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Abstract: Possible dependence across spatial units is a relevant issue in many areas in practice. In
this paper, we consider the partially linear single-index spatial autoregressive model to analyze the
dependence of the spatial units and suggest an estimation method. An algorithm procedure is proposed
to estimate the link function for the single index and the parameters in the single index, as well as the
parameters in the linear component and the spatial parameter of the model. The nonparametric function
is estimated based on B-spline approximation. The Nelder-Mead iteration algorithm is adopted to
calculate the parametric and nonparametric parts simultaneously in the optimization. The asymptotic
properties of parameter and function estimates are established. Monte Carlo simulation studies are
conducted to investigate the performance of the proposed estimation methodology and calculation
procedure. Furthermore, we use the proposed method to analyze air quality data and rural household
income data in China.
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1. Introduction

In empirical practice of economics and statistics, possible dependence across spatial units is a
relevant issue in urban, real estate, regional, public, agricultural, environmental economics, and
industrial organization [1]. Many studies have proposed approaches and techniques to deal with these
problems by imposing some structures on the model in order to capture spatial dependence or spatial
autocorrelation in cross-sectional and/or panel data. In recent years, spatial autoregressive (SAR)
models have attracted great interest due to their usefulness in practice. For instance, SAR models
have the property of using autocorrelation structures according to spatial patterns on data. These
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models allow for the analysis of spatial dependencies and interactions among observations, making
them particularly useful in fields such as geography, environmental science, and urban planning where
spatial relationships play crucial roles.

Lee [2] explained that ordinary least squares (OLS) estimators can be inconsistent for estimating
an SAR model due to the fact that the spatial lagged variables can be correlated with the disturbances
in a spatial model. In order to obtain a consistent estimator, Lee [1] proposed the quasi-maximum
likelihood estimator (QMLE) for the SAR model, investigated the asymptotic properties of QMLE,
and found out that the rates of convergence of QMLE may depend on some general features of the
spatial weight matrix of the model. However, the quasi-maximum likelihood procedures often pose
computational challenges when dealing with large sample sizes, as analytical solutions are not available
and numerical methods must be employed to obtain numerical solutions. Kelejian and Prucha [3]
proposed the generalized spatial two-stage least squares procedure for estimating the SAR model in
which they demonstrated consistency and asymptotic normality of the resulting estimator. However,
the estimator is not asymptotically effective. Lee [4] proposed best spatial two stage least squares
estimators for the SAR model to improve the efficiency of the estimator. Su [5] extended the SAR to
a semi-parametric setting and proposed the GMM estimation method, and showed that the resulting
estimator is consistent and asymptotically normal. Xu and Lee [6] proposed the maximum likelihood
estimator (MLE) for the SAR Tobit model and studied the asymptotic properties.

Recently, there has been a growing literature on semiparametric spatial autoregressive models.
Invoking the flexibility of partial linear model, Su and Jin [7] developed asymptotic theories for the
QMLE of partial linear SAR models based on the profile quasi-maximum likelihood theme. In Su and
Jin [7], the rate of convergence of the spatial parameter estimator depends on some general features of
the spatial weight matrix of the model. Du et al. [8] proposed the partial linear additive SAR model.
Obviously, the model proposed by Du et al. [8] did not impose any interaction within nonparametric
components in spatial data. Therefore, the proposed method by Du et al. [8] cannot solve the problem
of interaction effects on response variables in spatial data. Moreover, the nonparametric components
are subject to the curse of dimensionality and can only accommodate low-dimensional covariates; see
Wang [9]. The single-index model is an important tool in multivariate nonparametric regression. By
reducing the dimensionality from multivariate predictors to a univariate index, single-index models
avoid the so-called “curse of dimensionality” while still capturing important features in
high-dimensional data. Cheng and Chen [10] introduced the partially linear single-index spatial
autoregressive model (PLSISARM), employing local linear approximation to estimate unknown link
functions and utilizing MLE. In contrast to the partial linear SAR model and the partial linear additive
SAR model, PLSISARM considers covariate interactions within its nonparametric component. This
paper proposes a new estimation procedure for PLSISARM. Specifically, we utilize B-splines to
approximate the unknown link function, enhancing smoothness, and adopt QMLE as the estimation
method. We also introduce a feasible Nelder-Mead iteration algorithm tailored for this new estimation
procedure. Furthermore, we establish the asymptotic properties for the QMLE. Finally, we
demonstrate the application of PLSISARM on two distinct datasets from meteorology and economics,
thereby extending the practical utility of the model. Compared to Cheng and Chen’s work [10],
B-spline approximation is computationally more efficient and smoother than local linear
approximation, facilitating easier interpretation in practical applications. Additionally, this paper
employs QMLE instead of MLE, resulting in differences in asymptotic distributions. Notably, when
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the error term does not satisfy the normal distribution, QMLE can still estimate the asymptotic
variance, while MLE fails to do so.

This paper is organized as follows. In Section 2, we describe the technical setting and propose the
estimation procedure for PLSISARM via QMLE. In Section 3, we establish the asymptotic properties
for the proposed procedure. In Section 4, we present the simulation studies to assess the finite sample
performance of the proposed procedure. In Section 5, we analyze two real data sets to illustrate the
practical usefulness of the proposed model. In Section 6, we conclude the paper. The appendix
provides the proofs of the main results.

2. The model and estimation procedures

We consider the partially linear single-index spatial autoregressive model (PLSISARM)
YN = /lWNYN + XNﬂ + g(ZNa') + VNa (21)

where N is the total number of spatial units; Yy is the N-dimensional vector of observations of the
dependent variable; Wy is an N X N specified constant spatial weight matrix with zero diagonal
elements, the weights obtained based on physical distance, social networks, or “economic” distance;
Xy = (x1,%2,...,xy)" and Zy = (21,22,...,25)" are the N X p and N x d matrices of regressors,
respectively; g is an unknown differentiable function, the nonparametric components assume that the
influence of the covariates z can be collapsed to a single index, z’ @, via a nonparametric link function
g a € Ré|lell = 1, and the first nonzero element of a is positive for identifiability; and
Vy = (e,6,...,ey) is an N-dimensional vector of i.i.d. disturbances with zero mean and finite
variance 0.

Remark 1: PLSISARM is flexible enough to cover a variety of situations. When 4 = 0, 8 = 0, and
d = 1, the proposed model is reduced to the partial linear single-index model, the single-index spatial
autoregressive model, and the partial linear spatial autoregressive model, respectively.

In order to obtain the estimator of the parameters 6 = (o2, A, a”, B7)" and the function g(-), similar
to Lee [1] and Su and Jin [7], we maximize the following log quasi-likelihood function to obtain the
estimator

N N 1
Ly(8, 8() = == log(2) - 7 log o + log |My()| — ﬁvli(owzv(o),

where Sy(1) = Iy — AWy, and Vy(0) = Yy — AW Yy — X\ B — g(Z ya). Since the infinite parameter g(-)
in the objective function Ly(#) is unknown, we are unable to maximize Ly(6) to obtain the estimator
of @ directly. The B-spline method has been widely used in estimation for nonparametric models and
semi-parametric models [11]. B-splines also have numerous precedences for their application in semi-
parametric spatial autoregressive models, as demonstrated in Zhang et al. [12], Du et al. [8], and Tian
et al. [13]. In this paper, we use B-splines to approximate the nonparametric function g(¢) due to the
computational advantages. Let B(t) = (By(?), ..., Bxy+41(1))" be a set of B-spline basis functions of
order / + 1 withknotsa =1 <t <... <1, <tg,+1 =bfora < b e R. Therefore, approximating g(t)
by a linear combination of normalized B-spline basis functions, it has

Ky+I+1

81 ~ Z Bi(tyy; = B(®"y,

J=1
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where v = (y1,..., y(KN+,+1))T is the unknown spline coefficient vector. Based on the above B-spline
approximation, model (2.1) can be rewritten as

Yy = AWyYy + XNﬂ + H(ZN(Z)’}/ + Vy, (2.2)

where II(Zya) = (B(z] ), ..., B(zLa))".

