥∥zk − z0
∥∥∥2.
(4.4)

Substituting (4.4) into (A12) yields

V
(
wk+1, zk+1) ⩽ T k

1 + T k
2 + T k

3 + T k
4 − T k

5

where T k
1 =

(
1− h(2−ν0h)κ2L

K1+4σ

)
V
(
wk, zk), T k

2 = 2hK3σ
∥∥∥∥zk− z̄0

∥∥∥∥·∥∥∥sk−s∗, T k
3 = K2

(∥∥∥∥zk+1−zk
∥∥∥∥+(1−γ1)

∥∥∥∥zk− z̄0
∥∥∥∥),

T k
4 =

2hK2(2−ν0h)κ2L
K1+4σ

∥∥∥∥zk − z̄0
∥∥∥∥ and T k

5 = −
h(2 − νoh)K2

3

2

∥∥∥∥zk − z̄0
∥∥∥∥2.

Still, according to Lemma 5, ∥zk− z̄0
∥∥∥∥ converges linearly at a rate γ1. Therefore, residue terms T k

2 , T k
3 ,

T k
4 and T k

5 diminish with linear rates. Since ν0 ⩽ K1+4σ, the main term T k
1 converges with a linear rate,

which is no less than
(
1− h
(

2−(K1+4σ)h
)
κ2L

2(K1+4σ)

)
. With Lemma 6, we obtain that

[
∥sk+1 − s∗∥2 + ∥yk+1 − t∗∥2

]
⩽

2
σ

V
(
wk+1, zk+1), which completes the proof.

As shown in Theorem 1, (4.1) plays an important role in achieving linear convergence even in the
absence of strong convexity of fi(si, zi). In this paper, we extend the quadratic convex condition given
in [1] to (4.1) for interval functions. Criterion (4.1) also describes another linear growth condition of
gradients for distributed optimization problems.

5. Simulation

In this section, we demonstrate the following simulation:

min G(s) =
9∑

i=1

[υ1i, υ2i]∥s − ρi∥
2
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where υ1i, υ1i ∈ R and ρi ∈ R
p. The problem is motivated from both a centralized IOP [35] and the

distributed optimization [40]. The communication topology between agents is described by Figure 2.

Define [υ1i, υ2i] = [0.5, 2]. Take ρ1 = 5 , ρ2 = 4, ρ3 = 3, ρ4 = 2, ρ5 = 1, ρ6 = 0, ρ7 = −1, ρ8 = −2,
and ρ9 = −3. Next, initialize (3.9) by setting the step-size h = 0.1, z0

i as random numbers in [0, 1], and
s0

i = 0. Then we investigate the convergence of (3.9). Also, Figures 3 and 4 show the consensus of zk
i

and convergence of sk
i for the proposed algorithm. We get a Pareto solution as (0.4695; 1.002) for 1000

iterations. Figure 5 shows the convergence of sk
i for a centralized primal-dual algorithm (an algorithm

generated according to the properties of solutions in [35]) for each agent i, where zi denotes random
numbers in [0, 1]. In addition, we take a performance index R as Rk = log ∥sk − s∗∥2. The performance
of R is shown in Figure 6, which implies the linear convergence of (3.9).

Figure 2. Communication topology between agents.

Iterations
0 100 200 300 400 500 600 700 800 900 1000

la
m

b
d

a
(k

)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Agent 1
Agent 2
Agent 3
Agent 4
Agent 5
Agent 6
Agent 7
Agent 8
Agent 9

0 50 100 150

0.4

0.45

0.5

0.55

0 10 20 30

0.46

0.47

0.48

Figure 3. zk
i for agent i of (3.9).

Electronic Research Archive Volume 32, Issue 2, 857–873.



