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Abstract: In practice, network operators tend to choose sparse communication topologies to cut costs,
and the concurrent use of a communication network by multiple users commonly results in feedback
delays. Our goal was to obtain the optimal sparse feedback control matrix K. For this, we proposed
a sparse optimal control (SOC) problem governed by the cyber-physical system with varying delay, to
minimize ||K||0 subject to a maximum allowable compromise in system cost. A penalty method was
utilized to transform the SOC problem into a form that was constrained solely by box constraints. A
smoothing technique was used to approximate the nonsmooth element in the resulting problem, and an
analysis of the errors introduced by this technique was subsequently conducted. The gradients of the
objective function concerning the feedback control matrix were obtained by solving the state system
and a variational system simultaneously forward in time. An optimization algorithm was devised to
tackle the resulting problem, building on the piecewise quadratic approximation. Finally, we have
presented of simulations.
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1. Introduction

A cyber-physical system (CPS) is a sophisticated, multi-layered system that combines computing,
networking, and the physical environment [1]. By leveraging the integrated collaboration features of
computation, communication, and control (3C) technology, it is possible to achieve real-time
monitoring, control, and information services for large-scale engineering systems [2]. The
applications of a CPS are wide-ranging. In study [3], the existing research on insider threat detection
in a CPS is thoroughly reviewed and discussed. In [4], the problem of observer-based adaptive
resilient control for a class of nonlinear CPSs is studied, taking the sensors that are vulnerable to
deception attacks into account. The study in [5] focuses on the challenge of security control for CPSs
subjected to aperiodic denial-of-service attacks. To reduce the need for explicit communication, the
semantic knowledge within a CPS is leveraged, especially the use of physical radio resources to
transmit potential informative data [6]. As discussed in [7], CPSs are vulnerable to numerous attacks
and their attack surface continues to expand. To summarize, there are two key features of a CPS [8]:
(i) large-scale, intricate systems focused on physical, biological, and engineering domains; (ii) a
network core that includes communication networks and computing resources for monitoring,
coordinating, and controlling these physical systems. A CPS closely integrates these two essential
components, enabling analysis and design within a unified framework.

Over the past two decades, extensive research has been conducted on control theory related to
the CPS. Traditional CPS control designs, however, often produce dense feedback matrices, with the
optimal controller relying on all the information within the feedback matrix [9]. In extensive networks,
implementation costs can be considerable, and the computational load required for communication
between the controller and the dynamical system can be heavy [10]. Two idealistic assumptions are
embedded in traditional CPS control designs: communication costs are infinite, and the communication
network is solely reserved for control purposes [11]. In reality, however, network operators typically
prefer sparse communication topologies to reduce costs, and the shared usage of the communication
network by various users commonly leads to feedback delays [12]. To address this issue, we propose a
CPS system with a static state feedback controller u(t) = −Kx(t − τ), where K ∈ Rm×n and τ represents
the delay, which can be either constant or variable, and is introduced by the communication process
between the state x and the computation of the input u [2]. The network control design presented in this
paper aims to achieve a balance between two primary objectives: (i) system performance, represented
by the traditional cost function J0(K), and (ii) the sparsity of the communication network. Thus, in this
paper, we seek to solve the following problem: for a given CPS system, identify a feedback matrix K
that balances system performance with controller sparsity.

Sparsity refers to a situation where the majority of elements in a vector or matrix are zero. The
sparsity of a vector or matrix is characterized by its l0-norm. Sparsity is crucial in large-scale
optimization problems, such as sound field reconstruction [13]. Employing sparsity not only
minimizes storage requirements but also cuts transmission costs through vector compression. It
streamlines a complex problem by extracting and using only the essential information from large
datasets. In the absence of consideration for network topology, maximizing the sparsity of the
feedback matrix typically has several reasons: (i) A sparse feedback matrix means that the controller
only focuses on a small subset of variables in the system. This can significantly reduce the
computational load and improve the responsiveness of real-time control, especially in large-scale
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systems. (ii) Sparse control strategies can decrease the number of required sensors and actuators, thus
reducing the overall system cost and energy consumption. This is particularly important in
resource-constrained environments. (iii) Sparse matrices often lead to simpler and more
understandable control decisions. This can help designers more easily analyze and comprehend
control strategies, making debugging and optimization processes more effective. (iv) Sparsity may
enhance the system’s tolerance to failures of certain components. If some sensors or actuators fail, the
system can still maintain functionality through other effective connections. (v) In some cases, sparse
control strategies can exhibit better robustness to noise and disturbances, as they rely only on key
parts of the system, reducing sensitivity to the overall system state.