Given a, apply the QMLE method [1] to model (2.2) to obtain the estimator of § = (02, 4, 87, y")T,
denoted as 8(0') = (cX(a), ), fi(a)T, #(a@)")T. Next, we consider the estimation of the parameter a.
Substitute 3(&) back into model (2.2). Then we have

Yy = Aa@)WyYy + XpyB(@) + I(Zya)i(a) + Vy. (2.3)
Minimize the following objective function to achieve the estimator of a:
Ov(@) = Yy — Aa)WyYy - XyB(@) - I Zya) ()|

Once we get the estimator @&, we can further obtain 8(&) = (62(&), A(&), B@)", #(@)")". Then, we can
achieve the estimator of g(+) as § = B(z" &)

To elaborate the ideas of the estimation methodology, we detail the algorithm as follows.
Algorithm for stage one: Calculate the initial value of the parameters § = (0,4, 87,a”)” and y.

Step 1. Calculate the initial value of « for iteration.
Consider the following model:

Yy = AWNYy + XNﬁ + Zya + Vy. (24)

Apply the QMLE of Lee (2004) to model (2.4) to get the estimator of the parameters. Denote the
initial value of @ as @©. Normalize & so that [|&”| = 1 and the first element of &, &\” > 0.

Step 2. Substitute @ into model (2.2) and calculate the QMLE for the parameters in the following
model:
Yy = AWNYy + XyB + I(Zya )y + Vy.

Let the resulting estimators 2©, B and $© be the initial values of A, 8 and 7, respectively.
Algorithm for stage two: The iteration procedure.

Step 3. Update the estimation for a.
Substitute the estimators A®, %, and $® into model (2.2) to obtain the following model:

Yy = AOWyYy + XyB% + I(Zya)7™® + Vy.
Then, minimize the following objective function to get the update estimation of a, &**V,
Q@) = Yy = AOWyYy - XyBY — N(Zya)7 VI

Normalize &**P so that ||@**P|| = 1 and the first element of &**D, &E"“) > (0. The optimization
for Q() is completed by the Nelder-Mead method of the “optim” function in R.
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Step 4. Update the estimation for 0%, A, B, and y.

Substitute &**1 into model (2.2) and calculate the QMLE for the parameters in the following
model to get the update estimators G>K+DA*+D &+ and H*+D.

YN = AWNYN + XNﬂ + H(ZN&(k+1))y + VN'

Repeat Step 3 and Step 4 until the estimator converges, which is
Jk+1 3k) 2 A (k+1 A k)12 n(k+1 n(k)(12 o (k+1 ~ (k)12
AT = AP 4110 = @O + 1B - BOI + I - 7O < €,

where C is a predetermined constant which is C = 10 in the simulation studies. Thus, the estimator
for g() is B(ZT&(kH))T?(kH).

Selection of knots: It is very important to select the knots (including the number of knots and
the position of knots for B-spline estimation) in this paper. We use the BIC criterion to select the
number of knots. Given the number of knots, it is suggested that the position of the knots could be
equally spaced or equally spaced sample quantiles of the predictor variables. The order of splines is
not necessarily better when it is higher. To avoid overfitting, lower-order splines, such as quadratic and
cubic splines, are typically chosen. However, the approximation accuracy also needs to be considered,
so cubic splines are often selected in practice, which is also a common choice in literature [8, 13]. In
this paper, we use cubic splines with equally spaced sample quantiles of the predictor variable knots to
estimate the B-spline basis.

3. Asymptotic properties

For the purpose of statistical inference, the large-sample properties of the estimates need to be
established. Let M(1) = I — AWy, and for any matrix M, denote the projection matrix Py, = I —
M(M”M)~'MT" . The log likelihood function of model (2.2) is

N N 1
Ly(8.7) =~ log@m) ~ — log o + log |M(2)| - FV§(¢9, Y)Va(8,7), 3.1)

where Vy(0,y) = My(AD)Yy — XyB — II(Zya)y. Then, we concentrate out y, and, when it does not
cause ambiguity, denote II(Z ya) simply as II. The concentrated log likelihood function of @ is

- N 1
Ly(0) ) log 0 + log [M(2)| — 2fﬂ(M(/l)sz — XxB) Pn(M(D)Yy — XnP). (3.2)
Moreover, let n = (4, @). Given 5, one can derive the solutions for £ and o? from (3.2), which are
B = (X{PuXy) ' Xy PuM(D)Yy, (3.3)

and
. 1
&) = N [M()Yy]" PLPp, x, PuM(D)Yy. (3.4)

By concentrating 8 and o from (3.2), we derive the concentrated likelihood
- N N N A
Ly = 5 log 27 — = + log [M()| - - log{d~(m)}: (3.5)
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Let 6y = (03,15, B85)" with gy = (Ao, @})" be the true parameters. Define G(1) = WyM™'(2),
My = M(),Gy = WyM;' and Ay = (g(lea'O), e g(zﬁa'o))T. We then rewrite the model as

Yy = XnBo + 120G (XyBo + Ag) + My' Vy, (3.6)

which is derived from the equation M|, !'= I+ 2Gy. Denote Q(n7) = maxg, E(Ly(0)). Then, the
solution of this problem is

B () = (XyPaXy) ' Xy PuMO)M; (X + Ao) (3.7)
and
. 1
o> () =Y (Ao + (Ag — YR)" PLPp,x, Pri (Ag + (10 — DR)
3.8)
0'2 T (
+ Wotr (PuM(OM;') Ppox, PuM()M;'|.

where R = Go(XyBy + Ap). Consequently,

N N N .
Q) = - log2m = = + log|M(D)] - — log{o™* (1)}. (3.9)

Let Iy = IZyay), 1y = E(l&]?), and My = E(|l&|*). Before establishing the asymptotic properties of
the estimator, we need to make the following assumptions:

Al. (i) The disturbance ¢ is i.i.d. with 0 mean and 0'% variance, and the moment E(|e|*") exists for
some v > 0.
(i1) The regressors x; and z; are i.i.d. non-stochastic sequences and have bounded support sets on
R” and RY, respectively.
(iii) The distribution of z] e is absolutely continuous and its density is bounded away from zero
and infinity on U = {u = z/ @, z; € R%, |le|| = 1}.
(iv) The real-valued function g(-) € C"(U), where r < 2.

A2. (1) The matrix M(Q) is nonsingular for all 2 € (-1, 1).
(i1) The entries w;; of Wy satisfies that w; = O, 21}’:1 wi; = 1, and w;; = O,(1/hy) for all
i,j=1,2,...,N with limy_. hy/N = 0.
(iii) The matrices Wy and M I"are uniformly bounded in both row and column sums. The matrix
M~'(2) is uniformly bounded in both row and column sums, uniformly in A in a compact
parameter space A C (—1, 1). The true A, is an interior point of A.

A3. (i) Let; < ... < t, be the interior knots of U and ¢, #,+1 the bound points of U. Letting
0j = tj — tj_1, there exists a constant C such that max{o;}/ min{o;} < C and max{p;} = o(K;,l).
(i1) The knots number Ky is assumed to satisfy Ky = O(N ﬁ).

. T )
A4. The limit lim,,_,, (X N, —A(Znap)Z y, RN) Pn, (X N, —A(Z yay)Z y, RN) exists and is nonsingular,
where A(Z ya,) = diag {g(ziTao), e, g(zlf,ao)} and g is the first derivative of g.
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Assumption A1 outlines the essential features of the disturbances, regressors, and function g for the
model. Assumption A2 is parallel to Assumption 2, Assumption 5, and Assumption 7 of Lee [1], which
characterize the spatial weight matrix Wy. Assumption A3 constrains the characteristics of the knots
in B-splines, in parallel with the work of Du et al. [8] and Tian et al. [13]. Assumption A4 ensures the
existence of the limiting distribution of the parameters. Subsequently, we present the following main
results.

Theorem 1. Suppose that Assumptions AI1-A4 hold. Then, 6y is globally identifiable and 0 is consistent
for 6.

