
Electronic  
Research Archive

http://www.aimspress.com/journal/era

ERA, 32(2): 733–761.
DOI: 10.3934/era.2024035
Received: 26 September 2023
Revised: 03 December 2023
Accepted: 15 December 2023
Published: 10 January 2024

Research article

Existence, uniqueness and numerical solution of stochastic fractional
differential equations with integer and non-integer orders

Seda IGRET ARAZ1,2,*, Mehmet Akif CETIN3 and Abdon ATANGANA2,4,5

1 Siirt University, Department of Mathematics Education, Siirt, Turkey
2 Institute for Groundwater Studies, Faculty of Natural and Agricultural Sciences, University of the

Free State, South Africa
3 ALTSO Vocational School, Alanya Alaaddin Keykubat University, Antalya, Turkey
4 Department of Medical Research, China Medical University Hospital, China Medical University,

Taichung, Taiwan
5 IT4Innovations, VSB–Technical University of Ostrava, Ostrava-Poruba 70800, Czech Republic

* Correspondence: Email: sedaaraz@siirt.edu.tr.

Abstract: The parametrized approach is extended in this study to find solutions to differential equations
with fractal, fractional, fractal-fractional, and piecewise derivatives with the inclusion of a stochastic
component. The existence and uniqueness of the solution to the stochastic Atangana-Baleanu frac-
tional differential equation are established using Caratheodory’s existence theorem. For the solution
of differential equations using piecewise differential operators, which take into account combining
deterministic and stochastic processes utilizing certain significant mathematical tools such as fractal and
fractal-fractional derivatives, the applicability of the parametrized technique is being examined. We
discuss the crossover behaviors of the model obtained by including these operators and we present some
illustrative examples for some problems with piecewise differential operators.
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1. Introduction

Fractional analysis is a theory that started with Leibniz asking if there is a derivative of order 1/2
of a function. This theory interested many researchers when different types of fractional derivatives
were introduced. One well-known definition is the Riemann-Liouville fractional derivative where
the power-law kernel is incorporated. Caputo [1] introduced a derivative with a modification on the
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Riemann-Liouville fractional derivative [2] because it was useful in theory but not appropriate for
solving real-life problems. These operators, which are used to model power law processes, have
behavior that is both nonlocal and singular. Even though some processes are unique, another form of
math is needed to describe processes that behave differently. Caputo and Fabrizio [3] have created
a mathematical concept called a derivative with fading memory, which uses an exponential pattern.
This derivative deals with processes that behave predictably and within a small area. However, we
needed a derivative that is predictable but acts over a larger area. The Atangana-Baleanu fractional
derivative [4] is a mathematical tool that meets this requirement, and it utilizes the Mittag-Leffler
function. The fractal derivative or Hausdorff derivative [5] is a different kind of derivative used for
measuring fractals in fractal geometry. Fractal derivatives were made to study how things spread in a
strange way when normal ways of studying do not consider the fractal shape of the thing that things are
spreading through. A fractal measure t changes its size in relation to t raised to the power of β. This type
of derivative is only used in a specific area, unlike the fractional derivative, which is used in a similar
way. Later, Atangana introduced fractal-fractional derivatives [6] by combining the concepts of fractal
and fractional derivatives. Although there is no doubt that fractional differential operators are useful in
modeling relevant processes [7–11], these operators cannot be used to model crossover processes such
as from stochastic to power-law or from fading memory to stochastic [12–15]. Concluding that a new
class of differential operators was needed for this, Atangana and Araz introduced piecewise differential
operators [16], which can be created by including various differential operators to model such processes.
These operators, which can be used to describe many processes, from modeling the different rates (or
even stopping) of an individual’s heartbeat over a period of time, to modeling the spread of a virus, first
cumulatively and then daily, have become focus of attention for researchers.

In order to better understand and analyze the processes discussed, it is necessary to solve the equations
that represent these processes. Because it is difficult to solve these equations using analytic methods
when the operators mentioned above and the nonlinearity of the associated equations are involved, we
have to use numerical methods to obtain solutions to such equations. The parametrized method, which
deals with the approximation of a function with constants depending on a parameter, is one of the
well-known numerical methods. While the parameterized method is presented in the literature [8–10]
for classical differential equations, Atangana and Araz [17] extended this method to solve fractional and
fractal-fractional differential equations. The parametrized method was compared with existing methods
in the literature in [17] and it was shown that the method is more effective than other methods, especially
when the parameter is close to 1.

However, in [17], the application of the relevant method to stochastic differential equations with
fractional, fractal-fractional and piecewise derivatives [16] is not taken into account. Therefore, in
this study, we present the derivation of this method for stochastic differential equations with fractional,
fractal-fractional and piecewise derivatives. We employ the parametrized method to solve different
types of equations obtained by incorporating these mathematical tools into differential equations.
Before presenting the associated method, first the definitions of the above-mentioned fractional, fractal
fractional and piecewise derivatives will be presented. In the following section, with the help of
Carathéodory conditions [15,16], the existence and uniqueness of the solution of Atangana-Baleanu
stochastic differential equations [18] will be investigated. In the remaining sections, in addition to
the derivation of the parametrized method with these derivatives, some illustrative examples will be
included.
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2. Preliminaries

In this section, the definitions of fractional derivatives with power law behavior, fading memory
and exhibiting power law behavior after fading memory, fractal-fractional derivatives and piecewise
derivatives, which can be represented in different ways by including fractional and fractal-fractional
derivatives, will be discussed.

The Caputo-Fabrizio fractional derivative [3] of the function f (t) ∈ H1 (0,T ) is defined by

CF
0 Dα

t f (t) =
1

1 − α

∫ t

0
f ′ (τ) exp

[
−

α

1 − α
(t − τ)

]
dτ, (2.1)

where 0 < α < 1 and H1 (0,T ) describes the Hilbert space. The associated integral is given as

CF
0 Jαt f (t) = (1 − α) f (t) + α

∫ t

0
f (τ) dτ. (2.2)

The Caputo fractional derivative [1] of the function f (t) ∈ H1 (0,T ) is defined by

C
0 Dα

t f (t) =
1

Γ (1 − α)

∫ t

0
f ′ (τ) (t − τ)−α dτ, (2.3)

where 0 < α ≤ 1 and the Riemann-Liouville fractional derivative of the function f (t) ∈ C (0,T ) is
defined by

RL
0 Dα

t f (t) =
1

Γ (1 − α)
d
dt

∫ t

0
f (τ) (t − τ)−α dτ. (2.4)

The integral with power-law kernel [2] is given by

RL
0 Jαt f (t) =

1
Γ (α)

∫ t

0
f (τ) (t − τ)α−1 dτ. (2.5)

The following formulas describe the Atangana-Baleanu fractional derivative [4], which has the crossover
behavior from stretched exponential to power-law,

ABC
0 Dα

t f (t) =
1

1 − α

∫ t

0
f ′ (τ) Eα

[
−

α

1 − α
(t − τ)α

]
dτ, (2.6)

and
ABR
0 Dα

t f (t) =
1

1 − α
d
dt

∫ t

0
f (τ) Eα

[
−

α

1 − α
(t − τ)α

]
dτ. (2.7)

The above operators are called Atangana-Baleanu fractional derivative in the Caputo sense and Atangana-
Baleanu fractional derivative in the Riemann-Liouville sense [4], respectively. The associated integral is
given by

AB
0 Jαt f (t) = (1 − α) f (t) +

α

Γ (α)

∫ t

0
f (τ) (t − τ)α−1 dτ. (2.8)

The concept of fractal-fractional differentiation and integration has appeared previously with the idea of
combining the fractal and fractional derivatives. The fractal-fractional derivative [6] with power-law
kernel is defined by
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FFP
0 Dα,β

t f (t) =
1

Γ (1 − α)
d

dtβ

∫ t

0
f (τ) (t − τ)−α dτ, (2.9)

where the definition of fractal derivative [5] is

d
dtβ

f (t) = lim
t→t1

f (t) − f (t1)

tβ − tβ1
. (2.10)

The associated fractal-fractional integral [6] with power-law kernel is given by

FFP
0 Jαt f (t) =

1
Γ (α)

∫ t

0
βτβ−1 f (τ) (t − τ)α−1 dτ. (2.11)

The fractal-fractional derivative with Mittag-Leffler kernel [6] is defined by

FFM
0 Dα,β

t f (t) =
1

1 − α
d

dtβ

∫ t

0
f (τ) Eα

[
−

α

1 − α
(t − τ)α

]
dτ (2.12)

and the associated fractal-fractional integral is given by

FFM
0 Jαt f (t) = (1 − α) βtβ−1 f (t) +

α

Γ (α)

∫ t

0
βτβ−1 f (τ) (t − τ)α−1 dτ. (2.13)

The fractal-fractional derivative with exponential decay kernel [6] is defined by

FFE
0 Dα,β

t f (t) =
1

1 − α
d

dtβ

∫ t

0
f (τ) exp

[
−

α

1 − α
(t − τ)

]
dτ (2.14)

and the associated fractal-fractional integral is given by

FFE
0 Jαt f (t) = (1 − α) βtβ−1 f (t) + α

∫ t

0
βτβ−1 f (τ) dτ. (2.15)

We now present the definitions of the piecewise derivative and integral operators, which made significant
contribution to literature [16].

