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Abstract: The numerical solution of spatiotemporal partial differential equations (PDEs) using the
deep learning method has attracted considerable attention in quantum mechanics, fluid mechanics, and
many other natural sciences. In this paper, we propose an interactive temporal physics-informed neural
network architecture based on ConvLSTM for solving spatiotemporal PDEs, in which the information
feedback mechanism in learning is introduced between the current input and the previous state of
network. Numerical experiments on four kinds of classical spatiotemporal PDEs tasks show that the
extended models have superiority in accuracy, long-range learning ability, and robustness. Our key
takeaway is that the proposed network architecture is capable of learning information correlation of
the PDEs model with spatiotemporal data through the input state interaction process. Furthermore,
our method also has a natural advantage in carrying out physical information and boundary conditions,
which could improve interpretability and reduce the bias of numerical solutions.

Keywords: partial differential equations; physics-informed deep learning; data-driven modeling;
interactive learning; neural network

1. Introduction

Spatiotemporal dynamics modeled by partial differential equations (PDEs) are ubiquitous in nature,
and obtaining their numerical solution has proved difficult due to their inherent complexity and non-
linearity. Traditional numerical methods (such as finite element/difference/volume method [1–3] and
geometric analysis [4]) are limited in their efficiency due to the complexity of the algorithm, which is
inadaptive to tackling large-scale computations and complicated boundary conditions.

With the advancement of science and technology, deep learning provides a new perspective for the
numerical study of nonlinear system models, which can accelerate the discovery of potential PDEs
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solutions. Recently, a series of methods based on neural networks have been developed to solve dif-
ferential equations by learning input and output mapping functions. These methods have been applied
to solving PDEs, addressing forward and inverse problems in uncertainty quantification, and other
tasks closely related to differential equations [5, 6]. Nevertheless, most deep learning methods do not
meet physical constraints. The physical information neural network (PINN) [7–9] has led to great
breakthroughs in the field of scientific machine learning, such as in the reduced order model [10, 11],
solving general PDEs [12], data-driven knowledge discovery [13], which uses prior knowledge of
physical information to learn within a small data range [14–16]. However, most of these PINNs were
constructed in a fully connected neural network (FCNN) to continuously approximate the solution of
the physical system. This results in physical processes and locality being ignored, leading to training
models lacking temporal and spatial extrapolation capabilities.

Recently, some new methods for solving PDEs were obtained [17, 18] with the introduction of
recurrent neural networks (RNN) [19] and convolutional neural networks (CNN) [20]; from these, dis-
crete learning models show better scalability and faster convergence [21]. The hard encoding mode
of physics can embed the initial and boundary conditions (I/BCs) and incomplete PDE structures into
the learning process, which can avoid the ill-posedness of optimization, even without any labeled
data [22–24]. For time-independent systems, Han et al. [25] proposed a new method named Phy-
GeoNet, which uses a convolution kernel with fixed weights as a differential operator to construct
CNN. Recently, more and more studies have focused on time-dependent systems [26–36]. Hu et al. [33]
developed a sequence to sequence learning (Seq2Seq) framework called Neural PDEs, which allows
automatic learning of the control rules of any time-dependent PDEs system from existing data by us-
ing a bidirectional long short-term memory (LSTM) encoder. Ren et al. [34] developed a physical
information convolutional recurrent network (PhyCRNet), which is an unsupervised learning method
for solving multi-dimensional spatiotemporal PDEs through physical prior knowledge and CNNs ar-
chitecture. Jiang et al. [35] proposed a physical information graph neural network (PhyGNNet) for
solving spatiotemporal PDEs based on the graph neural network composed of encoder, processor and
decoder modules. The computational domain of PDEs is divided into a regular grid, and then the spatial
differential and the time derivative with backward difference are constructed on the grid. Then, the grid
is regarded as a graph, and the PDEs loss is organized to train the graph neural network. The network
has the reasoning ability to satisfy the solution of the PDEs equation. Meng et al. [36] developed a real-
time parallel physical information neural network (PPINN), which decomposes a long-term problem
into many independent short-term problems and is supervised by a coarse-grained solver.Compared
with the original PINN method, the proposed PPINN method can accelerate the long-term integration
of PDEs. Although existing methods have successfully dealt with spatial and temporal dependencies
by using specific network structures, they find it challenging to deal with PDEs with complex dynamic
behaviors and long-distance dependencies. To improve the application scope of PINN in practice, this
article tries to develop a novel physics-informed interactive learning convolutional recurrent network
(PhyICNet) method to solve spatiotemporal PDEs.