Theorem 2. Suppose that Assumptions AI1-A4 hold. Then, g(z' &) i g(z’ ay), where « 2 denotes
convergence in probability.

Theorem 3. Suppose that Assumptions A1-A4 hold. Then, we have VN (9 -6y 2, N(O, E;OI 9902501 ),
where “2” denotes convergence in distribution, and

18°Ly(60)
N 06000

Xy, = lim E{ (3.10)

N—>oo

[ 1 0Ly(8) ALn(60)
, Qg = lim E{N 50 207 }

N—oo

which are defined in the appendix. Additionally, if €; follows N(0O, 0'3), then VN(6 — 6,) 2, N, Z‘.;Ol .

The proofs of all theorems can be found in the Appendix. Theorem 1 and Theorem 2 guarantee the
consistency of the parameter  and the link function g, respectively, while Theorem 3 provides the
asymptotic distribution of @, which can be used for statistical inference. By substituting the
corresponding parts in €, and X, with estimators, we can obtain the sample analog of the
asymptotic variance.

4. Simulation studies

In this section, we investigate the finite sample performance of the proposed estimation procedures
via Monte Carlo simulation studies. The data is generated from the following model:

YN = AOWNYN + XNﬂO + g(ZNQ'()) + VN, (41)
where Xy = (x1,%2,...,xy)" and x; = (x;1, x)7, with x;; and x; values generated from N(0, 1),
i=12,...,N; Zy = (z1,22,...,zy)" and z; = (zi1,20,25)", With z;, zp, and z; values generated

from U0,1),i=1,2,...,N; Bo = (1,-DT; @y = (1,-1, )T; and Vy ~ N(0, 0*Iy). In the simulation,
similar to Carroll etal. [14] and Yu etal. [15], suppose g(f) = sin (%4 ), where A = V3/2-1.645/ V12,
C = V3/2 + 1.645/ V12. We focus on the spatial scenario in Case [16] where there are R districts and
each district contains m members. The sample size is N = mR. The weight matrix is Wy = Ix ® B,,,
where B,, = (lml,{1 -1,)/(m-1), 1, is the m-dimensional column vector of ones, and ® is the Kronecker
product. The numerical study examined different values of R from 10, 30, and 50, and m from 20, 40,
and 60. For comparison, three different values are considered for Ay, that is, 4o = 0.1, 0.4, 0.7, which
represents from weak to strong spatial dependence of the responses. Ay = 0.1 represents weak spatial
dependence, Ay = 0.4 represents mild spatial dependence, and 1, = 0.7 represents relatively strong
spatial dependence.

Electronic Research Archive Volume 32, Issue 12, 6822—6846.



6829

We use the empirical bias (denoted as Bias) and the empirical standard deviation (denoted as SD)
to measure the effectiveness of the parameter estimates. Additionally, we have calculated the
asymptotic standard deviation (denoted as AsySD) of the parameter estimates to verify the validity of
the asymptotic theory. To assess the accuracy of the proposed nonparametric estimator, we choose the
integrated mean squared error as the criterion for judgment, and its empirical version is defined as

— 1

K
IMSE®) = - > [8(t) ~ s@)T’, (4.2)
i=1

where K = 500 is the number of grid points on [0, 1].

Tables 1-9 show the simulation results based on 1000 replications. We can observe the following:
(i) As the sample size N = mR increases, the SD of the parameter estimators (except A) and the 1 MSE
of ¢ decreases, with the bias remaining near 0, suggesting the consistency of the estimators. (ii) The
performance of A improves as R increases, but it does not necessarily improve as m increases. This
phenomenon is expected, as only increasing m can violate Assumption A2, leading to the unavailability
of asymptotic properties. (iii) The performance of A improves as A, increases. This can be understood
through the knowledge obtained from the asymptotic variance, as the asymptotic variance of A strongly
depends on Ay. (iv) The SD of the estimator for finite-dimensional parameters is positively correlated
with o2 (v) The empirical standard deviation of the parameter estimates is very close to the asymptotic
standard deviation, validating the asymptotic theory presented in Theorem 3. The performance of the
nonparametric estimates for g is demonstrated in Figure 1. The true function g and the mean of each
estimated g over the 1000 replicates are plotted. We only display the figure for 4o = 0.7, R = 30, m =
40 and o = 1.0, as the plots for other occasions are similar. To save spaces, we omit them.

Table 1. Simulation results for (1o, 0?) = (0.1, 0.1).

R=10 R =20 R =30

o> m  Bst Big SD/IMSE AysSD Bias SD/IMSE AysSD Bias SD/IMSE AysSD
(x100)  (x100)  (x100) (x100) (x100) (x100)  (x100) (x100) (x100)
1 —2.068 7.815 7424 -0.561 4.134 4340  —0.357 2985 3.272
& 0081 2465 2713 0.040  1.841 1910  0.007  1.521 1.593
& 0077 2452 3.077 -0.005 1.825 2428  0.164 1510 2.128
o @ —0.168 2611 2652  -0.131 1.799 1970  0.095  1.564 1.604
Bi —0.031 2.467 2245  -0.021 1.666 1.559  -0.071 1.226 1.276
B —0.089 2.151 2.140  0.120  1.668 1.620  -0.082 1.392 1.329

2 1.740 0.646 0.640
1 -0964 5.106 5864 —-0.544 4.920 5494  -0.070 2.663 2.858
& —0.408 2.134 2121  0.145 1335 1503  0.058  1.169 1.202
& —0.166 1.893 2824  -0.031 1.327 1879  —0.123 1.294 1.549
0.1 30 & 0133 2074 2206 -0225 1.436 1486  -0221 1.209 1.234
B —0.100 1.872 1.865  —0.002 1.329 1311  —-0.083 1.039 1.056
B —0.032 1.795 1.835  —-0.015 1.269 1246  0.017  1.150 1.074

2 1.115 0.308 0.266
1 —0992 5.732 5806 —-0.595 3.698 4065 —0.407 3.423 3.369
&  —0.037 1.800 1744 —0.057 1.206 1328  0.019  1.049 1.110
& —0.153 1.799 2235  -0.039 1.222 1.674  0.015 1.076 1.409
40 a3 -0201 1815 1917  —0.021 1.230 1318  —0.033 1.086 1.064
B —0.143  1.590 1.577  -0.102 1.162 1.127 -0.030 0.896 0.919
B 0.068  1.506 1489  0.057 1.164 1.115  -0.010 0.849 0.914

2 0.935 0.272 0.194
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Table 2. Simulation results for (1, 0%) = (0.1,0.5).

R=10 R=20 R =30

o> m  Est Big SD/IMSE AysSD Bias SD/IMSE AysSD Bias SD/IMSE AysSD
(x100)  (x100) (x100)  (x100)  (x100) (x100)  (x100)  (x100) (x100)

1 —6.699 15934 14490 -1.845 8318 8.602 —1.086 5.995 6.552

& 0212 5748 5793  0.024 4215 4089  0.053 3.354 3.398

& 0388 5727 6257 0312 4.187 4911 0482  3.456 4.340

20 & —0735 6232 5.636 —0.163 4.094 4202 0.124 3428 3.450

B —0.142 5.544 5017  -0.013 3.727 3485  -0.179 2.742 2.852

B —0.107 4.823 4769 0309  3.730 3.620 -0.162 3.111 2.970

2 0000 13.118 0.000  0.000  3.909 0.000  0.000 3.874 0.000

A -3.985 11.105 11979 -2.138 9.421 10.243  —0.577 5.524 5.866

& —0.527 4.884 4463 0214  3.026 3272 0.039  2.545 2.629

&  —0.060 4.362 5489  0.107  3.044 3.953  0.018  2.664 3.316

05 39 & —0.106 4816 4547  -0362 3.297 3235  —0.196 2.594 2.698

B —0203 4.197 4165 —0.033 2971 2929 -0.111 2318 2.360

B —0.104 4.009 4.098  —0.041 2.830 2785  0.009  2.569 2.400

2 0000 6997 0.000  0.000  1.630 0.000  0.000 1305 0.000

1 =3703 12.135 11.881 -1.955 7.685 8209 -1419 6.876 6.748

& —0216 4.136 3750  —0.162 2.749 2901  -0.058 2351 2.420

& —0.161 4.038 4569  —0.017 2.754 3.549  -0.003 2.286 2.999

40 @ 0384 4132 4049  —0.053 2.791 2879  —-0.089 2435 2.328

B —0.339 3.555 3524 -0.255 2.599 2518  -0.081 2.003 2.055

B> 0137  3.378 3329 0136  2.605 2493  -0.020 1.901 2.043

2 0000 5.859 0.000  0.000  1.434 0.000  0.000  0.969 0.000

Table 3. Simulation results for (1o, 02) = (0.1, 1.0).
R=10 R=20 R=30

o> m  Est Bi SD/IMSE AysSD Bias SD/IMSE AysSD Bias SD/IMSE AysSD
(x100)  (x100)  (x100) (x100) (x100) (x100)  (x100) (x100) (x100)