Currently, sparse optimization has been extensively applied in various fields such as blade tip
timing [14], robotic machining systems [15], and perimeter control [16, 17]. Sparse optimization
models can be generally categorized into two types [18]: (i) l0-regularization optimization problems
modifying the traditional objective function by incorporating the l0-norm into a new objective
function, and (ii) sparse constrained optimization problems including the l0-norm within the
constraints. However, both types of problems are NP-hard. In earlier studies, methods for solving the
l0-norm minimization problem are typically categorized into model transformation techniques and
direct processing techniques. The common feature of the model transformation method is to
approximate the l0-norm with the l1-norm [19]. In terms of algorithms, several methods have been
studied, including the iterative hard-thresholding algorithm (IHTA) [20], fast iterative
shrinkage-thresholding algorithm (FISTA) [21], augmented method (ALM) [22], and alternating
direction method of multipliers (ADMM) [23].

IHTA has two advantages as follows [20]: (i) It is straightforward to implement, making it
accessible for various applications; and (ii) it effectively promotes sparsity in solutions, which is
beneficial in many signal processing and statistical tasks. There exists two disadvantages for IHTA as
follows [20]: (i) It can converge slowly, especially for large-scale problems; and (ii) it may struggle
with nonsmooth functions, limiting its applicability in some optimization scenarios. FISTA offers two
key benefits [21]: (i) It significantly accelerates the convergence compared to IHT by using
Nesterov’s acceleration, making it suitable for large datasets; and (ii) it can handle a variety of loss
functions and regularization terms, providing versatility in applications. FISTA has two drawbacks,
outlined below [21]: (i) The implementation is more complex than IHT, requiring careful tuning of
parameters; and (ii) it may require more memory for storing additional variables, which could be a
concern for very large problems. ALM has two notable benefits, listed below [22]: (i) It is effective
for problems with constraints, making it a good choice for constrained optimization; and (ii) it
generally exhibits robust convergence properties, especially for nonconvex problems. ALM presents
two notable drawbacks, detailed below [22]: (i) The performance heavily depends on the choice of
parameters, which can be challenging to optimize; and (ii) the method can be computationally
intensive, particularly for high-dimensional problems. ADMM offers two key advantages, as outlined
below [23]: (i) It allows large problems to be decomposed into smaller subproblems, which can be
solved more easily; and (ii) it handles a wide range of objective functions and constraints, making it
versatile for various applications. ADMM comes with two significant downsides, as outlined
below [23]: (i) While it has good convergence properties, it can sometimes converge slowly compared
to other methods; and (ii) like ALM, the performance can be sensitive to the choice of parameters,
requiring careful tuning.

Electronic Research Archive Volume 32, Issue 12, 6553–6577.



6556

Optimal sparse control theory is now well developed. In [24], it explores the optimal control
problem involving sparse controls for a Timoshenko beam, including its numerical approximation
using the finite element method and its numerical solution through nonsmooth techniques. In [25], the
study is focused on sparse optimal control for continuous-time stochastic systems using a dynamic
programming approach, analyzing the optimal control through the value function. In [26], the study
aims to develop a sparse tube-based robust economic model predictive control scheme. In [27], a
novel sparse control strategy for acidic wastewater sulfidation is presented to ensure the continuous
and safe HSS process. In [28], the construction of an eigenfunction vector of the Koopman operator is
based on the sparse control strategy. However, for the CPS system with varying delay, these methods
in [24–28] are not sufficient to determine an optimal sparse control policy. In this paper, we first
demonstrate the existence of the partial derivatives of the system state with respect to the elements of
the feedback matrix, and then use this to show that the gradient of the cost function can be computed
by solving the state system and a variational system forward in time. In this case, our optimal control
policy would be more straightforward and efficient for real-world applications compared to the
methods in [24, 25] depending on the numerical approximation, which could introduce a gap between
the real and the approximated control policy.

Many existing optimal sparse control theories for the CPS assume constant delays, which can
oversimplify the dynamics of a CPS where delays are often variable and unpredictable. This can lead
to suboptimal control strategies that do not account for the true nature of system behavior. Sparse
control with feedback delay plays a vital role in the CPS. (i) Effective control strategy design is
essential in the CPS. Sparse control can optimize input signals, particularly when there are limited
sensors and actuators or when energy efficiency is a priority. It is also important to account for
feedback delays in the control algorithms to prevent potential instability. (ii) The CPS generally
requires immediate responses, but feedback delays necessitate that control strategies be equipped to
mitigate their effects. By simplifying control signals, sparse control can improve responsiveness while
ensuring that performance remains stable despite these delays. (iii) Additionally, sparse control can
help minimize the need for computational power and communication bandwidth in the CPS
environments. The optimal control of communication networks described previously only considers
the system cost. However, network operators frequently opt for sparse communication topologies to
lower costs. With this in mind, to determine the optimal feedback control matrix K, we propose a
sparse optimal control (SOC) problem based on the CPS system with varying delay, aiming to
minimize the sparsity of the controller subject to a maximum allowable compromise in system cost. A
penalty method is employed to convert the SOC problem into a problem that is constrained only by
box constraints. A smoothing technique is applied to approximate the nonsmooth component in the
resulting problem. Subsequently, an analysis of the errors introduced by the smoothing technique is
conducted. The gradients of the objective function with respect to the feedback control matrix are
determined by solving both the state system and a variational system forward in time. Building upon
the piecewise quadratic approximation [29], an optimization algorithm is developed to address the
resulting problem. Finally, the paper provides the outcomes of the simulations.

