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Abstract: Pornographic images not only pollute the internet environment, but also potentially harm
societal values and the mental health of young people. Therefore, accurately classifying and filtering
pornographic images is crucial to maintaining the safety of the online community. In this paper, we
propose a novel pornographic image classification model named ViT-DualAtt. The model adopts a
CNN-Transformer hierarchical structure, combining the strengths of Convolutional Neural Networks
(CNNs) and Transformers to effectively capture and integrate both local and global features, thereby
enhancing feature representation accuracy and diversity. Moreover, the model integrates multi-head
attention and convolutional block attention mechanisms to further improve classification accuracy.
Experiments were conducted using the nsfw data scrapper dataset publicly available on GitHub by
data scientist Alexander Kim. Our results demonstrated that ViT-DualAtt achieved a classification
accuracy of 97.2% ± 0.1% in pornographic image classification tasks, outperforming the current
state-of-the-art model (RepVGG-SimAM) by 2.7%. Furthermore, the model achieves a pornographic
image miss rate of only 1.6%, significantly reducing the risk of pornographic image dissemination on
internet platforms.
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1. Introduction

In the digital era, a vast amount of visual content inundates the internet at an unpredictable pace,
most of which includes pornography. Pornographic images typically feature explicit or suggestive
material deemed inappropriate for public viewing. These images not only degrade user experience but
also give rise to societal moral concerns and pose security risks. Prolonged exposure to pornography
may negatively impact individuals’ mental health, relationships, and daily lives. At a societal level,
pornography undermines public moral standards and could potentially affect social stability. Therefore,
accurately identifying and filtering pornographic images is crucial for maintaining the safety of online
communities and protecting user security.

Image recognition is one of the key technologies in digital image processing during the
information age [1], particularly crucial in the field of pornographic image classification. Early
research predominantly focused on machine learning methods, often using metrics such as the
proportion of exposed skin [2] or specific shapes and textures of intimate body parts [3] as
classification criteria. However, these approaches have limitations when dealing with complex and
diverse pornographic images. The rapid advancement of deep learning technology has brought new
hope to pornographic image classification. Deep learning has made significant strides in tasks such as
image classification [4], object detection [5], and image retrieval [6], providing robust technical
support for pornographic image classification. Transformer [7], as a powerful deep learning
architecture, has achieved notable success in natural language processing and is beginning to explore
applications in image classification [8, 9]. However, there is a lack of research on its application in
pornographic image classification.

To overcome the limitations of traditional methods and explore a more efficient solution for
pornographic image classification, we propose a novel hybrid model called ViT-DualAtt. This model
combines the strengths of Convolutional Neural Networks (CNNs), attention mechanisms
(Multi-Head Attention and Convolutional Block Attention), and Vision Transformers (ViT) to
improve the accuracy and robustness of pornographic image classification. CNNs excel at extracting
local features. Transformers capture global features through multi-head attention modules and
enhance the model’s focus on relevant parts of the image through convolutional block attention
modules. Their integration enables the model to achieve comprehensive and precise feature
representation, significantly boosting classification performance.

This paper, titled “ViT-DualAtt”, makes the following three key contributions:

1) We propose a novel hybrid model, ViT-DualAtt, which integrates the strengths of CNN, multi-head
attention, convolutional block attention mechanisms, and Vision Transformer. This model aims to
enhance the accuracy and robustness of pornographic image classification, overcoming limitations
of traditional approaches.

2) ViT-DualAtt comprehensively integrates multi-head attention and convolutional block attention
mechanisms. Multi-head attention helps capture global dependencies, while convolutional block
attention optimizes the representation of local features, effectively improving the model’s
understanding of fine-grained features and global contextual information.

3) By utilizing CNN for extracting local features and Transformer’s self-attention mechanism for
capturing global features, ViT-DualAtt achieves more comprehensive and precise feature
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representation. This fusion not only enhances the model’s ability to abstract complex image
features but also improves accuracy in classification tasks.

4) Extensive experiments on public datasets validate the effectiveness of ViT-DualAtt in pornographic
image classification tasks. Results demonstrate a significant performance with an accuracy
of 97.2% ± 0.1% and a pornographic image miss rate of only 1.6%. Compared to other
state-of-the-art models, our approach shows notable improvements in performance, confirming its
practical effectiveness and superiority.

