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Abstract: Possible dependence across spatial units is a relevant issue in many areas in practice. In
this paper, we consider the partially linear single-index spatial autoregressive model to analyze the
dependence of the spatial units and suggest an estimation method. An algorithm procedure is proposed
to estimate the link function for the single index and the parameters in the single index, as well as the
parameters in the linear component and the spatial parameter of the model. The nonparametric function
is estimated based on B-spline approximation. The Nelder-Mead iteration algorithm is adopted to
calculate the parametric and nonparametric parts simultaneously in the optimization. The asymptotic
properties of parameter and function estimates are established. Monte Carlo simulation studies are
conducted to investigate the performance of the proposed estimation methodology and calculation
procedure. Furthermore, we use the proposed method to analyze air quality data and rural household
income data in China.
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1. Introduction

In empirical practice of economics and statistics, possible dependence across spatial units is a
relevant issue in urban, real estate, regional, public, agricultural, environmental economics, and
industrial organization [1]. Many studies have proposed approaches and techniques to deal with these
problems by imposing some structures on the model in order to capture spatial dependence or spatial
autocorrelation in cross-sectional and/or panel data. In recent years, spatial autoregressive (SAR)
models have attracted great interest due to their usefulness in practice. For instance, SAR models
have the property of using autocorrelation structures according to spatial patterns on data. These
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models allow for the analysis of spatial dependencies and interactions among observations, making
them particularly useful in fields such as geography, environmental science, and urban planning where
spatial relationships play crucial roles.

Lee [2] explained that ordinary least squares (OLS) estimators can be inconsistent for estimating
an SAR model due to the fact that the spatial lagged variables can be correlated with the disturbances
in a spatial model. In order to obtain a consistent estimator, Lee [1] proposed the quasi-maximum
likelihood estimator (QMLE) for the SAR model, investigated the asymptotic properties of QMLE,
and found out that the rates of convergence of QMLE may depend on some general features of the
spatial weight matrix of the model. However, the quasi-maximum likelihood procedures often pose
computational challenges when dealing with large sample sizes, as analytical solutions are not available
and numerical methods must be employed to obtain numerical solutions. Kelejian and Prucha [3]
proposed the generalized spatial two-stage least squares procedure for estimating the SAR model in
which they demonstrated consistency and asymptotic normality of the resulting estimator. However,
the estimator is not asymptotically effective. Lee [4] proposed best spatial two stage least squares
estimators for the SAR model to improve the efficiency of the estimator. Su [5] extended the SAR to
a semi-parametric setting and proposed the GMM estimation method, and showed that the resulting
estimator is consistent and asymptotically normal. Xu and Lee [6] proposed the maximum likelihood
estimator (MLE) for the SAR Tobit model and studied the asymptotic properties.

Recently, there has been a growing literature on semiparametric spatial autoregressive models.
Invoking the flexibility of partial linear model, Su and Jin [7] developed asymptotic theories for the
QMLE of partial linear SAR models based on the profile quasi-maximum likelihood theme. In Su and
Jin [7], the rate of convergence of the spatial parameter estimator depends on some general features of
the spatial weight matrix of the model. Du et al. [8] proposed the partial linear additive SAR model.
Obviously, the model proposed by Du et al. [8] did not impose any interaction within nonparametric
components in spatial data. Therefore, the proposed method by Du et al. [8] cannot solve the problem
of interaction effects on response variables in spatial data. Moreover, the nonparametric components
are subject to the curse of dimensionality and can only accommodate low-dimensional covariates; see
Wang [9]. The single-index model is an important tool in multivariate nonparametric regression. By
reducing the dimensionality from multivariate predictors to a univariate index, single-index models
avoid the so-called “curse of dimensionality” while still capturing important features in
high-dimensional data. Cheng and Chen [10] introduced the partially linear single-index spatial
autoregressive model (PLSISARM), employing local linear approximation to estimate unknown link
functions and utilizing MLE. In contrast to the partial linear SAR model and the partial linear additive
SAR model, PLSISARM considers covariate interactions within its nonparametric component. This
paper proposes a new estimation procedure for PLSISARM. Specifically, we utilize B-splines to
approximate the unknown link function, enhancing smoothness, and adopt QMLE as the estimation
method. We also introduce a feasible Nelder-Mead iteration algorithm tailored for this new estimation
procedure. Furthermore, we establish the asymptotic properties for the QMLE. Finally, we
demonstrate the application of PLSISARM on two distinct datasets from meteorology and economics,
thereby extending the practical utility of the model. Compared to Cheng and Chen’s work [10],
B-spline approximation is computationally more efficient and smoother than local linear
approximation, facilitating easier interpretation in practical applications. Additionally, this paper
employs QMLE instead of MLE, resulting in differences in asymptotic distributions. Notably, when
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the error term does not satisfy the normal distribution, QMLE can still estimate the asymptotic
variance, while MLE fails to do so.

This paper is organized as follows. In Section 2, we describe the technical setting and propose the
estimation procedure for PLSISARM via QMLE. In Section 3, we establish the asymptotic properties
for the proposed procedure. In Section 4, we present the simulation studies to assess the finite sample
performance of the proposed procedure. In Section 5, we analyze two real data sets to illustrate the
practical usefulness of the proposed model. In Section 6, we conclude the paper. The appendix
provides the proofs of the main results.

2. The model and estimation procedures

We consider the partially linear single-index spatial autoregressive model (PLSISARM)

YN = λWNYN + XNβ + g(ZNα) + VN , (2.1)

where N is the total number of spatial units; YN is the N-dimensional vector of observations of the
dependent variable; WN is an N × N specified constant spatial weight matrix with zero diagonal
elements, the weights obtained based on physical distance, social networks, or “economic” distance;
XN = (x1, x2, . . . , xN)T and ZN = (z1, z2, . . . , zN)T are the N × p and N × d matrices of regressors,
respectively; g is an unknown differentiable function, the nonparametric components assume that the
influence of the covariates z can be collapsed to a single index, zTα, via a nonparametric link function
g; α ∈ Rd, ∥α∥ = 1, and the first nonzero element of α is positive for identifiability; and
VN = (ϵ1, ϵ2, . . . , ϵN)T is an N-dimensional vector of i.i.d. disturbances with zero mean and finite
variance σ2.

Remark 1: PLSISARM is flexible enough to cover a variety of situations. When λ = 0, β = 0, and
d = 1, the proposed model is reduced to the partial linear single-index model, the single-index spatial
autoregressive model, and the partial linear spatial autoregressive model, respectively.

In order to obtain the estimator of the parameters θ = (σ2, λ,αT ,βT )T and the function g(·), similar
to Lee [1] and Su and Jin [7], we maximize the following log quasi-likelihood function to obtain the
estimator

LN(θ, g(·)) = −
N
2

log(2π) −
N
2

logσ2 + log |MN(λ)| −
1

2σ2 VT
N(θ)VN(θ),

where SN(λ) = IN −λWN , and VN(θ) = YN −λWNYN −XNβ−g(ZNα). Since the infinite parameter g(·)
in the objective function LN(θ) is unknown, we are unable to maximize LN(θ) to obtain the estimator
of θ directly. The B-spline method has been widely used in estimation for nonparametric models and
semi-parametric models [11]. B-splines also have numerous precedences for their application in semi-
parametric spatial autoregressive models, as demonstrated in Zhang et al. [12], Du et al. [8], and Tian
et al. [13]. In this paper, we use B-splines to approximate the nonparametric function g(t) due to the
computational advantages. Let B(t) = (B1(t), ..., BKN+l+1(t))T be a set of B-spline basis functions of
order l + 1 with knots a = t0 < t1 < . . . < tkN < tKN+1 = b for a < b ∈ R. Therefore, approximating g(t)
by a linear combination of normalized B-spline basis functions, it has

g(t) ≈
KN+l+1∑

j=1

B j(t)γ j = B(t)Tγ,
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where γ = (γ1, . . . , γ(KN+l+1))T is the unknown spline coefficient vector. Based on the above B-spline
approximation, model (2.1) can be rewritten as

YN ≈ λWNYN + XNβ +Π(ZNα)γ + VN , (2.2)

where Π(ZNα) = (B(zT
1α), . . . , B(zT

Nα))T .
Given α, apply the QMLE method [1] to model (2.2) to obtain the estimator of δ = (σ2, λ,βT ,γT )T ,

denoted as δ̂(α) = (σ2(α), λ̂(α), β̂(α)T , γ̂(α)T )T . Next, we consider the estimation of the parameter α.
Substitute δ̂(α) back into model (2.2). Then we have

YN ≈ λ̂(α)WNYN + XNβ̂(α) +Π(ZNα)γ̂(α) + VN . (2.3)

Minimize the following objective function to achieve the estimator of α:

QN(α) = ∥YN − λ̂(α)WNYN − XNβ̂(α) −Π(ZNα)γ̂(α)∥2.

Once we get the estimator α̂, we can further obtain δ̂(α̂) = (σ̂2(α̂), λ̂(α̂), β̂(α̂)T , γ̂(α̂)T )T . Then, we can
achieve the estimator of g(·) as ĝ = B(zT α̂)T γ̂.