The piecewise derivative with classical and fractional derivative with power-law kernel such that it
can be taken as [16]

PRL
0 Dα

t y (t) =

{
y′ (t) if 0 ≤ t ≤ t0

RL
t0 Dα

t y (t) if t0 ≤ t ≤ T
(2.16)

where PRL
0 Dα

t represents the classical derivative within 0 ≤ t ≤ t0 and the Riemann-Liouville fractional
derivative within t0 ≤ t ≤ T .

The piecewise with Caputo derivative is given as [16]

PC
0 Dα

t y (t) =

{
y′ (t) if 0 ≤ t ≤ t0

C
t0 Dα

t y (t) if t0 ≤ t ≤ T
(2.17)

where the function y (t) is continuous but not necessarily differentiable in [t0,T ] . Here, PRL
0 Dα

t represents
the classical derivative on 0 ≤ t ≤ t0 and the Caputo fractional derivative [1] on t0 ≤ t ≤ T . The
associated piecewise integral of y is given as [16]
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PPLIty (t) =


∫ t0

0
y (τ) dτ if 0 ≤ t ≤ t0

1
Γ(α)

∫ t

t0
y (τ) (t − τ)α−1 dτ if t0 ≤ t ≤ T

(2.18)

where PPL
0 Iαt represents the classical integral on 0 ≤ t ≤ t0 and the integral with power-law kernel on

t0 ≤ t ≤ T.
The piecewise derivative with classical derivative and exponential decay kernel is given as [16]

PCF
0 Dα

t y (t) =

{
y′ (t) if 0 ≤ t ≤ t0

CF
t0 Dα

t y (t) if t0 ≤ t ≤ T
(2.19)

where PCF
0 Dα

t is the classical derivative on 0 ≤ t ≤ t0 and the Caputo-Fabrizio fractional derivative [3]
on t0 ≤ t ≤ T. Here, it is assumed that the function y (t) is differentiable. A piecewise integral is given
as [16]

PCF Ity (t) =


∫ t0

0
y (τ) dτ if 0 ≤ t ≤ t0

1−α
M(α)y (t) + α

M(α)

∫ t

t0
y (τ) dτ if t0 ≤ t ≤ T

. (2.20)

The piecewise derivative with classical derivative and Mittag-Leffler kernel is defined by [16]

PAB
0 Dα

t y (t) =

{
y′ (t) if 0 ≤ t ≤ t0

ABC
t0 Dα

t y (t) if t0 ≤ t ≤ T
(2.21)

where PAB
0 Dα

t represents the classical derivative on 0 ≤ t ≤ t0 and the Atangana-Baleanu fractional
derivative [4] on t0 ≤ t ≤ T. The associated piecewise integral is given as [16]

PABIty (t) =


∫ t0

0
y (τ) dτ if 0 ≤ t ≤ t0

(1 − α) y (t) + α
Γ(α)

∫ t

t0
y (τ) (t − τ)α−1 dτ if t0 ≤ t ≤ T

. (2.22)

Lemma 1. (The generalization of the Gronwall inequality) Assume that b ≥ 0, α > 0, and x (t) is a
nonnegative function locally integrable on 0 ≤ t < T, and assume that y (t) is nonnegative and locally
integrable on 0 ≤ t < T with

y (t) ≤ x (t) + b
∫ t

0
y (τ) (t − τ)α−1 dτ. (2.23)

Then,

y (t) ≤ x (t) +

∫ t

0

 ∞∑
n=1

(bΓ (α))n

Γ (nα)
y (τ) (t − τ)nα−1 x (τ)

 dτ. (2.24)

Definition 1. (Stirling formula) The Stirling formula for the Gamma function is formulated by

Γ (x) ∼
√

2πe−xxx− 1
2 . (2.25)
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3. Caratheodory’s theory for existence and uniqueness for a general Cauchy problem with
stochastic Atangana-Baleanu fractional derivative

In this section, we prove the existence and uniqueness of the solution for the Atangana-Baleanu
stochastic differential equation [18] by employing Carathéodory’s existence theory [19, 20], which is a
more general version of Peano’s existence theorem. It is worth noting that the existence and uniqeness
of the solution for stochastic differential equations with the Caputo fractional derivative is presented
in [21]. Here, we will examine the existence and uniqueness of the stochastic differential equation with
Atangana-Baleanu fractional derivative. The differential equation under investigation is represented in
the form:

AB
0 Dα

t y (t) = f1 (t, y) dt + σy (t) dB (t) , t ≥ 0 (3.1)
y (t0) = y0

under the conditions

E1) For all y, ȳ ∈ H, there is a constant k > 0 such that

| f1 (t, y) − f1 (t, ȳ)|2 , | f2 (t, y) − f2 (t, ȳ)|2 ≤ k |y − ȳ|2 , t ≥ 0. (3.2)

E2) For all y ∈ H, there is a constant k̄ > 0 such that

| f1 (t, y)|2 , | f2 (t, y)|2 ≤ k̄
(
1 + |y|2

)
, t ≥ 0 (3.3)

where H is a Banach space. Note that conditions E1 and E2 are known as the Lipschitz condition and
the growth condition, respectively.

Theorem 1. For each y0 ∈ L2 (Ω,H), Eq (26) has a unique mild solution y ∈ C
(
[0,T ] , L2 (Ω,H)

)
= S

such that
sup

0≤t≤T
E |y|2 < ∞.

Proof. For the proof, we will use the contraction mapping principle. Before proceeding with the proof,
we define the norm

‖η‖2γ = sup
0≤t≤T

E |η (t)|2 (3.4)

where E denotes the expectation.
For any t ∈ [0,T ] and y ∈ S , we define the mapping subject to Ω = C

(
[0,T ] , L2 (Ω,H)

)
→

C
(
[0,T ] , L2 (Ω,H)

)
(Λy) (t) = y0 + (1 − α) f1 (t, y) + (1 − α)σy (t) B′ (t) (3.5)

+
α

Γ (α)

∫ t

0
f1 (s, y) (t − s)α−1 ds +

ασ

Γ (α)

∫ t

0
y (s) (t − s)α−1 dB (s) .

Thus, we write

E |(Λy) (t) − (Λȳ) (t)|2 = E

∣∣∣∣∣∣∣∣∣∣∣∣
(1 − α) ( f1 (t, y) − f1 (t, ȳ))

+ (1 − α)σ (y (t) − ȳ (t)) B′ (t)
+ α

Γ(α)

∫ t

0
( f1 (s, y) − f1 (s, ȳ)) (t − s)α−1 ds

+ ασ
Γ(α)

∫ t

0
(y (s) − ȳ (s)) (t − s)α−1 dB (s)

∣∣∣∣∣∣∣∣∣∣∣∣
2

. (3.6)
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Taking 2α − 1 > 0, by the Cauchy-Schwartz inequality, Ito’s isometry formula and the Lipschitz
condition [22], we have

E |(Λy) (t) − (Λȳ) (t)|2 ≤ 4 (1 − α)2 kσ
(
1 + |B′|2

)
E |y − ȳ|2 (3.7)

+ (T + 1)
4α2k
Γ2 (α)

∫ t

0
E |y − ȳ|2 (t − s)2α−2 ds

≤ 4 (1 − α)2 σk
(
1 + |B′|2

)
‖y − ȳ‖γ

+ (T + 1)
4α2k
Γ2 (α)

t2α−1

(2α − 1)
‖y − ȳ‖γ

≤ 4σ (1 − α)2 k
(
1 + sup

t∈[0,T ]
|B′|2

)
‖y − ȳ‖γ

+ (T + 1)
4α2k
Γ2 (α)

t2α−1

(2α − 1)
‖y − ȳ‖γ

≤ 4σ (1 − α)2 k
(
1 + ‖B′‖∞

)
‖y − ȳ‖γ

+ (T + 1)
4σα2k
Γ2 (α)

t2α−1

(2α − 1)
‖y − ȳ‖γ

≤ k̃ ‖y − ȳ‖γ ,

where

k̃ = 4σ (1 − α)2 k
(
1 + ‖B′‖∞

)
+ (T + 1)