The rest of the paper is organized as follows. We first describe the SOC problem based on the CPS
system in Section 2. In Section 3, we develop an optimization algorithm to solve the SOC problem.
Finally, a numerical example is given in Section 4.
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2. Problem formulation

2.1. CPS modeling

Let In be the set of {1, 2, ..., n}.

2.1.1. Linear time-invariant system

We consider the following linear time-invariant (LTI) system [2]:

ẋ(t) = Ax(t) + Bu(t),

where x ∈ Rn is the state and u ∈ Rm is the control input. A ∈ Rn×n and B ∈ Rn×m. Assume that (A, B)
is controllable.

2.1.2. Feedback control system with varying delay τ(∥K∥0)

Two idealistic hypotheses are involved in conventional CPS control designs: that communication
costs are unlimited and that the communication network is exclusively allocated for control purposes.
In practice, however, network operators often favor sparse communication topologies to minimize
costs, and the shared use of the same communication network by multiple users frequently results in
feedback delay.

After the sparsity level of matrix K ∈ Rm×n is achieved, the bandwidth c is equally redistributed
among the remaining links. Assume that the communication network follows frequency division
multiplexing. Then, delay τ can be defined by [2]:

τ(∥K∥0) = τt + τp = Z(∥K∥0, c, τp) := κ (∥K∥0/c) + τp, (2.1)

where ∥K∥0 denotes the number of nonzero elements in K, and κ : R → R is a positive function.
Eq (2.1) implies that τ will change as ∥K∥0 changes. This change is captured by the function
Z(·) : R × R × R → R. The transmission of state xl for the computation of input ui is anticipated to
encounter a delay denoted as τil (expressed in seconds), i ∈ Im, l ∈ In. This delay comprises two
distinct components: τil = τpil + τtil , where τpil denotes the propagation delay, and τtil represents the
transmission delay. The parameter τpil is characterized as the quotient of the link length divided by the
speed of light, assumed to possess a uniform value denoted as τp across all pairs i, l. Our assumption
posits an equal allocation of bandwidth for the communication link connecting any lth sensor to any ith

actuator. Consequently, this implies that τtil maintains a uniform value across all i, l pairs [2].
Henceforth, we denote τil uniformly as τ across all pairs i, l. In practice, potential deviations of τil

from the designated τ due to variations in traffic and uncertainties within the network
are acknowledged.

This controller will be deployed in a distributed manner utilizing a communication network, as
depicted in Figure 1. This figure presents the CPS represented by a closed-loop system architecture.
The ith control input is written as ui(t) = −

∑n
l=1 Kilxl(t − τ(∥K∥0)), i ∈ Im. Then accordingly the closed-

loop system is written as:

ẋ(t) = f (x(t), x̃(t),K) = Ax(t) − BKx(t − τ(∥K∥0)),
x(t) = ν, t ≤ 0,

(2.2)
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where ν ∈ Rn is a given vector, where each of its elements is assumed, without loss of generality, to
be 0.5; and x̃(t) denotes x(t − τ(∥K∥0)). Let x(·|K) be the solution of system (2.2) corresponding to the
feedback matrix K ∈ Rm×n.

Figure 1. Closed-loop CPS representation [2]. The cyber network layer is to receive an
input signal, denoted as x(t), which is then transmitted through the network to generate an
output signal, represented as u(t). Clearly, this process will admit a varying delay, denoted
as τ(∥K∥0). After the computation of u(t), the resultant signal is transmitted to the actuators
for further action.

2.2. Problem statement

2.2.1. Traditional optimal control problem

With reference to the delay mentioned above, we introduce the corresponding system cost as given
below [30]:

J0(K) = (x(T |K))⊤S x(T |K) +
∫ T

0
[(x(t|K))⊤Qx(t|K) + (u(t))⊤Wu(t)]dt, (2.3)

where T is the final time, the matrix W ∈ Rm×m is symmetric positive definite, the feedback controller
u = −Kx(t − τ(∥K∥0)), and the matrices S ∈ Rn×n and Q ∈ Rn×n are symmetric positive semidefinite.