To elaborate the ideas of the estimation methodology, we detail the algorithm as follows.
Algorithm for stage one: Calculate the initial value of the parameters θ = (σ2, λ,βT ,αT )T and γ.

Step 1. Calculate the initial value of α for iteration.

Consider the following model:

YN = λWNYN + XNβ + ZNα + VN . (2.4)

Apply the QMLE of Lee (2004) to model (2.4) to get the estimator of the parameters. Denote the
initial value of α as α̂(0). Normalize α̂(0) so that ∥α̂(0)∥ = 1 and the first element of α̂(0), α̂(0)

i > 0.

Step 2. Substitute α̂(0) into model (2.2) and calculate the QMLE for the parameters in the following
model:

YN = λWNYN + XNβ +Π(ZNα̂
(0))γ + VN .

Let the resulting estimators λ̂(0), β̂(0) and γ̂(0) be the initial values of λ, β and γ, respectively.

Algorithm for stage two: The iteration procedure.

Step 3. Update the estimation for α.

Substitute the estimators λ̂(k), β̂(k), and γ̂(k) into model (2.2) to obtain the following model:

YN = λ̂
(k)WNYN + XNβ̂

(k) +Π(ZNα)γ̂(k) + VN .

Then, minimize the following objective function to get the update estimation of α, α̂(k+1),

Q(α) = ∥YN − λ̂
(k)WNYN − XNβ̂

(k) −Π(ZNα)γ̂(k)∥2.

Normalize α̂(k+1) so that ∥α̂(k+1)∥ = 1 and the first element of α̂(k+1), α̂(k+1)
i > 0. The optimization

for Q(α) is completed by the Nelder-Mead method of the “optim” function in R.
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Step 4. Update the estimation for σ2, λ, β, and γ.

Substitute α̂(k+1) into model (2.2) and calculate the QMLE for the parameters in the following
model to get the update estimators σ̂2(k+1)λ̂(k+1), β̂(k+1), and γ̂(k+1):

YN = λWNYN + XNβ +Π(ZNα̂
(k+1))γ + VN .

Repeat Step 3 and Step 4 until the estimator converges, which is

|λ̂(k+1) − λ̂(k)|2 + ∥α̂(k+1) − α̂(k)∥2 + ∥β̂(k+1) − β̂(k)∥2 + ∥γ̂(k+1) − γ̂(k)∥2 < C,

where C is a predetermined constant which is C = 10−4 in the simulation studies. Thus, the estimator
for g(·) is B(zT α̂(k+1))T γ̂(k+1).

Selection of knots: It is very important to select the knots (including the number of knots and
the position of knots for B-spline estimation) in this paper. We use the BIC criterion to select the
number of knots. Given the number of knots, it is suggested that the position of the knots could be
equally spaced or equally spaced sample quantiles of the predictor variables. The order of splines is
not necessarily better when it is higher. To avoid overfitting, lower-order splines, such as quadratic and
cubic splines, are typically chosen. However, the approximation accuracy also needs to be considered,
so cubic splines are often selected in practice, which is also a common choice in literature [8, 13]. In
this paper, we use cubic splines with equally spaced sample quantiles of the predictor variable knots to
estimate the B-spline basis.

3. Asymptotic properties

For the purpose of statistical inference, the large-sample properties of the estimates need to be
established. Let M(λ) = I − λWN , and for any matrix M, denote the projection matrix PM = I −
M(MT M)−1 MT . The log likelihood function of model (2.2) is

LN(θ,γ) = −
N
2

log(2π) −
N
2

logσ2 + log |M(λ)| −
1

2σ2 VT
N(θ,γ)VN(θ,γ), (3.1)

where VN(θ,γ) = MN(λ)YN − XNβ − Π(ZNα)γ. Then, we concentrate out γ, and, when it does not
cause ambiguity, denote Π(ZNα) simply as Π. The concentrated log likelihood function of θ is

L̃N(θ) ∝ −
N
2

logσ2 + log |M(λ)| −
1

2σ2 (M(λ)YN − XNβ)T PΠ(M(λ)YN − XNβ). (3.2)

Moreover, let η = (λ,α). Given η, one can derive the solutions for β and σ2 from (3.2), which are

β̂(η) = (XT
N PΠXN)−1XT

N PΠM(λ)YN , (3.3)

and
σ̂2(η) =

1
N

[M(λ)YN]T PT
ΠPPΠXN PΠM(λ)YN . (3.4)

By concentrating β and σ2 from (3.2), we derive the concentrated likelihood

L̃c
N(η) =

N
2

log 2π −
N
2
+ log |M(λ)| −

N
2

log{σ̂2(η)}. (3.5)
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Let θ0 = (σ2
0, η

T
0 ,β

T
0 )T with η0 = (λ0,α

T
0 )T be the true parameters. Define G(λ) = WN M−1(λ),

M0 = M(λ0),G0 =WN M−1
0 , and A0 =

(
g(zT

1α0), . . . , g(zT
Nα0)

)T
. We then rewrite the model as

YN = XNβ0 + λ0G−1(XNβ0 + A0) + M−1
0 VN , (3.6)

which is derived from the equation M−1
0 = I + λ0G0. Denote Q(η) = maxβ,σ E(L̃N(θ)). Then, the

solution of this problem is

β∗(η) = (XT
N PΠXN)−1XT

N PΠM(λ)M−1
0 (XNβ + A0) (3.7)

and

σ2∗(η) =
1
N

(A0 + (λ0 − λ)R)T PT
ΠPPΠXN PΠ (A0 + (λ0 − λ)R)

+
σ2

0

N
tr

[(
PΠM(λ)M−1

0

)T
PPΠXN PΠM(λ)M−1

0

]
.

(3.8)

where R = G0(XNβ0 + A0). Consequently,

Q(η) =
N
2

log 2π −
N
2
+ log |M(λ)| −

N
2

log{σ2∗(η)}. (3.9)

Let Π0 = Π(ZNα0), µ∗3 = E(|ϵi|3), and µ∗4 = E(|ϵi|4). Before establishing the asymptotic properties of
the estimator, we need to make the following assumptions:

A1. (i) The disturbance ϵi is i.i.d. with 0 mean and σ2
0 variance, and the moment E(|ϵi|4+v) exists for

some v > 0.
(ii) The regressors xi and zi are i.i.d. non-stochastic sequences and have bounded support sets on
Rp and Rq, respectively.
(iii) The distribution of zT

i α is absolutely continuous and its density is bounded away from zero
and infinity on U = {u = zT

i α, zi ∈ R
q, ∥α∥ = 1}.

(iv) The real-valued function g(·) ∈ Cr(U), where r ≤ 2.

A2. (i) The matrix M(λ) is nonsingular for all λ ∈ (−1, 1).
(ii) The entries wi j of WN satisfies that wii = 0,

∑N
j=1 wi j = 1, and wi j = Op(1/hN) for all

i, j = 1, 2, . . . ,N with limN→∞ hN/N = 0.
(iii) The matrices WN and M−1

0 are uniformly bounded in both row and column sums. The matrix
M−1(λ) is uniformly bounded in both row and column sums, uniformly in λ in a compact
parameter space Λ ⊂ (−1, 1). The true λ0 is an interior point of Λ.

A3. (i) Let t1 < . . . < tkN be the interior knots of U and t0, tkN+1 the bound points of U. Letting
ϱ j = t j − t j−1, there exists a constant C such that max{ϱ j}/min{ϱ j} ≤ C and max{ϱ j} = o(K−1

N ).
(ii) The knots number KN is assumed to satisfy KN = O(N

1
2r+1 ).

A4. The limit limn→∞

(
XN ,−Ȧ(ZNα0)ZN , RN

)T
PΠ0

(
XN ,−Ȧ(ZNα0)ZN , RN

)
exists and is nonsingular,

where Ȧ(ZNα0) = diag
{
ġ(zT

i α0), . . . , g(zT
Nα0)

}
and ġ is the first derivative of g.
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Assumption A1 outlines the essential features of the disturbances, regressors, and function g for the
model. Assumption A2 is parallel to Assumption 2, Assumption 5, and Assumption 7 of Lee [1], which
characterize the spatial weight matrix WN . Assumption A3 constrains the characteristics of the knots
in B-splines, in parallel with the work of Du et al. [8] and Tian et al. [13]. Assumption A4 ensures the
existence of the limiting distribution of the parameters. Subsequently, we present the following main
results.

Theorem 1. Suppose that Assumptions A1–A4 hold. Then, θ0 is globally identifiable and θ̂ is consistent
for θ0.

Theorem 2. Suppose that Assumptions A1–A4 hold. Then, ĝ(zT
i α̂)

P
−→ g(zT

i α0), where “
P
−→” denotes

convergence in probability.

Theorem 3. Suppose that Assumptions A1–A4 hold. Then, we have
√

N(θ̂ − θ0)
D
−→ N(0,Σ−1

θ0
Ωθ0Σ

−1
θ0

),

where “
D
−→” denotes convergence in distribution, and

Σθ0 = lim
N→∞

E
{

1
N
∂2L̃N(θ0)
∂θ∂θT

}
, Ωθ0 = lim

N→∞
E

{
1
N
∂L̃N(θ0)
∂θ

∂L̃N(θ0)
∂θT

}
, (3.10)

which are defined in the appendix. Additionally, if ϵi follows N(0, σ2
0), then

√
N(θ̂ − θ0)

D
−→ N(0,Σ−1

θ0
).