2. Related works

Great progress has been made in the field of pornographic image classification, spanning a range
of techniques from traditional machine learning methods to deep learning approaches. Traditional
methods rely on manual feature extraction and classical classification algorithms, while modern
methods leverage convolutional neural networks and other deep learning models to enhance
classification accuracy and robustness. In this section, we first review pornographic image
classification based on traditional machine learning methods, then discuss deep learning-based
approaches and their latest advancements in this field, and finally introduce the applications of
multi-head attention mechanisms and CBAM mechanisms in image classification.

2.1. Methods based on traditional machine learning

Early methods for pornographic image classification mainly relied on traditional image processing
techniques. These approaches typically involved preprocessing the images first, followed by using
classifiers such as Support Vector Machines (SVM) [10], K-Nearest Neighbors (KNN) [11], and Naive
Bayes [12] for classification. For example, Jones and Rehg [13] developed a color model in the RGB
color space and determined whether regions in the image were skin areas based on the brightness of
each channel. Lin et al. [14] extracted skin regions from images, identified the correlation between
skin and non-skin regions, and fed this correlation into an SVM classifier. Lv et al. [15] proposed a
pornographic image filtering model based on high-level semantic features, optimizing the Bag of Visual
Words (BoVW) model by integrating contextual visual words and spatial-related high-level semantic
features to construct a high-level semantic dictionary. Dong et al. [16] introduced a pornographic image
detection method that combined image perceptual features with image-text features. This method
integrated text information extracted from image filenames, headers, or webpages with visual features
such as texture and local shapes, and used an SVM classifier for classification.

While these methods have shown some effectiveness in certain scenarios, they often fall short
when dealing with complex and rapidly changing pornographic images. Particularly when confronted
with large-scale, high-dimensional datasets of such images, their performance and efficiency can be
compromised. With the rise of deep learning, researchers have increasingly turned their attention to
neural network-based approaches to better capture advanced features in pornographic images.

2.2. Methods based on deep learning

Deep learning has achieved significant success in the field of image classification, making it a
crucial tool for addressing the problem of pornographic image classification. Deep learning methods
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utilize multi-layer neural network models to automatically learn high-level features from
pornographic images, enabling effective classification of complex content. For instance, Ying et
al. [17] proposed a deep convolutional neural network based on feature visualization analysis,
employing deconvolutional networks to visualize the features extracted by CNNs. Cheng et al. [18]
introduced an image classification approach using deep CNNs, incorporating a multitask learning
strategy to optimize the network with global and local information. Cai et al. [19] incorporated a
CBAM module into the ResNet101 network to classify gory and pornographic images, effectively
avoiding the problem of gradient vanishing during deep network training. Additionally, Cai et al. [20]
presented a classification method, RepVGG-SimAM, based on RepVGG and simple non-parametric
attention mechanisms (SimAM), enhancing neural networks’ capability to acquire more effective
information and improve inference speed. The abstracts of referenced studies are summarized in
Table 1.

Table 1. Reference overview.

Characteristics References Methods Limitations
Classification based on
skin area

[13] RGB color space It has achieved certain effectiveness in
certain scenarios, but appears to be
inadequate when dealing with complex
and diverse pornographic images.

[14] RGB + SVM
Classification based on
shape and texture

[15] BoVW
[16] BoVW + SVM

Deep learning

[17] CNN
The ability of feature extraction and
generalization is relatively insufficient.

[18] DCNN
[19] RenNet101 + CBAM
[20] RepVGG-SimAM

2.3. Multi-Head Attention mechanism

Multi-Head Attention (MHA) has become a powerful tool in the field of deep learning, particularly
suited for tasks that require a comprehensive understanding and integration of long-range
dependencies within data sequences. Initially demonstrating exceptional performance in natural
language processing tasks like machine translation, MHA has since been applied in computer vision,
including image classification. MHA works by computing multiple attention heads in parallel, with
each head responsible for learning different aspects of relationships and dependencies among the
input data. This parallel computation enables the model to capture diverse representations of the data,
enhancing its ability to distinguish complex patterns and relationships in intricate datasets. In image
classification, MHA enables the model to effectively integrate information across spatial dimensions
and capture both local and global dependencies within images. By simultaneously attending to
multiple positions at different levels of granularity, MHA helps extract robust features crucial for
accurate classification.

