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Abstract: As the availability of high-frequency data becomes more widespread, it has become
very popular to model random fluctuations of some econometric variables over time using Itô semi-
martingale. An emblematic problem is to estimate the quadratic variation, i.e., the integrated volatility
of log prices, using noisy high frequency data with endogenous time and jumps. We propose a method-
ology that combines the multiple sub-grids and thresholds. First, the sub-sample is used to reduce the
effect of the noise. Then, the threshold method is used to get rid of the effect of jumps. Finally, the
multiple sub-grids method is used to increase the convergence rate. The asymptotic properties, such
as consistency and asymptotic normality, are investigated. Simulation is also included to illustrate the
performance of the proposed procedure.
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1. Introduction

As the availability of high-frequency data becomes more widespread, it has become very popular
to model random fluctuations of some econometric variables over time using Itô semi-martingale.
Specifically, in financial mathematics, it has become very popular to model log asset prices or interest
rates using the stochastic processes X = (Xt):

dXt = btdt + σtdWt, for t ∈ [0, 1]. (1.1)

for t ∈ [0, 1] [1]. An emblematic problem in econometrics is how to estimate the quadratic variation
(the integrated volatility) of log prices, i.e., ⟨X, X⟩t =

∫ t

0
σ2

sds.
A classical estimator of integrated volatility is the realized volatility c.f. [2], based on the discrete

time observations

Xti for 0 = t0 < t1 < t2 < · · · tn ≤ T, (1.2)
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and the estimator is defined as [X, X]n
t =
∑

ti≤t(∆Xti)
2, where ∆Xti = Xti −Xti−1 for i ≥ 1. It is well known

that [X, X]n
t

P
→ ⟨X, X⟩t [3]. However, when it comes to the reality, observed high-frequency data often

exhibit complex features and complicated structures due to those issues:

• Jumps;
• Market microstructure noise;
• Endogenous in the price sampling times.

For the first issue, two well-behaved estimators are the multiple-power estimator [4, 5] and the
realized threshold quadratic variation [6, 7]. One commonly used assumption is that Xt is a jump-
diffusion Itô process:

dXt = dXc
t + dXd

t (1.3)

for t ∈ [0,T ], where Xcand Xd are the continuous and jumps terms, whose forms are given in (2.1) and
(2.2) later. Under this setting, the quadratic variation of X becomes

[X, X]t = [Xc, Xc]t + [Xd, Xd]t =

∫ t

0
σ2

sds +
∑

0≤s≤t

(∆Xs)2. (1.4)

For the second issue, the model commonly used is the discretely observed process with micro-
structure noise:

Yti = Xc
ti + εti , for i = 0, 1, · · · , n, (1.5)

where {εti , i ≥ 0} are i.i.d. random variables, satisfying E(εti) = 0, E(ε2
ti) = σ

2, independent of the
process Xc

t , and the sampling times {ti, i ≥ 0} are independent of Xc. For estimating an univariate in-
tegrated volatility in the presence of microstructure noise, various estimators have been proposed by
researchers, such as two-time scale realized volatility [8], multi-scale realized volatility [9], wavelet
realized volatility [10], pre-averaging realized volatility [11], kernel realized volatility [12], and a
quasi-maximum likelihood estimator [13]. For estimating a multivariate integrated co-volatility, vari-
ous methods include a quasi-maximum likelihood estimator based on generalized sampling time [14],
the pre-averaging realized volatility [15], realized kernel volatility estimator based on a refresh time
scheme [16], and multi-scale realized co-volatility based on previous tick data synchronization [17].
For estimating large integrated volatility matrices, methods consist of universal thresholding [18–21],
and adaptive thresholding [22].

For the last issue, the sampling times are irregular or random but (conditionally) independent of
the price process. Volatility estimation in some special situations, and in a general situation have been
studied [23–25]. A detailed discussion on the issue of possible endogenous effect has been provided
in a semi-parametric context [26], and the time endogenous effect on volatility estimation has been
investigated in a non-parametric setting [27]. When there were Xc, Xd and endogenous time, Li et
al. [28] developed a procedure that yields a consistent estimator of the integrated volatility. When there
were Xc, microstructure noise and endogenous time, Li, Zhang and Zheng [29] considered estimators
of the volatility and their asymptotic properties. Li and Guo [30] proposed a new estimator of the
integrated volatility in the presence of both market micro-structure noise and jumps when sampling
times are endogenous, through averaging every p observations that precede each observation in the
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sub-sample S to remove the effect of ε, and the method of cutting off the “big” part to remove the
effect of the jump part. They obtained only an asymptotic rate n1/6−δ for any δ > 0 due to the local
averaging of a single sub-grid being used to reduce the effect of microstructure noise.