We now present the feedback optimal control problem as follows.

Problem P1 : min
K∈Rm×n

J0(K)

s.t. ẋ(t) = f (x(t), x̃(t),K),
x(t) = ν, t ≤ 0,

where J0(K) is given by (2.3).

2.2.2. Sparse optimal control problem

Gradient-based optimization methods [31] can be used to solve Problem P1. Let K∗1 ∈ R
m×n be

the optimal feedback matrices for Problem P1. However, these matrices tend to be rather dense, and
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for large networks, the implementation cost will be expensive. Furthermore, the computation burden
of the controller will be high because the state information is required to be transmitted through the
communication network. Thus, we introduce the following Problem P2 given by

Problem P2 : min
K∈Rm×n

∥K∥0 (2.4)

s.t. ẋ(t) = f (x(t), x̃(t),K),
x(t) = ν, t ≤ 0,
|J0(K) − J0(K∗1)| ≤ ε,

where ∥K∥0 denotes the number of nonzero entries of the feedback matrix K ∈ Rm×n, J0(K) is given
by (2.3), and J0(K∗1) is the benchmark optimal system cost obtained through solving Problem P1. ε is
a small number that is used to ensure that the system cost is not greatly affected during the sparsity
process of the feedback matrix K ∈ Rm×n.

Obviously, Problem P2 balances system performance and the sparse level of the the feedback matrix
K ∈ Rm×n.

3. Computational approaches

3.1. Preconditioning algorithm: the approximation of ∥K∥0

The feedback matrix K is decomposed as n column vectors, i.e., K = (K1,K2, . . . ,Kn) ∈ Rm×n. Note
that ∥Kl∥0, l ∈ In, regularization is NP-hard. Thus, it is difficult to solve. In the past two decade, many
approximation methods, such as ∥Kl∥1 and ∥Kl∥

q
q (0 < q < 1) have been proposed. In [29], the l0-norm

of the vector is approximated by a piecewise quadratic approximation (PQA) method. In this paper,
we shall extend PQA to spare the feedback matrix K.

Remark 1. We shall illustrate that P(Kl), l ∈ In, performs better than other common approximations
of ∥Kl∥0, l ∈ In, on [−e, e], e = {1, 1, . . . , 1} ∈ Rm.

For l ∈ In, Figure 2 shows the approximation effects of ∥Kl∥1, ∥Kl∥
1/2
1/2, ∥Kl∥

1/3
1/3, ∥Kl∥1 − ∥Kl∥2, and

P(Kl) for the one-dimensional case in [–1,1] [29]. Obviously, for l ∈ In, P(Kl) is superior to ∥Kl∥1 for
approximating the l0-norm when |Kl

i | ≤ 1, i ∈ Im. For l ∈ In, when 0.38 ≤ |Kl
i | ≤ 1, i ∈ Im, P(Kl) gives

a better approximation for ∥Kl∥0, and when 0.61 ≤ |Kl
i | ≤ 1, i ∈ Im, P(Kl) is better than ∥Kl∥

1/3
1/3. Also,

for l ∈ In, P(Kl) is superior to ∥Kl∥1 − ∥Kl∥2, which is identically equal to 0 and has a large gap with
∥Kl∥0 in [–1,1].

On this basis, we use the piecewise quadratic function [29] to approximate ∥Kl∥0 over [−e, e].

P(Kl) = −(Kl)⊤Kl + 2∥Kl∥1,Kl ∈ Rm, l ∈ In.

If we choose f (Kl) = −∥Kl∥22 and g(Kl) = 2∥Kl∥1, then

F(K) =
n∑

l=1

P(Kl) =
n∑

l=1

[
f (Kl) + g(Kl)

]
,

where g is a proper closed convex and possibly nonsmooth function; f is a smooth nonconvex function
of the type C1,1

L f
(Rn), i.e., continuously differentiable with Lipschitz continuous gradient

∥∇ f (Kl) − ∇ f (yl)∥ ≤ L f ∥Kl − yl∥, Kl ∈ Rm, yl ∈ Rm, l ∈ In,
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with L f > 0 denoting the Lipschitz constant of ∇ f .
Based on the piecewise quadratic approximation [29], Problem P2 can be approximated as

given below:

Problem P3 : min
K∈Rm×n

F(K)

s.t. ẋ(t) = f (x(t), x̃(t),K),
x(t) = ν, t ≤ 0,
|J0(K) − J0(K∗1)| ≤ ε,

where J0(K), J0(K∗1), and ε are defined in Problem P2.

Figure 2. Various approximations for the one-dimensional case in [−1,1] [29].