2.4. CBAM mechanism

The Convolutional Block Attention Module (CBAM) [21] integrates channel attention and spatial
attention to enhance neural networks’ performance in visual tasks. Channel attention adjusts the
importance of each channel, while spatial attention adjusts the importance of each spatial position in
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the feature maps. By embedding attention mechanisms within each module of convolutional neural
networks, CBAM enables dynamic learning and adjustment of both channel and spatial information in
feature maps. Channel attention computes importance weights for each channel using global average
pooling, which are then learned and used to adjust channel feature maps. Spatial attention employs
different convolutional kernels to capture spatial features at various scales and adjusts feature map
positions based on learned weights. Widely applied in image processing tasks, especially in image
classification [22] and object detection [23], CBAM provides a solid theoretical foundation and
practical guidance for its implementation.

3. Proposed method (ViT-DualAtt)

In this section,we introduce an improved pornographic image classification model based on a
CNN-Transformer hybrid structure, called ViT-DualAtt. This model combines the strengths of
Convolutional Neural Networks and Transformers, incorporating Multi-Head Attention and
Convolutional Block Attention Module (CBAM) mechanisms to enhance classification accuracy and
robustness. The architecture of the model is shown in Figure 1(b).

Figure 1. (a) The architecture of the ViT-DualAtt; and (b) Two transformer encoder blocks
with different attention mechanisms are employed. MHA refers to the Multi-Head Attention
module, while CBAM denotes the Convolutional Block Attention Module.

3.1. The CNN-Transformer backbone network

3.1.1. Convolutional Neural Network

In the recognition of pornographic images, convolutional neural networks play a crucial role. Their
primary function is to extract low-level features such as edges and textures from pornographic images
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through a series of convolution and pooling operations, thereby capturing fundamental local features.
As shown in the upper part of Figure 1(a), the CNN in this model consists of a 3 × 3 convolutional layer,
a ReLU activation layer, a max pooling layer, and a 2 × 2 transposed convolutional layer. The feature
extraction process is as follows: for an input pornographic image with dimensions of 3 × 224 × 224, the
convolution module processes it to produce a feature map of the same size, 3 × 224 × 224. This feature
map is then fused with the original image, resulting in an enriched feature map of 3 × 224 × 224, which
serves as the input for subsequent steps.

3.1.2. Vision Transformer

The Transformer model was initially designed for processing one-dimensional text data. It has
garnered attention for its impressive performance in machine translation and other natural language
processing (NLP) tasks [24]. The Vision Transformer [25] represents a novel architecture for visual
tasks that builds upon the original Transformer structure. To adapt the Transformer for image
processing, researchers have made several modifications and extensions. First, considering that
feature maps extracted by convolutional neural networks are two-dimensional, the model needs to
transform these feature maps to meet the Transformer’s requirements. This is done by dividing the
feature map into a series of patches and then applying a trainable linear transformation (also known as
an embedding layer) to each patch. Specifically, this transformation is achieved by learning an
embedding matrix E, which linearly projects each image patch into a vector space of dimension D.
This process not only converts image patches into vector form but also captures the potential
relationships between image patches through the learned embedding matrix. For classification tasks,
the model requires a special classification token, referred to as vclass. This token is combined with the
embedded image patches, enabling the model to perform image classification during processing.
Since the Transformer model is a sequential model and lacks information about the positions of
elements in the input sequence, it is necessary to add positional encodings Epos to each embedded
vector. This enables the model to understand the relative positions of the image patches in the original
image. The sequence of labeled embedded patches is shown in Eq (3.1):

z0 =
[
vclass ; x1

pE; x2
pE; . . . ; xN

p E
]
+ Epos, E ∈ R(P2·C)×D, Epos ∈ R(N+1)×D, (3.1)

where xi
pE is the embedding vector of the image block after linear transformation. N is the number of

patches generated, P is the size of the patch, C is the number of channels in the original image.
The embedded block sequence z0 is passed into the Transformer encoder. The encoder consists of