Relevant literature shows that the application of ConvLSTM to systems such as 2D coupled viscous
Burgers, heat diffusion systems,reaction-diffusion equations, wave propagation systems has achieved
good results [37–39]. Inspired by the works of multiplicative integration LSTM [40] and Mogrifier
LSTM [41], we included the existing recursive unit and an interactive learning mechanism into the
physical information convolution recursive model based on the current input x and the previous time
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step output h. After several rounds of interactive iteration, the updated x and h enter the recursive unit
together. From a more comprehensive perspective, our model can be regarded as enriching the main
additive dynamics of cyclic conversion. The main contributions of this paper are as follows:

• Our model combines the advantages of CNN and RNN through interactive learning strategies. It
not only improves the spatial characteristics expression and time modeling ability of the model but
also strengthens the information association ability of the model in dealing with spatiotemporal
data through the input state interaction process.
• Compared with the continuous approximation PINN method, our physical model is discrete (that

is, the solution is based on the spatial grid and defined on the discrete time step). In particular, the
initial/boundary conditions (I/BCs) are hard-coded into the network, so that the solution accuracy
on the boundary is improved through hard-applied physical constraints, and the time evolution
dynamics of PDEs can be strictly mapped in combination with global residual connections.
• We tested PhyICNet on 4 representative 2D PDEs problems and compared it with the benchmark

model in various aspects. We found that PhyICNet outperforms the benchmark model in all
comparisons. Therefore, we propose a new PINN model based on interactive learning, which
has ideal theoretical properties and excellent empirical performance, and has the potential to be
widely used to learn PDEs.

The rest of the article is organized as follows: Section 2 proposes the use of deep neural networks
to solve spatiotemporal dynamic system problems; Section 3 mainly introduces the PhyICNet method
and its network architecture. Section 4 provides the experimental part, in which we compare PhyICNet
the method with the benchmark network through several classical numerical experiments to prove its
effectiveness. Section 5 provides a summary of this article and discusses future prospects.

2. Theoretical background

Consider a set of spatiotemporal dynamical systems described by nonlinear coupled PDEs:

ut = F(x, t, u, u2,∇xu, u · ∇xu,∇2u, · · · ). (2.1)

where u(x, t) ∈ Rn denotes the state variable with n components defined on the spatiotemporal domain
{(x, t)} ∈ Ω×T ,Ω and T denote the spatial and temporal domains, respectively, ∇x is the Nabla operator
with respect to the spatial coordinate x, and F(·) is a nonlinear function describing the right-hand side
(RHS) of PDEs. The solution of this problem is subject to initial conditions (ICs): I(u; t = 0, x ∈
Ω) = 0 and boundary conditions (BCs): B(u,∇xu, · · · ; x ∈ ∂Ω) = 0. This paper focuses on the regular
physical domain, so the state variables are defined on the discrete Cartesian grid.

Referring to the concept of numerical discretization, we aim to develop a spatiotemporal learning
model for physical information based on a forward Eulerian format. That is, the state variable u will
be updated by a recurrent network: u(k+1) = u(k) + F∗(u(k); θ), where u(k) is the prediction at moment
tk and F(∗) is an F parametrized by θ, which integrates a set of operations to compute the RHS of the
equation. Similar concepts of applying numerical discretization to design deep learning architectures
can be found in some recent literature [42–44]. Thus, we consider network training as an optimization
process by minimizing a loss function that consists of discrete PDEs residuals subject to I/BCs.
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3. PhyICNet

In this section, we focus on the architecture of the PhyICNet model, which is designed to efficiently
capture and integrate complex dynamic behaviors in spatiotemporal sequences. The network structure
of PhyICNet is shown in Figure 1, which includes ConvLSTM time propagator, interactive learning
module, BCs hard constraints, and physics-informed loss function.

Independent BC field

Internal field

CNN filter

Dependent BC field

    Residual connection.

    Finite difference-based filters.

    Physics-informed loss function.

C
onv

C
onv

C
onv

C
onv

C
onv

C
onv

C
onv

C
onv

C
onv

C
onv

C
onv

C
onv

ConvLSTM

ConvLSTM

ConvLSTM

...