4σα2k
Γ2 (α)

t2α−1

(2α − 1)
. (3.8)

Using the generalized Gronwall inequality [23], we write

E
∣∣∣∣(Λ2y

)
(t) −

(
Λ2ȳ

)
(t)

∣∣∣∣ ≤ 4σ (1 − α)2 k
(
1 + ‖B′‖∞

)
E |Λy − Λȳ|2 (3.9)

+
4σα2k (T + 1)

Γ2 (α)

∫ t

0
(t − s)2α−2 E |Λy − Λȳ|2 ds

≤ 4σ (1 − α)2 k
(
1 + ‖B′‖∞

) [ 4 (1 − α)2 k (1 + ‖B′‖∞)
+ (T + 1) 4α2k

Γ2(α)
t2α−1

(2α−1)

]
(3.10)

+
4σα2k (T + 1)

Γ2 (α)

∫ t

0
(t − s)2α−2

[
4 (1 − α)2 k (1 + ‖B′‖∞)

+ (T + 1) 4α2k
Γ2(α)

s2α−1

(2α−1)

]
ds(3.11)

≤




(
4σ (1 − α)2 k (1 + ‖B′‖∞)

)2

+ (T + 1) 4σα2k
Γ2(α)

T 2α−1

(2α−1)

(
4 (1 − α)2 (1 + ‖B′‖∞)

) 
+


(
4σ (1 − α)2 k (1 + ‖B′‖∞)

) (
4α2k(T+1)

Γ2(α)

)
T 2α−1

(2α−1)

+
(

4σα2k(T+1)
Γ2(α)

)2
Γ2(2α−1)
Γ(4α−2)

T 4α−2

(2α−1)




‖y − ȳ‖γ .

By the induction formula for n, we can then write

E |(Λny) (t) − (Λnȳ) (t)| ≤



(
4σ (1 − α)2 (1 + ‖B′‖∞)

)n

+
(
4σ (1 − α)2 (1 + ‖B′‖∞) (T + 1) 4α2k

Γ2(α)
T 2α−1

(2α−1)

)n−1

+
(
4σ (1 − α)2 (1 + ‖B′‖∞)

)n−1 (
4σα2k(T+1)

Γ2(α)

)
T n(2α−1)

Γ(n(2α−1))

+
(

4σα2k(T+1)
Γ2(α)

)n T n(2α−1)

(2α−1)
Γn(2α−1)

Γ(n(2α−1))


‖y − ȳ‖γ(3.12)
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≤ L ‖y − ȳ‖γ

where

L =



(
4σ (1 − α)2 (1 + ‖B′‖∞)

)n

+
(
4σ (1 − α)2 (1 + ‖B′‖∞) (T + 1) 4α2k

Γ2(α)
T 2α−1

(2α−1)

)n−1

+
(
4σ (1 − α)2 (1 + ‖B′‖∞)

)n−1 (
4σα2k(T+1)

Γ2(α)

)
T n(2α−1)

Γ(n(2α−1))

+
(

4σα2k(T+1)
Γ2(α)

)n T n(2α−1)

(2α−1)
Γn(2α−1)

Γ(n(2α−1))


. (3.13)

To prove the theorem holds, we will show that L < 1 for sufficient large n. Let us consider the following
series of positive terms

∞
n=1



(
4σ (1 − α)2 (1 + ‖B′‖∞)

)n

+
(
4σ (1 − α)2 (1 + ‖B′‖∞) (T + 1) 4α2k

Γ2(α)
T 2α−1

(2α−1)

)n−1

+
(
4σ (1 − α)2 (1 + ‖B′‖∞)

)n−1 (
4σα2k(T+1)

Γ2(α)

)
T n(2α−1)

Γ(n(2α−1))

+
(

4σα2k(T+1)
Γ2(α)

)n T n(2α−1)

(2α−1)
Γn(2α−1)

Γ(n(2α−1))


. (3.14)

Using the d’Alembert discriminant method

lim
n→∞

(
4α2k(T+1)

Γ2(α)

)n+1 T (n+1)(2α−1)

(2α−1)
Γn+1(2α−1)

Γ((n+1)(2α−1))(
4σα2k(T+1)

Γ2(α)

)n T n(2α−1)

(2α−1)
Γn(2α−1)

Γ(n(2α−1))

< 1 (3.15)

which is equivalent to

lim
n→∞

(
4σα2k(T+1)

Γ2(α)

)
T (2α−1)Γ (2α − 1) Γ (n (2α − 1))

Γ ((n + 1) (2α − 1))
< 1. (3.16)

Using the Stirling formula [21], we have the following for last term

lim
n→∞


(

4σα2k(T+1)
Γ2(α)

)
Γ (2α − 1) T (2α−1)e(2α−1)

√
n+1
√

n

(
n

n+1

)n(2α−1) 1
((n+1)(2α−1))(2α−1)

 = 0 (3.17)

and knowing that α < 1, we can have

lim
n→∞



(
4σ (1 − α)2 (1 + ‖B′‖∞)

)n

+
(
4σ (1 − α)2 (1 + ‖B′‖∞) (T + 1) 4α2k

Γ2(α)
T 2α−1

(2α−1)

)n−1

+
(
4σ (1 − α)2 (1 + ‖B′‖∞)

)n−1 (
4σα2k(T+1)

Γ2(α)

)
T n(2α−1)

Γ(n(2α−1))

+
(

4σα2k(T+1)
Γ2(α)

)n T n(2α−1)

(2α−1)
Γn(2α−1)

Γ(n(2α−1))


= 0. (3.18)

This guarantees that L < 1 holds. This proves that Λy (t) is a contraction mapping, which completes the
proof.
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4. Parametrized method for a general Cauchy problem with stochastic fractional derivatives

In this section, we develop the parametrized approach to numerically solving differential equations
with fractional derivatives that incorporate stochastic components. Before presenting the extension of
the method to the solutions of different differential equations, we shall recall the formulation of the
parametrized approach [17, 24–26]. The approach is formulated by the following:

ϕ1 (t, y) ≈
[(

1 −
1
2ξ

)
ϕ1

(
tk, yk

)
+

1
2ξ
ϕ1

(
tk+1, ỹk+1

)]
. (4.1)

4.1. Parametrized method for a general Cauchy problem with stochastic component

To derive the associated method, in this subsection, we consider a general Cauchy problem with
stochastic component given by

dy (t) = ϕ1 (t, y) dt + σy (t) dB (t) . (4.2)

We convert the above into an integral equation, by applying on both sides the classical integral

y (t) = y (0) +

∫ t

0
ϕ1 (τ, y) dτ +

∫ t

0
σy (τ) dB (τ) . (4.3)

At t = tk+1, we write

y (tk+1) = y (0) +

∫ tk+1

0
ϕ1 (τ, y) dτ +

∫ tk+1

0
σy (τ) dB (τ) (4.4)

and at t = tk

y (tk) = y (0) +

∫ tk

0
ϕ1 (τ, y) dτ +

∫ tk

0
σy (τ) dB (τ) . (4.5)

Substracting these two equalities gives

y (tk+1) = y (tk) +

∫ tk+1

tk
ϕ1 (τ, y) dτ +

∫ tk+1

tk
σy (τ) dB (τ) . (4.6)

The function ϕ1 (τ, y) can be approximated by using the parametrized approach [17, 24–26] presented
earlier. After simplification, we have the predictor-corrector formula [27]

yk+1 = yk + h
[(

1 −
1
2ξ

)
ϕ1

(
tk, yk

)
+

1
2ξ
ϕ1

(
tk+1, ỹk+1

)]
(4.7)

+σy (ck) (B (tk+1) − B (tk)) ,

where ck ∈ [tk, tk+1] and the predictor term

ỹk+1 = yk + hϕ1

(
tk, yk

)
. (4.8)
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4.2. Parametrized method for a general Cauchy problem with stochastic Caputo-Fabrizio fractional
derivative

In this part, we will present the derivation of the parametrized method for a general nonlinear problem
whose differential operator is the Caputo-Fabrizio derivative [3]. This case of nonlinear differential
equations is of practical importance as it allows us to understand memory decay processes in various
fields of science, technology and engineering. A stochastic version of such a differential equation is
provided by {

CF
0 Dα

t y (t) = ϕ1 (t, y) + σy (t) dB (t)
y (0) = y0

(4.9)

where B (t) is the Brownian function and σ is the stochastic constant. The aforementioned equation will
then be transformed into an integral equation by applying on both sides the integral associated with the
Caputo-Fabrizio derivative [3] in order to obtain

y (t) = y (0) + (1 − α)ϕ1 (t, y) + (1 − α)σy (t) dB (t) (4.10)

+α

∫ t

0
ϕ1 (τ, y) dτ + α

∫ t

0
σy (τ) dB (τ) .