two key components: An attention module and a fully connected feed-forward dense block. In the
first L layers of the Transformer encoder (as shown on the left side of Figure 1(b)), the model uses
the Multi-Head Attention mechanism. The multi-head self-attention mechanism can capture long-
range dependencies between different parts of the image. Specifically, it computes multiple attention
heads in parallel, with each head learning different aspects of relationships and dependencies within
the input data, thus capturing image features on a global scale. This mechanism is particularly suited
for capturing global information and long-range dependencies in images. In the subsequent N layers
of the Transformer encoder (as shown on the right side of Figure 1(b)), the model introduces the
Convolutional Block Attention Module. CBAM enhances feature representation through two modules:
channel attention and spatial attention. The channel attention module focuses on which feature maps
are more important, while the spatial attention module focuses on which positions in the feature maps
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are more significant. CBAM effectively captures local features in images, improving the model’s
sensitivity to details. This design aims to fully utilize both local and global features of the image,
thereby enhancing classification accuracy. Each attention mechanism module is followed by a residual
connection and layer normalization. Residual connections enable gradients to flow directly back to
earlier layers, mitigating the vanishing gradient problem in deep networks and speeding up model
convergence. Layer normalization helps stabilize the output of each layer, improving the stability and
reliability of model training. After processing through multiple encoder layers, the classification token
is extracted and passed to an external classifier to predict the image’s class label y. The process of the
encoder can be expressed by Eqs (3.2)–(3.6):

z
′

l = MHS A(LN(zl−1)) + zl−1, l = 1 . . . L, (3.2)

zl = MLP(LN(z
′

l)) + z
′

l, l = 1 . . . L, (3.3)

z
′

n = CBAM(LN(zn−1)) + zn−1, n = L + 1 . . .N, (3.4)

zn = MLP(LN(z
′

n)) + z
′

n, n = L + 1 . . .N, (3.5)

y = S o f tmax(MLP(z0
N)). (3.6)

3.2. Attention module

Attention is a crucial mechanism that can be utilized in various deep learning models across different
domains and tasks [26]. In deep learning, attention mechanisms have become a crucial technology for
handling complex data and tasks. By dynamically adjusting the focus of the model on different parts
of the input data, they significantly enhance model performance. In this section, we provide a detailed
introduction to multi-head attention and convolutional block attention mechanisms.

3.2.1. Multi-Head Attention module

Multi-Head Attention is an important variant of the attention mechanism, building on self-attention
by introducing the concept of “multiple heads”. This enables the model to focus on different aspects of
the input information in parallel. The core idea is to split the input information into multiple subspaces
with each head performing its own attention calculation independently. The benefit of this approach
is that it enables parallel processing of different pieces of information, thus improving computational
efficiency. Since each head has its own set of weight matrices and attention computation process,
they can learn different feature representations and dependencies. This diversity of information helps
the model capture richer contextual information. The calculation process for multi-head attention is
as follows:

Input transformation: For an input sequence X, three learnable weight matrices WQ , WK , and WV

are used to generate the Query, Key, and Value matrices, respectively, as shown in Eq (3.7):

Q = X ·WQ,K = X ·WK ,V = X ·WV . (3.7)

Calculating attention weights: For each attention head, compute the dot product of the queries and
keys, then apply scaling and the Softmax function to generate the attention weight matrix, as shown in
Eq (3.8):

Attention(Q,K,V) = S o f tmax
(

QKT

√
dk

)
V, (3.8)
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where dk is the dimension of the keys, used to scale the dot product results.
Concatenate attention heads: The outputs of all attention heads are concatenated and passed through

a linear transformation to produce the final attention output, as shown in Eq (3.9):

MultiHead(Q,K,V) = Concat [head1, head2, . . . , headn] WO, (3.9)

where headi = Attention(Q,K,V), h is the number of attention heads, and WO is the linear
transformation matrix.

3.2.2. CBAM module

The CBAM module enables the model to dynamically adjust the feature map weights, thereby
directing greater focus towards the most crucial feature channels and spatial locations. This results in
a notable enhancement in the model’s ability to accurately recognize pornographic images, thereby
significantly improving the overall recognition accuracy of the pornographic image recognition task.
The CBAM module comprises four parts: input features, channel attention module, spatial attention
module, and output, as shown in Figure 2. Assuming the dimensions of the input feature map Fin are
C × H ×W, where C represents the number of channels, and H and W represent the height and width
of the feature map respectively, in accordance with the established processing sequence of the CBAM
module, two principal attention maps can be generated in sequence: A one-dimensional channel
attention map MC and a two-dimensional spatial attention map MS . The attention process can be
represented by Eqs (3.10) and (3.11):

F
′

= MC(Fin) ⊗ Fin, (3.10)

F
′′

= MS (F
′

) ⊗ F
′

. (3.11)

The symbol ⊗ represents element-wise multiplication and F
′′

refers to the final Output Feature.

Figure 2. CBAM structure.