We must point out the differences between this paper and [31], although the methods of the two
articles seem to be similar. A nonparametric procedure, based on a combination of the preaverag-
ing method and threshold technique, is proposed to estimate the integrated volatility of an Itô semi-
martingale in the presence of jumps and microstructure noise. However, we propose a methodology
that combines threshold and the multiple sub-grids, to estimate the quadratic variation of an Itô semi-
martingale in the presence of endogenous time, jumps, and microstructure noise. First, the sub-sample
is used to reduce the effect of the noise. Then, the threshold method is used to get rid of the effect
of jumps. Finally, the multiple sub-grids method is used to increase the convergence rate. Thus, the
circumstances of the model and the estimated methods are both different.

In this paper, we use the sub-sample to reduce the effect of the noise, while using the multiple
sub-grids method to increase the convergence rate. Then, we use the threshold method to get rid of
the effect of jumps. we attempt to develop an estimator that converges consistently to the integrated
volatility in the presence of jumps, micro-structure noise and time endogenous in a general setting.
The asymptotic normality of the proposed estimator is also established.

The remainder of the paper is organized as follows. Some assumptions made by the model and
introduction to the methodology are discussed in Section 2. The consistency and asymptotic normality
results are given in Section 3. In Section 4, simulation results are presented. Some discussions are
given in Section 5 and all the technical proofs are given in the Appendix.

2. Preliminaries

2.1. Model assumptions

Let X = (Xt) be the log price of a single asset for continuous time t ≥ 0, which is defined on a
stochastic basis (Ω,F ,Ft, P). Then, the model (1.3) is called an Itô semi-martingale if it has the form

dXc
t = btdt + σtdWt, (2.1)

dXd
t =

∫
|x|≤1

x(µ − ν)(dt, dx) +
∫
|x|>1

xµ(dt, dx), (2.2)

where b and σ are locally bounded optional processes, µ is a jump measure compensated by ν; ν(dt, dx)
has the form dtFt(dx), where Ft(dx) is a transition measure fromΩ(0)×R+ endowed with the predictable
σ−field into R/0, We define β := inf{s :

∫
|x|≤1
|x|sFt(dx) < ∞}, which is called the jump activity index

in the literature. If 0 ≤ β < 1, we also say that Xd has finite variation.
Actually, instead of observing Xt, we observe Yt due to bid-ask spread bounces, differences in trade

sizes, et al., where

Yti = Xti + εti , for i = 0, 1, · · · , n, (2.3)

where {εti , i ≥ 0} are i.i.d. random variables, satisfying E(εti) = 0, E(ε2
ti) = σ

2
ε, and have common

fourth moments.
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Define the quadratic variation of X as

⟨Xc, Xc⟩t =

∫ t

0
σ2

sds. (2.4)

Here, we aim to develop a new estimator for (2.4) and to investigate some asymptotic properties of the
proposed estimator in the presence of jumps, micros-structure noise, and time endogenous.

2.2. Methodology

To estimate the quadratic variation of (2.4), in this section, we give a new estimator ̂⟨Xc, Xc⟩t. First,
we need the notation of Y tki,0

on the k-th sub-grid to reduce the effect of the noise. Then, we provide

[Y ,Y]Sk
t to get rid of the effect of jumps on the k-th grid. Finally, we use the moving average estimator

̂⟨Xc, Xc⟩t based on the multiple sub-grids to obtain the optimal rate n1/4−δ. Now, let us describe the
estimator in detail.

Denote Nt = max{i : ti ≤ t}, we assume that maxi ∆ti
P
→ 0 is driven by some underlying force, for

instance, n→ ∞, where n (non-random) measures the sampling frequency over the time interval [0,t].
In constructing the local average, we denote p as the number of observations, q as the size of blocks,
and both are non-random numbers just as n. Define

l := ⌊
n − p

q
⌋,

which satisfies that lq ≤ n, and as p shall be taken as o(n), lq/n → 1 as n → ∞. Moreover, for
k = 0, 1, · · · , q − 1, we define

tk
i, j := tiq+p− j+k, for i = 0, 1, · · · , and j = 1, 2, · · · , p − 1. (2.5)

We consider the time endogeneity on the sub-grid level. The sub-sample S = Sk :=
{tp+k, tq+p+k, · · · , tiq+p+k, · · · } is constructed by choosing every q-th observation starting from the p+k-th
observation from the complete grid. Then, we define

Y tki,0
:=

1
p

p−1∑
j=0

Ytiq+p− j+k , for i = 0, 1, 2, · · · , and k = 0, 1, · · · , q − 1, (2.6)

where tk
i, j = tiq+p− j+k and recall that tk

i,0 = tiq+p+k denotes the i-th observation time on the k-th sub-grid.
To get rid of the effect of jumps on the k-th grid, the realized volatility of the locally averaged Y

process is defined as

[Y ,Y]Sk
t :=

∑
tki,0≤t

(∆Y tki,0
)21{|∆Y tki,0

|≤uk
i,0}

(2.7)

where ∆Y tki,0
= Y tki,0

− Y tki−1,0
for i ≥ 1.