At t = tk and t = tk+1, we have

y (tk+1) = y (tk) + (1 − α)
(
ϕ1

(
tk+1, yk+1

)
− ϕ1

(
tk, yk

))
(4.11)

+ (1 − α)σy (ck+1) (B (tk+1) − B (tk))

+α

∫ tk+1

tk
ϕ1 (τ, y) dτ + α

∫ tk+1

tk
σy (τ) dB (τ) ,

where ck ∈ [tk, tk+1]. Since the function ϕ1 (τ, y) is nonlinear, the component with integral can be
approximated using the parametrized approach [17, 24–26] as follows:

yk+1 = yk + (1 − α)
(
ϕ1

(
tk+1, yk+1

)
− ϕ1

(
tk, yk

))
(4.12)

+ (1 − α)σy (ck+1) (B (tk+1) − B (tk))

+α

∫ tk+1

tk

[(
1 −

1
2ξ

)
ϕ1

(
tk, yk

)
+

1
2ξ
ϕ1

(
tk+1, ỹk+1

)]
dτ

+α

∫ tk+1

tk
σy (τ) dB (τ) .

We know that the above is implicit, and thus we replace the term yk+1 with ỹk+1 to obtain

yk+1 = yk + (1 − α)
(
ϕ1

(
tk+1, ỹk+1

)
− ϕ1

(
tk, yk

))
(4.13)

+ (1 − α)σy (ck+1) (B (tk+1) − B (tk))

+αh
[(

1 −
1
2ξ

)
ϕ1

(
tk, yk

)
+

1
2ξ
ϕ1

(
tk+1, ỹk+1

)]
+ασy (ck) (B (tk+1) − B (tk)) .

The predictor formula is determined by the following:

ỹk+1 = y0 +CF
t0 Iαtk+1

[
ϕ1 (t, y)

]
(4.14)
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= y0 + (1 − α)ϕ1 (tk, yk) + α

∫ tk+1

t0
ϕ1 (τ, y) dτ

= y0 + (1 − α)ϕ1

(
tk, yk

)
+ α

k∑
n=0

∫ tn+1

tn
ϕ1 (τ, y) dτ

= y0 + (1 − α)ϕ1

(
tk, yk

)
+ αh

k∑
n=0

ϕ1 (tn, yn) .

We need to emphasize that the predictor-corrector technique [27] is required because of both the
parameterized techniques and the first part of the Caputo-Fabrizio fractional integral [3].

4.3. Parametrized method for a general Cauchy problem with stochastic Caputo fractional derivative

In this section, we deal with the numerical solution of a general Cauchy problem with stochastic
Caputo derivative [1] {

C
0 Dα

t y (t) = ϕ1 (t, y) + σy (t) dB (t) ,
y (0) = y0

. (4.15)

Applying the integral with power-law kernel [2], we have

y (t) = y (0) +
1

Γ (α)

∫ t

0
ϕ1 (τ, y) (t − τ)α−1 dτ (4.16)

+
1

Γ (α)

∫ t

0
σy (τ) (t − τ)α−1 dB (τ) .

At t = tk+1 we have

y (tk+1) = y (0) +
1

Γ (α)

∫ tk+1

0
ϕ1 (τ, y) (tk+1 − τ)α−1 dτ (4.17)

+
1

Γ (α)

∫ tk+1

0
σy (τ) (tk+1 − τ)α−1 dB (τ) .

The above can be arranged as follows:

y (tk+1) = y (0) +
1

Γ (α)

k∑
n=0

∫ tn+1

tn
ϕ1 (τ, y) (tk+1 − τ)α−1 dτ (4.18)

+
1

Γ (α)

k∑
n=0

∫ tn+1

tn
σy (τ) (tk+1 − τ)α−1 dB (τ) .

The function ϕ1 (τ, y) can be approximated by using the parametrized approach [17, 24–26] within
[tk, tk+1], and we have the following corrector formula with predictor term:

yk+1 = y0 +
1

Γ (α)

k∑
n=0

∫ tn+1

tn

[(
1 −

1
2ξ

)
ϕ1 (tn, yn) +

1
2ξ
ϕ1

(
tn+1, ỹn+1

)]
(tk+1 − τ)α−1 dτ (4.19)
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+
1

Γ (α)

k∑
n=0

σy (cn) (B (tn+1) − B (tn))
∫ tn+1

tn
(tk+1 − τ)α−1 dτ.

Then, we have

yk+1 = y0 +
1

Γ (α)

k∑
n=0

[(
1 −

1
2ξ

)
ϕ1 (tn, yn) +

1
2ξ
ϕ1

(
tn+1, ỹn+1

)]
(4.20)

×

∫ tn+1

tn
(tk+1 − τ)α−1 dτ

+
1

Γ (α)

k∑
n=0

σy (cn) (B (tn+1) − B (tn))
∫ tn+1

tn
(tk+1 − τ)α−1 dτ,

and from here, we write

yk+1 = y0 +
hα

Γ (α + 1)

k∑
n=0

[(
1 −

1
2ξ

)
ϕ1 (tn, yn) +

1
2ξ
ϕ1

(
tn+1, ỹn+1

)]
(4.21)

×
[
(k − n + 1)α − (k − n)α

]
+

hα

Γ (α + 1)

k∑
n=0

σy (cn) (B (tn+1) − B (tn))
[
(k − n + 1)α − (k − n)α

]
.

The predictor component on the right side of the equation is calculated using the Euler approximation
as follows:

ỹk+1 = y0 +C
0 Iαtk+1

[
ϕ1 (t, y)

]
(4.22)

= y0 +
1

Γ (α)

∫ tk+1

0
ϕ1 (τ, y) (tk+1 − τ)α−1 dτ

= y0 +
1

Γ (α)

k∑
n=0

∫ tn+1

tn
ϕ1 (τ, y) (tk+1 − τ)α−1 dτ

= y0 +
hα

Γ (α + 1)

k∑
n=0

ϕ1 (tn, yn)
[
(k − n + 1)α − (k − n)α

]
.

4.4. Parametrized method for a general Cauchy problem with stochastic Atangana-Baleanu fractional
derivative

In this section, we devote our attention to the derivation of the parametrized method for solving the
stochastic Cauchy problem with Atangana–Baleanu fractional derivative [4]{

AB
0 Dα

t y (t) = ϕ1 (t, y) + σy (t) dB (t) ,
y (0) = y0

. (4.23)

We convert the above problem into an integral equation by applying on both sides the Atangana–Baleanu
fractional integral [4]

y (t) = (1 − α)ϕ1 (t, y) +
α

Γ (α)

∫ t

0
ϕ1 (τ, y) (t − τ)α−1 dτ (4.24)
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+ (1 − α)ϕ2 (t, y) dB (t) +
α

Γ (α)

∫ t

0
σy (τ) B

′

(τ) (t − τ)α−1 dτ.

At t = tk+1, we write the following:

y (tk+1) = y (0) + (1 − α)ϕ1

(
tk+1, yk+1

)
+

α

Γ (α)

∫ tk+1

0
ϕ1 (τ, y) (tk+1 − τ)α−1 dτ (4.25)

+ (1 − α)σy (ck+1) (B (tk+1) − B (tk))

+
α

Γ (α)

∫ tk+1

0
σy (τ) (tk+1 − τ)α−1 dB (τ) .

The above can be arranged as follows:

y (tk+1) = y (0) + (1 − α)ϕ1

(
tk+1, yk+1

)
+

α

Γ (α)

k∑
n=0

∫ tn+1

tn
ϕ1 (τ, y) (tk+1 − τ)α−1 dτ (4.26)

+ (1 − α)σy (ck+1) (B (tk+1) − B (tk))

+
α

Γ (α)

k∑
n=0

∫ tn+1

tn
σy (τ) (tk+1 − τ)α−1 dB (τ) .

Based on the idea of approximating the right-hand side of the equation by the parametrized approach
[17, 24–26], the above can be arranged as

yk+1 = y0 + (1 − α)ϕ1

(
tk+1, yk+1

)
(4.27)

+
α

Γ (α)

k∑
n=0

∫ tn+1

tn

[(
1 −

1
2ξ

)
ϕ1 (tn, yn) +

1
2ξ
ϕ1

(
tn+1, ỹn+1

)]
(tk+1 − τ)α−1 dτ

+ (1 − α)σy (ck+1) (B (tk+1) − B (tk))

+
α

Γ (α)

k∑
n=0

σy (ck) (B (tk+1) − B (tk))
∫ tn+1

tn
(tk+1 − τ)α−1 dτ.