After being processed by the channel attention module, the channel dimension of the input feature
Fin remains unchanged, while the spatial dimension is compressed. This process is achieved through
two parallel operations: the maximum pooling layer and the average pooling layer. The input feature
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Fin is acted upon separately by two pooling layers, resulting in two feature maps of size C × 1 × 1.
These feature maps are then inputted into the Shared Multilayer Perceptron (Shared MLP) module. In
the Shared MLP module, the number of channels of the feature maps is compressed to 1/R times of the
original, where R is the reduction rate. This parameter is used to reduce computational complexity and
prevent overfitting. The number of channels is then expanded to its original size to match the channel
dimension of the original feature map. Prior to the expansion, it typically undergoes a ReLU activation
function to increase the model’s nonlinearity. Following the Shared MLP process, two feature maps
of size C × 1 × 1 are obtained. The final channel attention map MC is obtained by summing the two
feature maps element by element and normalizing them using a Sigmoid activation function. Each
element of MC is a value between 0 and 1, indicating the weight of importance for the corresponding
channel. The channel attention mechanism is calculated using the Eq (3.12):

MC(Fin) = σ (MLP(AvgPool(Fin)) + MLP(MaxPool(Fin))) . (3.12)

After being processed by the spatial attention module, the spatial dimension of the input feature
F
′

remains unchanged, while the channel dimension is compressed. The output F
′

of the channel
attention module is passed through both the maximum pooling layer and the average pooling layer
to obtain two feature maps of size 1 × H × W. These two feature maps capture the maximum and
average response at spatial locations, respectively. This helps the model understand the distribution of
spatial information. Subsequently, the ‘Concat’ operation is employed to fuse these two 1 × H × W
feature maps along the channel dimension, resulting in a combined feature map of size 2 × H × W.
The splicing operation enables the model to consider both the maximum and average information on
spatial locations, resulting in a more comprehensive understanding of spatial attention. Next, a 7 × 7
convolutional layer is applied to the concatenated feature map, producing a single-channel feature map.
The convolutional layer merges the spatial information and produces a single-channel feature map with
the same dimensions as the original. The resulting convolved feature map is then normalized using a
Sigmoid activation function to generate the spatial attention map MS . Each element of MS is a value
between 0 and 1, indicating the importance weight of the corresponding spatial location. The spatial
attention mechanism is calculated using the Eq (3.13):

MS (F
′

) = σ
(

f 7×7([AvgPool(F
′

); MaxPool(F
′

)])
)
. (3.13)

4. Experiment and result analysis

4.1. Experimental setup

4.1.1. Experimental data sets

The dataset used in this experiment is the public NSFW Data Scrapper project published on
GitHub by Alexander Kim, a data scientist. It comprises 67,776 images divided into two categories:
Neutral images with 21,917 images (32%) and pornographic images with 45,859 images (68%). Such
a ratio ensures that the model is exposed to enough pornographic images during the training process,
thereby enabling it to better learn the features for recognizing such images. This, in turn, reduces the
probability of misdetection pornographic images in the application of real-world scenarios, and
reduces the harm to society. The dataset is divided into a training set, a validation set, and a test set in
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a 6:2:2 ratio. The training set and validation set data are batched and passed into the model for
training after being randomly shuffled. The test data consists of partial datasets from
NSFW Data Scrapper and NudeNet, comprising a total of 9604 pornographic images and 8209
neutral images. The additional NudeNet data helps evaluate the model’s adaptability and
generalization on new data, providing a more comprehensive performance assessment.

4.1.2. Training environment and parameter configuration

The experimental platform is provided by a server with the following hardware configuration: CPU:
Intel(R) Xeon(R) CPU E5-2680 v4@2.40 GHz, RAM: 256 GB, GPU: NVIDIA TITAN RTX 24 GB,
and software configurations of Python 3.9, CUDA 12.0, and Pytorch 1.13.

The experiment utilized the ViT-DualAtt model for training. In the data preprocessing stage, the
images were resized to 224 × 224 pixels and standardized before being converted into feature tensors.
The model parameters were updated using the SGD optimizer, with a batch size of 32, momentum set
to 0.9, and a weight decay coefficient of 5e-5. Regarding the momentum and weight decay parameters,
we opted to maintain the original settings of 0.9 for momentum and 5e-5 for weight decay. These
parameters are well-established within the context of Vision Transformers and have been shown to
effectively support model convergence and generalization. The training process was set for 100 epochs,
during which the learning rate was dynamically adjusted using a cosine annealing scheduler to optimize
the learning process. The cosine annealing scheduler adjusts the learning rate based on changes in the
cosine function, which gradually decays from its initial value to a lower learning rate. This strategy
helps achieve fast learning in the early stages of training and fine-tuning in the later stages, improving
the final convergence of the model. Detailed training configurations can be found in Table 2.