After correcting the bias due to noise, the threshold estimator ̂⟨Xc, Xc⟩t of ⟨Xc, Xc⟩t is provided as
following:

̂< Xc, Xc >t =
1
q

q−1∑
k=0

[Y ,Y]Sk
t −

2Lt

p
(σ̂2
ε)
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=
1
q

q−1∑
k=0

∑
tki,0≤t

(∆Y tki,0
)21{|∆Y tki,0

|≤uk
i,0}
−

2Lt

p
1

2n

n∑
i=1

(∆iY)21{|∆iY |≤ui}, (2.8)

where Lt := max{i : tk
i,0 ≤ t}, σ̂2

ε =
1

2n

∑n
i=1(∆iY)21{|∆iY |≤ui} is an estimator of σ2

ε, uk
i,0, satisfies

uk
i,0/(∆

k
i,0)ϖ1 → 0, uk

i,0/(∆
k
i,0)ϖ2 → ∞, for some 0 ≤ ϖ1 < ϖ2 <

1
4

(2.9)

and ui is similar to uk
i,0.

3. Results

In this section, the limiting behavior of the estimator will be established. To provide the asymptotic
results on multiple sub-grids, the following assumptions are needed.

• (1) There is a filtration (Ft)t≥0 where (ti)i≥1 are (Ft)-stopping times. Furthermore, the filtration
(Ft) is generated by finitely many continuous martingales.
• (2) Wt, bt and σ2

t ≥ c > 0 are adapted to a filtration (Ft), integrable and locally bounded, where c
is non random;
• (3) ∆n = max1≤i≤n |ti − ti−1| = Op(1/n1−η) for some nonnegative constant η;

• (4) Lt/l
P
→
∫ t

0
rsds in D[0,1], where rs is an adapted integrable process;

• (5) the microstructure noise sequence (εti)i≥0 consists of independent random variables with mean
0, variance σ2

ε, and common finite third and forth moments, and is independent of F1.

• (6) l
∑

ti≤t(
∑q−1

j=1
q− j

q ∆Yti− j1{|∆Yti− j |≤ui})
2(∆Yti)

21{|∆iY |≤ui}

P
→
∫ t

0
wsσ

4
sds for every t ∈ [0, 1], where wsσ

4
s

is integrable, and ui satisfies (2.9);

• (7) 1
q

∑q−1
k=0

√
l
∑

tki,0≤t(∆Ȳtki,0
)31{|∆Ȳtki,0

|≤uk
i,0}

P
→
∫ t

0
v̄sσ

3
sds for every t ∈ [0, 1], where v̄2

sσ
4
s is integrable,

and uk
i,0 satisfies (2.9).

Remark 1. If times are exogenous, Condition (6) can be reduced to a similar assumption in [31].
However, when observation times can be endogenous, the limit is expected to be different.

Theorem 1. Under the models (2.1)–(2.3) and assumptions (1)–(5), suppose that η ∈ [0, 1/9), and
l ∼ Clnα and p ∼ Cpnα, for some max(4η, 1/3) < α < (1 − η)/2 and positive constants Cl and Cp, we
have

̂< Xc, Xc >t
P
→

∫ t

0
σ2

sds. (3.1)

Remark 2. In such circumstances, this result does not change the integrated variance of the limit
process. The asymptotic mean-squared-error (MSE) is invariable, but must be decomposed differently
(see Therem 2).

Proof Thanks to a standard localization procedure, we can use a bounded assumption to replace
the local bounded in assumptions, while we also assume that the process Xt, itself, and thus the jump
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process Xd
t , is bounded as well. That is, for all results which need the assumption about volatility and

Lévy measure, we may assume further that

max |bt|, |σt|, |Xt| ≤ C, for some constant C > 0 almost surely. (3.2)

Recall that Yt = Xc
t + Xd

t + εt = Zt + Xd
t .