1 -9291 19.214 16714 -2.673 10.363 10.183 —1.577 17.620 7.865

& 0128  8.474 7703 -0.143  6.207 5502 0.060  4.861 4.582

& 0755  8.554 7853  0.651  6.177 6215 0.773  5.033 5.582

20 @ —1407 9367 7479  -0.182 5.976 5639  0.075  4.936 4.685

B —0242 17.864 7.089  -0.003 5.274 4929  —0.263 3.882 4.032

B —0.152 6.828 6.718  0.463  5.283 5117 -0222 4.399 4.197

2 0000 49203 0.000  0.000  11.433 0.000  0.000  9.957 0.000

A —6.432  14.909 14.607 -3.069 11.441 11455 -1.045 7.182 7.253

& —0.812 17.361 5913 0201 4372 4480  —0.020 3.610 3.628

& 0089 6425 6.731 0228  4.404 5217 0.125 3782 4.457

10 39 @& 0379 7.204 5935 -0.506 4.767 4437  —0211 3.714 3.723

B —0306 5.954 5.885  —0.052 4.200 4140  -0.132 3.277 3.337

B —0.146 5.670 5789  —-0.066 3.998 3.937  0.003  3.632 3.392

2 0000 20222 0.000  0.000  3.543 0.000  0.000 2762 0.000

A1 —5.679 15.696 14471 -2917 10.009 9.900 -2.105 8.628 8.077

& —0.460 6.139 5062 -0.301 3.975 3.990 -0.124 3.331 3.323

& —0.308 5.910 5829  0.010 3.974 4718  0.039  3.296 4.002

40 @& —0811 6.150 5395  —0.101 4.001 3.962  -0.133 3.497 3.206

Bi —0.489 5.027 4983  -0370 3.678 3.560 —0.117 2.834 2.905

B 0.168  4.794 4707  0.194  3.685 3525  -0.026 2.689 2.888

2 0000 17.027 0.000  0.000  3.131 0.000  0.000  2.042 0.000

Electronic Research Archive

Volume 32, Issue 12, 6822—6846.



6831

Table 4. Simulation results for (1, 0>) = (0.4,0.1).

R=10 R=20 R =30

o> m  Est Big SD/IMSE AysSD Bias SD/IMSE AysSD Bias SD/IMSE AysSD
(x100)  (x100) (x100)  (x100)  (x100) (x100)  (x100) (x100) (x100)

1 —0.800 2.980 3354  -0368 2712 3.104 —0.343 2522 2.746

& —0351 2597 2622  -0.026 1.763 1924  0.041 1461 1.529

& 0018 2478 3395  -0.027 1.718 2302 0.066  1.497 1.866

20 @ 0204 2453 2675 —-0.082 1.812 1.906  —0.029 1.401 1.544

B —0.037 2.398 2291  0.019  1.558 1516  0.012  1.248 1.291

B> 0.083 2486 2320  0.008  1.684 1.663  —0.008 1.347 1.304

2 0000 1.363 0.000  0.000  0.470 0.000  0.000  0.398 0.000

A —0455 4.187 4588  —0.859 3.775 3735 -0.240 2.161 2.486

& -0.001 2.042 2119  -0.190 1.448 1.547  -0.098 1.110 1.249

& 0006  2.059 2674  -0.055 1355 1973  0.036  1.130 1.622

0.1 39 @& —0.100 1.955 2.095 0.083  1.450 1.542  0.100  1.154 1.269

B 0.069  2.136 1978  —0.044 1.291 1280 —0.021 1.050 1.094

B> 0.036  1.846 1.876  0.040 1314 1301 0.070  1.112 1.110

2 0000 1.022 0.000  0.000  0.372 0.000  0.000  0.261 0.000

1 -1456 6.342 6.789  —0.285 2.684 2982  -0.258 1.863 2.066

& 0003  1.635 1765  —0.041 1.220 1357  0.001  0.989 1.060

& 0130  1.687 2224 -0.047 1219 1.666  —0.002 0.980 1.441

40 @ 0056 1592 1756 —0.047 1.323 1274 -0.028 0.996 1.108

B —0.190 1.544 1563  —0.031 1.181 1.154  -0.094 0.901 0.883

B 0.047  1.622 1.612  0.031 1.123 1.127  0.094  0.867 0.881

2 0000 0.544 0.000  0.000  0.224 0.000  0.000  0.204 0.000

Table 5. Simulation results for (1o, 02) = (0.4,0.5).
R=10 R=20 R =30

o> m  Est Bi SD/IMSE AysSD Bias SD/IMSE AysSD Bias SD/IMSE AysSD
(x100)  (x100) (x100)  (x100)  (x100) (x100)  (x100)  (x100) (x100)

1 -2551 6428 6.921 -1.347 5.261 5408 —1.159 5.111 5512

& -1.011 6.023 5449  —-0.153 4.006 4109  —0.034 3.360 3.341

& 0246  5.782 6.641  0.082  3.936 4687 0.135  3.424 3.954

20 @ 0372 5617 5599  —0.184 4.094 4088  —0.119 3.199 3.370

B —0.018 5.346 5100  0.071  3.490 3373 0011 2795 2.887

B 0.141  5.562 5.184  0.021  3.764 3717  -0.023 3.006 2915

2 0000 9.385 0.000  0.000  2.622 0.000  0.000  2.171 0.000

A1 —2258 8.623 8.838  -2215 7.157 6.847  —-0.951 4.330 4794

& —0.065 4.623 4430  —0370 3.192 3354 —0.261 2457 2.736

& 0185 4719 5178  -0.084 2953 4100  0.096  2.542 3.466

05 30 & -0312 4.609 4362  0.028  3.290 3333 0.190  2.604 2.780

B 0.109  4.793 4418  —-0.113 2.886 2863  -0.013 2347 2.444

B 0074  4.123 4190  0.116  2.940 2908  0.157 2482 2.482

2 0000 6.673 0.000  0.000  1.950 0.000  0.000  1.387 0.000

A1 —4.679 12349 11.693 —-1.092 5.388 5820 -0.792 3.788 4.170

&  —0.301 3.719 3777 -0.129 2753 2971  -0.037 2256 2.313

& 0104  3.869 4524  —0.089 2.741 3580  0.015 2238 3.053

40 @& 0028 3842 3765  —0.166 2.950 2797 -0.079 2.270 2.409

Bi —0431 3.446 3.493  —0.086 2.642 2579  -0.208 2.015 1.972

B 0.134  3.638 3.603  0.062 2513 2519 0200  1.938 1.969

2 0000 299 0.000  0.000  1.179 0.000  0.000  1.087 0.000
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Table 6. Simulation results for (1, 0%) = (0.4, 1.0).