Table 2. Training parameter settings.

Parameters Setting
Image size 224 × 224
Epoch 100
Optimizer SGD
Scheduler Cosine annealing
Initial learning rate 0.001
Batch size 32
Momentum 0.9
Weight decay 5e-5

4.2. Evaluation criteria

To evaluate the performance of the model, a confusion matrix is used to analyze and compare the
differences between the model’s predictions and the actual labels. The confusion matrix provides four
key metrics: True positives (T P), false negatives (FN), false positives (FP), and true negatives (T N).
T P represents the number of pornographic images correctly classified as pornographic by the model,
FN represents the number of pornographic images incorrectly classified as neutral by the model, FP
represents the number of neutral images incorrectly classified as pornographic by the model, and T N
represents the number of neutral images correctly classified as neutral by the model. By combining
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these four metrics, commonly used evaluation measures can be derived, such as:
Equation (4.1) shows the accuracy of the model, which is the proportion of correctly classified

samples to the total number of samples.

Accuracy =
T P + T N

T P + FN + FP + T N
(4.1)

Equation (4.2) shows the precision rate, which is the proportion of instances where the model
predicts a positive sample that are truly positive.

Precision =
T P

T P + FP
(4.2)

Equation (4.3) shows the recall, which is the proportion of correctly predicted positive samples of
all actual positive samples.

Recall =
T P

T P + FN
(4.3)

Equation (4.4) shows the reconciled average of precision and recall, which is used to
comprehensively evaluate the performance of the model, i.e., F1 − S core.

F1 − S core = 2 ×
Precision × Recall
Precision + Recall

(4.4)

We use the False Negative Rate (FNR), which we refer to as the Pornographic Image Miss Rate
(PIMR) in the context of our study, to evaluate the model’s performance in identifying pornographic
images. Equation (4.5) shows the calculation of PIMR.

PIMR =
FN

T P + FN
(4.5)

The PIMR represents the percentage of pornographic images that the model fails to correctly
identify, out of all actual pornographic images. This is a crucial indicator to assess, given the potential
harm that pornographic content can have on society, particularly on minors. A low PIMR model
accurately captures most pornographic images, reducing the risk of underreporting.

4.3. Experimental result analysis

4.3.1. Training process analysis

During training, model performance was evaluated by tracking accuracy and loss values at each
epoch. Figure 3 shows the trend of accuracy and loss of the ViT-DualAtt model over 10 training
sessions. In particular, Figure 3(a) shows the changes in accuracy over training epochs, while
Figure 3(b) displays the loss trends. In terms of accuracy, all training runs show significant
improvement during the first 25 epochs, after which accuracy stabilizes, reaching high levels
around 0.97 in the later stages of training. This consistency across runs highlights the model’s
stability. For loss, the plots reveal a steady decline as training progresses. Initially, the loss drops
quickly from around 0.4 to below 0.15, then gradually stabilizes. In the later stages, the loss further
decreases and levels off near 0.07, indicating that the model’s error has been minimized. Overall, as
the number of epochs increases, the model consistently shows a convergent trend across all training
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runs, with accuracy improving and loss decreasing. These results confirm the model’s effectiveness
and stability in the classification task.

Figure 3. (a) shows the variation in accuracy during training; (b) shows the variation in loss
during training.

4.3.2. Comparison of existing algorithms

We conducted comparative experiments between the method proposed in this paper and several
existing methods in the literature, with the results shown in Table 3. Analyzing the classification
accuracy in the table, we observe that our method performs excellently on the experimental dataset,
achieving a 2.7% improvement over current deep learning methods [17–20]. Moreover, this
enhancement is more pronounced when compared to traditional machine learning methods. Our
approach outperforms the skin area-based classification method [13, 14] by 22.2%, and the shape and
texture-based classification method [15, 16] by 4.5%. These results demonstrate that our model
exhibits stronger generalization ability and effectiveness in pornographic image classification tasks,
providing new insights and methods for future image classification research.