We can divide the equation into three parts,

̂< Xc, Xc >t −

∫ t

0
σ2

sds

=
1
q

q−1∑
k=0

∑
tki,0≤t

[(∆Z̄tki,0
+ ∆X̄d

tki,0
)21{|∆Ȳtki,0

|≤uk
i,0}
− (∆Z̄tki,0

)2]

−
2Lt

p
1

2n

n∑
i=1

[(∆iZ + ∆iXd)21{|∆iY |≤ui} − (∆iZ)2]

+
1
q

q−1∑
k=0

∑
tki,0≤t

(∆Z̄tki,0
)2 −

2Lt

p
1

2n

n∑
i=1

(∆iZ)2 −

∫ t

0
σ2

sds

= ξ11 + ξ12 + ξ13, (3.3)

where

ξ11 =
1
q

q−1∑
k=0

∑
tki,0≤t

[(∆Z̄tki,0
+ ∆X̄d

tki,0
)21{|∆Ȳtki,0

|≤uk
i,0}
− (∆Z̄tki,0

)2], (3.4)

ξ12 =
2Lt

p
1

2n

n∑
i=1

[(∆iZ + ∆iXd)21{|∆iY |≤ui} − (∆iZ)2], (3.5)

ξ13 =
1
q

q−1∑
k=0

∑
tki,0≤t

(∆Z̄tki,0
)2 −

2Lt

p
1

2n

n∑
i=1

(∆iZ)2 −

∫ t

0
σ2

sds. (3.6)

(1) For ξ11, when |∆Z̄tki,0
| ≥ uk

i,0/2, for an appropriate constant C, we have

ξ11 ≤ C|∆Z̄tki,0
|2+m/(uk

i,0)m, (3.7)

when |∆Z̄tki,0
| < uk

i,0/2, we have

|ξ11| ≤ C|∆Z̄tki,0
|2|∆X̄d

tki,0
|r/(uk

i,0)r, if |∆Ȳtki,0
| > uk

i,0 (3.8)

|ξ11| ≤ C((|∆X̄d
tki,0
| ∧ uk

i,0)2 + |∆Z̄tki,0
|(|∆X̄d

tki,0
| ∧ uk

i,0)), if |∆Ȳtki,0
| ≤ uk

i,0 (3.9)

where l and r are both any positive numbers which may change at different places. By the assumption
of boundedness of the parameters, we repeatedly use Hölder’s and Burkholder’s inequalities, then

E(|∆X̄d
tki,0
|2) ≤ C∆k

i,0, (3.10)
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E(|∆Z̄tki,0
|m) ≤ Cm(∆k

i,0)m/2, for m > 0 (3.11)

E[(|∆X̄d
tki,0
| ∧ uk

i,0)2] ≤ C∆k
i,0(uk

i,0)2−β ≤ Cs∆
k
i,0(uk

i,0)2−s, for 0 < β < s < 2. (3.12)

We deduce from above inequalities and estimations

E|ξ11|

≤ C(
|∆Z̄tki,0

|2+m

(ul
i,0)m

+

E|∆Z̄tki,0
|2E|∆X̄d

tki,0
|r

(uk
i,0)r

+ E(|∆X̄d
tki,0
| ∧ uk

i,0)2 + E|∆Z̄tki,0
|E(|∆X̄d

tki,0
| ∧ uk

i,0))

≤ C[
(∆k

i,0)
2+m

2

(uk
i,0)m

+
(∆k

i,0)
2+r

2

(uk
i,0)r

+ ∆k
i,0(uk

i,0)(2−s) + ∆k
i,0(uk

i,0)1−s/2]. (3.13)

Let m = r = 1, we have that

E|ξ11| ≤ C∆k
i,0[

(∆k
i,0)

1
2

uk
i,0

+ (uk
i,0)(1−s/2)]. (3.14)

By assumption of uk
i,0, we have 1

q

∑q−1
k=0

∑
tki,0≤t E|ξ11| → 0 uniformly.

(2) For ξ12, similar to ξ11, we have 1
q

∑q−1
k=0

∑
tki,0≤t E|ξ12| → 0 uniformly.

(3) For ξ13, the proof is similar to Theorem 1 of [30] or the result of Theorem 2 in [29], we have
1
q

∑q−1
k=0

∑
tki,0≤t E|ξ13| → 0 uniformly.

Combining (1), (2) and (3), we can finish the proof of the theorem. □
We will use the concept of stable convergence in the Central Limit Theorem below. A sequence of

random variables (r.v.s) Xn converges stably in law to a r.v. X defined on the appropriate extension of
the original probability space, if and only if for any set A ∈ F and real number x, we have

lim
n→∞

P(Xn ≤ x, A) = P(X ≤ x, A). (3.15)

We shall write it as Xn
S
→ X. An immediate consequence is that for any F−measurable random

variable σ, we have the joint weak convergence (Xn, σ) ⇒ (X, σ). Hence, it is slightly stronger than
convergence in law.