  ...







1 ( ; )i i t iu u u W   

2, , , ...t x xu u u u 

2( , ; ) : ( , ) ( , , ( , ),( ( , )) , ( , ),...)x
uR x t x t F x t u x t u x t u x t
t


   

  


a.

b.

c.

d.



1u

0u

Tu

0
1h 1c



tu

C
onv

C
onv

C
onv

C
onvConvLSTM

rv block

...
...

1
tx


1th



tx


1tc 
0

1th 

1Tc 
0

1Th 





rv

rv

rv

rv

1Tu 

0
1th 

2
1th  1th




tx
3

tx
1
tx

1
tx


Figure 1. PhyICNet architecture. a. By learning the known state variable u0 through T time
steps in multiple convolutional layers, interactive learning modules, and ConvLSTM time
propagator, the bounded output uT is obtained. b. PhyICNet is updated through r rounds of
interaction. c. Padding implements BCs hard constraints. Dirichlet BCs (left) and Neumann
BCs (right). d. Key features of the network.

The following is a detailed description of the PhyICNet architecture:
Encoder. Considering that the changes of spatial variables in spatiotemporal PDEs have local cor-

relation, PhyICNet incorporates spatial local convolution operation to take advantage of this structural
feature. In the process of updating the hidden state, PhyICNet not only depends on the input of the
current node itself but also integrates the input information of the nodes in its neighborhood through
convolution operation. Convolution kernel parameter sharing and local receptive field characteristics
ensure that the model can extract and utilize local features in the spatial domain, thereby improving the
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sensitivity and adaptability to spatial changes. The spatial local modeling process can be expressed as:

yi, j =

M−1∑
m=0

N−1∑
n=0

wm,n · xi+m, j+n + b. (3.1)

where yi, j is the value of the output feature map at position (i, j), xi+m, j+n is the value of the input feature
map at the position (m, n) deviation relative to the position (i, j), wm,n is the weight of the convolution
kernel at position (m, n), and b is the bias term of the convolution layer (optional).

PhyICNet can effectively extract the local features of spatial variables in spatiotemporal PDEs by
introducing convolution operations, and have the ability to use parameter sharing and local receptive
field characteristics to improve the spatial modeling performance of the model.

In the initial stage of the model, we deployed an encoder module consisting of three consecutive
convolutional layers. This series of convolution operations aim to extract deep features of the input
state, where each convolutional layer is equipped with appropriate filter size, step size, and filling
to ensure that more and more advanced feature representations can be abstracted layer by layer
while maintaining spatial information. At this stage, the input data is decomposed into multiple
time steps (T ) along the time dimension, and the feature map of each time step is encoded to form a
low-dimensional and compact potential feature sequence.

Interactive learning module. When dealing with spatiotemporal PDEs, the interaction between
data points goes beyond simple single direction or local dependence, showing complex nonlocal and
nonlinear characteristics. In order to capture dynamic interactivity, PhyICNet introduces an interactive
hidden state update mechanism. Its innovation is to use the multiplicative interaction to update the
hidden state, which can be described by the intermediate state ut:

ut = (Wuxxt) ⊙ (Wuhht−1),

ĥt = Whuut +Whxxt. (3.2)

where Wux, Wuh, Whu, Whx are the weight matrix of different transformations; ut reflects the deep
interaction between the current input xt and the hidden state ht−1 at the previous moment; and the
nonlinear effect between them is strengthened by the element-by-element product operation. This
innovation gives PhyICNet a stronger ability to express spatiotemporal patterns, making it superior to
traditional models in mining complex interactive features in sequence data.

Specifically, before entering the recursive unit, interactive learning is performed on the input data x
(such as the I/BCs of PDEs) and the hidden state h (the internal state of the recursive unit), where the
two inputs x and h are alternately adjusted before the recursive unit calculation occurs. That is:

vr = gr(xt, ht−1, r). (3.3)

where gr is the spatiotemporal feature interaction function. The interactive learning stage is to perform
r-round interaction on the spatial position and the time step, and the adjustment input is defined as the
highest index xi and hi from the interaction sequence, respectively:
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xi = 2σ(weightQihi−1) ⊙ xi−2, f or odd i ∈ [1, . . . , r],
hi = 2σ(weightRixi−1) ⊙ hi−2, f or even i ∈ [1, . . . , r]. (3.4)

where x−1 = x, h0 = h, and the number of rounds r is a hyperparameter. The multiplication with
constant 2 ensures that the transformation generated by the randomly initialized Q, R weight matrix is
close to the identity transformation. In order to reduce the number of parameters, we usually set Q, R
as a low rank matrix.