The proofs of all theorems can be found in the Appendix. Theorem 1 and Theorem 2 guarantee the
consistency of the parameter θ̂ and the link function ĝ, respectively, while Theorem 3 provides the
asymptotic distribution of θ̂, which can be used for statistical inference. By substituting the
corresponding parts in Ωθ0 and Σθ0 with estimators, we can obtain the sample analog of the
asymptotic variance.

4. Simulation studies

In this section, we investigate the finite sample performance of the proposed estimation procedures
via Monte Carlo simulation studies. The data is generated from the following model:

YN = λ0WNYN + XNβ0 + g(ZNα0) + VN , (4.1)

where XN = (x1, x2, . . . , xN)T and xi = (xi1, xi2)T , with xi1 and xi2 values generated from N(0, 1),
i = 1, 2, . . . ,N; ZN = (z1, z2, . . . , zN)T and zi = (zi1, zi2, zi3)T , with zi1, zi2, and zi3 values generated
from U(0, 1), i = 1, 2, . . . ,N; β0 = (1,−1)T ; α0 = (1,−1, 1)T ; and VN ∼ N(0, σ2IN). In the simulation,
similar to Carroll et al. [14] and Yu et al. [15], suppose g(t) = sin

(
πt−A
C−A

)
, where A =

√
3/2−1.645/

√
12,

C =
√

3/2 + 1.645/
√

12. We focus on the spatial scenario in Case [16] where there are R districts and
each district contains m members. The sample size is N = mR. The weight matrix is WN = IR ⊗ Bm,
where Bm = (lm lT

m− Im)/(m−1), lm is the m-dimensional column vector of ones, and ⊗ is the Kronecker
product. The numerical study examined different values of R from 10, 30, and 50, and m from 20, 40,
and 60. For comparison, three different values are considered for λ0, that is, λ0 = 0.1, 0.4, 0.7, which
represents from weak to strong spatial dependence of the responses. λ0 = 0.1 represents weak spatial
dependence, λ0 = 0.4 represents mild spatial dependence, and λ0 = 0.7 represents relatively strong
spatial dependence.
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We use the empirical bias (denoted as Bias) and the empirical standard deviation (denoted as SD)
to measure the effectiveness of the parameter estimates. Additionally, we have calculated the
asymptotic standard deviation (denoted as AsySD) of the parameter estimates to verify the validity of
the asymptotic theory. To assess the accuracy of the proposed nonparametric estimator, we choose the
integrated mean squared error as the criterion for judgment, and its empirical version is defined as

̂IMSE(ĝ) =
1
K

K∑
i=1

[ĝ(ti) − g(ti)]2, (4.2)

where K = 500 is the number of grid points on [0, 1].
Tables 1–9 show the simulation results based on 1000 replications. We can observe the following:

(i) As the sample size N = mR increases, the SD of the parameter estimators (except λ̂) and the ̂IMS E
of ĝ decreases, with the bias remaining near 0, suggesting the consistency of the estimators. (ii) The
performance of λ̂ improves as R increases, but it does not necessarily improve as m increases. This
phenomenon is expected, as only increasing m can violate Assumption A2, leading to the unavailability
of asymptotic properties. (iii) The performance of λ̂ improves as λ0 increases. This can be understood
through the knowledge obtained from the asymptotic variance, as the asymptotic variance of λ̂ strongly
depends on λ0. (iv) The SD of the estimator for finite-dimensional parameters is positively correlated
with σ2. (v) The empirical standard deviation of the parameter estimates is very close to the asymptotic
standard deviation, validating the asymptotic theory presented in Theorem 3. The performance of the
nonparametric estimates for g is demonstrated in Figure 1. The true function g and the mean of each
estimated ĝ over the 1000 replicates are plotted. We only display the figure for λ0 = 0.7, R = 30, m =
40 and σ2 = 1.0, as the plots for other occasions are similar. To save spaces, we omit them.

Table 1. Simulation results for (λ0, σ
2) = (0.1, 0.1).

σ2 m Est
R = 10 R = 20 R = 30

Bias SD/̂IMS E AysSD Bias SD/̂IMS E AysSD Bias SD/̂IMS E AysSD
(×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100)

0.1

20

λ̂ −2.068 7.815 7.424 −0.561 4.134 4.340 −0.357 2.985 3.272
α̂1 0.081 2.465 2.713 0.040 1.841 1.910 0.007 1.521 1.593
α̂2 0.077 2.452 3.077 −0.005 1.825 2.428 0.164 1.510 2.128
α̂3 −0.168 2.611 2.652 −0.131 1.799 1.970 0.095 1.564 1.604
β̂1 −0.031 2.467 2.245 −0.021 1.666 1.559 −0.071 1.226 1.276
β̂2 −0.089 2.151 2.140 0.120 1.668 1.620 −0.082 1.392 1.329
ĝ 1.740 0.646 0.640

30

λ̂ −0.964 5.106 5.864 −0.544 4.920 5.494 −0.070 2.663 2.858
α̂1 −0.408 2.134 2.121 0.145 1.335 1.503 0.058 1.169 1.202
α̂2 −0.166 1.893 2.824 −0.031 1.327 1.879 −0.123 1.294 1.549
α̂3 0.133 2.074 2.206 −0.225 1.436 1.486 −0.221 1.209 1.234
β̂1 −0.100 1.872 1.865 −0.002 1.329 1.311 −0.083 1.039 1.056
β̂2 −0.032 1.795 1.835 −0.015 1.269 1.246 0.017 1.150 1.074
ĝ 1.115 0.308 0.266

40

λ̂ −0.992 5.732 5.806 −0.595 3.698 4.065 −0.407 3.423 3.369
α̂1 −0.037 1.800 1.744 −0.057 1.206 1.328 0.019 1.049 1.110
α̂2 −0.153 1.799 2.235 −0.039 1.222 1.674 0.015 1.076 1.409
α̂3 −0.201 1.815 1.917 −0.021 1.230 1.318 −0.033 1.086 1.064
β̂1 −0.143 1.590 1.577 −0.102 1.162 1.127 −0.030 0.896 0.919
β̂2 0.068 1.506 1.489 0.057 1.164 1.115 −0.010 0.849 0.914
ĝ 0.935 0.272 0.194
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Table 2. Simulation results for (λ0, σ
2) = (0.1, 0.5).

σ2 m Est
R = 10 R = 20 R = 30

Bias SD/̂IMS E AysSD Bias SD/̂IMS E AysSD Bias SD/̂IMS E AysSD
(×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100)

0.5

20

λ̂ −6.699 15.934 14.490 −1.845 8.318 8.602 −1.086 5.995 6.552
α̂1 0.212 5.748 5.793 0.024 4.215 4.089 0.053 3.354 3.398
α̂2 0.388 5.727 6.257 0.312 4.187 4.911 0.482 3.456 4.340
α̂3 −0.735 6.232 5.636 −0.163 4.094 4.202 0.124 3.428 3.450
β̂1 −0.142 5.544 5.017 −0.013 3.727 3.485 −0.179 2.742 2.852
β̂2 −0.107 4.823 4.769 0.309 3.730 3.620 −0.162 3.111 2.970
ĝ 0.000 13.118 0.000 0.000 3.909 0.000 0.000 3.874 0.000

30

λ̂ −3.985 11.105 11.979 −2.138 9.421 10.243 −0.577 5.524 5.866
α̂1 −0.527 4.884 4.463 0.214 3.026 3.272 0.039 2.545 2.629
α̂2 −0.060 4.362 5.489 0.107 3.044 3.953 0.018 2.664 3.316
α̂3 −0.106 4.816 4.547 −0.362 3.297 3.235 −0.196 2.594 2.698
β̂1 −0.203 4.197 4.165 −0.033 2.971 2.929 −0.111 2.318 2.360
β̂2 −0.104 4.009 4.098 −0.041 2.830 2.785 0.009 2.569 2.400
ĝ 0.000 6.997 0.000 0.000 1.630 0.000 0.000 1.305 0.000

40

λ̂ −3.703 12.135 11.881 −1.955 7.685 8.209 −1.419 6.876 6.748
α̂1 −0.216 4.136 3.750 −0.162 2.749 2.901 −0.058 2.351 2.420
α̂2 −0.161 4.038 4.569 −0.017 2.754 3.549 −0.003 2.286 2.999
α̂3 −0.384 4.132 4.049 −0.053 2.791 2.879 −0.089 2.435 2.328
β̂1 −0.339 3.555 3.524 −0.255 2.599 2.518 −0.081 2.003 2.055
β̂2 0.137 3.378 3.329 0.136 2.605 2.493 −0.020 1.901 2.043
ĝ 0.000 5.859 0.000 0.000 1.434 0.000 0.000 0.969 0.000

Table 3. Simulation results for (λ0, σ
2) = (0.1, 1.0).