R=10 R=20 R =30

o> m  Est Big SD/IMSE AysSD Bias SD/IMSE AysSD Bias SD/IMSE AysSD
(x100)  (x100) (x100)  (x100)  (x100) (x100)  (x100)  (x100) (x100)

1 -3973 8.684 8745 2112 6.863 6.549 -1.631 6.150 6.165

& —2.137 9.396 7.106  —0.358 5.916 5517  —-0.081 4.870 4.585

&, 0343 8941 8.030 0249  5.800 5972 0.198 4913 5.202

20 @ 0349 8572 7308 0300 6.003 5508  —-0.322 4.639 4.610

B —0.012 7.559 7.181  0.107  4.939 4750  0.012  3.955 4.083

B 0.166  7.874 7326 0.032  5.322 5256  —-0.035 4.251 4.123

2 0000 43795 0.000  0.000  6.492 0.000  0.000  4.961 0.000

A1 -3.646 11.145 10405 -2.870 8.577 7700  —1.459 5.481 5.636

& —-0.124 6.847 5811 —0.485 4.573 4584  —0.422 3.511 3.769

& 0484  7.000 6.294  —0.068 4.257 5353 0.143  3.638 4.612

10 30 & 0649 6991 5713 -0.114 4.712 4538 0222 3732 3.827

B 0.140  6.805 6.238  —0.159 4.085 4050  —0.009 3.318 3.456

B 0.112  5.826 5920  0.173  4.159 4112 0223 3.506 3.509

g 0000 21.085 0.000  0.000  4.331 0.000  0.000  3.008 0.000

1 —6211 14.879 12.560 -1.642 6.765 6.878 —1.179 4.884 5.097

& —0.538 5.429 5.084 -0218 3.955 4090 —0.075 3.241 3.180

& 0.190  5.685 5754  —-0.067 3.928 4791 0073  3.203 4.054

40 @ 0082 5625 5072 -0273 4225 3.862  —0.123 3.257 3.299

B —0.598 4.874 4937  —0.126 3.738 3.647  -0.295 2.849 2.788

B 0187  5.147 5.094  0.08  3.556 3.562 0281  2.741 2.783

2 0000 7.083 0.000  0.000 2533 0.000  0.000 2357 0.000

Table 7. Simulation results for (1o, 02) = (0.7, 0.1).
R=10 R=20 R =30

o> m  Est Bi SD/IMSE AysSD Bias SD/IMSE AysSD Bias SD/IMSE AysSD
(x100)  (x100) (x100)  (x100)  (x100) (x100)  (x100)  (x100) (x100)

1 -0434 2291 3358 -0.129 1.438 1.794  -0.175 1.278 1.570

& 0089 2754 2642 -0.053 1.828 1936 0.040  1.540 1.564

& 0058  2.484 3.117 -0.066 1.782 2307  -0.031 1.426 1.877

20 @ —0213 2694 2615  —0.098 1.824 1.846  —0.128 1.476 1.583

B —0.019 2.029 2065 —-0.005 1.676 1.621  0.052  1.291 1.310

B> —0.013 2.145 209 -0.057 1.613 1.608  0.040  1.258 1.281

2 0000 1.354 0.000  0.000  0.490 0.000  0.000  0.361 0.000

A1 —0.388 2.051 2027 -0264 1361 1537  —0.058 1.050 1.155

& —0.152  1.990 2034  —0.091 1.422 1.488  —0.021 1.058 1.231

&  —0.040 2.004 2.697  0.038 1453 1920 -0.069 1.078 1.566

0.1 39 @& 0014 1828 2119 0.075  1.438 1555  -0.079 1.108 1.187

B 0.078  1.829 1.762  -0.045 1.255 1.294  0.061  1.087 1.081

B> 0.008  1.670 1.650  0.085  1.300 1279  0.000  1.043 1.067

2 0000 0.778 0.000  0.000 0.414 0.000  0.000  0.260 0.000

A1 —0475 2.033 2286  —0.179 1.438 1539  —0.107 1.066 1.206

& —0.092 1.655 1718  —-0.118 1.136 1324 0014  0.965 1.148

& —0.081 1.661 2348  0.035  1.185 1.757  -0.116 0.933 1.397

40 @& —0061 1.659 1.857 0.117  1.186 1375  -0.154 0.999 1.078

B 0.120 1611 1.557  0.011  1.119 1.120  0.030  0.906 0.903

B —0.067 1.624 1.544  0.006  1.083 1.102  —-0.053 0.929 0.894

2 0000 0479 0.000  0.000  0.297 0.000  0.000  0.169 0.000
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Table 8. Simulation results for (1, o%) = (0.7,0.5).

R=10 R =20 R =30

o> m  Est Big SD/IMSE AysSD Bias SD/IMSE AysSD Bias SD/IMSE AysSD
(x100)  (x100) (x100)  (x100)  (x100) (x100)  (x100)  (x100) (x100)

1 —1.631 4.793 5.106 —-0.544 2.864 3.065 -0.671 2.486 2616

& 0119  6.104 5610  —0.201 4.160 4143  -0.096 3.417 3.394

&, 0226  5.444 6.099  -0.074 4.091 4709  0.023 3216 3.951

20 @ —078 5997 5498  —0.323 4.221 3.958  -0.167 3.318 3.427

B —0.011 4.555 4618  0.009  3.744 3.614  0.120  2.886 2.929

B —0.085 4.792 4653 —0.136 3.601 3.583  0.086  2.803 2.847

2 0.000 9417 0.000  0.000  2.820 0.000  0.000  1.949 0.000

A1 -1376 4.181 3.938  -0.776 2.758 2882  —0.283 2.090 2.195

& -0413 4.540 4326  —0.131 3.248 3224 -0.110 2.393 2.689

& —0.016 4.607 5387  0.140  3.232 3.990  -0.132 2436 3.335

05 39 & —0.122 4.260 4469  —0.003 3.268 3362 -0.178 2.522 2.594

B 0127  4.098 3.940  —0.077 2.805 2.891  0.136 2432 2.415

B —0.013 3.724 3.678  0.184 2910 2856 0.000 2325 2.376

2 0000 4.647 0.000  0.000 2271 0.000  0.000 1345 0.000

A —1617 4363 4359  —0.743 2.908 2922  -0383 2.153 2.295

& -0275 3.756 3704  —0.142  2.699 2.889  —-0.003 2211 2.510

& —0.120 3.799 4818  —0.019 2.799 3721  -0.208 2.133 2.994

40 @ 0215 3758 3.983  -0.074 2762 2988  —-0.331 2.260 2.363

B 0286  3.601 3480  0.026  2.500 2504 0.071  2.024 2.015

B, —0.156 3.634 3452 0.004 2422 2460  -0.122 2.077 1.999

2 0.000 2.669 0.000  0.000 1.610 0.000  0.000  0.868 0.000

Table 9. Simulation results for (1o, 0?) = (0.7, 1.0).
R=10 R =20 R =30

o m  Est Bigs  SD/IMSE AysSD Bias  SD/IMSE AysSD Bias  SD/IMSE AysSD
(x100)  (x100) (x100)  (x100)  (x100) (x100)  (x100)  (x100) (x100)

A 2416 6.098 5732 -0.840 3.611 3.548  -0.989 3.058 2.986

& —0292  9.656 7409  -0471 6.112 5587  —-0.218 4.930 4.645

& 0100  8.394 7384  —-0.067 6.080 6011  0.115 4611 5217

20 @ —1.822 9.440 7208 0578 6.223 5339  -0.262 4.807 4.675

B 0.028  6.444 6.527  0.011  5.294 5104  0.163  4.081 4.141

B —0.226 6.763 6.569  —-0.198 5.082 5060  0.122  3.962 4.014

2 0000 42319 0.000  0.000  7.594 0.000  0.000 4.378 0.000

A —2.066 5.395 4810 -1.102 3.510 3423 0453 2.651 2.634

& -0715 6.799 5759  —0207 4.721 4401  -0201 3.424 3.704

& 0082  7.043 6.681 0265  4.655 5213 -0.179 3.481 4.460

1.0 39 @ -0400 6.480 5907 —0.101 4.718 4583  -0299 3.626 3.574

B 0159 5811 5570  —-0.106 3.966 4086  0.191  3.440 3.413

B —0.020 5.264 5190 0264  4.118 4034 0001  3.283 3.351

2 0000  14.225 0.000  0.000  5.203 0.000  0.000  2.863 0.000

A 2448 5.830 5197  -1.135 3.682 3464  —0.568 2.735 2.725

& —0.488 5.445 5025 -0.175 3.918 3.966  -0.035 3.183 3.449

&, —0.086 5.558 6.191  0.044  4.085 4933  —0262 3.105 4.008

40 & —0376 5397 5378  —-0.196 3.996 4086  —0.495 3.292 3.255

B 0409  5.09 4919  0.036  3.533 3.540  0.103  2.860 2.846

B —0217 5.140 4880  0.002  3.425 3474 0172 2937 2.825

2 0000 6.278 0.000  0.000  3.606 0.000  0.000  1.831 0.000
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Figure 1. Curve estimate for a single replication of the model simulation study. The true
cure g (solid curve), the mean of § with B-splines (degree = 3) over 1000 simulations (1y =
0.7,R = 30,m = 40, 0> = 1.0), and the 95% point-wise confidence interval for g are shown.