The framework of interaction is summarized in Algorithm 1. Through the understanding of the
characteristics of spatiotemporal PDEs and the reference of deep learning technology, we aim to build
a deep learning model that can accurately capture spatiotemporal interactions and effectively use spatial
local information.

Algorithm 1 Interactive learning
Require: Current input xt, previous hidden state ht−1, previous cell state ct−1, number of interactions r
Ensure: Updated input x+t , updated hidden state h+t−1, updated cell state ct−1

1: Initialize x−1 ← xt, h0 ← ht−1

2: for i = 1, . . . , r do
3: if i is odd then
4: xi = 2σ(weightQihi−1) ⊙ xi−2

5: else
6: hi = 2σ(weightRixi−1) ⊙ hi−2

7: Apply x+t , h+t−1, ct−1 as ConvLSTM input for the next round of updates

Following the encoder is the interactive learning module, whose function is to promote the
information exchange and deep integration between the input feature x and the previous hidden state
h. Through this module, the following goals are achieved: (1) Guide the model to focus on the
most relevant and influential feature subsets in the current input and historical state, and improve
the recognition accuracy of spatiotemporal dependencies. (2) The historical information is used
to supplement the deficiency of the current input, and the historical state is dynamically adjusted
according to the new input, so as to generate the fusion features that contain the global historical
context and reflect the current local changes. (3) The interactive learning process generates new
features that go beyond the individual input or hidden state, which may capture deeper patterns and
long-term dependencies in the spatiotemporal sequence.

ConvLSTM time propagator. As we know, LSTM is an improved model to overcome the
gradient problem of RNN, which effectively manages information storage and discarding by introduc-
ing memory cells and a multilayer gating mechanism. In the recursive unit of our method, we extract
spatial features through local convolution operation and capture time dependence through the memory
unit of LSTM. At the same time, combined with the idea of multiplicative interaction, spatiotemporal
interactive learning will be performed before the recursive unit. The mathematical expression of the
recursive unit is as follows:
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it = σ(Wix ∗ xt +Wih ∗ ht−1 + bi);
ft = σ(W f x ∗ xt +W f h ∗ ht−1 + b f );

ct = ft ⊙ ct−1 + it ⊙ tanh(Wcx ∗ xt +Wch ∗ ht−1 + bc);
ot = σ(Wox ∗ xt +Woh ∗ ht−1 + bo); ht = ot ⊙ tanh(ct).

(3.5)

where xt denotes the input tensor; and {ht, ct} denotes the hidden state and the cell state to be updated
at time t, respectively; ft,it,ct,ot is the forget gate, the input gate, the internal cell, and the output gate,
respectively, which can achieve the transformation of ConvLSTM from input to state and state to state.
“∗” is a convolution operation, ⊙ denotes the Hadamard product, and W∗ and b∗ are the weight matrix
and bias, respectively.

Then, the obtained intermediate state is used to enter the ConvLSTM unit for state update after
completing multiple rounds of interactive learning of spatiotemporal features:

ConvLS T M(x+t , ct−1, h+t−1) = vr;
it = σ(Wix ∗ x+t +Wih ∗ h+t−1 + bi);

ft = σ(W f x ∗ x+t +W f h ∗ h+t−1 + b f );
ct = ft ⊙ ct−1 + it ⊙ tanh(Wcx ∗ x+t +Wch ∗ h+t−1 + bc);

ot = σ(Wox ∗ x+t +Woh ∗ h+t−1 + bo); ht = ot ⊙ tanh(ct).
(3.6)

Specifically, we first use CNN to extract the input spatial features, and then combine the extracted
features with the traditional LSTM to perform time series modeling. On this basis, we introduce a new
interactive learning mechanism, so that x and h can effectively exchange and integrate information
before ConvLSTM, thereby improving the model’s solving ability.

The rich features obtained by interactive learning are then sent to the ConvLSTM module. In
this module, each ConvLSTM unit is not only responsible for disseminating information on the time
axis, but also performs parallel information processing on the spatial dimension through convolution
kernels, laying the foundation for subsequent prediction tasks.