3.2. Smoothing the objective function F(K)

Since the objective function F(K) is nonsmooth, it is difficult to solve Problem P3 by using gradient-
based algorithms. To overcome this difficulty, we aim to find a smooth function for the objective
function F(K) described in Problem P3.

First, we introduce the following notation: for x, y, z ∈ Rm,

x = max{y, z} ⇔ xi = max{yi, zi},∀i ∈ Im.

Lemma 1. If we define that p(Kl
i) = max{Kl

i , 0} and q(Kl
i) = max{−Kl

i , 0}, then the following properties
are satisfied:

(1) Kl
i = p(Kl

i) − q(Kl
i), i ∈ Im, l ∈ In; and

(2) ∥Kl∥1 =

m∑
i=1

[p(Kl
i) + q(Kl

i)], l ∈ In.

Proof. (1) For l ∈ In, and i ∈ Im, we have

p(Kl
i) − q(Kl

i) = max{Kl
i , 0} −max{−Kl

i , 0},
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Kl
i ≥ 0⇒ p(Kl

i) − q(Kl
i) = Kl

i − 0 = Kl
i ,

Kl
i < 0⇒ p(Kl

i) − q(Kl
i) = 0 − (−Kl

i) = Kl
i ,

which imply that Kl
i = p(Kl

i) − q(Kl
i), i ∈ Im, l ∈ In.

(2) For l ∈ In, and i ∈ Im, we get

p(Kl
i) + q(Kl

i) = max{Kl
i , 0} +max{−Kl

i , 0},

Kl
i ≥ 0⇒ p(Kl

i) + q(Kl
i) = Kl

i − 0 = |Kl
i |,

Kl
i < 0⇒ p(Kl

i) + q(Kl
i) = 0 − (−Kl

i) = |K
l
i |,

which prove that ∥Kl∥1 =

m∑
i=1

|Kl
i | =

m∑
i=1

[p(Kl
i) + q(Kl

i)].

Based on Lemma 1, we obtain

F(K) =
n∑

l=1

[ f (Kl) + g(Kl)] =
n∑

l=1

(
− ∥Kl∥22 + 2∥Kl∥1

)
=

n∑
l=1

(
− ∥Kl∥22 + 2

m∑
i=1

[p(Kl
i) + q(Kl

i)]
)

=

n∑
l=1

(
− ∥Kl∥22 + 2

m∑
i=1

[
max{Kl

i , 0} +max{−Kl
i , 0}
])
.

Then Problem P3 is equivalent to the following problem:

Problem P4 : min
K∈Rm×n

F1(K)

s.t. ẋ(t) = f (x(t), x̃(t),K),
x(t) = ν, t ≤ 0,
|J0(K) − J0(K∗1)| ≤ ε,

where

F1(K) =
n∑

l=1

[ f (Kl) + g(Kl)] =
n∑

l=1

(
− ∥Kl∥22 + 2∥Kl∥1

)
=

n∑
l=1

(
− ∥Kl∥22 + 2

m∑
i=1

[
p(Kl

i) + q(Kl
i)
])

=

n∑
l=1

(
− ∥Kl∥22 + 2

m∑
i=1

[
max{Kl

i , 0} +max{−Kl
i , 0}
])
.

Clearly, the function max{x, 0} is nondifferentiable with respect to x at x = 0. Thus, in order to
smooth it, a smooth function ϕ(x, σ) [32] is introduced as follows:

ϕ(x, σ) =
2σ2

√
x2 + 4σ2 − x

,

where σ > 0 is an adjustable smooth parameter.
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Lemma 2. For any x ∈ R and σ > 0, the smooth function ϕ(x, σ) has the following properties:
(1) limσ→0+ ϕ(x, σ) = max{x, 0},
(2) ϕ(x, σ) > 0,

(3) 0 < ϕ′(x, σ) =
1
2

( x
√

x2 + 4σ2
+ 1
)
< 1,

(4) 0 < ϕ(x, σ) −max{x, 0} ≤ σ.

Lemma 2 shows that the function ϕ(x, σ) is an effective smooth approximation for the function
max{x, 0}, and the approximation level can be controlled artificially by adjusting the value of smooth
parameter σ.

Therefore, Problem P4 can be approximated by the following problem:

Problem P5 : min
K∈Rm×n

F2(K)

s.t. ẋ(t) = f (x(t), x̃(t),K),
x(t) = ν, t ≤ 0,
|J0(K) − J0(K∗1)| ≤ ε,

where

F2(K) =
n∑

l=1

(
− ∥Kl∥22 + 2

m∑
i=1

[
ϕ(Kl

i , σ) + ϕ(−Kl
i , σ)
])
.