5. Real data analysis

In this section, we illustrate the usefulness of the proposed estimation method via analysis of real
data, especially for the dependence across spatial units.

5.1. China air quality data

Air quality is gaining more and more attention in China and is closely related to people’s daily
life. Wu and Kuo [17] utilized statistical models to analyze air quality in Taiwan, China. Chen et
al. [18] employed machine learning methods to predict air quality in Hangzhou, China, highlighting
the need to consider the impact of neighboring areas on air quality. The factors affecting air quality
are complex and can be divided into several categories, such as urban characteristics, meteorological
factors, emission factors, and so on. According to the fluidity of the air, the air quality of the core
city is related to the surrounding cities and the degree of influence is related to the spatial distance.
Therefore, we select the air quality data of cities in China to illustrate the usefulness of the proposed
method in Section 2.

The data set contains information of 28 different capital cities in China including air quality index,
urban characteristics, meteorological factors, and emission factors from January 1st to April 30th,
2014. There are 13 variables (see Table 10).
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Table 10. Variables in China air quality data.

Variables Explanation (data sources)

TEMP Temperature )

WIND Wind (¥

RAIN Rainfall (¥

PEOPLE Urban resident population/(10,000 people)
CAR Civil vehicle ownership/vehicle ®
BUILDING Building construction area/(10,000 m?) @
SO2 Industrial sulfur dioxide emissions/t ®
YANCHEN Industrial soot emissions/t @

GREEN Green area/hm? @

GN Dichotomous variable, the heating period in northern area in China(GN=1)
LONG Longitude coordinates ¥

LATT Latitude coordinates

AQI Air quality index (V)

*data sources: (1) China Weather Network http://www.weather.com.cn/, (2) China Regional Economic Statistics Yearbook, (3) China

City Statistical Yearbook, (4) http://www.gpsspg.com/maps.htm.

Air quality index (AQI) is the dependent variable. Urban permanent population (PEOPLE), green
area (GREEN), civil vehicle ownership (CAR), industrial sulfur dioxide emissions (SO2), industrial
soot emissions (YANCHEN), temperature (TEMP), wind (WIND), rainfall (RAIN), building
construction area (BUILDING), and the heating problem in northern China (GN) are the independent
variables. The model considers the influence of the spatial structure factors of the city on the air
quality. According to the research background, we consider the variables log(RAIN), log(PEOPLE),
log(CAR), log(BUILDING), GN as the linear independent variables and the variables TEMP, WIND,
log(S02), log(YANCHEN), log(GREEN) as the non-parametric independent variables.

Therefore, we consider fitting the data via the following model:

+ VN, (51)

5 5
Yy = AWNYy + Zﬁij +8 (Z a;Z;

=1 =1

where Yy is AQI; Xy, X5, X3, X4, X5 are log(RAIN), log(PEOPLE), log(CAR), log(BUILDING), GN,
respectively; and Z,,Z,,Z5,Z,,7Z5s are TEMP, WIND, log(S0O2), log(YANCHEN), log(GREEN),
respectively. Logarithmic transformation for variables is taken to ease off the trouble caused by big
gaps in the domain [19].

According to the practice in Du et al. [8], Su and Yang [20], and Xie et al. [21], let the weight

matrix Wy = (w;;) be
Wi = max(l - @ O)
ij d() s P
where d;; > 0 represents the spatial distance of the ith and jth units, the Euclidean distance is calculated
in terms of the longitude and latitude coordinates of any two cities, and dj is the threshold distance
chosen to median of d;;. We choose the weight matrix in this form as the dependent variable AQI is
spatially correlated. That is, when the distance between two cities is far enough, there is tiny spatial
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relation between them, and a threshold distance is chosen to set the tiny weight to be zero to alleviate
the potential effect of tiny weights on the data analysis. Furthermore, we normalize the weight matrix
so that the sum of rows of Wy is equal to 1, i.e., Z?’zl w;; = 1. Obviously, the spatial weight matrix
Wy 1s exogenous. We use the proposed method in Section 2 to analyze the processed data. The
analysis results for the estimation of unknown parametric coeflicients are listed in Table 11. For the
nonparametric component, the univariate function estimates are displayed in Figure 2.

Table 11. Analysis results for China air quality data.

log(RAIN) log(PEOPLE) log(CAR) log(BUILDING) GN
Parameter A

(X1) (X2) (X3) (X4) (Xs)
Estimation 0.261 0.437 0.351 0.120 0.075 1.232
SD 0.134 0.259 0.314 0.247 0.166 0.434
TEMP WIND log(S0O2) log(YANCHEN) log(GREEN)
Parameter
(Z1) (Z2) (Z3) (Z4) (Zs)
Estimation 0.023 —-0.188 0.981 0.027 0.020
SD 0.296 0.329 0.510 0.617 0.324

From the analysis results, the estimation of the spatial parameter is 1 = 0.261, which indicates a
substantial spatial relationship exists among the AQI of the cities in China. The regression coefficients
of X; — X5 are positive, implying that the factors of rainfall, urban resident population, civil vehicle
ownership/vehicle, building construction area, and the heating period have positive effects on AQI of
the cites. The results are generally consistent with our judgment and expectations. As population
grows, resource consumption increases, resulting in air pollution. Increased car ownership and
construction area lead to increased emissions of pollutants. Increased and large amounts of pollutants
during the heating period in the northern area lead to a drop of air quality.

From Figure 2, in the nonparametric component of the model, we observe that the single-index has
an “S” shape nonlinear effect on the AQI of the city. It indicates that there exists interaction among
the covariates in the nonparametric components. From the results of the single-index coefficients of
Z, — Zs, the variables temperature, wind, industrial sulfur dioxide emissions, industrial soot
emissions, and green area have non-linear effects on the AQI. The single-index coefficients of
temperature, industrial sulfur dioxide emissions, industrial soot emissions, green area are positive,
and the single-index coefficient of wind are negative. The results are generally consistent with our
judgment and expectations. Increased wind power helps the diffusion of pollutants in the air, which
improves air quality and leads to a decline of AQI. Increased temperature is not conducive to the
decomposition of air pollutants. Increased industrial sulfur dioxide and industrial soot emissions lead
to an increase of air pollutants.

However, more rainfall is conducive to reducing the presence of pollutants in the air and increased
green plants are conducive to absorption and degradation of air pollutants, which contradicts our data
analysis results (X; = 0.437,Zs = 0.020). The model has not undergone variable selection, therefore
significance cannot be solely determined by coefficient values. The abnormality of these two
coefficients may indicate that they are statistically insignificant.
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estimated values of g

single—index

Figure 2. Curve estimate for China air quality data, with Z” & on the x-axis and 2(¢) on the
y-axis.