Define

A(p, q) :=
2
q

p−1∑
j=1

(
p2

j2 −
j
p

). (3.16)

Theorem 2. Under the same assumptions in Theorem 1 and assumptions (6) and (7), then, we have

A(p, q) ∼ −n4α−2ClCp/3, (3.17)

and stably in law,

l1/2(
1
q

q−1∑
k=0

[Y ,Y]Sk
t −

2Nt

pq
σ̂2
ε − (1 + A(p, q))

∫ t

0
σ2

sds)

⇒
2
3

∫ t

0
v̄sσsdXc

s +

∫ t

0
[(4ws −

4
9

v̄2
s)σ

4
s +

8C3
l

Cp
rs(σ2

ε)
2]1/2dBs, (3.18)

where Bt is a standard Brownian motion that is independent of F1.
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Remark 3. The limiting process of (3.18) depends on the underlying X, the reason is that endogeneity
of sampling times is existent. The endogeneity induces a bias term which is nonzero if and only if the
limit in 1

q

∑q−1
k=0

√
l
∑

tki,0≤t(∆Ȳtki,0
)31{|∆Ȳtki,0

|≤uk
i,0}

is no longer zero. The remaining term is the variance of a

normal distribution.

Proof Since the jumps of Xt is a finite variation process when β < 1, we have the following decom-
position:

X′t = X0 +

∫ t

0
b′1sds +

∫ t

0
σsdWs, X′′t = Xt − X′t (3.19)

where b′1s = bs −
∫
|x|≤1

sFs(dx), Z′t = X′t + εt and X′′ =
∑

s≤t ∆Xs.
Through the decomposition of (3.18), i.e.,

l1/2(
1
q

q−1∑
k=0

[Ȳ , Ȳ]Sk
t −

2Nt

pq
σ̂2
ε − (1 + A(p, q)) < Xc, Xc >t)

= l1/2 1
q

q−1∑
k=0

∑
tki,0≤t

[(∆Ȳtki,0
)21{|∆Ȳtki,0

|≤uk
i,0}
− (∆Z̄′tki,0

)2]

− l1/2 2Nt

pq
1

2Nt

Nt∑
i=1

[(∆iY)21{|∆iY |≤ui} − (∆iZ′)2]

+ l1/2(
1
q

q−1∑
k=0

∑
tki,0

(∆Z̄′tki,0
)2 −

2Nt

pq
1

2Nt

Nt∑
i=1

(∆iZ′)2 − (1 + A(p, q)) < Xc, Xc >t), (3.20)

it suffices to show

l1/2 1
q

q−1∑
k=0

∑
tki,0≤t

|(∆Ȳtki,0
)21{|∆Ȳtki,0

|≤uk
i,0}
− (∆Z̄′tki,0

)2|
P
→ 0, (3.21)

l1/2 2Nt

pq
1

2Nt

Nt∑
i=1

|(∆iY)21{|∆iY |≤ui} − (∆iZ′)2|
P
→ 0, (3.22)

and

l1/2(
1
q

q−1∑
k=0

∑
tki,0≤t

(∆Z̄′tki,0
)2 −

2Nt

pq
1

2Nt

Nt∑
i=1

(∆iZ′)2 − (1 + A(p, q)) < Xc, Xc >t)

⇒
2
3

∫ t

0
v̄sσsdXc

s +

∫ t

0
[(4ws −

4
9

v̄2
s)σ

4
s +

8C3
l

Cp
rs(σ2

ε)
2]1/2dBs. (3.23)

Similar to Theorem 1, we have the following estimates:

E(|∆X̄′′tki,0
|) ≤ C∆k

i,0, (3.24)
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E(|∆Z̄′tki,0
|m) ≤ C(∆k

i,0)m/2, for m > 0 (3.25)

E[|∆X̄′′tki,0
| ∧ uk

i,0] ≤ C(∆k
i,0)(uk

i,0)1−s, for β < s < 1. (3.26)

By repeated use of Hölder’s inequality and the inequality

(|x| ∧ uk
i,0)2 ≤ (uk

i,0)2−m(|x| ∧ uk
i,0)m, for 0 < m ≤ 2, (3.27)

we get

l1/2E|(∆Ȳtki,0
)21{∆Ȳtki,0

≤uk
i,0}
− (∆Z̄′tki,0

)2|

≤ Cl1/2[
(∆k

i,0)
2+m

2

(uk
i,0)m

+
(∆k

i,0)r+1

(uk
i,0)r

+ (∆k
i,0)2(uk

i,0)2−2s + (∆k
i,0)3/2(uk

i,0)1−s] (3.28)

≤ C(l∆k
i,0)1/2∆k

i,0[(∆k
i,0)

m−1
2 −mϖ2 + (∆k

i,0)r− 1
2−rϖ2 + (∆k

i,0)2(1−s)ϖ1+1/2 + (∆k
i,0)(1−s)ϖ1].