Then, we have

yk+1 = y0 + (1 − α)ϕ1

(
tk+1, yk+1

)
(4.28)

+
α

Γ (α)

k∑
n=0


(
1 − 1

2ξ

)
ϕ1 (tn, yn)

+ 1
2ξϕ1

(
tn+1, ỹn+1

)  ∫ tn+1

tn
(tk+1 − τ)α−1 dτ

+ (1 − α)σy (ck+1) (B (tk+1) − B (tk))

+
α

Γ (α)

k∑
n=0

σy (ck) (B (tk+1) − B (tk))

×

∫ tn+1

tn
(tk+1 − τ)α−1 dτ

and from here we write

yk+1 = y0 + (1 − α)ϕ1

(
tk+1, yk+1

)
(4.29)
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+
α

Γ (α)

k∑
n=0

[(
1 −

1
2ξ

)
ϕ1 (tn, yn) +

1
2ξ
ϕ1

(
tn+1, ỹn+1

)]
×

(tk+1 − tn)α − (tk+1 − tn+1)α

α
+ (1 − α)σy (ck+1) (B (tk+1) − B (tk))

+
hα−1

Γ (α)

k∑
n=0

σy (cn) (B (tn+1) − B (tn))
[
(k − n + 1)α − (k − n)α

]
.

After the simplification, the above is arranged as:

yk+1 = y0 + (1 − α)ϕ1

(
tk+1, yk+1

)
(4.30)

+
hα

Γ (α)

k∑
n=0

[(
1 −

1
2ξ

)
ϕ1 (tn, yn) +

1
2ξ
ϕ1

(
tn+1, ỹn+1

)]
×

[
(k − n + 1)α − (k − n)α

]
+ (1 − α)σy (ck+1) (B (tk+1) − B (tk))

+
hα−1

Γ (α)

k∑
n=0

σy (cn) (B (tn+1) − B (tn))
[
(k − n + 1)α − (k − n)α

]
.

The term ỹk+1 is predicted by the following:

ỹk+1 = y0 +AB
0 Iαtk+1

[
ϕ1 (t, y)

]
(4.31)

= y0 + (1 − α)ϕ1 (t, y) +
α

Γ (α)

∫ tk+1

0
ϕ1 (τ, y) (tk+1 − τ)α−1 dτ

= y0 + (1 − α)ϕ1 (t, y) +
α

Γ (α)

k∑
n=0

∫ tn+1

tn
ϕ1 (τ, y) (tk+1 − τ)α−1 dτ

= y0 + (1 − α)ϕ1

(
tk+1, yk+1

)
+

hα

Γ (α)

k∑
n=0

ϕ1 (tn, yn)
[
(k − n + 1)α − (k − n)α

]
.

We should be aware that the predictor-corrector technique has been developed not only from the use of
the parametrized technique, but also due to the first part of the Atangana-Baleanu fractional integral [4].

5. Parametrized method for a general Cauchy problem with stochastic fractal-fractional
derivatives

5.1. Parametrized method for a general Cauchy problem with stochastic fractal derivative

In this section, we consider a general Cauchy problem with stochastic component{
F
0 Dα

t y (t) = ϕ1 (t, y) + σy (t) dB (t)
y (0) = y0

(5.1)

where F
0 Dα

t is the fractal derivative [5]. Note that using the relation between classical and fractal
derivative [5], the above equation can be rewritten as

dy (t) = βtβ−1ϕ1 (t, y) dt + βtβ−1σy (t) dB (t) . (5.2)

Electronic Research Archive Volume 32, Issue 2, 733–761.



747

By integrating the above, we obtain the following integral equation:

y (t) = y (0) + β

∫ t

0
τβ−1ϕ1 (τ, y) dτ + β

∫ t

0
τβ−1σy (τ) dB (τ) . (5.3)

In this case, we have the following scheme [24] for the considered problem at t = tk and t = tk+1

yk+1 = yk + hβ
[(

1 −
1
2ξ

)
tβ−1
k ϕ1

(
tk, yk

)
+

1
2ξ

tβ−1
k+1ϕ1

(
tk+1, ỹk+1

)]
(5.4)

×
(
(k + 1)β − kβ

)
+ βσcβ−1

k y (ck) B (tk+1) − B (tk) .

here,

ỹk+1 = y0 + hβ
k∑

n=0

ϕ1 (tn, yn)
(
(n + 1)β − nβ

)
. (5.5)

5.2. Parametrized method for a general Cauchy problem with stochastic fractal-fractional derivative
with exponential decay kernel

In this section, we consider a general Cauchy problem with stochastic fractal-fractional derivative [6]
with exponential decay kernel{

FFE
0 Dα

t y (t) = ϕ1 (t, y) + σy (t) dB (t) , if t > 0,
y (0) = y0, if t = 0

. (5.6)

Applying the fractal-fractional integral [6] with the exponential decay kernel, we obtain

y (t) = βtβ−1 (1 − α)ϕ1 (t, y) + βtβ−1 (1 − α)σy (t) B
′

(t) (5.7)

+αβ

∫ t

0
τβ−1ϕ1 (τ, y) dτ + αβ

∫ t

0
τβ−1σy (τ) dB (τ) .

Based on the idea of approximating the right-hand side of the equation by the parametrized approach
[17, 24–26], the above problem is solved by the following:

yk+1 = yk + (1 − α)
(
βtβ−1

k+1ϕ1

(
tk+1, ỹk+1

)
− βtβ−1

k ϕ1

(
tk, yk

))
(5.8)

+βcβ−1
k y (ck) (B (tk+1) − B (tk))

+αhβ
[(

1 −
1
2ξ

)
ϕ1

(
tk, yk

)
+

1
2ξ
ϕ1

(
tk+1, ỹk+1

)]
×

(
(k + 1)β − kβ

)
. (5.9)

Note that the predictor formula is obtained by

ỹk+1 = (1 − α) βtβ−1
k ϕ1

(
tk, yk

)
+ αhβ

k∑
n=0

ϕ1 (tn, yn)
(
(n + 1)β − nβ

)
. (5.10)
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5.3. Parametrized method for a general Cauchy problem with stochastic fractal-fractional derivative
with power-law kernel

In this section, we obtain the numerical solution of a general Cauchy problem with stochastic
fractal-fractional derivative [18] with power-law kernel by using the parametrized method [17]. The
associated problem under consideration is represented by{

FFP
0 Dα

t y (t) = ϕ1 (t, y) + σy (t) dB (t) , if t > 0,
y (0) = y0, if t = 0

. (5.11)

Applying the fractal-fractional derivative [6] with power-law kernel, we have

y (t) =
β

Γ (α)

∫ t

0
τβ−1ϕ1 (τ, y) (t − τ)α−1 dτ +

β

Γ (α)

∫ t

0
σy (τ) τβ−1 (t − τ)α−1 dB (τ) . (5.12)

At t = tk+1, we have

y (tk+1) =
β

Γ (α)

k∑
n=0

∫ tn+1

tn
τβ−1ϕ1 (τ, y) (tk+1 − τ)α−1 dτ (5.13)

+
β

Γ (α)

k∑
n=0

∫ tn+1

tn
τβ−1σy (τ) (tk+1 − τ)α−1 B′ (τ) dτ.

Replacing the function ϕ1 (τ, y) by its parametrized approximation, we have

yk+1 =
β

Γ (α)

k∑
n=0

[(
1 −

1
2ξ

)
ϕ1 (tn, yn) +

1
2ξ
ϕ1

(
tn+1, ỹn+1

)]
(5.14)

×

∫ tn+1

tn
τβ−1 (tk+1 − τ)α−1 dτ

+
β

hΓ (α)

k∑
n=0

σy (cn) (B (tn+1) − B (tn))

×

∫ tn+1

tn
τβ−1 (tk+1 − τ)α−1 dτ.

The integral on the right hand side of the above equation is calculated by using the change of variables
τ = tk+1u and dτ = tk+1du as follows:∫ tn+1

tn
τβ−1 (tk+1 − τ)α−1 dτ = tα+β−1

k+1

∫ tn+1

tn
uβ−1 (1 − u)α−1 du

= tα+β−1
k+1

(
B

(
tn+1

tk+1
, β, α

)
− B

(
tn

tk+1
, β, α

))
,

where the function B (·, ·, ·) is the incomplete Beta function. By calculation of these integrals, the
following numerical scheme is obtained:

yk+1 =
β

Γ (α)

k∑
n=0

[(
1 −

1
2ξ

)
ϕ1 (tn, yn) +

1
2ξ
ϕ1

(
tn+1, ỹn+1

)]
(5.15)
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×tα+β−1
k+1

(
B

(
tn+1

tk+1
, β, α

)
− B

(
tn

tk+1
, β, α

))
+

β

hΓ (α)

k∑
n=0

σy (cn) (B (tn+1) − B (tn))

×tα+β−1
k+1

(
B

(
tn+1

tk+1
, β, α

)
− B

(
tn

tk+1
, β, α

))
.