867

Iterations
0 100 200 300 400 500 600 700 800 900 1000

x
(k

)

-2

-1

0

1

2

3

4

Agent 1
Agent 2
Agent 3
Agent 4
Agent 5
Agent 6
Agent 7
Agent 8
Agent 9

Figure 4. sk
i for agent i of (3.9).
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6. Conclusions

We have investigated a DIOP in which the local functions are interval functions in this paper. With
distributed interval optimization as its primary focus, this article introduces a distributed primal-dual
algorithm. A criterion has been proposed that allows the linear convergence to the Pareto solution of
a DIOP without strong convexity. Finally, a numerical simulation has been executed to demonstrate
the linear convergence of the proposed algorithm. Given that the existing research on DIOPs primarily
focuses on objective interval functions, the investigation of distributed problems involving interval
constraints should be expanded in the future.
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Appendix

Proof of Lemma 5

Proof. According to Assumption 1(b), the adjacency matrix A is irreducible and aperiodic. With [33,
Theorem 6.64], limk→∞A

k = B with a linear convergence rate γ1 ∈ (0, 1), where B = 1
n1⊤n 1n. With

(3.9b), we have

lim
k→∞

z(k) = lim
k→∞
Ak z(0) = Bz(0) = z̄(0). (A1)

According to [37, Lemma 3],
∑∞

k=1

∥∥∥Ak − B
∥∥∥ < ∞ holds, which completes the proof.

Proof of Lemma 6

Proof. (a) Lower bound of the Lyapunov function V(w, z): Let w∗ = col{s∗, t∗} be the projection of wk

onto the optimal set W∗. Since the symmetry of P holds, given Lemma 4, ∇Fs∗(x∗, z̄0) = −Pt∗ and
⟨s∗, P⟩ = 0. We further obtain that

〈
s−s∗,∇Fs∗(x∗, z̄0)

〉
= −
〈
s−s∗, Pt∗

〉
, and

〈
s, Pt
〉
=
〈
s−s∗, Pt

〉
.

Vb(w, z) can be further written as

Vb(w, z) =F(s, z) − F(s∗, z̄0) +
1
2
⟨s, Ps⟩ + ⟨s, Pt⟩

=F(s, z) − F(s∗, z̄0) +
〈
s − s∗, P(t − t∗)

〉
+
〈
s − s∗, Pt∗

〉
+

1
2
〈
s − s∗, P(s − s∗)

〉
=F(s, z) − F(s∗, z̄0) −

〈
s − s∗,∇Fs∗(x∗, z̄0)

〉
+
〈
s − s∗, P(t − t∗)

〉
+

1
2
〈
s − s∗, P(s − s∗)

〉
.

(A2)

According to Lemma 3, F(s, z) is convex with respect to s and Lipschitz continuous with respect
to z. Therefore,

F(s, z) − F(s∗, z̄0) −
〈
s − s∗,∇Fs∗(x∗, z̄0)

〉
=F(x∗, z̄0) − F(x, z̄0) −

〈
s − s∗,∇Fs∗(x∗, z̄0)

〉
+ F(s, z) − F(x, z̄0) ⩾ −K2∥z − z̄0∥ = −K2∥z − z̄0∥.

Since P is positive semidefinite,

1
2
〈
s − s∗, P(s − s∗)

〉
⩾ 0.

Therefore, Vb(w, z) ⩾
〈
s − s∗, P(t − t∗)

〉
⩾ −
σ

2

[
∥s − s∗∥2 + ∥t − t∗∥2

]
− K2∥z − z̄0∥,which implies

the lower bound of the Lyapunov function V(w, z) ⩾ σ2
[
∥s − s∗∥2 + ∥t − t∗∥2

]
.

(b) Upper bound of the Lyapunov function V(w, z): According to Lemma 3
(
L-Lipschitz continuity

of ∇Fs(s, z) with respect to s
)

and Assumption 2, F(s, z̄0) − F(s∗, z̄0) −
〈
s − s∗,∇Fs∗(x∗, z̄0)

〉
⩽
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L
2 ∥s− s∗∥2. According to Lemma 3, F(s, z) is Lipschitz continuous with respect to z, we have that
F(s, z) − F(x, z̄0) ⩽ K2∥z − z̄0∥. Note that

1
2
〈
s − s∗, P(s − s∗)

〉
⩽
σ

2
∥s − s∗∥2.