Let s→ β, and for some large enough m and r, we have

• m(1/2 −ϖ2) − 1/2 > 0,
• r(1 −ϖ2) − 1/2 > 0,
• 2(1 − β)ϖ1 + 1/2 > 0,
• (1 − β)ϖ1 > 0,

because ϖ1 > 0 and β < 1. Thus, (3.21) is proved.
Similar to (3.21), meanwhile, we combine A.3. in [29] and can get (3.22) and (3.23). □

4. Simulation study

In this part, three sample sizes n = 11, 700, 23, 400 and 46, 800 within T = 1 are considered, the
log price is drawn from the Ornstein-Uhlenbeck process with drift added by a symmetric stable Lévy
process, namely,

Xt =

∫ t

0
cos(s)ds +

∫ t

0
e−2(t−s)dWs + Xd

t (4.1)

where Ws is a standard Brownian motion, and Xd
t is a symmetric β−stable Lévy process.

There are several tuning parameters (n, l, p, q and β) in the proposed estimator that have to be
determined. For the sampling frequency n, we use the average number of transactions per day for the
past, say 30 days as an approximation. In Theorem 1, we notice that l ∼ Clnα and p ∼ Cpnα, so, for
(l, p, q), we choose an appropriate p. Under the following simulation setting, the standard deviation of
the noise is σε := (σ2

ε)
1/2=0.0005. We choose p = 5, which is found to be good enough to reduce the

effect of the micro-structure noise. Since the block size q should be larger than p, it is chosen to be 20.
The procedure is repeated 1000 times, and the consistency and asymptotic normality of the estimator

are examined. We can get the following observations from the simulation results and QQ-plot.
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Table 1. Simulation results for β = 0.25 and β = 0.5 on three samples.

β = 0.25 β = 0.5
n (relative bias, s.e., mse) (relative bias, s.e., mse)
11700 (−0.0766, 0.0530, 0.0087) (−0.0451, 0.0641, 0.0061)
23400 (−0.0771, 0.0404, 0.0076) (−0.0511, 0.0493, 0.0050)
46800 (−0.0764, 0.0328, 0.0069) (−0.0514, 0.0414, 0.0044)

Figure 1. QQ-plot for n = 23400 and β = 0.5.

5. Conclusions

In this work, based on high-frequency transaction data, we provide a new estimator for the quadratic
variation, i.e., integrated volatility, of log prices, in the presence of the endogenous time, micro-
structure noise, and jumps. First, we use the sub-sample method to reduce the effect of the noise.
Second, we adopt the threshold method to get rid of the effect of jumps. Finally, the multiple sub-grids
method is used to increase the rate of convergence. Both the consistency and asymptotic normality of
the estimator are investigated. In Theorem 2, if one assumes that ∆n = Op(1/n), then η = 0, and the
convergence rate can be arbitrarily closed to n1/4, which is recognized as the optimal convergence rate

Electronic Research Archive Volume 32, Issue 2, 799–811.
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in the presence of micro-structure noise. However, with the advance of technology in high-frequency
trading, it often involves dozens or even hundreds of assets in financial applications. The correspond-
ing integrated volatility matrix is turned to a high-dimensional problem, which motivates us to develop
a new estimator to solve these issues when the observed data have endogenous time, micro-structure
noise, jumps, etc.

Use of AI tools declaration

The authors declare that they have not used Artificial Intelligence (AI) tools in the creation of this
article.

Acknowledgments

This research was funded by Erlin Guo OF Jiangsu Province grant number BY2022768.

Conflict of interest

The authors declare no conflicts of interest.

References

1. J. Q. Fan, A selective overview of nonparametric methods in financial econometrics (with discus-
sion), Stat. Sci., 20 (2005), 317–357.

2. T. Andersen, T. Bollerslev, F. Diebold, P. Labys, Modeling and forcasting realized volatility,
Econometrica, 71 (2003), 579–625. https://doi.org/10.1111/1468-0262.00418

3. P. Protter, Stochastic Integration and Differential Equations, Springer-Verlag, 2004.
https://doi.org/10.2307/978-3-540-00313-4

4. O. E. Barndorff-Nielsen, N. Shephard, Power and bipower variation with stochastic volatility and
jumps, J. Financ. Econ., 2 (2004), 1–37. https://doi.org/10.1093/jjfinec/nbh001

5. O. E. Barndorff-Nielsen, N. Shephard, Ecnometrics of testing for jumps in financial economics
using bipower variation, J. Financ. Econ., 4 (2006), 1–30. https://doi.org/10.1093/jjfinec/nbi022