We know that the term ỹn+1 is predicted by the following:

ỹn+1 = y0 +
β

Γ (α)

k∑
n=0

ϕ1 (tn, yn) tα+β−1
k+1

(
B

(
tn+1

tk+1
, β, α

)
− B

(
tn

tk+1
, β, α

))
. (5.16)

5.4. Parametrized method for a general Cauchy problem with stochastic fractal-fractional derivative
with Mittag-Leffler kernel

To examine the solution of a general Cauchy problem with stochastic fractal-fractional derivative
with Mittag-Leffler kernel [18], we consider the following problem:{

FFM
0 Dα

t y (t) = ϕ1 (t, y) + σy (t) dB (t) , if t > 0,
y (0) = y0, if t = 0

(5.17)

After taking the associated integral, the above can be arranged as follows:

y (t) = (1 − α)ϕ1 (t, y) + (1 − α)σy (t) dB (t) (5.18)

+
αβ

Γ (α)

∫ t

0
τβ−1ϕ1 (τ, y) (t − τ)α−1 dτ

+
αβ

Γ (α)

∫ t

0
σy (τ) τβ−1 (t − τ)α−1 B′ (τ) dτ.

At t = tk+1, we have

y (t) = (1 − α)ϕ1

(
tk+1, yk+1

)
+ (1 − α)σy (tk+1) dB (tk+1) (5.19)

+
αβ

Γ (α)

∫ tk+1

0
τβ−1ϕ1 (τ, y) (tk+1 − τ)α−1 dτ

+
αβ

Γ (α)

∫ tk+1

0
σy (τ) τβ−1 (tk+1 − τ)α−1 dB (τ) .

Using the ϕ1 (τ, y) approximations, we have

yk+1 = (1 − α)ϕ1

(
tk+1, yk+1

)
+ (1 − α)σy (ck+1) (B (tk+1) − B (tk)) (5.20)

+
αβ

Γ (α)

k∑
n=0

[(
1 −

1
2ξ

)
ϕ1 (tn, yn) +

1
2ξ
ϕ1

(
tn+1, ỹn+1

)]
×

∫ tn+1

tn
τβ−1 (tk+1 − τ)α−1 dτ
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+
αβ

hΓ (α)

k∑
n=0

σy (cn) (B (tn+1) − B (tn))

×

∫ tn+1

tn
τβ−1 (tk+1 − τ)α−1 dτ.

Using the calculations for these integrals and arranging the above, we have

yk+1 = (1 − α)ϕ1

(
tk+1, yk+1

)
+ (1 − α)σy (ck+1)

(
B (tk+1) − B (tk)

h

)
(5.21)

+
αβ

Γ (α)

k∑
n=0

[(
1 −

1
2ξ

)
ϕ1 (tn, yn) +

1
2ξ
ϕ1

(
tn+1, ỹn+1

)]
×tα+β−1

k+1

(
B

(
tn+1

tk+1
, β, α

)
− B

(
tn

tk+1
, β, α

))
+

αβ

hΓ (α)

k∑
n=0

σy (cn) (B (tn+1) − B (tn))

×tα+β−1
k+1

(
B

(
tn+1

tk+1
, β, α

)
− B

(
tn

tk+1
, β, α

))
,

where the predictor formula is stated as:

ỹk+1 = y0 + (1 − α) βtβ−1
k+1ϕ1

(
tk+1, yk+1

)
+

αβ

Γ (α)

k∑
n=0

ϕ1 (tn, yn) (5.22)

×tα+β−1
k+1

(
B

(
tn+1

tk+1
, β, α

)
− B

(
tn

tk+1
, β, α

))
.

6. Parametrized method for a general Cauchy problem with piecewise derivative

In this section, we derive the parametrized method [17] for some versions of nonlinear differential
equations with piecewise differentiation. We shall start with the version of nonlinear differential
equations with piecewise derivative [16], in which classical processes can be used in the first time
interval, processes with power-law after fading memory in the second time interval, and stochastic
processes can be used in the third time interval. The associated model is represented by the following:

dy
dt = ϕ (t, y) , if 0 ≤ t ≤ t1

y (0) = y0,
ABC
t1 Dα

t y = ϕ (t, y) , if t1 ≤ t ≤ t2

y (t1) = y1,

dy (t) = ϕ (t, y) dt + σydB (t) , if t2 ≤ t ≤ T
y (t2) = y2

. (6.1)

The function ϕ (t, y) can be approximated by employing the parametrized formulation [17], thus inte-
grating within [tn, tn+1], we have the following corrector formula with predictor term:
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yk+1 =

 y0 + hk1
j1=0

[(
1 − 1

2ξ

)
ϕ1

(
t j1 , y

j1
)

+ 1
2ξϕ1

(
t j1+1, ỹ j1+1

)]
,

if 0 ≤ t ≤ t1
, (6.2)



y1 + (1 − α)ϕ1

(
tk2+1, ỹk2+1

)
+ (1 − α)σy

(
ck2+1

) (
B

(
tk2+1

)
− B

(
tk2

))
+ hα

Γ(α)
k2

j2=k1+1

[(
1 − 1

2ξ

)
ϕ1

(
t j2 , y

j2
)

+ 1
2ξϕ1

(
t j2+1, ỹ j2+1

)]
×

[
(k2 − j2 + 1)α − (k2 − j2)α

]
+hα−1

Γ(α)

k2

j2=k1+1
σy

(
c j2

) (
B

(
t j2+1

)
− B

(
t j2

))
×

[
(k2 − j2 + 1)α − (k2 − j2)α

]
,

if t1 ≤ t ≤ t2,
y2 + hk

j3=k2+1

[(
1 − 1

2ξ

)
ϕ1

(
t j3 , y

j3
)

+ 1
2ξϕ1

(
t j3+1, ỹ j3+1

)]
+σy (ck) (B (tk+1) − B (tk)) ,

if t2 ≤ t ≤ T.

The predictor components for each interval are calculated as

{
ỹk1+1 = y0 + hk1

j1=0ϕ1

(
t j1 , y

j1
)
, if 0 ≤ t ≤ t1, ỹk2+1 = y1 + (1 − α)ϕ1

(
tk2 , y

k2
)

+ hα
Γ(α)

k2

j2=k1+1
ϕ1

(
t j2 , y

j2
)

×
[
(k2 − j2 + 1)α − (k2 − j2)α

]
, if t1 ≤ t ≤ t2,{

ỹk3+1 = y2 + hk
j3=k2+1ϕ1

(
t j3 , y

j3
)
, if t2 ≤ t ≤ T .

(6.3)

Now, we proceed with an another version of nonlinear differential equations with piecewise derivatives
[16]. In the first time interval, fading memory processes can be utilized, while stochastic processes
can be used in the second time interval. For the third time interval, processes that deal with power-law
behaviors having fractal properties can be employed. The model that explains the process presented
here is shown as follows: 

CF
0 Dα

t y = ϕ (t, y) , if 0 ≤ t ≤ t1

y (0) = y0,

dy (t) = ϕ (t, y) dt + σydB (t) , if t1 ≤ t ≤ t2

y (t1) = y1,
FFP
t2 Dα

t y = ϕ (t, y) , if t2 ≤ t ≤ T
y (t2) = y2.

(6.4)

Using the aforementioned concept of numerical scheme, the numerical scheme for the Cauchy problem
in the framework of piecewise derivative [16] is achieved as

yk+1 =




y0 + (1 − α)ϕ1

(
tk1+1, yk1+1

)
+αhk1

j1=0

[(
1 − 1

2ξ

)
ϕ1

(
t j1 , y

j1
)

+ 1
2ξϕ1

(
t j1+1, ỹ j1+1

)]
,

if 0 ≤ t ≤ t1

(6.5)


y1 + hk2

j2=k1+1

[(
1 − 1

2ξ

)
ϕ1

(
t j2 , y

j2
)

+ 1
2ξϕ1

(
t j2+1, ỹ j2+1

)]
+σy

(
ck2

) (
B

(
tk2+1

)
− B

(
tk2

))
,

if t1 ≤ t ≤ t2
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

β

Γ(α)
k

j3=k2+1

[(
1 − 1

2ξ

)
ϕ1

(
t j3 , y

j3
)

+ 1
2ξϕ1

(
t j3+1, ỹ j3+1

)]
×tα+β−1

k+1

(
B

( t j3+1

tk+1
, β, α

)
− B

( t j3
tk+1
, β, α

))
+

β

hΓ(α)
k

j3=k2+1
σy

(
c j3

) (
B

(
t j3+1

)
− B

(
t j3

))
×tα+β−1

k+1

(
B

( t j3+1

tk+1
, β, α

)
− B

( t j3
tk+1
, β, α

))
,

if t2 ≤ t ≤ T.