σ2 m Est
R=10 R=20 R=30

Bias SD/̂IMS E AysSD Bias SD/̂IMS E AysSD Bias SD/̂IMS E AysSD
(×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100)

1.0

20

λ̂ −9.291 19.214 16.714 −2.673 10.363 10.183 −1.577 7.620 7.865
α̂1 0.128 8.474 7.703 −0.143 6.207 5.502 0.060 4.861 4.582
α̂2 0.755 8.554 7.853 0.651 6.177 6.215 0.773 5.033 5.582
α̂3 −1.407 9.367 7.479 −0.182 5.976 5.639 0.075 4.936 4.685
β̂1 −0.242 7.864 7.089 −0.003 5.274 4.929 −0.263 3.882 4.032
β̂2 −0.152 6.828 6.718 0.463 5.283 5.117 −0.222 4.399 4.197
ĝ 0.000 49.203 0.000 0.000 11.433 0.000 0.000 9.957 0.000

30

λ̂ −6.432 14.909 14.607 −3.069 11.441 11.455 −1.045 7.182 7.253
α̂1 −0.812 7.361 5.913 0.201 4.372 4.480 −0.020 3.610 3.628
α̂2 0.089 6.425 6.731 0.228 4.404 5.217 0.125 3.782 4.457
α̂3 −0.379 7.204 5.935 −0.506 4.767 4.437 −0.211 3.714 3.723
β̂1 −0.306 5.954 5.885 −0.052 4.200 4.140 −0.132 3.277 3.337
β̂2 −0.146 5.670 5.789 −0.066 3.998 3.937 0.003 3.632 3.392
ĝ 0.000 20.222 0.000 0.000 3.543 0.000 0.000 2.762 0.000

40

λ̂ −5.679 15.696 14.471 −2.917 10.009 9.900 −2.105 8.628 8.077
α̂1 −0.460 6.139 5.062 −0.301 3.975 3.990 −0.124 3.331 3.323
α̂2 −0.308 5.910 5.829 0.010 3.974 4.718 0.039 3.296 4.002
α̂3 −0.811 6.150 5.395 −0.101 4.001 3.962 −0.133 3.497 3.206
β̂1 −0.489 5.027 4.983 −0.370 3.678 3.560 −0.117 2.834 2.905
β̂2 0.168 4.794 4.707 0.194 3.685 3.525 −0.026 2.689 2.888
ĝ 0.000 17.027 0.000 0.000 3.131 0.000 0.000 2.042 0.000
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Table 4. Simulation results for (λ0, σ
2) = (0.4, 0.1).

σ2 m Est
R = 10 R = 20 R = 30

Bias SD/̂IMS E AysSD Bias SD/̂IMS E AysSD Bias SD/̂IMS E AysSD
(×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100)

0.1

20

λ̂ −0.800 2.980 3.354 −0.368 2.712 3.104 −0.343 2.522 2.746
α̂1 −0.351 2.597 2.622 −0.026 1.763 1.924 0.041 1.461 1.529
α̂2 0.018 2.478 3.395 −0.027 1.718 2.302 0.066 1.497 1.866
α̂3 0.204 2.453 2.675 −0.082 1.812 1.906 −0.029 1.401 1.544
β̂1 −0.037 2.398 2.291 0.019 1.558 1.516 0.012 1.248 1.291
β̂2 0.083 2.486 2.320 0.008 1.684 1.663 −0.008 1.347 1.304
ĝ 0.000 1.363 0.000 0.000 0.470 0.000 0.000 0.398 0.000

30

λ̂ −0.455 4.187 4.588 −0.859 3.775 3.735 −0.240 2.161 2.486
α̂1 −0.001 2.042 2.119 −0.190 1.448 1.547 −0.098 1.110 1.249
α̂2 0.006 2.059 2.674 −0.055 1.355 1.973 0.036 1.130 1.622
α̂3 −0.100 1.955 2.095 0.083 1.450 1.542 0.100 1.154 1.269
β̂1 0.069 2.136 1.978 −0.044 1.291 1.280 −0.021 1.050 1.094
β̂2 0.036 1.846 1.876 0.040 1.314 1.301 0.070 1.112 1.110
ĝ 0.000 1.022 0.000 0.000 0.372 0.000 0.000 0.261 0.000

40

λ̂ −1.456 6.342 6.789 −0.285 2.684 2.982 −0.258 1.863 2.066
α̂1 0.003 1.635 1.765 −0.041 1.220 1.357 0.001 0.989 1.060
α̂2 0.130 1.687 2.224 −0.047 1.219 1.666 −0.002 0.980 1.441
α̂3 0.056 1.592 1.756 −0.047 1.323 1.274 −0.028 0.996 1.108
β̂1 −0.190 1.544 1.563 −0.031 1.181 1.154 −0.094 0.901 0.883
β̂2 0.047 1.622 1.612 0.031 1.123 1.127 0.094 0.867 0.881
ĝ 0.000 0.544 0.000 0.000 0.224 0.000 0.000 0.204 0.000

Table 5. Simulation results for (λ0, σ
2) = (0.4, 0.5).

σ2 m Est
R = 10 R = 20 R = 30

Bias SD/̂IMS E AysSD Bias SD/̂IMS E AysSD Bias SD/̂IMS E AysSD
(×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100)

0.5

20

λ̂ −2.551 6.428 6.921 −1.347 5.261 5.408 −1.159 5.111 5.512
α̂1 −1.011 6.023 5.449 −0.153 4.006 4.109 −0.034 3.360 3.341
α̂2 0.246 5.782 6.641 0.082 3.936 4.687 0.135 3.424 3.954
α̂3 0.372 5.617 5.599 −0.184 4.094 4.088 −0.119 3.199 3.370
β̂1 −0.018 5.346 5.100 0.071 3.490 3.373 0.011 2.795 2.887
β̂2 0.141 5.562 5.184 0.021 3.764 3.717 −0.023 3.006 2.915
ĝ 0.000 9.385 0.000 0.000 2.622 0.000 0.000 2.171 0.000

30

λ̂ −2.258 8.623 8.838 −2.215 7.157 6.847 −0.951 4.330 4.794
α̂1 −0.065 4.623 4.430 −0.370 3.192 3.354 −0.261 2.457 2.736
α̂2 0.185 4.719 5.178 −0.084 2.953 4.100 0.096 2.542 3.466
α̂3 −0.312 4.609 4.362 0.028 3.290 3.333 0.190 2.604 2.780
β̂1 0.109 4.793 4.418 −0.113 2.886 2.863 −0.013 2.347 2.444
β̂2 0.074 4.123 4.190 0.116 2.940 2.908 0.157 2.482 2.482
ĝ 0.000 6.673 0.000 0.000 1.950 0.000 0.000 1.387 0.000

40

λ̂ −4.679 12.349 11.693 −1.092 5.388 5.820 −0.792 3.788 4.170
α̂1 −0.301 3.719 3.777 −0.129 2.753 2.971 −0.037 2.256 2.313
α̂2 0.104 3.869 4.524 −0.089 2.741 3.580 0.015 2.238 3.053
α̂3 0.028 3.842 3.765 −0.166 2.950 2.797 −0.079 2.270 2.409
β̂1 −0.431 3.446 3.493 −0.086 2.642 2.579 −0.208 2.015 1.972
β̂2 0.134 3.638 3.603 0.062 2.513 2.519 0.200 1.938 1.969
ĝ 0.000 2.994 0.000 0.000 1.179 0.000 0.000 1.087 0.000
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Table 6. Simulation results for (λ0, σ
2) = (0.4, 1.0).

σ2 m Est
R = 10 R = 20 R = 30

Bias SD/̂IMS E AysSD Bias SD/̂IMS E AysSD Bias SD/̂IMS E AysSD
(×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100)

1.0

20

λ̂ −3.973 8.684 8.745 −2.112 6.863 6.549 −1.631 6.150 6.165
α̂1 −2.137 9.396 7.106 −0.358 5.916 5.517 −0.081 4.870 4.585
α̂2 0.343 8.941 8.030 0.249 5.800 5.972 0.198 4.913 5.202
α̂3 0.349 8.572 7.308 −0.300 6.003 5.508 −0.322 4.639 4.610
β̂1 −0.012 7.559 7.181 0.107 4.939 4.750 0.012 3.955 4.083
β̂2 0.166 7.874 7.326 0.032 5.322 5.256 −0.035 4.251 4.123
ĝ 0.000 43.795 0.000 0.000 6.492 0.000 0.000 4.961 0.000

30

λ̂ −3.646 11.145 10.405 −2.870 8.577 7.700 −1.459 5.481 5.636
α̂1 −0.124 6.847 5.811 −0.485 4.573 4.584 −0.422 3.511 3.769
α̂2 0.484 7.000 6.294 −0.068 4.257 5.353 0.143 3.638 4.612
α̂3 −0.649 6.991 5.713 −0.114 4.712 4.538 0.222 3.732 3.827
β̂1 0.140 6.805 6.238 −0.159 4.085 4.050 −0.009 3.318 3.456
β̂2 0.112 5.826 5.920 0.173 4.159 4.112 0.223 3.506 3.509
ĝ 0.000 21.085 0.000 0.000 4.331 0.000 0.000 3.008 0.000

40

λ̂ −6.211 14.879 12.560 −1.642 6.765 6.878 −1.179 4.884 5.097
α̂1 −0.538 5.429 5.084 −0.218 3.955 4.090 −0.075 3.241 3.180
α̂2 0.190 5.685 5.754 −0.067 3.928 4.791 0.073 3.203 4.054
α̂3 −0.082 5.625 5.072 −0.273 4.225 3.862 −0.123 3.257 3.299
β̂1 −0.598 4.874 4.937 −0.126 3.738 3.647 −0.295 2.849 2.788
β̂2 0.187 5.147 5.094 0.086 3.556 3.562 0.281 2.741 2.783
ĝ 0.000 7.083 0.000 0.000 2.533 0.000 0.000 2.357 0.000

Table 7. Simulation results for (λ0, σ
2) = (0.7, 0.1).