Note that the function F2(K) is continuously differentiable. Thus, Problem P5 is a constrained
optimal parameter selection problem, which can be solved efficiently by using any
gradient-based algorithm.

3.3. The relationship between Problem P4 and Problem P5

Theorem 1 presents that the optimal solution of Problem P5 is also the optimal solution of
Problem P4 as long as σ → 0 and an error estimation between the solutions of Problem P4 and
Problem P5 is given.

Lemma 3. For any σ > 0, one has

0 < F2(K) − F1(K) ≤ 4mnσ.

Proof. By using Lemma 2, one has

0 < ϕ(x, σ) −max{x, 0} ≤ σ,

and

F2(K) − F1(K) = 2
n∑

l=1

m∑
i=1

(
ϕ(Kl

i , σ) + ϕ(−Kl
i , σ) −max{Kl

i , 0} −max{−Kl
i , 0}
)
.

Thus,
0 < F2(K) − F1(K) ≤ 4mnσ.

This completes the proof of Lemma 3.
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Theorem 1. Let K4 and K5 be the optimal solutions of Problem P4 and Problem P5, respectively. Then,
we have

0 < F2(K5) − F1(K4) ≤ 4mnσ.

Proof. By using Lemma 3, one has

0 < F2(K4) − F1(K4) ≤ 4mnσ,

0 < F2(K5) − F1(K5) ≤ 4mnσ.

Note that K4 is the optimal solution of Problem P4. Then, we have

F1(K5) ≥ F1(K4),

which indicates that
F2(K5) − F1(K5) ≤ F2(K5) − F1(K4).

Note that K5 is the optimal solution of Problem P5. Then, we have

F2(K4) ≥ F2(K5),

which indicates that
F2(K5) − F1(K4) ≤ F2(K4) − F1(K4).

Then, we have 0 < F2(K5) − F1(K5) ≤ F2(K5) − F1(K4) ≤ F2(K4) − F1(K4) ≤ 4mnσ, which implies
that

0 < F2(K5) − F1(K4) ≤ 4mnσ.

This completes the proof of Theorem 1.

Remark 2. Theorem 1 shows that the optimal solution of Problem P5 is an approximate optimal
solution of Problem P4, as long as the adjustable parameter σ is sufficiently small.

3.4. Penalty function method

The inequality constraint |J0(K) − J0(K∗1)| ≤ ε is equivalent to

max{|J0(K) − J0(K∗1)| − ε, 0} = 0,

and equivalent to

max{J0(K) − J0(K∗1) − ε, 0} = 0, (3.1)

and

max{−J0(K) + J0(K∗1) − ε, 0} = 0. (3.2)

Then, by using the idea of the penalty function method described by [31], the equality
constraints (3.1) and (3.2) are appended to the objective function of Problem P5 to form an augmented
objective function. Thus, a penalty problem can be defined as follows:

Problem P6 : min
K∈Rm×n

G0(K)
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s.t. ẋ(t) = f (x(t), x̃(t),K),
x(t) = ν, t ≤ 0,

where

G0(K) = F2(K) + γ1 max{J0(K) − J0(K∗1) − ε, 0} + γ2 max{−J0(K) + J0(K∗1) − ε, 0}

=

n∑
l=1

(
− ∥Kl∥22 + 2

m∑
i=1

[
ϕ(Kl

i , σ) + ϕ(−Kl
i , σ)
])

+ γ1 max{J0(K) − J0(K∗1) − ε, 0} + γ2 max{−J0(K) + J0(K∗1) − ε, 0},

with γ1 and γ2 being the penalty parameters. It is important to note that violations of the equality
constraints in Eqs (3.1) and (3.2) are addressed through the integral term G0(K) in Problem P6. It can
be demonstrated that by selecting sufficiently high values for γ1 and γ2, any minimizer of G0(K) in
Problem P6 within the region defined by γ1 > γ

∗ and γ2 > γ
∗ (where γ∗ denotes the threshold for

the penalty parameters) will also satisfy the feasibility conditions of Problem P5. Therefore, a feasible
solution to Problem P5 can be effectively found by minimizing G0(K) in Problem P6 with appropriately
chosen penalty values for γ1 and γ2.

By adopting the function ϕ(x, σ) to approximate the function max{x, 0} again, Problem P6 can be
written as the following problem:

Problem P7 : min
K∈Rm×n

G(K)

s.t. ẋ(t) = f (x(t), x̃(t),K),
x(t) = ν, t ≤ 0,

where

G(K) =
n∑

l=1

(
− ∥Kl∥22 +

m∑
i=1

[
ϕ(Kl

i , σ) + ϕ(−Kl
i , σ)
])

+ γ1ϕ(J0(K) − J0(K∗1) − ε, σ) + γ2ϕ(−J0(K) + J0(K∗1) − ε, σ).