Moreover,
〈
s − s∗, P(t − t∗)

〉
⩽ σ∥s − s∗∥ · ∥t − t∗∥ ⩽ σ

2

[
ε∥s − s∗∥2 + 1

ε
∥t − t∗∥2

]
for any ε > 0.

Through choosing ε = σ
K1+σ

, we get

Vb(w, z) ⩽
L + σ

2

[
(∥s − s∗∥2 + ∥z − z̄0∥2)

]
+

σ2

2(K1 + σ)
∥s − s∗∥2 ⩽

K1 + 2σ
2

[
∥s − s∗∥2 + ∥t − t∗∥2

]
,

which implies that V(w, z) ⩽ K1+4σ
2

[
∥s − s∗∥2 + ∥t − t∗∥2

]
+ 2K2∥z − z̄0∥.

Proof. Proof of Theorem 1

It follows from the K1-Lipschitz of ∇F(s, z) in Lemma 3 that

F
(
sk+1, zk+1) − F

(
sk, zk) =F

(
sk+1, zk+1) − F

(
sk+1, zk) + F

(
sk+1, zk) − F

(
sk, zk)

⩽
〈
∇Fsk
(
sk, zk), sk+1 − sk

〉
+

K1

2

∥∥∥∥sk+1 − sk
∥∥∥∥2 + K2

∥∥∥∥zk+1 − zk
∥∥∥∥

⩽ − h
〈
∇Fsk
(
sk, zk), I1

(
wk, zk)〉 + h2K1

2

∥∥∥∥I1
(
wk, zk)∥∥∥∥2 + K2

∥∥∥∥zk+1 − zk
∥∥∥∥, (A3)

where the second inequality builds on the definition of I1(w). Since ∥P∥ ⩽ σ, we have〈
sk+1, Psk+1

〉
−
〈
sk, Psk

〉
⩽ −2h

〈
I1
(
wk, zk), Psk

〉
+ h2σ

∥∥∥∥I1
(
wk, zk)∥∥∥∥2 (A4)

and 〈
yk+1, Psk+1

〉
−
〈
t k, Psk

〉
⩽ −h

〈
I2
(
w(k), zk), Psk

〉
+

h2σ

2

∥∥∥∥I2
(
wk, zk)∥∥∥∥2 − h

〈
I1
(
wk, zk), Pt k

〉
+

h2σ

2

∥∥∥∥I1
(
wk, zk)∥∥∥∥2. (A5)

Combine (A3)–(A5). Given the definition of Vb(w, z), we get

Vb
(
wk+1, zk+1) − Vb

(
wk, zk)

⩽ − h
∥∥∥∥I1
(
wk, zk)∥∥∥∥2 + h

∥∥∥∥I2
(
wk, zk)∥∥∥∥2 + h2(K1 + 2σ)

2

∥∥∥∥I1
(
wk, zk)∥∥∥∥2 + h2σ

2

∥∥∥∥I2
(
wk, zk)∥∥∥∥2 + K2

∥∥∥∥zk+1 − zk
∥∥∥∥,

(A6)

which is based on
〈
Px, t
〉
=
〈
Py, s
〉
.