σ2 m Est
R = 10 R = 20 R = 30

Bias SD/̂IMS E AysSD Bias SD/̂IMS E AysSD Bias SD/̂IMS E AysSD
(×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100)

0.1

20

λ̂ −0.434 2.291 3.358 −0.129 1.438 1.794 −0.175 1.278 1.570
α̂1 0.089 2.754 2.642 −0.053 1.828 1.936 0.040 1.540 1.564
α̂2 0.058 2.484 3.117 −0.066 1.782 2.307 −0.031 1.426 1.877
α̂3 −0.213 2.694 2.615 −0.098 1.824 1.846 −0.128 1.476 1.583
β̂1 −0.019 2.029 2.065 −0.005 1.676 1.621 0.052 1.291 1.310
β̂2 −0.013 2.145 2.090 −0.057 1.613 1.608 0.040 1.258 1.281
ĝ 0.000 1.354 0.000 0.000 0.490 0.000 0.000 0.361 0.000

30

λ̂ −0.388 2.051 2.027 −0.264 1.361 1.537 −0.058 1.050 1.155
α̂1 −0.152 1.990 2.034 −0.091 1.422 1.488 −0.021 1.058 1.231
α̂2 −0.040 2.004 2.697 0.038 1.453 1.920 −0.069 1.078 1.566
α̂3 0.014 1.828 2.119 0.075 1.438 1.555 −0.079 1.108 1.187
β̂1 0.078 1.829 1.762 −0.045 1.255 1.294 0.061 1.087 1.081
β̂2 0.008 1.670 1.650 0.085 1.300 1.279 0.000 1.043 1.067
ĝ 0.000 0.778 0.000 0.000 0.414 0.000 0.000 0.260 0.000

40

λ̂ −0.475 2.033 2.286 −0.179 1.438 1.539 −0.107 1.066 1.206
α̂1 −0.092 1.655 1.718 −0.118 1.136 1.324 0.014 0.965 1.148
α̂2 −0.081 1.661 2.348 0.035 1.185 1.757 −0.116 0.933 1.397
α̂3 −0.061 1.659 1.857 0.117 1.186 1.375 −0.154 0.999 1.078
β̂1 0.120 1.611 1.557 0.011 1.119 1.120 0.030 0.906 0.903
β̂2 −0.067 1.624 1.544 0.006 1.083 1.102 −0.053 0.929 0.894
ĝ 0.000 0.479 0.000 0.000 0.297 0.000 0.000 0.169 0.000
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Table 8. Simulation results for (λ0, σ
2) = (0.7, 0.5).

σ2 m Est
R = 10 R = 20 R = 30

Bias SD/̂IMS E AysSD Bias SD/̂IMS E AysSD Bias SD/̂IMS E AysSD
(×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100)

0.5

20

λ̂ −1.631 4.793 5.106 −0.544 2.864 3.065 −0.671 2.486 2.616
α̂1 0.119 6.104 5.610 −0.201 4.160 4.143 −0.096 3.417 3.394
α̂2 0.226 5.444 6.099 −0.074 4.091 4.709 0.023 3.216 3.951
α̂3 −0.788 5.997 5.498 −0.323 4.221 3.958 −0.167 3.318 3.427
β̂1 −0.011 4.555 4.618 0.009 3.744 3.614 0.120 2.886 2.929
β̂2 −0.085 4.792 4.653 −0.136 3.601 3.583 0.086 2.803 2.847
ĝ 0.000 9.417 0.000 0.000 2.820 0.000 0.000 1.949 0.000

30

λ̂ −1.376 4.181 3.938 −0.776 2.758 2.882 −0.283 2.090 2.195
α̂1 −0.413 4.540 4.326 −0.131 3.248 3.224 −0.110 2.393 2.689
α̂2 −0.016 4.607 5.387 0.140 3.232 3.990 −0.132 2.436 3.335
α̂3 −0.122 4.260 4.469 −0.003 3.268 3.362 −0.178 2.522 2.594
β̂1 0.127 4.098 3.940 −0.077 2.805 2.891 0.136 2.432 2.415
β̂2 −0.013 3.724 3.678 0.184 2.910 2.856 0.000 2.325 2.376
ĝ 0.000 4.647 0.000 0.000 2.271 0.000 0.000 1.345 0.000

40

λ̂ −1.617 4.363 4.359 −0.743 2.908 2.922 −0.383 2.153 2.295
α̂1 −0.275 3.756 3.704 −0.142 2.699 2.889 −0.003 2.211 2.510
α̂2 −0.120 3.799 4.818 −0.019 2.799 3.721 −0.208 2.133 2.994
α̂3 −0.215 3.758 3.983 −0.074 2.762 2.988 −0.331 2.260 2.363
β̂1 0.286 3.601 3.480 0.026 2.500 2.504 0.071 2.024 2.015
β̂2 −0.156 3.634 3.452 0.004 2.422 2.460 −0.122 2.077 1.999
ĝ 0.000 2.669 0.000 0.000 1.610 0.000 0.000 0.868 0.000

Table 9. Simulation results for (λ0, σ
2) = (0.7, 1.0).

σ2 m Est
R = 10 R = 20 R = 30

Bias SD/̂IMS E AysSD Bias SD/̂IMS E AysSD Bias SD/̂IMS E AysSD
(×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100)

1.0

20

λ̂ −2.416 6.098 5.732 −0.840 3.611 3.548 −0.989 3.058 2.986
α̂1 −0.292 9.656 7.409 −0.471 6.112 5.587 −0.218 4.930 4.645
α̂2 0.100 8.394 7.384 −0.067 6.080 6.011 0.115 4.611 5.217
α̂3 −1.822 9.440 7.208 −0.578 6.223 5.339 −0.262 4.807 4.675
β̂1 0.028 6.444 6.527 0.011 5.294 5.104 0.163 4.081 4.141
β̂2 −0.226 6.763 6.569 −0.198 5.082 5.060 0.122 3.962 4.014
ĝ 0.000 42.319 0.000 0.000 7.594 0.000 0.000 4.378 0.000

30

λ̂ −2.066 5.395 4.810 −1.102 3.510 3.423 −0.453 2.651 2.634
α̂1 −0.715 6.799 5.759 −0.207 4.721 4.401 −0.201 3.424 3.704
α̂2 0.082 7.043 6.681 0.265 4.655 5.213 −0.179 3.481 4.460
α̂3 −0.400 6.480 5.907 −0.101 4.718 4.583 −0.299 3.626 3.574
β̂1 0.159 5.811 5.570 −0.106 3.966 4.086 0.191 3.440 3.413
β̂2 −0.020 5.264 5.190 0.264 4.118 4.034 0.001 3.283 3.351
ĝ 0.000 14.225 0.000 0.000 5.203 0.000 0.000 2.863 0.000

40

λ̂ −2.448 5.830 5.197 −1.135 3.682 3.464 −0.568 2.735 2.725
α̂1 −0.488 5.445 5.025 −0.175 3.918 3.966 −0.035 3.183 3.449
α̂2 −0.086 5.558 6.191 0.044 4.085 4.933 −0.262 3.105 4.008
α̂3 −0.376 5.397 5.378 −0.196 3.996 4.086 −0.495 3.292 3.255
β̂1 0.409 5.096 4.919 0.036 3.533 3.540 0.103 2.860 2.846
β̂2 −0.217 5.140 4.880 0.002 3.425 3.474 −0.172 2.937 2.825
ĝ 0.000 6.278 0.000 0.000 3.606 0.000 0.000 1.831 0.000
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Figure 1. Curve estimate for a single replication of the model simulation study. The true
cure g (solid curve), the mean of ĝ with B-splines (degree = 3) over 1000 simulations (λ0 =

0.7,R = 30,m = 40, σ2 = 1.0), and the 95% point-wise confidence interval for g are shown.

5. Real data analysis

In this section, we illustrate the usefulness of the proposed estimation method via analysis of real
data, especially for the dependence across spatial units.

5.1. China air quality data

Air quality is gaining more and more attention in China and is closely related to people’s daily
life. Wu and Kuo [17] utilized statistical models to analyze air quality in Taiwan, China. Chen et
al. [18] employed machine learning methods to predict air quality in Hangzhou, China, highlighting
the need to consider the impact of neighboring areas on air quality. The factors affecting air quality
are complex and can be divided into several categories, such as urban characteristics, meteorological
factors, emission factors, and so on. According to the fluidity of the air, the air quality of the core
city is related to the surrounding cities and the degree of influence is related to the spatial distance.
Therefore, we select the air quality data of cities in China to illustrate the usefulness of the proposed
method in Section 2.