6. J. Jacod, Asymptotic properties of realized power variations and related functionals of semimartin-
gales, Stoch. Proc. Appl., 118 (2008), 517–559. https://doi.org/10.1016/J.SPA.2007.05.005

7. C. Mancini, Non-parametric threshold estimation for models with stochastic diffusion coefficients
and jumps, Scand. J. Stat., 36 (2009), 270–296. https://doi.org/10.1111/j.1467-9469.2008.00622.x

8. L. Zhang, P. A. Mykland, Y. Aı̈t-Sahalia, A tale of two time scales: Determining inte-
grated volatility with noisy high-frequency data, J. Am. Stat. Assoc., 100 (2005), 1394–1411.
https://doi.org/10.2307/27590680

9. L. Zhang, Efficient estimation of stochastic volatility using noisy observations: A multi-scale
approach, Bernoulli, 12 (2006), 1019–1043. https://doi.org/10.2139/ssrn.619682

10. J. Q. Fan, Y. Z. Wang, Multi-scale jump and volatility analysis for high-frequency financial data,
J. Am. Statist. Assoc., 102 (2007), 1349–1362. https://doi.org/10.1198/016214507000001067

Electronic Research Archive Volume 32, Issue 2, 799–811.

http://dx.doi.org/https://doi.org/10.1111/1468-0262.00418
http://dx.doi.org/https://doi.org/10.2307/978-3-540-00313-4
http://dx.doi.org/https://doi.org/10.1093/jjfinec/nbh001
http://dx.doi.org/https://doi.org/10.1093/jjfinec/nbi022
http://dx.doi.org/https://doi.org/10.1016/J.SPA.2007.05.005
http://dx.doi.org/https://doi.org/10.1111/j.1467-9469.2008.00622.x
http://dx.doi.org/https://doi.org/10.2307/27590680
http://dx.doi.org/https://doi.org/10.2139/ssrn.619682
http://dx.doi.org/https://doi.org/10.1198/016214507000001067


810

11. J. Jacod, Y. Li, P. A. Mykland, M. Podolskij, M. Vetter, Microstructure noise in the con-
tinuous case: The pre-averaging approach, Stoch. Proc. Appl., 179 (2009), 2249–2276.
https://doi.org/10.1016/j.spa.2008.11.0047

12. O. E. Barndorff-Nielsen, P. R. Hansen, A. Lunde, N. Shephard, Designing realized kernels to
measure the ex-post variation of equity prices in the presence of noise, Econometrica., 76 (2008),
1481–1536. https://doi.org/10.3982/ecta6495

13. D. Xiu, Quasi-maximum likelihood estimation of volatility with high frequency data, J. Econo-
metrics., 159 (2010), 235–250. https://doi.org/10.1016/j.jeconom.2010.07.002

14. Y. Aı̈t-Sahalia, J. Q. Fan, D. Xiu, High-frequency covariance estimates with noisy
and asynchronous financial data, J. Amer. Statist. Assoc., 105 (2010), 1504–1517.
https://doi.org/10.2139/ssrn.1631344

15. K. Christensen, S. Kinnebrock, M. Podolskij, Pre-averaging estimators of the ex-post covariance
matrix in noisy diffusion models with non-synchronous data, J. Econometrics, 159 (2010), 116–
133. https://doi.org/10.1016/j.jeconom.2010.05.001

16. O. E. Barndorff-Nielsen, P. R. Hansen, A. Lunde, N. Shephard, Multivariate real-
ized kernels: Consistent positive semi-definite estimators of the covariation of equity
prices with noise and non-synchronous trading, J. Econometrics., 162 (2011), 149–169.
https://doi.org/10.1016/j.jeconom.2010.07.009

17. L. Zhang, Estimating covariation: epps effect, microstructure noise, J. Econometrics., 160 (2011),
33–47. https://doi.org/10.1016/j.jeconom.2010.03.012

18. Y. Z. Wang, J. Zou, Vast volatility matrix estimation for high-frequency financial data, Ann.
Statist., 38 (2010), 943–978. https://doi.org/10.1214/09-aos730

19. M. Tao, Y. Z. Wang, X. Chen, Fast convergence rates in estimating large volatil-
ity matrices using high-frequency financial data, Economet. Theor., 29 (2013), 11–19.
https://doi.org/10.2139/ssrn.3786912

20. M. Tao, Y. Z. Wang, H. Zhou, Fast convergence rates in estimating large volatility matrices using
high-frequency financial data, Ann. Statist., 41 (2013), 1816–1864. https://doi.org/10.1214/13-
aos1128