Decoder and recovery layer. After the spatiotemporal modeling is completed, the model uses
an additional convolutional layer as the recovery layer, which aims to map the boundedness processed
by ConvLSTM back to the same spatial resolution as the original input. This step involves upsampling
operations to ensure that the final output and input data are comparable in the spatial dimension,
thereby facilitating pixel-level prediction and reconstruction.

Residual connection. Inspired by the forward Euler scheme, a residual connection based on
time increment is constructed between the current state ui and the next state ui+1. This process is
understood as the following transformation from time ti to time ti+1:
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ui+1 = ui + ∆tΦ(ui; W). (3.7)

where Φ represents the function module obtained by training optimization, W is the parameter set of
the module, and ∆t indicates a small step at two time points. Once the state ui+1 is obtained in ti+1,
it becomes the input state of ti+1. Therefore, this continuous transmission of input and output can be
regarded as a time series autoregressive (AR) model.

Coding physics prior knowledge. In the network design, we integrate an innovative coding
strategy so that the system can strictly apply physical knowledge. We consider physical information
encoding: requirements for I / BCs.

PhyICNet is calculated from the initial set of u0, and ICs are directly integrated into the algorithm.
Considering BCs, we use the finite difference method to guide the filling strategy through physical
principles, and adjust the model prediction at each time step. For Dirichlet BCs, we directly use the
preset value to fill the boundary part of the prediction result; for Neumann BCs, the filling value is
calculated based on the boundary value and its gradient information. Here, we mainly consider the
application of periodic Dirichlet BCs. This design has been proved to be very applicable in [45, 46].
We use a periodic filling scheme, as shown in Figure 1, which uses the boundary information on the
other side of the grid for prediction and feature mapping. This is significantly better than simple zero
filling, because it effectively prevents the loss of information on the physical boundary.

In this study, we use u0 to represent the initial state, and u1, u2, · · · , uT are a series of discrete solution
variables to be solved. Next, the key problem to be solved is the calculation of the derivative term.
The gradient-free convolution method proposed in [21, 25] is used to realize the discrete numerical
approximation of the relevant derivative terms. Specifically, the convolution kernel based on finite
difference includes: the second-order scheme for time derivative Eq (3.8) and the fourth-order central
difference method for spatial derivative calculation Eq (3.9).

Kt = [−1, 0, 1] ×
1

2dt
. (3.8)

Kx =


0 0 −1 0 0
0 0 16 0 0
−1 16 −60 16 −1
0 0 16 0 0
0 0 −1 0 0


×

1
12(dx)2 . (3.9)

where dt and dx represent the temporal and spatial distances, respectively.
In the field of scientific modeling, this method of encoding prior physical knowledge into network

architecture is very useful for model prediction. We can predict some physical laws from previous
studies and encode them into physical models so that the models can strictly follow physical laws.

Physics-informed loss function. In our method, we follow the principle of physical constraints and
focus on the strict satisfaction of I/BCs, so we only need to construct a loss function that only depends
on PDEs themselves. Firstly, PDEs residual expression R(x, t; θ) is designed, which is based on the
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output of the network model and satisfies Eq (3.10), as shown below:

R(x, t; θ) :=
∂uθ

∂t
(x, t) − F

(
x, t, uθ(x, t), (uθ(x, t))2,∇xuθ(x, t), uθ(x, t) · ∇xuθ(x, t), · · ·

)
. (3.10)

Then, the network sharing parameter θ is adjusted to minimize a loss function L(θ) that reflects the
physical law. This optimization process is actually the sum of the square values of the PDEs residuals at
each point on the spatiotemporal discretization grid. Taking a typical 2D PDE problem as an example,
the loss function L(θ) can be expressed as:

L(θ) =
n∑

i=1

m∑
j=1

T∑
k=1

∥R(xi, yi, tk; θ)∥22. (3.11)

where n and m represent the resolution of the spatial grid in the vertical and horizontal directions,
respectively, T represents the total number of time steps, and ∥ · ∥ represents the L2 norm.