The data set contains information of 28 different capital cities in China including air quality index,
urban characteristics, meteorological factors, and emission factors from January 1st to April 30th,
2014. There are 13 variables (see Table 10).
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Table 10. Variables in China air quality data.

Variables Explanation (data sources)

TEMP Temperature (1)

WIND Wind (1)

RAIN Rainfall (1)

PEOPLE Urban resident population/(10,000 people) (2)

CAR Civil vehicle ownership/vehicle (2)

BUILDING Building construction area/(10,000 m2) (2)

SO2 Industrial sulfur dioxide emissions/t (3)

YANCHEN Industrial soot emissions/t (3)

GREEN Green area/hm2 (3)

GN Dichotomous variable, the heating period in northern area in China(GN=1)
LONG Longitude coordinates (4)

LATT Latitude coordinates (4)

AQI Air quality index (1)

*data sources: (1) China Weather Network http://www.weather.com.cn/, (2) China Regional Economic Statistics Yearbook, (3) China

City Statistical Yearbook, (4) http://www.gpsspg.com/maps.htm.

Air quality index (AQI) is the dependent variable. Urban permanent population (PEOPLE), green
area (GREEN), civil vehicle ownership (CAR), industrial sulfur dioxide emissions (SO2), industrial
soot emissions (YANCHEN), temperature (TEMP), wind (WIND), rainfall (RAIN), building
construction area (BUILDING), and the heating problem in northern China (GN) are the independent
variables. The model considers the influence of the spatial structure factors of the city on the air
quality. According to the research background, we consider the variables log(RAIN), log(PEOPLE),
log(CAR), log(BUILDING), GN as the linear independent variables and the variables TEMP, WIND,
log(SO2), log(YANCHEN), log(GREEN) as the non-parametric independent variables.

Therefore, we consider fitting the data via the following model:

YN = λWNYN +

5∑
j=1

β jX j + g

 5∑
j=1

α jZ j

 + VN , (5.1)

where YN is AQI; X1, X2, X3, X4, X5 are log(RAIN), log(PEOPLE), log(CAR), log(BUILDING), GN,
respectively; and Z1, Z2, Z3, Z4, Z5 are TEMP, WIND, log(SO2), log(YANCHEN), log(GREEN),
respectively. Logarithmic transformation for variables is taken to ease off the trouble caused by big
gaps in the domain [19].

According to the practice in Du et al. [8], Su and Yang [20], and Xie et al. [21], let the weight
matrix WN = (wi j) be

wi j = max
(
1 −

di j

d0
, 0

)
,

where di j ⩾ 0 represents the spatial distance of the ith and jth units, the Euclidean distance is calculated
in terms of the longitude and latitude coordinates of any two cities, and d0 is the threshold distance
chosen to median of di j. We choose the weight matrix in this form as the dependent variable AQI is
spatially correlated. That is, when the distance between two cities is far enough, there is tiny spatial
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relation between them, and a threshold distance is chosen to set the tiny weight to be zero to alleviate
the potential effect of tiny weights on the data analysis. Furthermore, we normalize the weight matrix
so that the sum of rows of WN is equal to 1, i.e.,

∑N
j=1 wi j = 1. Obviously, the spatial weight matrix

WN is exogenous. We use the proposed method in Section 2 to analyze the processed data. The
analysis results for the estimation of unknown parametric coefficients are listed in Table 11. For the
nonparametric component, the univariate function estimates are displayed in Figure 2.

Table 11. Analysis results for China air quality data.

Parameter λ
log(RAIN) log(PEOPLE) log(CAR) log(BUILDING) GN
(X1) (X2) (X3) (X4) (X5)

Estimation 0.261 0.437 0.351 0.120 0.075 1.232
SD 0.134 0.259 0.314 0.247 0.166 0.434

Parameter
TEMP WIND log(SO2) log(YANCHEN) log(GREEN)
(Z1) (Z2) (Z3) (Z4) (Z5)

Estimation 0.023 −0.188 0.981 0.027 0.020
SD 0.296 0.329 0.510 0.617 0.324

From the analysis results, the estimation of the spatial parameter is λ̂ = 0.261, which indicates a
substantial spatial relationship exists among the AQI of the cities in China. The regression coefficients
of X1 − X5 are positive, implying that the factors of rainfall, urban resident population, civil vehicle
ownership/vehicle, building construction area, and the heating period have positive effects on AQI of
the cites. The results are generally consistent with our judgment and expectations. As population
grows, resource consumption increases, resulting in air pollution. Increased car ownership and
construction area lead to increased emissions of pollutants. Increased and large amounts of pollutants
during the heating period in the northern area lead to a drop of air quality.

From Figure 2, in the nonparametric component of the model, we observe that the single-index has
an “S” shape nonlinear effect on the AQI of the city. It indicates that there exists interaction among
the covariates in the nonparametric components. From the results of the single-index coefficients of
Z1 − Z5, the variables temperature, wind, industrial sulfur dioxide emissions, industrial soot
emissions, and green area have non-linear effects on the AQI. The single-index coefficients of
temperature, industrial sulfur dioxide emissions, industrial soot emissions, green area are positive,
and the single-index coefficient of wind are negative. The results are generally consistent with our
judgment and expectations. Increased wind power helps the diffusion of pollutants in the air, which
improves air quality and leads to a decline of AQI. Increased temperature is not conducive to the
decomposition of air pollutants. Increased industrial sulfur dioxide and industrial soot emissions lead
to an increase of air pollutants.

However, more rainfall is conducive to reducing the presence of pollutants in the air and increased
green plants are conducive to absorption and degradation of air pollutants, which contradicts our data
analysis results (X1 = 0.437,Z5 = 0.020). The model has not undergone variable selection, therefore
significance cannot be solely determined by coefficient values. The abnormality of these two
coefficients may indicate that they are statistically insignificant.
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Figure 2. Curve estimate for China air quality data, with ZT α̂ on the x-axis and ĝ(t) on the
y-axis.

5.2. Rural household income data

The development of the rural economy is significant to the overall economic development in China.
Recently, it is facing many problems, such as large populations, low incomes and increasing difficulty
in employment. Among them, rural household income is affected by multiple factors. We take the
rural household income data of Fuping County in China as an example, including 209 villages, to
analyze the factors of rural household income by the proposed method in Section 1. In this model, the
dependent variable is the per capita net income of farmers, and the independent variables are 7 factors,
including rural natural conditions, village industries, and labor skills, which have great impact on rural
household income (see Table 12).

Table 12. Variables in rural household income data.

Variables Explanation

income the per capita net income of farmers
agNum the number of labors engaging in agriculture
urNum the number of labors left the farm for urban
farm Farmland
agFa Facility agriculture
area Effective irrigation area
indusNum Number of rural industries
workNum Number of skilled workers

Electronic Research Archive Volume 32, Issue 12, 6822–6846.



6838

We consider the variables agNum and farm as the linear independent variables because they
represent agriculture-related productivity and means of production in economics, which signify the
scale of agriculture. We anticipate that ’income’ will exhibit a linear relationship with respect to these
two factors. The other variables urNum, agFa, area, indusNum, workNum are the non-parametric
independent variables. Next, we fit the data via the following model:

YN = λWNY + X1β1 + X2β2 + g(Z1α1 + Z2α2 + Z3α3 + Z4α4 + Z5α5) + VN , (5.2)

where YN is income; X1, X2 are agNum and farm, respectively; and Z1, Z2, Z3, Z4, Z5 are urNum, agFa,
area, indusNum, and workNum, respectively.

Obtained from spatial geographic information, we can get the neighboring situation of the villages.
Therefore,

wi j =

1 Ad jacent

0 Otherwise
, (5.3)

where wi j = 1 represents adjacent of the ith and jth villages; when two villages are not adjacent,
there is tiny spatial relation between them, then wi j = 0 . As the response variable could be spatially
correlated, we choose the weight matrix in this form. Furthermore, we normalize the weight matrix so
that the sum of rows of WN is equal to 1, i.e.,

∑N
j=1 wi j = 1. Obviously, the spatial weight matrix WN

is exogenous. The analysis results for the estimation of unknown parametric coefficients are listed in
Table 13. For the nonparametric components, the univariate function estimate is displayed in Figure 3.

Table 13. Analysis results for rural household income data.

Parameter λ
agNum farm urNum agFa area indusNum workNum
(X1) (X2) (Z1) (Z2) (Z3) (Z4) (Z5)

Estimation 0.242 −0.044 −0.228 0.309 −0.349 0.826 0.310 −0.072
SD 0.072 0.073 0.072 0.285 0.189 0.283 0.359 0.367

According to the result, the estimation of the spatial parameter is λ̂ = 0.260 indicates a substantial
spatial relationship exists in the model. The regression coefficients of X1 and X2 are negative, which
implies that the amount of labor engaging in agriculture and farmland would not increase rural
household income.