Note that the function G(K) is continuously differentiable. Thus, Problem P7 is an unconstrained
optimal parameter selection problem, which can be solved efficiently by using any
gradient-based algorithm.

3.5. The relationship of Problem P5, Problem P6, and Problem P7

Theorem 2 shows that the optimal solution of Problem P7 is also the optimal solution of Problem P6

as long as σ→ 0 and an error estimation between the solutions of Problem P5 and Problem P7 is given.

Definition 1. A control input K7 is σ-feasible to Problem P7, if the control input K7 satisfies the
following inequality constraint:

|J0(K7) − J0(K∗1)| − ε ≤ σ.

Lemma 4 and Theorem 2 are the variations of Lemma 3 and Theorem 1, respectively.
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Lemma 4. For any σ > 0, one has

0 < G0(K) −G(K) ≤ (γ1 + γ2)σ,

where 0 < γ1 and γ2 < 1 are the penalty parameters.

Proof. By using Lemma 2, we have

0 < ϕ(x, σ) −max{x, 0} ≤ σ,

and

G0(K) −G(K) = γ1

(
ϕ(J0(K) − J0(K∗1) − ε, σ) −max{J0(K) − J0(K∗1) − ε, 0}

)
+γ2

(
ϕ(−J0(K) + J0(K∗1) − ε, σ) −max{J0(K) − J0(K∗1) − ε, 0}

)
.

Thus, we have
0 < G0(K) −G(K) ≤ (γ1 + γ2)σ.

This completes the proof of Lemma 4.

Theorem 2. Let K6 and K7 be the optimal solutions of Problem P6 and Problem P7, respectively. Then,
we have

0 < G(K7) −G0(K6) ≤ (γ1 + γ2)σ.

Proof. By using Lemma 4, one has

0 < G0(K6) −G(K6) ≤ (γ1 + γ2)σ,

0 < G0(K7) −G(K7) ≤ (γ1 + γ2)σ.

Note that K6 is the optimal solution of Problem P6. Then, we have

G0(K7) ≥ G0(K6),

which indicates that
G(K7) −G0(K7) ≤ G(K7) −G0(K6).

Note that K7 is the optimal solution of Problem P7. Then, we have

G(K6) ≥ G(K7),

which indicates that
G(K7) −G0(K6) ≤ G(K6) −G0(K6).

Then, 0 < G(K7) −G0(K7) ≤ G(K7) −G0(K6) ≤ G(K6) −G0(K6) ≤ (γ1 + γ2)σ, which implies that

0 < G(K7) −G0(K6) ≤ (γ1 + γ2)σ.

This completes the proof of Theorem 2.
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Remark 3. Theorem 2 shows that the optimal solution of Problem P7 is an approximate optimal
solution of Problem P6, as long as the adjustable parameter σ is sufficiently small.

Then, we can obtain the following theorem.

Theorem 3. Let K6 and K7 be the optimal solutions of Problem P6 and Problem P7, respectively. If K6

is feasible to Problem P5 and K7 is σ−feasible to Problem P5, then we obtain

−(γ1 + γ2)σ < F2(K7) − F2(K6) ≤ (γ1 + γ2)σ.

Proof. Note that K6 is feasible to Problem P5. Then, one has

max{J0(K) − J0(K∗1) − ε, 0} = 0,

and
max{−J0(K) + J0(K∗1) − ε, 0} = 0.

Then, we have J0(K) − J0(K∗1) − ε ≤ 0 and −J0(K) + J0(K∗1) − ε ≤ 0. Note that K7 is σ-feasible to
Problem P5 in Definition 1 and the smooth function ϕ(x, σ) is strictly monotone increasing (the first
derivative is positive, see Lemma 2(3)). Thus, we obtain

ϕmax(J0(K) − J0(K∗1) − ε, σ) = ϕ(σ,σ) =
1
2

(
√

5 + 1)σ,

and
ϕmax(−J0(K) + J0(K∗1) − ε, σ) = ϕ(σ,σ) =

1
2

(
√

5 + 1)σ.

By using Lemma 2(2) that ϕ(x, σ) > 0, we obtain

0 < γ1ϕ(J0(K) − J0(K∗1) − ε, σ) + γ2ϕ(−J0(K) + J0(K∗1) − ε, σ) ≤
1
2

(
√

5 + 1)(γ1 + γ2)σ.

Based on Theorem 2, we have

0 < G(K7) −G0(K6) = F2(K7) − F2(K6) + γ1

(
ϕ(J0(K) − J0(K∗1) − ε, σ) −max{J0(K) − J0(K∗1) − ε, 0}

)
+ γ2

(
ϕ(−J0(K) + J0(K∗1) − ε, σ) −max{−J0(K) + J0(K∗1) − ε, 0}

)
≤ (γ1 + γ2)σ.