5.2. Rural household income data

The development of the rural economy is significant to the overall economic development in China.
Recently, it is facing many problems, such as large populations, low incomes and increasing difficulty
in employment. Among them, rural household income is affected by multiple factors. We take the
rural household income data of Fuping County in China as an example, including 209 villages, to
analyze the factors of rural household income by the proposed method in Section 1. In this model, the
dependent variable is the per capita net income of farmers, and the independent variables are 7 factors,
including rural natural conditions, village industries, and labor skills, which have great impact on rural
household income (see Table 12).

Table 12. Variables in rural household income data.

Variables Explanation

income the per capita net income of farmers

agNum the number of labors engaging in agriculture
urNum the number of labors left the farm for urban
farm Farmland

agFa Facility agriculture

area Effective irrigation area

indusNum Number of rural industries

workNum Number of skilled workers
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We consider the variables agNum and farm as the linear independent variables because they
represent agriculture-related productivity and means of production in economics, which signify the
scale of agriculture. We anticipate that ’income’ will exhibit a linear relationship with respect to these
two factors. The other variables urNum, agFa, area, indusNum, workNum are the non-parametric
independent variables. Next, we fit the data via the following model:

YN = /IWNY + X]ﬁ] + X2,82 + g(ZlCZ] + Zzaz + Z3a3 + Z4CZ4 + Z5CZ5) + VN, (52)

where Yy is income; X, X, are agNum and farm, respectively; and Z,, Z,, Z3, Z,, Z 5 are urNum, agFa,
area, indusNum, and workNum, respectively.

Obtained from spatial geographic information, we can get the neighboring situation of the villages.
Therefore,

(5.3)

1 Adjacent
Wij = .
0 Otherwise

where w;; = 1 represents adjacent of the ith and jth villages; when two villages are not adjacent,
there is tiny spatial relation between them, then w;; = 0 . As the response variable could be spatially
correlated, we choose the weight matrix in this form. Furthermore, we normalize the weight matrix so
that the sum of rows of Wy is equal to 1, i.e., Z?’zl w;; = 1. Obviously, the spatial weight matrix Wy
is exogenous. The analysis results for the estimation of unknown parametric coeflicients are listed in
Table 13. For the nonparametric components, the univariate function estimate is displayed in Figure 3.

Table 13. Analysis results for rural household income data.

agNum  farm urNum  agFa area indusNum  workNum
Parameter A

(X1) (X>) (Z1) (Z2) (Z3) (Z4) (Zs)
Estimation 0242  -0.044  -0.228  0.309 -0.349 0826  0.310 -0.072
SD 0.072  0.073 0.072 0.285 0.189 0.283  0.359 0.367

According to the result, the estimation of the spatial parameter is A = 0.260 indicates a substantial
spatial relationship exists in the model. The regression coefficients of X; and X, are negative, which
implies that the amount of labor engaging in agriculture and farmland would not increase rural
household income.

From Figure 3, in the nonparametric parts of the model, we observe that single-index has a
nonlinear effect on rural household income. There exists interaction among the covariates in the
nonparametric components. The single-index coefficients of Z; — Zs (variables urNum, agFa, area,
indusNum, workNum) have significant non-linear effects on rural household income.

Further research is needed to develop a model structure selection method for partially linear single-
index spatial autoregressive models. Variable selection decides which covariates have linear effects,
and which have nonlinear effects for data analysis.
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estimated values of g
0.0
!

single-index

Figure 3. Curve estimate for rural household income data, with Z7& on the x-axis and 2(¢)
on the y-axis.

6. Conclusions

In this paper, B-spline approximation is employed for the link function in the partially linear single-
index spatial autoregressive model, offering a smoother and more interpretable alternative compared
to local linear approximation. A feasible Nelder-Mead iteration algorithm tailored for this model is
proposed to solve the QMLE. The parameter estimation and function estimation have been proven to
be consistent, and the asymptotic distribution of parameter estimates for non-normal, general error
terms 1s provided. A series of Monte Carlo simulations are performed to verify the effectiveness of
the proposed model and estimation method. Finally, the model and method are applied to air quality
datasets and rural income datasets, thereby extending the application scope of the model.
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Appendix

Lemma 1. Suppose that assumptions Al-A4 hold. Then, #HTPHOAO = o0,(1), for
H = VN’ AO’XN’ WYN’A(ZNQ)ZN'

Proof. According to Corollary 6.21 in Schumaker [22], we find that [[A¢—Iyyl| = O,( VNK™). Using

this, similar to Lemma 1 of Tian et al. [13], it suffices to show II\/LNHTPHOAOII = 0,(1). O
Lemma 2.  Suppose that assumptions Al-A4 hold. Then,
(Pl , . . HGT HGT

t(PnPI;\l/IXNPH) -1+ 0(1)’”;“) =1+ o(1), t(GI(\)]Pn) — t(;;o) n 0(1)’1(60;1160) _ t(G](\),Go) +o(1).

Proof. Given that the eigenvalues of a projection matrix consist solely of Os and 1s, with the number
of 1s equaling the rank of the matrix, and recognizing that the trace of a matrix is equivalent to the sum
of its eigenvalues, we can readily prove the lemma. O

Proof of Theorem 1. First, we prove that n N 10. Similar to Su and Jin [7] and Cheng and Chen [10],
it suffices to show that

|
~ L) = 0@p) = 0,p(D), (AL)
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and
1
limsup max —[Q(n) — O(ny)] < 0, for any € > 0. (A2)
Ne(p) N

N—oco MENe

where N{(1) is the complement of an open neighborhood of i with diameter €.
To prove (A1), it is sufficient to show that

&) — o> () = 0,(1). (A3)

From (3.4), we have

A 1
0'2(']) = N [M(/l)YN]T P{[PPHXNPHM(/DYN-
(A4)
1 _ T _
= (2o = DR + MMV + Ao| P{Pryx, Pu[(Ao - DR + M(OM;'Vy + A,|.
Then,

. . 1 _ 1 _
@) - o () = 2(A — /I)NRTPITTPPHXNPHM(/I)MO vy + ZﬁAg PLPp x, PuM()M,'Vy,.
+ (MM, ' VI PLPp,x, PuM(A)M,'Vy
A5)
o2 (
-2 [(PHM(A)M(;I)T Ppuxy PUMOOM;!

= 2(do — DH (1)) + 2H (1) + H3(1p) = o (1.

Similar to the proof of Theorem 1 in Tian et al. [13], by using Lemma 1, it is easy to prove that
Hy(n) = 0,(1), Hi(n) = 0,(1), and H3(n) = 0'3(1]) + 0,(1) such that (A1) holds. Furthermore, referring
to Tian et al. [13], based on Lemma 1, we can also prove the validity of (A2). The primary difference
lies in the use of an unknown single-index function in our cross-sectional data context, whereas Tian
et al. [13] employed a g-dimensional unknown function in their panel data setting.

Next, we prove that 6 N 2. Given that we now have A = Ay + 0,(1) and & = @y + 0,(1), due
to the continuity of zl.Ta' in terms of a, it follows that II(Z y&) = II(Z ya,)(1 + 0,(1)) = H(1 + 0,(1)).
Recall that

1
2 () = 5 [MOYN]" Py Py, PaM(DYy
(A6)
1
=N [Ag + Vi + (Ao — V(R + GoV)]" PiPpyxyPr[Ag + Vi + (1o — DR + Gy V)],

The second equality in the above equation relies on the fact that M I'= I + 2yG, and the projection
matrix Pp,x, eliminates the term Xyfy. Then, by Lemma 1 and Lemma 2, we have

1 A A
E[67(0)] = - E {[Ao + Vi + (o= DR+ GoV)| PhPryx, Prr[ Ao + Vi + (1~ DR + GOVN)]} +o(1)

RyPuProxyPuRy  ViGoPuProx, P HGovN)} +o(1)
N N

1 .
= E {NV}V"P{[PPHXNPHVN + Ay — ) (
=i +o(l).
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and
1
Varlg* (i) = ~E [ Ao + Vil PiProx, Pu Ao+ Vyl} - 0§ +o(1)

N
L.
= o7 |- 30) Z pii + oo{tr(PLPpyx Pn)Y + 2ir(PLPpyx, Pn)| — o + o(1)
i=1
B oo{tr(PLPpyx, Pn))
= N2
where p;; is the diagonal element of P} Pp,x,Pu. Then, we have 6*(f) = o + 0,(1). The proof
of consistency for 4%(f)) is analogous to that of 62(#)): it suffices to demonstrate that its expectation
converges to By and its variance converges to 0. Further elaboration on this point is omitted here for
brevity. O

— oy +o(1) = o(1).