Therefore, compared with the PINN model, PhyICNet has the following advantages: (1) Limitations
of data-driven methods. Although traditional data-driven methods can capture certain dynamic features
when processing spatiotemporal data, their generalization ability and accuracy are often limited in the
absence of sufficient training data or in the face of complex physical phenomena. (2) The importance
of physical information. PINN ensures that the model prediction results conform to the physical law
by adding physical constraints in the training process, thus improving the reliability and robustness of
the model. However, PINN may be insufficient in dealing with spatiotemporal data, especially in cap-
turing dynamic interactions. (3) Advantages of interactive learning. Our proposed interactive learning
mechanism aims to make the model better capture dynamic features when dealing with spatiotem-
poral data by adding dynamic interaction capture to the model. Specifically, the interactive learning
mechanism allows the model to effectively exchange information and feedback between different time
steps, thereby improving the predictive ability of the model. Our model not only combines physical
information but also further enhances the model’s ability to capture spatiotemporal dynamics through
interactive learning mechanisms. This combination makes the model more advantageous in dealing
with complex dynamic systems.

In summary, the network structure of PhyICNet not only shows the local advantages of convolution
operation in dealing with spatial data but also takes advantage of the excellent performance of LSTM
in dealing with time series data. The biggest advantage is the ability to capture the complex interaction
between features, which makes it effective in solving sequence problems with spatial correlation and
time dependence such as PDEs. In this way, our model is expected to show strong performance when
dealing with sequence data with high-intensity dynamic characteristics and nonlinear dependencies.

4. Experimental verification

To verify the effectiveness of the PhyICNet method proposed in this paper, we choose four classical
PDEs for experimental verification, namely the Burgers’ equation, the FitzHugh-Nagumo reaction-
diffusion (FN RD) equation, the nonlinear Schrodinger (NLS) equation, and the Navier-Stokes (NS)
equation, which have important application value in the fields of science and engineering and have
proven to be difficult to solve.
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4.1. Network setup

We consider that the PhyICNet network encoder part consists of three convolutional layers, namely
8, 32, and 128 units, using 4×4 kernels and a stride of 2, with all convolution kernels being periodically
filled. ConvLSTM [34] has 128 node units and uses a convolution kernel with a step size of 1 kernel
and a stride of 3 × 3. For the scaling layer before output, we use a kernel size of 5 × 5. In the first
three experiments in this section, we conduct interactive learning 4 times before the input x and hidden
state h of PhyICNet entered ConvLSTM. The network is trained by the stochastic gradient descent
Adam optimizer [47]. All our experiments are coded in Pytorch [48] and executed on A6000 GPU
card (48G).

4.2. Error analysis of FN equation solution evolving with time

In order to explore the performance difference between PhyICNet and baseline network in solving
the FN RD equation, we analyze the error growth between the true value and the predicted value as
time T evolves. The FN RD equation is a nonlinear PDEs, which describes the periodic oscillation of
neuronal action potential under constant current stimulation above the threshold. It has important the-
oretical and practical significance in neuroscience research. We mainly discuss a 2D FN RD equation,
which is expressed as follows:

ut = Du∆u + u − u3 − v + α,

vt = Dv∆v + β(u − v). (4.1)

where Du and Dv are diffusion coefficients, and α and β are reaction coefficients; we set the parameters
α = 0.01, β = 0.25, Du = 10, and Dv = 25. The computational domains of Ω ∈ [0, 64/3] and
T ∈ [0, 12] are discretized by the interval of dx = 1/6 and dt = 0.0002. The ICs of the problem are
generated by random sampling from the Gaussian distribution, and the BCs are periodically filled. The
learning rate is set to 1 × 10−4, and the decay rate per 50 epochs is 0.995.

We generate the real solutions of the FN RD equation at different times T and use ConvLSTM and
PhyICNet to predict. For each time step T , we calculate the error between the two network models’
true and predicted solutions.

In this case, we focus on the performance comparison of ConvLSTM and PhyICNet architecture in
time series prediction tasks. The prediction error measurement data of the two network models in three
randomly selected time periods of T = 3, 7, 12 are recorded. Based on these data, we draw Figure 2,
and calculate that at T = 3, the mean square error (MSE) of ConvLSTM and PhyICNet relative to u
is 1.8e-03 and 1.6e-03, respectively, and the MSE relative to v is 2.4e-04 and 2.3e-04, respectively; at
T = 7, the MSE of ConvLSTM and PhyICNet relative to u is 5.5e-03 and 5.0e-3, respectively, and
the MSE relative to v is 7.6e-04 and 7.4e-04, respectively; at T = 12, the MSE of ConvLSTM and
PhyICNet relative to u is 1.1e-02 and 9.6e-03, respectively, and the MSEs relative to v is 1.48e-03 and
1.44e-03, respectively. According to the error map drawn in Figure 2, it is found that PhyICNet is
always superior to ConvLSTM as time T increases. This shows that PhyICNet has better stability and
accuracy in long-term simulation.