With Lemma 5 and ∥P∥ ⩽ σ, we obtain〈
− I
(
wk, zk),wk − w∗

〉
= −
〈
sk − s∗,∇Fsk(sk, zk) + Pt k + Psk

〉
+
〈
t k − t∗, Psk

〉
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= −
〈
sk − s∗,∇Fsk(sk, zk)

〉
−
〈
sk, Pt∗

〉
−
〈
sk − s∗, Ps

〉
= −
〈
sk − s∗,∇Fsk(sk, zk) − ∇Fs∗(s∗, z̄0)

〉
−
〈
sk, Psk

〉
= −
〈
sk − s∗,∇Fsk(sk, zk) − ∇Fs∗(s∗, zk)

〉
−
〈
sk − s∗,∇Fs∗(s∗, zk) − ∇Fs∗(s∗, z̄0)

〉
−
〈
sk, Psk

〉
. (A7)

Since F(·) is a convex function with respect to s,〈
sk − s∗,∇Fsk(sk, zk) − ∇Fs∗(s∗, zk)

〉
⩾ 0. (A8)

According to the K3-Lipschitz continuity of ∇Fs(s, z) in Lemma 3, we have〈
sk − s∗,∇Fs∗(s∗, zk) − ∇Fs∗(s∗, z̄0)

〉
⩾ −K3

∥∥∥∥zk − z̄0
∥∥∥∥ · ∥∥∥sk − s∗

∥∥∥. (A9)

Combining (A8) and (A9) with (A7) yields〈
− I
(
wk, zk),wk − w∗

〉
⩽ −

1
σ

∥∥∥∥Psk
∥∥∥∥2 + K3

∥∥∥∥zk − z̄0
∥∥∥∥ · ∥∥∥sk − s∗

∥∥∥. (A10)

According to the σ-Lipschitz continuity of Va(w, z)with respect to z in (3.12), we have

Va
(
wk+1, zk+1) − Va

(
wk, zk) ⩽⟨∇Vaw

(
wk, zk),wk+1 − wk⟩ +

σ

2

∥∥∥wk+1 − wk
∥∥∥2

⩽ − 2hσ
〈
I
(
wk, zk),wk − w∗

〉
+
σ

2

∥∥∥wk+1 − wk
∥∥∥2

⩽ − 2h
∥∥∥∥I2
(
wk, zk)∥∥∥∥2 + σh2

2

∥∥∥∥I(wk, zk)∥∥∥∥2 + 2hK3σ
∥∥∥∥zk − z̄0

∥∥∥∥ · ∥∥∥sk − s∗
∥∥∥.

(A11)

Therefore, by using (A6)m (A11) and the definition of V(w, z) in (3.12), we have

V
(
wk+1, zk+1) − V

(
wk, zk) ⩽ − h(2 − ν0h)

2

∥∥∥∥I(wk, zk)∥∥∥∥2 + 2hK3σ
∥∥∥∥zk − z̄0

∥∥∥∥ · ∥∥∥sk − s∗
∥∥∥ + K2Mk (A12)

where ν0 = 4σ + K1. and Mk =
∥∥∥∥zk+1 − zk

∥∥∥∥ + ∥∥∥∥zk+1 − z̄0
∥∥∥∥ − ∥∥∥∥zk − z̄0

∥∥∥∥.
According to Lemma 5 and Assumption 2,

∞∑
k=1

2hK3σ
∥∥∥∥zk − z̄0

∥∥∥∥ · ∥∥∥sk − s∗
∥∥∥ = ∞∑

k=1

2hK3σ
∥∥∥(Ak − B)z0

∥∥∥∥∥∥sk − s∗
∥∥∥ < ∞, (A13)

and
∞∑

k=1

K2Mk =

∞∑
k=1

K2

(∥∥∥(A− In)Ak z0
∥∥∥ + ∥∥∥(A− In)(Ak − B)z0

∥∥∥) < ∞. (A14)

Consequently, with Lemma 1, V(wk, zk) converges with
∑∞

k=0

∥∥∥∥I(wk, zk)∥∥∥∥2 < +∞, which implies that

limk→∞ I
(
wk, zk) = 0. By Lemma 4 and the continuity of I, limk→∞

∥∥∥sk− s∗
∥∥∥ = 0 and limk→∞

∥∥∥t k− t∗
∥∥∥ =

0.
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