From Figure 3, in the nonparametric parts of the model, we observe that single-index has a
nonlinear effect on rural household income. There exists interaction among the covariates in the
nonparametric components. The single-index coefficients of Z1 − Z5 (variables urNum, agFa, area,
indusNum, workNum) have significant non-linear effects on rural household income.

Further research is needed to develop a model structure selection method for partially linear single-
index spatial autoregressive models. Variable selection decides which covariates have linear effects,
and which have nonlinear effects for data analysis.
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Figure 3. Curve estimate for rural household income data, with ZT α̂ on the x-axis and ĝ(t)
on the y-axis.

6. Conclusions

In this paper, B-spline approximation is employed for the link function in the partially linear single-
index spatial autoregressive model, offering a smoother and more interpretable alternative compared
to local linear approximation. A feasible Nelder-Mead iteration algorithm tailored for this model is
proposed to solve the QMLE. The parameter estimation and function estimation have been proven to
be consistent, and the asymptotic distribution of parameter estimates for non-normal, general error
terms is provided. A series of Monte Carlo simulations are performed to verify the effectiveness of
the proposed model and estimation method. Finally, the model and method are applied to air quality
datasets and rural income datasets, thereby extending the application scope of the model.
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Appendix

Lemma 1. Suppose that assumptions A1-A4 hold. Then, 1
√

N
HT PΠ0 A0 = op(1), for

H = VN , A0, XN ,WYN , Ȧ(ZNα)ZN .

Proof. According to Corollary 6.21 in Schumaker [22], we find that ∥A0−Π0γ0∥ = Op(
√

NK−r). Using
this, similar to Lemma 1 of Tian et al. [13], it suffices to show ∥ 1

√
N

HT PΠ0 A0∥ = op(1). □

Lemma 2. Suppose that assumptions A1-A4 hold. Then,
tr(PT

Π
PPΠXN PΠ)

N = 1 + o(1), tr(PΠ)
N = 1 + o(1), tr(G0 PΠ)

N =
tr(G0)

N + o(1), tr(GT
0 PΠG0)
N =

tr(GT
0 G0)
N + o(1).

Proof. Given that the eigenvalues of a projection matrix consist solely of 0s and 1s, with the number
of 1s equaling the rank of the matrix, and recognizing that the trace of a matrix is equivalent to the sum
of its eigenvalues, we can readily prove the lemma. □

Proof of Theorem 1. First, we prove that η
p
−→ η0. Similar to Su and Jin [7] and Cheng and Chen [10],

it suffices to show that
1
N

(L̃c(η) − Q(η)) = op(1), (A1)

Electronic Research Archive Volume 32, Issue 12, 6822–6846.

https://dx.doi.org/https://doi.org/10.1007/s00362-018-0980-6
https://dx.doi.org/https://doi.org/10.2307/2938168
https://dx.doi.org/https://doi.org/10.3390/atmos4040349
https://dx.doi.org/https://doi.org/10.1109/TCYB.2023.3245618
https://dx.doi.org/https://doi.org/10.1007/s10463-007-0157-x
https://dx.doi.org/https://doi.org/10.1007/s00362-018-0984-2
https://dx.doi.org/https://doi.org/10.1007/s00362-018-0984-2
https://dx.doi.org/https://doi.org/10.1016/j.jeconom.2009.10.025


6842

and
lim sup

N→∞
max
η∈Nc

ϵ (η)

1
N

[Q(η) − Q(η0)] < 0, for any ϵ > 0. (A2)

where Nc
ϵ (η0) is the complement of an open neighborhood of η with diameter ϵ.

To prove (A1), it is sufficient to show that

σ̂2(η) − σ2∗(η) = op(1). (A3)

From (3.4), we have

σ̂2(η) =
1
N

[M(λ)YN]T PT
ΠPPΠXN PΠM(λ)YN .

=
1
N

[
(λ0 − λ)R + M(λ)M−1

0 VN + A0

]T
PT
ΠPPΠXN PΠ

[
(λ0 − λ)R + M(λ)M−1

0 VN + A0

]
.

(A4)

Then,

σ̂2(η) − σ2∗(η) = 2(λ0 − λ)
1
N

RT PT
ΠPPΠXN PΠM(λ)M−1

0 VN + 2
1
N

AT
0 PT
ΠPPΠXN PΠM(λ)M−1

0 VN .

+ [M(λ)M−1
0 VN]T PT

ΠPPΠXN PΠM(λ)M−1
0 VN

−
σ2

0

N
tr

[(
PΠM(λ)M−1

0

)T
PPΠXN PΠM(λ)M−1

0

]
≡ 2(λ0 − λ)H1(η) + 2H2(η) + H3(η) − σ2

0(η).

(A5)

Similar to the proof of Theorem 1 in Tian et al. [13], by using Lemma 1, it is easy to prove that
H2(η) = op(1),H1(η) = op(1), and H3(η) = σ2

0(η) + op(1) such that (A1) holds. Furthermore, referring
to Tian et al. [13], based on Lemma 1, we can also prove the validity of (A2). The primary difference
lies in the use of an unknown single-index function in our cross-sectional data context, whereas Tian
et al. [13] employed a q-dimensional unknown function in their panel data setting.

Next, we prove that σ̂2 P
−→ σ2

0. Given that we now have λ̂ = λ0 + op(1) and α̂ = α0 + op(1), due
to the continuity of zT

i α in terms of α, it follows that Π(ZNα̂) = Π(ZNα0)(1 + op(1)) ≡ Π0(1 + op(1)).
Recall that

σ̂2(η) =
1
N

[M(λ)YN]T PT
ΠPPΠXN PΠM(λ)YN

=
1
N

[A0 + VN + (λ0 − λ)(R + G0VN)]T PT
ΠPPΠXN PΠ [A0 + VN + (λ0 − λ)(R + G0VN)] ,

(A6)

The second equality in the above equation relies on the fact that M−1
0 = I + λ0G, and the projection

matrix PPΠXN eliminates the term XNβ0. Then, by Lemma 1 and Lemma 2, we have

E[σ̂2(η̂)] =
1
N

E
{[

A0 + VN + (λ0 − λ̂)(R + G0VN)
]T

PT
ΠPPΠXN PΠ

[
A0 + VN + (λ0 − λ̂)(R + G0VN)

]}
+ o(1)

= E
{

1
N

VT
N PT
ΠPPΠXN PΠVN + (λ0 − λ̂)2

(
RT

N PT
Π

PPΠXN PΠRN

N
+

VT
NGT

0 PT
Π

PPΠXN PΠG0VN

N

)}
+ o(1)

= σ2
0 + o(1).
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and

Var[σ̂2(η̂)] =
1

N2 E
{
[A0 + VN]T PT

ΠPPΠXN PΠ [A0 + VN]
}
− σ4

0 + o(1)

=
1

N2

(µ∗4 − 3σ4
0)

N∑
i=1

pii + σ
4
0{tr(PT

ΠPPΠXN PΠ)}2 + 2tr(PT
ΠPPΠXN PΠ)

 − σ4
0 + o(1)

=
σ4

0{tr(PT
Π

PPΠXN PΠ)}2

N2 − σ4
0 + o(1) = o(1).

where pii is the diagonal element of PT
Π

PPΠXN PΠ. Then, we have σ̂2(η̂) = σ2
0 + op(1). The proof

of consistency for β̂2(η̂) is analogous to that of σ̂2(η̂): it suffices to demonstrate that its expectation
converges to β0 and its variance converges to 0. Further elaboration on this point is omitted here for
brevity. □

Proof of Theorem 2. According to Theorem 1, we haveΠ(ZNα̂) = Π(ZNα0)(1+op(1)) ≡ Π0(1+op(1)).
Then,

γ̂ − γ0 = [ΠT (ZNα̂)Π(ZNα̂))]−1ΠT (ZNα̂)[M−1(λ̂)YN − XNβ̂] − γ0

= [ΠT
0Π0]−1ΠT

0 [M−1(λ̂)YN − XNβ̂](1 + op(1)) − γ0

= {[ΠT
0Π0]−1ΠT

0 VN + [ΠT
0Π0]−1ΠT

0∆ + [ΠT
0Π0]−1ΠT

0 XN(β0 − β̂)
+ (λ0 − λ̂)[ΠT

0Π0]−1ΠT
0 (R + G0VN)}(1 + op(1))

where ∆ = A0 − Π0γ0. Similar to Theorem 3 of Tian et al. [13], we can prove all the components
above are op(1), which indicates ∥γ̂ − γ0∥ = op(1).