Through the error analysis of the solution of the 2D FN RD equation over time, we verify that com-
pared with ConvLSTM, PhyICNet can more effectively reduce the error and improve the prediction

Electronic Research Archive Volume 32, Issue 12, 6641–6659.



6651

accuracy. This result is of great significance for scenarios that require long-term simulation in practi-
cal applications, indicating that PhyICNet has better applicability in solving spatiotemporal nonlinear
PDEs.

Figure 2. Comparison of long-term prediction performance. PhyICNet and baseline model
predicted images and errors at randomly selected time T = 3, 7, 12 seconds.

4.3. Network sensitivity analysis in the solution of the NS equations

In this part, taking the case of the NS equation, we will study the influence of discrete-time steps(dt)
on the solution accuracy of PhyICNet and compare it with the errors of PINN and ConvLSTM. The
NS equation is the basic equation to describe the motion of viscous fluid, being widely used in fluid
mechanics, meteorology, and other fields. We consider the 2D NS equation as follows:

ρ(δtν + (ν · ▽)ν) − λ △ ν + ▽p = f . (4.2)

where ν ∈ u, v is the velocity vector, p represents pressure, ρ stands for density, λ indicates viscosity,
and the Reynolds number is 3900. We choose the computational domain Ω in the range of [0,64], the
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time interval T is set to [0,12], and the discretization is carried out with space spacing dx = 1/10. At
the same time, we use different time step dt to obtain the error results of the model. In the process of
model training, we uniformly set the learning rate to 1× 10−4 and introduce the learning rate reduction
strategy, that is, when the training process advances 100 epochs, the learning rate will decrease by a
coefficient of 0.97.

To simulate different coarse and fine grids, we set up several different dt. Larger dt means a coarser
network because the fluid state changes greatly per unit of time. Three networks are used to solve the
NS equations under different dt. For each dt, the error between the true solution and the predicted
solution of u and v at the last T time is calculated, and the MSE is used as the error measure. By
comparing the errors of the network model under different dt, the sensitivity of the coarse and fine
grids is analyzed.

Table 1 shows the prediction MSE error comparison of the three models under different dt. The
experimental results show that with the increase of dt, the error of PhyICNet is always better than that
of the other two networks, indicating that PhyICNet can still maintain good prediction accuracy under
coarse grid, and the error growth is slow.

Table 1. The prediction error of each network for u and v under different dt.

dt 0.0002 0.0009 0.005 0.02
PINN(u) 5.36e − 03 5.62e − 03 6.65e − 02 1.06e − 01
ConvLSTM(u) 5.32e − 03 5.68e − 03 4.24e − 02 5.09e − 02
PhyICNet(u) 5.31e − 03 5.33e − 03 2.99e − 02 3.14e − 02
PINN(v) 1.6966e − 02 1.6972e − 02 2.43e − 02 9.91e − 02
ConvLSTM(v) 1.6972e − 02 1.6984e − 02 1.77e − 02 4.33e − 02
PhyICNet(v) 1.6963e − 02 1.6966e − 02 1.71e − 02 1.78e − 02

In summary, through a comprehensive analysis of the grid sensitivity in the solution of the NS
equation, we verify the error changes of the PINN, ConvLSTM, and PhyICNet models for the solution
of the NS equation under different dt. This result has important guiding significance for dealing with
scenes with different grid scales in practical applications, and proves the superiority of PhyICNet in
dealing with complex fluid dynamics problems.

4.4. The effect of noise level on the performance of two networks

In this case, to study the influence of noise level on the performance of the PhyICNet in solving
spatiotemporal-related nonlinear PDEs, we will take NLS equation examples. The NLS equation has
important applications in quantum mechanics, optics, and hydrodynamics, especially in describing the
propagation and evolution of waves. It is expressed as follows:

iut + uxx + 2|u|2u = 0. (4.3)

where u represents the complex number wave, and the imaginary unit i describes the oscillation of the
time evolution of the wave function. The computational domain of the spatial domain Ω ∈ [0, 1/2] and
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T ∈ [0, 4] is discretized by the interval of dx = 1/256 and dt = 0.005. The learning rate is also set to
1 × 10−4, and the decay rate per 100 epochs is 0.97.