Table 3. Comparison of existing algorithms.

Papers Methods Accuracy (%)

[13] Skin 61.0
[14] Skin + SVM 75.0
[15] BoVW 87.6
[16] BoVW + SVM 84.9
[17] CNN 86.9
[18] DCNN 92.7
[19] ResNet101 + CBAM 93.2
[20] RepVGG-SimAM 94.5

Ours ViT-DualAtt 97.2
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4.3.3. Comparison of different classification algorithms

To ascertain the efficacy of the models proposed in this paper for the classification of pornographic
images, a series of comparative experiments were conducted. The major comparison objects were
ResNet101 [27], VGGNet16 [28], EfficientNet b0 [29], DenseNet201 [30] and Swin
Transformer [31]. These algorithms have a wide range of applications and excellent performance in
image classification, making them highly valuable for comparison. To ensure the fairness and
accuracy of the results, the experiments employed the same dataset, preprocessing steps, and
assessment metrics. The comparison results are presented in Table 4. The comparison experiment
shows that the model proposed in this paper outperforms other models in terms of accuracy and
PIMR in the field of pornographic image classification.

Table 4. Classification results of each model.

Methods
Precision (%) Recall (%) F1 (%)

Accuracy (%) PIMR (%)
Porn Neutral Porn Neutral Porn Neutral

ResNet101 [27] 92.4 89.8 95.4 83.6 93.9 86.6 91.6 4.5
VGGNet16 [28] 92.8 92.1 96.5 84.3 94.6 88.0 92.6 3.4
EfficientNet b0 [29] 92.3 92.5 96.7 83.2 94.5 87.6 92.3 3.2
DenseNet201 [30] 95.3 93.9 97.1 90.2 96.2 92.0 94.9 2.8
Swin Transformer [31] 98.4 92.5 96.5 96.5 97.4 94.4 96.5 3.5
ViT-DualAtt 97.4 96.5 98.3 94.4 97.8 95.4 97.2 1.6

To further evaluate the classification performance of each model, we computed their receiver
operating characteristic (ROC) curves and the corresponding area under curve (AUC) values, as
shown in the Figure 4. An increase in AUC value indicates that the model can maintain a high true
positive rate and a low false positive rate across thresholds, making it more effective in identifying
and classifying pornographic images in practical applications, thereby reducing the risk of
misclassification. The AUC value for the ViT-DualAtt model is 0.951, significantly higher than that of
the other comparison models. Specifically, ResNet101 has an AUC of 0.892, VGGNet16 has an AUC
of 0.882, EfficientNet b0 has an AUC of 0.891, DenseNet201 has an AUC of 0.913 and Swin
Transformer has an AUC of 0.944. These results not only further validate the outstanding
performance of the proposed model in the task of pornographic image classification but also
demonstrate its strong ability to differentiate between positive and negative samples.

To mitigate the harm caused by the spread of inappropriate images, inference speed is also a
crucial evaluation metric. To assess the inference speed of our method, we conducted a comparison
with other aforementioned models. Figure 5 illustrates the time required by each model to process
varying numbers of images. As the number of input images increases, the processing time for all
models exhibits a linear growth trend. ViT-DualAtt demonstrates higher efficiency than ResNet101
and Swin Transformer under all conditions, with consistently lower processing times. However,
compared to EfficientNet b0, the processing time of ViT-DualAtt is slightly higher, while
DenseNet201 and VGGNet16 fall between these two models.

Electronic Research Archive Volume 32, Issue 12, 6698–6716.



6711

Figure 4. Receiver operating characteristic for multiple models.

Figure 5. Time(s) for different models with varying number of images.

In summary, although ViT-DualAtt’s efficiency is slightly lower than that of models like
EfficientNet b0, its processing time remains within an acceptable range and is accompanied by
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notable accuracy advantages. Thus, ViT-DualAtt remains a valuable model choice, balancing
accuracy and efficiency for practical application.