According to de Boor [11], similar to Theorem 3 in Tian et al. [13], B-splines have the following
properties: B j(u) ≥ 0,

∑KN
j=1 B j(u) = 1 for u ∈ U, and

C1

KN + l + 1

KN+l+1∑
j=1

κ2j ≤

∫
U

KN+l+1∑
j=1

κ jB j(u)


2

du ≤
C2

KN + l + 1

KN+l+1∑
j=1

κ2j .

where C1 and C2 are positive constants. With Cororllary 6.21 of Schumaker [22], we have ∥B(u)Tγ0 −

g(u)∥ = O(K−r
N ). Then,

∥ĝ − g∥2 =
∫
U

[ĝ(u) − g(u)]2du

=

∫
U

[B(u)T γ̂ − B(u)Tγ0 + B(u)Tγ0 − g(u)]2du

≤ 2
∫
U

[B(u)T (γ̂ − γ0)]2du + 2
∫
U

[B(u)Tγ0 − g(u)]2du

≤
2C

KN + l + 1
∥γ̂ − γ0∥

2 + 2∥B(u)Tγ0 − g(u)∥2du

= op(1).

so ĝ(ZT
Nα̂)

P
−→ g(ZT

Nα0). □

Proof of Theorem 3. By Theorem 3.2 of Lee [1] and Theorem 3 of Tian et al. [13], the asymptotic
normality of the parameter θ can be derived from the Taylor expansion of ∂L̃N(θ)/∂θ = 0. The first-
order Taylor expansion at θ0 is
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∂L̃N(θ0)
∂θ

+
∂2L̃N(θ∗)
∂θ∂θT (θ̂ − θ0) = 0,

where θ∗ lies between θ0 and θ̂. Then,

√
N(θ − θ0) = −

(
1
N
∂2L̃N(θ∗)
∂θ∂θT

)−1 1
√

N

∂L̃N(θ0)
∂θ

(A7)

The proof of the theorem can be accomplished using Slusky’s theorem, if it holds that

1
√

N

∂L̃N(θ0)
∂θ

D
−→ N(0,Ωθ0) (A8)

and
1
N
∂2L̃N(θ∗)
∂θ∂θT

P
−→ Σθ0 . (A9)

Recall Π0 = Π(ZNα0) and PΠ0 = I − Π0(ΠT
0Π0)−1ΠT

0 . Comining Lemma 1 and Assumption A1, we
have

1
√

N

∂L̃N(θ0)
∂σ2 = −

√
N

2σ2
0

+
1

2σ4
0

√
N

VT
N PΠ0VN + op(1),

1
√

N

∂L̃N(θ0)
∂λ

= −
1
√

N
trG0 +

1

σ2
0

√
N

(RT PΠ0VN + VT
NGT

0 PΠ0VN) + op(1),

1
√

N

∂L̃N(θ0)
∂α

= −
1

σ2
0

√
N

ZT
N Ȧ(ZNα0)PΠ0VN + op(1),

1
√

N

∂L̃N(θ0)
∂β

=
1

σ2
0

√
N

XT
N PΠ0VN + op(1),

(A10)

and
∂2L̃N(θ)
∂σ2∂σ2 =

N
2σ4 −

1
σ6 (M(λ)YN − XNβ)T PΠ(M(λ)YN − XNβ),

∂2L̃N(θ)
∂σ2∂λ

= −
1
σ4 (WNYN)T PΠ(M(λ)YN − XNβ),

∂2L̃N(θ)
∂σ2∂α

=
1
σ4 ZT

N Ȧ(ZNα)PΠ(M(λ)YN − XNβ),

∂2L̃N(θ)
∂σ2∂β

= −
1
σ4 XT

N PΠ(M(λ)YN − XNβ),

∂2L̃N(θ)
∂λ2 = −

1
σ2 (WNYN)T PΠWNYN − trG2(λ),

∂2L̃N(θ)
∂λ∂α

=
1
σ2 ZT

N Ȧ(ZNα)PΠWNYN ,
∂2L̃N(θ)
∂λ∂β

= −
1
σ2 XT

N PΠWNYN ,

∂2L̃N(θ)
∂α∂αT = −

1
σ2 ZT

N Ȧ(ZNα)Ȧ(ZNα)ZN ,
∂2L̃N(θ)
∂α∂βT =

1
σ2 ZT

N Ȧ(ZNα)PΠXN ,

∂2L̃N(θ)
∂β∂βT = −

1
σ2 XT

N PΠXN .

(A11)
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Notice that the above equation is linear, quadratic, or cubic in terms of β,α, 1/σ2, except for terms
involving λ. Combining ∥θ∗ − θ0∥ = op(1), by continuity we can obtain

1
N
∂2L̃N(θ∗)
∂θ∂θT

P
−→

1
N
∂2L̃N(θ0)
∂θ∂θT , (A12)

if 1
N
∂2 L̃N (θ∗)
∂λ2

P
−→ 1

N
∂2 L̃N (θ0)
∂λ2 . To show this, by the mean value theorem we have

1
N
∂2L̃N(θ∗)
∂λ2 −

1
N
∂2L̃N(θ0)
∂λ2 =

(
1
σ2

0

−
1
σ2∗

)
1
N

(WNYN)T PΠWNYN −
2
N

(λ∗ − λ0)tr[G3(λ̃)]. (A13)

where λ̃ lies between λ∗ and λ0. According to Assumption A2, it easy to know that tr[G3(λ̃)]/n =
Op(h−1

N ) = op(1), so (A12) is proved. To show

1
N
∂2L̃N(θ0)
∂θ∂θT

P
−→ E

{
1
N
∂2L̃N(θ0)
∂θ∂θT

}
, (A14)

we have

−E
{

1
N
∂2L̃N(θ0)
∂θ∂θT

}

=



trPΠ0
Nσ4

0
+

AT
0 PΠ0 A0

Nσ6
0
− 1

2σ4
0

∗ ∗ ∗

RT PΠ0 A0

Nσ4
0
+

tr[GT
0 PΠ0 ]

nσ2
0

RT PΠ0 R
Nσ2

0
+

trG2
0

N +
σ2

0tr[GT
0 PΠ0 G0]
N ∗ ∗

−
ZT

N Ȧ(ZNα)PΠ0 A0

Nσ4
0

−
ZT

N Ȧ(ZNα)PΠ0 R
Nσ2

0

ZT
N Ȧ(ZNα)Ȧ(ZNα)ZN

Nσ2
0

∗

XT
N PΠ0 A0

Nσ2
0

XT
N PΠ0 R
Nσ2

0
−

XT
N PΠ0 Ȧ(ZNα)ZN

Nσ2
0

XT
N PΠ0 XN

Nσ2
0



=



1
2σ4

0
∗ ∗ ∗

trG0
nσ2

0

RT PΠ0 R
Nσ2

0
+

trG2
0

N +
σ2

0tr[GT
0 G0]

N ∗ ∗

0 −
ZT

N Ȧ(ZNα)PΠ0 R
Nσ2

0

ZT
N Ȧ(ZNα)Ȧ(ZNα)ZN

Nσ2
0

∗

0
XT

N PΠ0 R
Nσ2

0
−

XT
N PΠ0 Ȧ(ZNα)ZN

Nσ2
0

XT
N PΠ0 XN

Nσ2
0


+ o(1)

→ Σθ0 ,

(A15)

which is the result of Lemma 2. The existence of Σθ0 is guaranteed by Assumptions A2 and A4.
According to the law of large numbers, (A14) holds, and thus (A9) holds.

It is easy to see that the terms of (A10) are linear or quadratic functions of VN , and therefore their
means are all op(1). By the central limit theorem of Kelejian and Prucha [23], we have

1
√

N

∂L̃N(θ0)
∂θ

D
−→ N(0,Ωθ0), (A16)

where

E
{

1
N
∂L̃N(θ0)
∂θ

∂L̃N(θ0)
∂θT

}
=


Ω11 ∗ ∗ ∗

Ω21 Ω22 ∗ ∗

Ω31 Ω32 Ω33 ∗

Ω41 Ω42 Ω43 Ω44

 + o(1)→ Ωθ0 , (A17)
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with

Ω11 =
1

2σ4
0

+
µ∗4 − 3σ4

0

4σ8
0

, Ω21 =
trG0

nσ2
0

+
(µ∗4 − 3σ4

0)trG0

2Nσ6
0

+
µ∗3RT PΠ0diag(PΠ0)

2Nσ6
0

,

Ω22 =
RT PΠ0 R

Nσ2
0

+
trG2

0 + trGT
0 G0

N
+

(µ∗4 − 3σ4
0)

∑N
i=1 G2

ii

Nσ4
0

+
2µ∗3RT PΠ0diag(GT

0 PΠ0)

Nσ4
0

,

Ω31 =
µ∗3ZT

N Ȧ(ZNα0)PΠ0diag(PΠ0)

2Nσ6
0

, Ω32 = −
ZT

N Ȧ(ZNα0)PΠ0 R
Nσ2

0

−
µ∗3ZT

N Ȧ(ZNα0)PΠ0diag(G0 PΠ0)

Nσ4
0

Ω33 =
ZT

N Ȧ(ZNα0)PΠ0 Ȧ(ZNα0)ZN

Nσ2
0

, Ω41 =
µ∗3XT

N PΠ0diag(PΠ0)

2Nσ6
0

,

Ω42 =
XT

N PΠ0 R
Nσ2

0

+
µ∗3XT

N PΠ0diag(G0 PΠ0)

Nσ4
0

, Ω43 = −
XT

N PΠ0 Ȧ(ZNα0)ZN

Nσ2
0

, Ω44 =
XT

N PΠ0 XN

Nσ2
0

.

It is not difficult to observe that when ϵi follows N(0, σ2
0), we have µ∗3 = 0, µ∗4 = 3σ4

0, i.e.,Ωθ0 = Σθ0 . □
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