In our experiment, in order to simulate the uncertainty and measurement error of the data in the
real environment, we introduce different levels of Gaussian noise into the solution process of the NLS
equation to evaluate the robustness and accuracy of the three models against noise interference.

We use PINN, ConvLSTM, and PhyICNet to solve the NLS equation under different noise levels,
and the curves of the true solution and the predicted solution of the three models at the last T moment
under different noise levels are drawn. As shown in Figure 3, with the gradual increase of noise
intensity, PhyICNet is always close to the real data, indicating that it has better performance stability
in noise environment.

(a) Noise = 0.01 (b) Noise = 0.02

(c) Noise = 0.03

Figure 3. The influence of noise level on the three networks.

Through experimental design and data analysis, we confirm that PhyICNet shows higher robustness
and accuracy than the other two networks in solving noisy NLS equations. This finding has important
significance for applying deep learning models to solve PDEs in complex and uncertain environments.

4.5. The influence of interaction times on the learning effect of PhyICNet

In order to explore the influence of the number of interactions on the learning effect of PhyICNet
and determine the optimal number of interactions to improve the long-distance learning ability of the
model, we compared the performance of PINN, ConvLSTM, and PhyICNer under different interaction
times (r). The MSE loss function is used as the main index to evaluate the effect of network learning,
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and the performance is evaluated after 2000 iterations.
As a typical nonlinear PDE, the Burgers’equation has important application value in simulating

fluid dynamics and other physical phenomena. We consider a 2D hydrodynamic problem, namely the
classical 2D Burgers’equation, which is expressed as follows:

ut + uux + vuy − 1/R∆u = 0,
vt + uvx + vvy − 1/R∆v = 0. (4.4)

where {u, v} represents the fluid velocity, 1/R denotes the viscous coefficient, and ∆ is the Laplace
operator. In our test, R = 200 is set and performed in the computational domain of the spatial domain
Ω ∈ [0, 1] and T ∈ [0, 12]. The spatial interval is dx = 1/128, the time interval is dt = 0.002, the
learning rate is 1 × 10−4, and the decay rate per 100 epochs is 0.97.

We set the number of interactive learning as 3, 4, and 5 times, that is, r = 3, 4, 5. In each group
of experiments, the model was trained by 2000 iterations and the loss value after each iteration was
recorded. For each set of experiments, the same data set is used to train the model to ensure the
consistency of training data. During the training process, we monitor the change of the loss function
and record the loss value of each iteration step.

After 2000 iterations, we compare the loss curves obtained by different networks, and give the
logarithmic loss value in Figure 4, and obtain some useful results:

Figure 4. Comparing the difference of the error evolution of different networks over time.

For PhyICNet with r = 3, compared with ConvLSTM and PINN, its distance learning ability is
improved. For PhyICNet with r = 4, compared with PhyICNet with r = 3, the loss value of the
network is decreased, indicating that the network learning effect is better and its distance learning
ability is further improved. For PhyICNet with r = 5, compared with r = 4, the effect is decreased.
Compared with ConvLSTM, although the loss value is decreased, the decrease is relatively small. We
also tested other equations and got the same results. In addition, too much interactive learning may
lead to overfitting of the model and affect the generalization ability.
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In summary, for PhyICNet, in the case of 2000 iterations, the network learning effect is better when
r = 4. Therefore, in future experiments, we can set the number of interactive learning to 4 to further
improve long-distance learning ability. This finding has important guiding significance for optimizing
the network structure and improving the performance of the model.

5. Conclusions

In this paper, we proposed a new deep learning architecture, called PhyICNet, for the modeling
and application of nonlinear spatiotemporal dynamics systems. The advantage of PhyICNet is that
interactive learning can be performed to improve the accuracy of the solution and the ability of long-
distance learning. Through several numerical experiments, we verified the superiority of PhyICNet,
showing that it can achieve the best results with an interactive learning of 4 times. We emphasize
that our method is superior to other networks in some aspects, so it also provides additional reference
schemes for its wide application in science and engineering.
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