4.3.4. Ablation comparison experiments

To assess the effectiveness of the ViT-DualAtt model, we conducted ablation experiments by
removing different components and analyzing their impact on classification performance. The
experimental results are summarized in Table 5. Initially, the original ViT model included only the
Multi-Head Attention mechanism, achieving an accuracy of 94.7% with a PIMR of 2.5%. Introducing
the ViT-DualAtt model with CNN and MHA (without CBAM) increased accuracy to 96.0% and
reduced PIMR to 2.4%, indicating CNN’s enhancement in local feature extraction. The ViT-DualAtt
model with CBAM and MHA (without CNN) achieved an accuracy of 95.8% and PIMR of 2.0%,
highlighting CBAM’s significant contribution to local feature attention. When CBAM and CNN were
combined but MHA was removed, accuracy improved to 97.0% with PIMR reduced to 1.8%,
demonstrating the advantage of CBAM and CNN in capturing both global and local features. The
complete ViT-DualAtt model, integrating CNN-Transformer structure, Multi-Head Attention
mechanism, and Convolutional Block Attention Module, performed the best with an accuracy
of 97.1% and PIMR of 1.6%. These results demonstrate the superiority and robustness of the
ViT-DualAtt model in classification tasks, especially in terms of precision and recall, validating its
effectiveness and stability in the task of classifying pornographic images.

Table 5. Comparison of ablation experiments.

Methods CNN MHA CBAM
Precision (%) Recall (%) F1 (%)

Accuracy (%) PIMR (%)
Porn Neutral Porn Neutral Porn Neutral

ViT ✓ 92.4 89.8 95.4 83.6 93.9 86.6 91.6 4.5
ViT-DualAtt without CBAM ✓ ✓ 92.8 92.1 96.5 84.3 94.6 88.0 92.6 3.4
ViT-DualAtt without CNN ✓ ✓ 92.3 92.5 96.7 83.2 94.5 87.6 92.3 3.2
ViT-DualAtt without MHA ✓ ✓ 95.3 93.9 97.1 90.2 96.2 92.0 94.9 2.8
ViT-DualAtt ✓ ✓ ✓ 97.4 96.5 98.3 94.4 97.8 95.4 97.2 1.6

In order to verify the specific contributions of MHA and CBAM, we performed visualization
operations on the features obtained after model processing. The results are shown in Figure 6. In
terms of visual representation, MHA shows a unique role. It enables the model to focus on multiple
key areas in the image, presenting a relatively obvious feature aggregation effect. However, while
MHA pays attention to key areas, it also gives more attention to the background area. To some extent,
this disperses the model’s attention resources and has a certain interference on the classification task.
On the other hand, CBAM not only strengthens the attention to the relevant areas of the main target,
but also filters out more discriminative feature channels through its channel attention mechanism.
Moreover, it accurately locates the key local spatial positions of the target with the help of spatial
attention, making the model’s extraction of target features more refined. The two complement each
other and jointly contribute to improving the classification performance of the model.
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Figure 6. (a) shows the original image; (b) shows the feature visualization diagram after
processing by ViT (12-layer MHA); and (c) shows the feature visualization diagram after
processing by ViT-DualAtt (6-layer MHA + 6-layer CBAM).

5. Conclusions

We present a novel approach to pornographic image classification: ViT-DualAtt. This model
integrates CNN and Transformer architectures within a unified framework and incorporates both
multi-head attention and convolutional block attention mechanisms. This integration significantly
enhances classification accuracy, achieving a 2.7% improvement over other methods and reaching an
accuracy of 97.2% ± 0.1%, underscoring its superior performance and effectiveness in the field of
pornographic image classification.

Although ViT-DualAtt demonstrates strong classification accuracy, there remains potential for
further optimization of its processing efficiency. Future work will focus on refining the model’s
architecture by exploring more lightweight attention mechanisms and optimizing the computational
workflow to reduce complexity and enhance processing speed. Specifically, techniques such as sparse
attention, low-rank decomposition, and knowledge distillation could be utilized to reduce the model’s
parameter load and computational demands. Additionally, research will investigate the model’s
adaptability across hardware platforms, including mobile and embedded systems, to support
large-scale data processing and real-time applications, ensuring that the model performs efficiently
and accurately across diverse deployment scenarios.

While pornographic image classification systems are instrumental in safeguarding user safety and
maintaining a healthy online environment, they also bring ethical considerations. One prominent
concern is potential bias, as imbalances in training data distribution may lead to suboptimal model
performance across certain demographic or cultural groups, resulting in unfair classification
outcomes. Furthermore, given the sensitive nature of the content involved, it is crucial that such
systems operate with stringent privacy protections to prevent the misuse or leakage of personal data.
To address these concerns, future research should emphasize fairness and transparency, exploring bias
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mitigation techniques and strengthening privacy safeguards in data storage and processing to ensure
the system’s ethical compliance.
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