The predictor components for each interval are determined as

{
ỹk1+1 = y0 + hk1

j1=0ϕ1

(
t j1 , y

j1
)
, if 0 ≤ t ≤ t1 ,{

ỹk2+1 = y1 + hk2
j2=k1+1ϕ1

(
t j2 , y

j2
)
, if t1 ≤ t ≤ t2 , ỹk1+1 = (1 − α) βtβ−1

k1
ϕ1

(
tk1 , y

k1
)

+
αβ

Γ(α)
k

j3=k2+1
ϕ1

(
t j3 , y

j3
)

×tα+β−1
k1+1

(
B

(
t j3+1

tk1+1
, β, α

)
− B

(
t j3

tk1+1
, β, α

))
, if t2 ≤ t ≤ T

.

(6.6)

7. Illustrative examples

In this section, we will investigate the applicability of the parametrized method to differential
equations with piecewise derivatives with the help of some illustrative examples. This will be performed
with the combination of deterministic and stochastic processes where the concepts of classical, stochastic,
fractional, and fractal-fractional are added. We will start with a simple piecewise Cauchy problem in
which the first part is with classical deterministic, the second part is with Atangana-Baleanu derivative
and last part is with the classical stochastic. Another simple scenario will be presented with classical
deterministic, Caputo fractional derivative and the classical stochastic. Finally, we will consider an
anxiety model [28] employing the different versions of the piecewise derivative.

Example 1. We consider a general Cauchy problem with piecewise derivative

dy
dt = −t, if 0 ≤ t ≤ t1

y (0) = 0,
ABC
t1 Dα

t y = −t, if t1 ≤ t ≤ t2

y (t1) = y1,

dy (t) = −tdt + σydB (t) , if t2 ≤ t ≤ T
y (t2) = y2.

(7.1)

The numerical solution of above problem is represented by

yk+1 =

 y0 + hk1
j1=0

[
−

(
1 − 1

2ξ

)
t j1 −

1
2ξ t j1+1

]
,

if 0 ≤ t ≤ t1
, (7.2)

y1 − (1 − α) tk2+1 + (1 − α)σy
(
ck2+1

) (
B

(
tk2+1

)
− B

(
tk2

))
+ hα

Γ(α)
k2

j2=k1+1

[
−

(
1 − 1

2ξ

)
t j2 −

1
2ξ t j2+1

]
×

[
(k2 − j2 + 1)α − (k2 − j2)α

]
+hα−1

Γ(α)

k2

j2=k1+1
σy

(
c j2

) (
B

(
t j2+1

)
− B

(
t j2

))
×

[
(k2 − j2 + 1)α − (k2 − j2)α

]
,

if t1 ≤ t ≤ t2,
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753
y2 + hk

j3=k2+1

[
−

(
1 − 1

2ξ

)
t j3 −

1
2ξ t j3+1

]
+σy (ck) (B (tk+1) − B (tk)) ,

if t2 ≤ t ≤ T.

The predictor terms are as follows:

{
ỹk1+1 = y0 + hk1

j1=0 − t j1 , if 0 ≤ t ≤ t1, ỹk2+1 = y1 − (1 − α) tk2+1 −
hα

Γ(α)
k2

j2=k1+1
t j2

×
[
(k2 − j2 + 1)α − (k2 − j2)α

]
, if t1 ≤ t ≤ t2,{

ỹk3+1 = y2 − hk
j3=k2+1t j3 , if t2 ≤ t ≤ t .

(7.3)

Noting that the stochastic constant σ is taken as 0.1, the following initial conditions are as follows:

y (0) = 0, (7.4)

y (t1) = −45 if α = 0.9
y (t1) = −47.9 if α = 0.8

y (t1) = −48.49 if α = 0.6
y (t1) = −48.8 if α = 0.4
y (t1) = −48.2 if α = 0.2

,



y (t2) = −145 if α = 0.9
y (t2) = −123.6 if α = 0.8
y (t2) = −85.2 if α = 0.6
y (t2) = −76 if α = 0.4

y (t2) = −60.2 if α = 0.2

.

In Figure 1, the numerical simulation for the considered problem with piecewise derivative is performed
by considering different values of fractional orders.

Figure 1. The graphical visualization for the piecewise Cauchy problem.
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Example 2. We consider a general Cauchy problem with piecewise derivative

dy
dt = sin t, if 0 ≤ t ≤ t1

y (0) = 1,
ABC
t1 Dα

t y = sin t, if t1 ≤ t ≤ t2

y (t1) = y1,

dy (t) = sin tdt + σydB (t) , if t2 ≤ t ≤ T
y (t2) = y2.

(7.5)

The numerical solution of above problem is represented by

yk+1 =

 y0 + hk1
j1=0

[(
1 − 1

2ξ

)
sin

(
t j1

)
+ 1

2ξ sin
(
t j1+1

)]
,

if 0 ≤ t ≤ t1
, (7.6)



y1 + (1 − α) sin
(
tk2+1

)
+ (1 − α)σy

(
ck2+1

) (
B

(
tk2+1

)
− B

(
tk2

))
+ hα

Γ(α)
k2

j2=k1+1

[(
1 − 1

2ξ

)
sin

(
t j2

)
+ 1

2ξ sin
(
t j2+1

)]
×

[
(k2 − j2 + 1)α − (k2 − j2)α

]
+hα−1

Γ(α)

k2

j2=k1+1
σy

(
c j2

) (
B

(
t j2+1

)
− B

(
t j2

))
×

[
(k2 − j2 + 1)α − (k2 − j2)α

]
,

if t1 ≤ t ≤ t2,
y2 + hk

j3=k2+1

[(
1 − 1

2ξ

)
sin

(
t j3

)
+ 1

2ξ sin
(
t j3+1

)]
+σy (ck) (B (tk+1) − B (tk)) ,

if t2 ≤ t ≤ T.

The predictor components for each interval are calculated as

{
ỹk1+1 = y0 + hk1

j1=0 sin
(
t j1

)
, if 0 ≤ t ≤ t1, ỹk2+1 = y1 + (1 − α) sin

(
tk2+1

)
+ hα

Γ(α)
k2

j2=k1+1
sin

(
t j2

)
×

[
(k2 − j2 + 1)α − (k2 − j2)α

]
, if t1 ≤ t ≤ t2,{

ỹk3+1 = y2 + hk
j3=k2+1 sin

(
t j3

)
, if t2 ≤ t ≤ T .

(7.7)

Noting that the stochastic constant σ is taken as 0.1, the initial conditions are as follows:

y (0) = 1, (7.8)

y (t1) = 1.6 if α = 0.9
y (t1) = 2 if α = 0.8

y (t1) = 2.5 if α = 0.6
y (t1) = 3.2 if α = 0.4
y (t1) = 3.4 if α = 0.2

,



y (t2) = 2 if α = 0.9
y (t2) = 2.48 if α = 0.8
y (t2) = 3.36 if α = 0.6
y (t2) = 4.7 if α = 0.4

y (t2) = 4.27 if α = 0.2

.
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In Figure 2, the numerical simulation for the considered problem with piecewise derivative is
performed by considering different values of fractional orders.

Figure 2. The graphical visualization for the piecewise Cauchy problem.

Example 3. (Mathematical modeling of anxiety of mathematics) Instructional and social psychologi-
cal environment are some of the attitude attribute of students and possible factors affecting the students’
disliking or liking of mathematics and mathematics anxiety is closely related to a broad spectrum of
cognitive, psychological, and behavioral problems [28, 29]. We next consider a mathematical model as-
sociated with the anxiety of mathematics [28]. The mathematical model under investigation is presented
by the following:

dS
dt

= (1 − ε) χ + ωR + ρ (1 − η) P −
(
θ

N
(A + ϕQ) + κ

)
S (7.9)

dP
dt

= εχ − (κ + (1 − η) ρ)P

dE
dt

=
θ

N
(A + ϕQ) S − (κ + υ) E

dA
dt

= (1 − %) υE − (κ + δ + ς) A

dQ
dt

= δA − κQ

dR
dt

= ςA + %υE − (κ + ω) R

and the initial conditions are taken as

S (0) ≥ 0, P (0) ≥ 0, E (0) ≥ 0, A (0) ≥ 0, Q (0) ≥ 0, R (0) ≥ 0. (7.10)

Here, S : anxiety towards mathematics susceptible students; P: anxiety towards mathematics protected
students; E: anxiety towards mathematics exposed students; A: students who have anxiety towards
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mathematics; Q: students who have permanent anxiety towards mathematics; R: students recovered
from anxiety towards mathematics.