21. D. Kim, Y. Z. Wang, J. Zou, Asymptotic theory for large volatility matrix estima-
tion based on high-frequency financial data, Stoch. Proc. Appl., 126 (2016), 3527–3577.
https://doi.org/10.1016/j.spa.2016.05.004

22. D. Kim, X. B. Kong, C. X. Li, Y. Z. Wang, Adaptive thresholding for large volatility ma-
trix estimation based on high-frequency financial data, J. Econometrics, 203 (2018), 69–79.
https://doi.org/10.1016/J.JECONOM.2017.09.006

23. M. Fukasawa, Central limit theorem for the realized volatility based on tick time sampling, Financ.
Stoch., 14 (2010), 209–233. https://doi.org/10.1007/s00780-008-0087-3

24. M. Fukasawa, M. Rosenbaum, Central limit theorems for realized volatility un-
der hitting times of an irregular grid, Stoch. Proc. Appl., 122 (2012), 3901–3920.
https://doi.org/10.1016/j.spa.2012.08.005

Electronic Research Archive Volume 32, Issue 2, 799–811.

http://dx.doi.org/https://doi.org/10.1016/j.spa.2008.11.0047
http://dx.doi.org/https://doi.org/10.3982/ecta6495
http://dx.doi.org/https://doi.org/10.1016/j.jeconom.2010.07.002
http://dx.doi.org/https://doi.org/10.2139/ssrn.1631344
http://dx.doi.org/https://doi.org/10.1016/j.jeconom.2010.05.001
http://dx.doi.org/https://doi.org/10.1016/j.jeconom.2010.07.009
http://dx.doi.org/https://doi.org/10.1016/j.jeconom.2010.03.012
http://dx.doi.org/https://doi.org/10.1214/09-aos730
http://dx.doi.org/https://doi.org/10.2139/ssrn.3786912
http://dx.doi.org/https://doi.org/10.1214/13-aos1128
http://dx.doi.org/https://doi.org/10.1214/13-aos1128
http://dx.doi.org/https://doi.org/10.1016/j.spa.2016.05.004
http://dx.doi.org/https://doi.org/10.1016/J.JECONOM.2017.09.006
http://dx.doi.org/https://doi.org/10.1007/s00780-008-0087-3
http://dx.doi.org/https://doi.org/10.1016/j.spa.2012.08.005


811

25. M. Fukasawa, Realized volatility with stochastic sampling, Stoch. Proc. Appl., 120 (2010), 829–
852. https://doi.org/10.1016/j.spa.2010.02.006

26. E. Renault, B. J. Werker, Causality effects in return volatility measures with random times, J.
Econometrics., 160 (2011), 272–279. https://doi.org/10.1016/j.jeconom.2010.03.036

27. Y. Li, E. Renault, P. A. Mykland, L. Zhang, X. Zheng, Realized volatility when
sampling times are possibly endogenous, Economet. Theor., 30 (2014), 580–605.
https://doi.org/10.1017/s0266466613000418

28. C. X. Li, J. Y. Chen, Z. Liu, B. Y. Jing, On integrated volatility of Ito semimartin-
gales when sampling times are endogenous, Commun. Stat-Theor. M., 43 (2014), 5263–5275.
https://doi.org/10.1080/03610926.2012.730169

29. Y. Li, Z. Zhang, X. Zheng, Volatility inference in the presence of both endoge-
nous time and microstructure noise, Stoch. Proc. Appl., 123 (2013), 2696–2727.
https://doi.org/10.1016/j.spa.2013.04.002

30. C. X. Li, E. L. Guo, Estimation of the integrated volatility using noisy high-frequency
data with jumps and endogeneity, Commun. Stat-Theor. M., 47 (2018), 521–531.
https://doi.org/10.1080/03610926.2017.1307403

31. B. Y. Jing, Z. Liu, X. B. Kong, On the estimation of integrated volatility
with jumps and microstructure noise, J. Bus. Econ. Stat., 32 (2014), 457–467.
http://dx.doi.org/10.1080/07350015.2014.906350

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Electronic Research Archive Volume 32, Issue 2, 799–811.

http://dx.doi.org/https://doi.org/10.1016/j.spa.2010.02.006
http://dx.doi.org/https://doi.org/10.1016/j.jeconom.2010.03.036
http://dx.doi.org/https://doi.org/10.1017/s0266466613000418
http://dx.doi.org/https://doi.org/10.1080/03610926.2012.730169
http://dx.doi.org/https://doi.org/10.1016/j.spa.2013.04.002
http://dx.doi.org/https://doi.org/10.1080/03610926.2017.1307403
http://dx.doi.org/http://dx.doi.org/10.1080/07350015.2014.906350
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Model assumptions
	Methodology

	Results
	Simulation study
	Conclusions