Proof of Theorem 2. According to Theorem 1, we have I(Z y@) = II(Zya)(1+0,(1)) = Hp(1+0,(1)).
Then, A .
¥ —yo = MN(ZNa)IN(Zya)] ' M Zya) [ M (DY y — XuBl - 70
= [M§ M) T (M~ ()Y y = XnBI(1 + 0,(1)) = 7o
= ([T o]~ TV + [T THp] ' TG A + [TI§ o]~ TI) X (B — B)
+ (Ao — D] T (R + GoVi)Y(1 + 0,(1))

where A = Ay — llyyo. Similar to Theorem 3 of Tian et al. [13], we can prove all the components
above are 0,(1), which indicates || — yoll = 0,(1).

According to de Boor [11], similar to Theorem 3 in Tian et al. [13], B-splines have the following
properties: Bj(u) > 0, Zf:N] Bj(u) = 1 foru € U, and

Ky+I+1

c Ky+l+1 2 c

1 2 2 2
. < Biw)| du< ——2> 3
Ky+1+1 ,Z:; K fU[ ; K J(u)] “ Ky+1+1 “ K

where C; and C, are positive constants. With Cororllary 6.21 of Schumaker [22], we have ||B(u)"yo —
gl = O(Ky). Then,

12— glP = f [8(u) — g(w)Pdu
U
_ f (B 5 — B yo + B v0 — gu)l’du
U
<2 fU (B 3 — yo)Pdu +2 fU (B y0 — g(w)Pdu
2

C N 2 T 2
<—" |- +2||B - d
o llly Yoll I1B(u)" yo — g(w)|"du

= 0,(1).
N ~ P
s0 8(Z1L&) — g(Zh ). o

Proof of Theorem 3. By Theorem 3.2 of Lee [1] and Theorem 3 of Tian et al. [13], the asymptotic
normality of the parameter @ can be derived from the Taylor expansion of dLy(6)/06 = 0. The first-
order Taylor expansion at 6 is
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ILn(6y) O Ln(6)

o0 oeagr =0
where 0" lies between 6, and 0. Then,
1 PLy@9)\" 1 0Ly
VN@O -6y = —|— A7
0= 6) (N 00067 ) VN 06 (A7)

The proof of the theorem can be accomplished using Slusky’s theorem, if it holds that

1 (')ZN(OO) D
0 — N(0,Q4,) (A8)

and _

1 O*Ly(O) P

— — H .

N 06607 %
Recall Iy = I(Zya) and Py, = I — IH(II{ M) 'II}. Comining Lemma 1 and Assumption Al, we
have

(A9)

1 oly@) VN 1

VN 07 - 252 + 2 \/NVJ{,PHOVN +0,(1),
\;Naig/(fo) __ \}]VtrGO + (f%lx/ﬁ(RTPHOVN + VIGI Py, Vy) + 0,(1), "
\/lﬁaigc(fo) = _Ggl\/z—vzﬁA(ZNQ/o)PnoVN +0,(1),
\/lﬁaig/g%) } U%)IWXTVPHOVN +op(D),
and A*Ly(0) N 1 r

5 = 3~ s (MYy = XyB) Pu(M(DYy - XoP).

% = WYy Pa(MDYy ~ Xaf),

a;fﬁ;f,) = L ZLAZy0) Pa(M)Yy - XuB),

a;f? (;Z) =~ L XEPa(M(DYy ~ X,B),

L All
% = —%(WNYN)TPHWNYN — 1rG*(Q), (A
a;%f) = SZRA@@ P, a;i—g(;) =~ XLPaW, Yy,

% = —%Z;{IA(ZN(Z)A(ZNQ)ZN, a;jgg;) = % ZT A(Zya)PuXy,
% = —%X%PHXN.
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Notice that the above equation is linear, quadratic, or cubic in terms of B, a, 1/ o2, except for terms
involving A. Combining |8 — 6|| = 0,(1), by continuity we can obtain

18Ly@) 1 PLy@)

9 Ly (%) Al2
N 0006" N 00007 (A12)
if #% N ﬁ%. To show this, by the mean value theorem we have
1 2Ly 1 Ly (6y) 1 1)1 - 2 ., 33
VA pf N(WNYN) PaWyYy — N(ﬂ - )ir[G°(D].  (A13)

where A lies between A* and ;. According to Assumption A2, it easy to know that t7{G*()]/n =
0,(hy") = 0,(1), so (A12) is proved. To show

2F 2F
1 6°Ln(6y) P £ 1 6°Ln(6)) (Al4)
N 06060" N 96007 |-
we have
)z
g [ 1L
N 0600"
r T
l‘rPn0 AOP"()AO _L % % %
Noj No§ 204
R'Pn,Ag | tr[GiPny]l  R"PuyR = trG:  o3tr{G] PuyGol
—_— k) *
Nod no? No? N N
— . 0 0 ) . .
- _ Z(I}VA(ZNQ)PHOAO _ ZJA(Zye)PnyR ZLAZNe)A(Zya)Zy .
No No? No?
0 0 70
X% Pn, Ao XL Py R XL PnAZya)Zy XL PuyXy
| Noj Noj No Noj (A15)
1
— * * *
Yy
20-0 T 2 2 T
Gy R PuyR G otrlGy Gol
no? No? N N * *
— 0 0 . . . 1)
o _ ZJAZya)PnyR ZLAZya)A(Zya)Zy . +o(
2 2
TNO-O T N(TO T
0 X} Puy R _ X\ PnAZye)Zy X[ PngXy
L No'% Na'% N(r(z)
- 20(),

which is the result of Lemma 2. The existence of X4, is guaranteed by Assumptions A2 and A4.
According to the law of large numbers, (A14) holds, and thus (A9) holds.

It is easy to see that the terms of (A10) are linear or quadratic functions of Vy, and therefore their
means are all 0,(1). By the central limit theorem of Kelejian and Prucha [23], we have

where

A

1 GZ,N(OO) D
—_— N0, Qy), Al6
N — N(0, Q) (A16)
Q= * *
1 OLn(6p) OLN(6p) Qyp Qp  *
1 _ D)o Q. Al7
YT, 207 Qy Qs O + o(1) = Qg (A17)
Q Qpn Q3 Qu
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with
o L =30y Gy G4-309uGo iR Padiag(Pn,)
U0t T 4t TR 2N 2No$ ’
o R"Py,R trG3+trGlGy (- 30 YN, G>  2uiR" Py diag(GY Py,)
= —+ + + ,
> No} N Nog Nojg
W ZTA(Z yay) Ppydiag(Pr,) ZLA(Zyaog)Pn,R 1152, A(Zyay) Pr,diag(GoPr,)
Q3 = 3 32 == 5 - 7
2No Noy No,
3 Z3A(Z yao) P, A(Zyay)Zy B w5 X}, Pn,diag(Pu,)
33 No% 41 2N‘78 5
XIY\;PHOR /.l;;X](]PHOdlag(G()PHO) X[{/PHOA(ZNQ'O)ZN X}\}PHOXN
Qp = >+ , =43 = > ) Q44=—2-
Nog No Noy

It is not difficult to observe that when ¢; follows N(0, 05), we have 1} = 0, 1, = 307, i.e., Qg = Zg,. O

‘%1\54’5 AIMS Press

Electronic Research Archive

©2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

Volume 32, Issue 12, 6822—6846.


https://creativecommons.org/licenses/by/4.0

	Introduction
	The model and estimation procedures
	Asymptotic properties
	Simulation studies
	Real data analysis
	China air quality data
	Rural household income data

	Conclusions