Replacing the classical derivative by the piecewise differential operators and simplifying the model
with piecewise derivative, we get the following modified model of anxiety:

dU
dt = ψ (t,U) , if 0 ≤ t ≤ t1

U (0) = U0,
C
t1 Dα

t U = ψ (t,U) , if t1 ≤ t ≤ t2

U (ti) = U1,

dU (t) = ψ (t,U) dt + σiUdBi (t) , if t2 ≤ t ≤ T
U (t2) = U2,

(7.11)

where

U =



S
P
E
A
Q
R


, ψ (t,U) =



(1 − ε) χ + ωR + ρ (1 − η) P −
(
θ
N (A + ϕQ) + κ

)
S

εχ − (κ + (1 − η) ρ)P
θ
N (A + ϕQ) S − (κ + υ) E
(1 − %) υE − (κ + δ + ς) A

δA − κQ
ςA + %υE − (κ + ω) R


. (7.12)

Using the suggested method for each interval, the numerical solution can be obtained as

Uk+1 =

 U0 + hk1
j1=0

[(
1 − 1

2ξ

)
ψ

(
t j1 ,U

j1
)

+ 1
2ξψ

(
t j1+1, Ũ j1+1

)]
,

if 0 ≤ t ≤ t1
, (7.13)



U1 + hα
Γ(α+1)

k2

j2=k1+1

[(
1 − 1

2ξ

)
ψ

(
t j2 ,U

j2
)

+ 1
2ξψ

(
t j2+1, Ũ j2+1

)]
×

[
(k2 − j2 + 1)α − (k2 − j2)α

]
+ hα−1

Γ(α+1)

k2

j2=k1+1
σiU

(
c j2

) (
Bi

(
t j2+1

)
− Bi

(
t j2

))
×

[
(k2 − j2 + 1)α − (k2 − j2)α

]
,

if t1 ≤ t ≤ t2,
U2 + hk

j3=k2+1

[(
1 − 1

2ξ

)
ψ

(
t j3 ,U

j3
)

+ 1
2ξψ

(
t j3+1, Ũ j3+1

)]
+σy (ck) (B (tk+1) − B (tk)) ,

if t2 ≤ t ≤ T.

The predictor components for each interval are calculated as

{
Ũk1+1 = U0 + hk1

j1=0ψ
(
t j1 ,U

j1
)
, if 0 ≤ t ≤ t1, Ũk2+1 = U1 + hα

Γ(α+1)
k2

j2=k1+1
ψ

(
t j2 ,U

j2
) [ (k2 − j2 + 1)α

− (k2 − j2)α

]
,

if t1 ≤ t ≤ t2,{
Ũk3+1 = U2 + hk

j3=k2+1ψ
(
t j3 ,U

j3
)
, if t2 ≤ t ≤ T .

(7.14)

In Figure 3, we simulate the numerical solution of the anxiety model with piecewise derivative for
α = 0.9.
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Figure 3. The graphical visualization for the anxiety model with piecewise setting.

We present another case for our model since we know that the model can be modified with different
derivatives in each intervals. For another case of our model, it can be written as follows:



CF
0 Dα

t U = ψ (t,U) , if 0 ≤ t ≤ t1

U (0) = U0,

dU (t) = ψ (t,U) dt + σUdB (t) , if t1 ≤ t ≤ t2

U (t1) = U1,
FFP
t2 Dα,β

t U = ψ (t,U) , if t2 ≤ t ≤ T
U (t2) = U2.

(7.15)

For such a model, we obtain

Uk+1 =




U0 + (1 − α)ψ
(
tk1+1,Uk1+1

)
+αhk1

j1=0

[(
1 − 1

2ξ

)
ψ

(
t j1 ,U

j1
)

+ 1
2ξψ

(
t j1+1, Ũ j1+1

)]
,

if 0 ≤ t ≤ t1

(7.16)
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
U1 + hk2

j2=k1+1

[(
1 − 1

2ξ

)
ψ

(
t j2 ,U

j2
)

+ 1
2ξψ

(
t j2+1, Ũ j2+1

)]
+σU

(
ck2

) (
B

(
tk2+1

)
− B

(
tk2

))
,

if t1 ≤ t ≤ t2

β

Γ(α)
k

j3=k2+1

[(
1 − 1

2ξ

)
ψ

(
t j3 ,U

j3
)

+ 1
2ξψ

(
t j3+1, Ũ j3+1

)]
×tα+β−1

k+1

(
B

( t j3+1

tk+1
, β, α

)
− B

( t j3
tk+1
, β, α

))
+

β

hΓ(α)
k

j3=k2+1
σU

(
c j3

) (
B

(
t j3+1

)
− B

(
t j3

))
×tα+β−1

k+1

(
B

( t j3+1

tk+1
, β, α

)
− B

( t j3
tk+1
, β, α

))
,

if t2 ≤ t ≤ T.

The predictor components for each interval are determined as

{
Ũk1+1 = U0 + hk1

j1=0ψ
(
t j1 ,U

j1
)
, if 0 ≤ t ≤ t1 ,{

Ũk2+1 = U1 + hk2
j2=k1+1ψ

(
t j2 ,U

j2
)
, if t1 ≤ t ≤ t2 , Ũk1+1 = (1 − α) βtβ−1

k1
ψ

(
tk1 ,U

k1
)

+
αβ

Γ(α)
k

j3=k2+1
ψ

(
t j3 ,U

j3
)

×tα+β−1
k1+1

(
B

(
t j3+1

tk1+1
, β, α

)
− B

(
t j3

tk1+1
, β, α

))
, if t2 ≤ t ≤ T

.

(7.17)

In Figure 4, we perform the numerical simulation for anxiety model with piecewsie derivative for
α = 0.95, β = 0.8.

8. Conclusions

This study is based on the use of the parametrized method for the numerical solution of fractional,
fractal-fractional and piecewise derivative initial value problems where the stochastic component is
added. After presenting the definition of these differential operators, we demonstrate the condition
under which the nonlinear ordinary differential equations with stochastic Atangana-Baleanu fractional
derivative admit a unique solution using the Carathéodory conditions. Since piecewise derivative
allows fractal, fractal-fractal and stochastic situations to be addressed together, the piecewise derivative
was used in the models discussed for the illustrative examples presented. We provide the graphical
representations for the solutions of these models, which are simple piecewise Cauchy proplems and
the anxiety model. The presented models with piecewise derivatives, which are separated into three
intervals and involved different differential operators in each interval, exhibit different behaviors during
simulations, ranging from deterministic to stochastic. When looking at the graphical representation
provided for the fragmented anxiety model, for example, for class A, which is a class of anxious people,
it is observed that this problem that the person is exposed to may change in some time intervals and
that there is a possibility of encountering this situation again while attempting to overcome anxiety.
It is argued that piecewise derivatives, by virtue of displaying such distinctive characteristics, have
an advantage over other operators. Our future work will focus on the existence-uniqueness proofs of
stochastic equations with fractal-fractional derivatives and the application of the relevant method to
numerical solutions of different models.
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Figure 4. The graphical visualization for anxiety model with piecewise setting.
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19. C. Carathéodory, Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene
Werte nicht annehmen, Math. Ann., 64 (1907), 95–115. https://doi.org/10.1007/BF01449883

20. A. Atangana, S. I. Araz, Theory and methods of piecewise defined fractional operators, Elsevier, in
press.

21. W. Wang, S. Cheng, Z. Guo, X. Yan, A note on the continuity for Caputo fractional stochastic
differential equations, Chaos, 30 (2020), 073106. https://doi.org/10.1063/1.5141485

22. A. Ahmadova, N. I. Mamudov, Existence and uniqueness results for a class of fractional
stochastic neutral differential equations, Chaos, Solitons Fractals, 139 (2020), 110253.
https://doi.org/10.1016/j.chaos.2020.110253

23. A. Atangana, S. I. Araz, Step forward on nonlinear differential equations with the Atangana-Baleanu
derivative: Inequalities, existence, uniqueness and method, Chaos, Solitons Fractals, 173 (2023),
113700. https://doi.org/10.1016/j.chaos.2023.113700

24. D. F. Griffiths, D. J. Higham, Numerical Methods for Ordinary Differential Equations: Initial Value
Problems, Springer Undergraduate Mathematics Series, Springer, 2010.
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