Thus, we get

−
1
2

(
√

5 + 1)(γ1 + γ2)σ ≤ F2(K7) − F2(K6) ≤ (γ1 + γ2)σ.

This completes the proof of Theorem 3.

Remark 4. If γ1 and γ2 are greater than the threshold value γ∗, the optimal solution of Problem P6 is
the exact optimal solution of Problem P7 [31]. Furthermore, Theorem 3 provides an error estimation
between the solutions of Problem P5 and Problem P7 as long as γ1 > γ

∗ and γ2 > γ
∗. Thus, the

approximate optimal solution of Problem P5 can be achieved by solving Problem P7. Note that we have
proved that the optimal solution of Problem P5 is also the optimal solution of Problem P4 as long as the
adjustable smooth parameter σ is sufficiently small, and Problem P4 and Problem P3 are equivalent.
Thus, the approximate optimal solution of Problem P3 can be achieved by solving Problem P7.
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3.6. Gradient formulae

Note that the cost function G(K) in Problem P7 is continuously differentiable. Thus, Problem P7

is an unconstrained optimal parameter selection problem, which can be solved efficiently by using
any gradient-based algorithm. Since the functionals depend implicitly on the feedback matrix K via
system (2.2), it is important to derive an effective computational procedure for calculating the gradient
of the cost function G(K) in Problem P7.

3.6.1. The gradients of x(·|K) with respect to the feedback matrix

In this subsection, we investigate the gradients of x(·|K) with respect to the feedback matrix. Define

Θ := [−1 − Kl
i , 1 − Kl

i].

Then, 0 ∈ Θ and ϵ ∈ Θ⇔ K + ϵEl
i ∈ Θ. For each ϵ ∈ Θ, define

φϵ(t) := xϵ(t) − x(t), t ≤ T,

and
θϵ := xϵ(t − τ(F2(K))) − x(t − τ(F2(K))), t ≤ T.

Clearly,
φϵ(t − τ(F2(K))) = θϵ(t), t ≤ T.

Then we have the following lemmas.

Lemma 5. There exists a positive real number L1 > 0 such that for all ϵ ∈ Θ, we have

|xϵ(t)| ≤ L1, t ∈ [−τ,T ].

Lemma 6. There exists a positive real number L2 > 0 such that for all ϵ ∈ Θ, we have

|φϵ(t)| ≤ L2|ϵ |,
∣∣∣∣θϵ + ∂x̃

∂τ

∂τ(F2(K))
∂F2

∂F2(K)
∂Kl

i

ϵ
∣∣∣∣ ≤ L2|ϵ|, i ∈ Im, l ∈ In, t ∈ [0,T ].

The partial derivatives of the system state with respect to the feedback matrix are given in
Theorem 4.

Theorem 4. Let t ∈ (0,T ] be a fixed time point. Then x(t|·) is differentiable with respect to Kl
i on [−1,1].

Moreover, for each Kl
i , we have

∂x(t|K)
∂Kl

i

= Λl
i(t|K), t ∈ [0,T ], i ∈ Im, l ∈ In,

where Λl
i(·|K), i ∈ Im, l ∈ In, is the solution of the following auxiliary system:

Λ̇l
i(t) =

∂ f (x(t), x̃(t),K)
∂x

Λl
i(t) +

∂ f (x(t), x̃(t),K)
∂x̃

[
Λl

i(t − τ(F2(K))) +
∂x̃
∂τ

∂τ(F2(K))
∂F2

∂F2(K)
∂Kl

i

]
+
∂ f (x(t), x̃(t),K)

∂Kl
i

,

Λl
i(t) = 0, t ≤ 0.
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Proof. Let Kl
i ∈ [−1, 1], i ∈ Im, l ∈ In, be arbitrary but fixed. For each ϵ ∈ Θ, define the

following functions:

f̄ ϵ(s, η) = f (x(s) + ηφϵ , x̃(s) + ηθϵ(s),Kl
i + ηϵE

l
i), η ∈ [0, 1],

∆ϵ1 =

∫ 1

0

{
∂ f̃ ϵ(s, η)
∂x

−
∂ f̃ ϵ(s, 0)
∂x

}
φϵ(s)dη, s ∈ [0, t],

∆ϵ2 =

∫ 1

0

{
∂ f̃ ϵ(s, η)
∂x̃

−
∂ f̃ ϵ(s, 0)
∂x̃

} [
θϵ(s) +

∂x̃(s)
∂τ

∂τ(F2(K))
∂F2

∂F2(K)
∂Kl

i

ϵ
]
dη, s ∈ [0, t],

∆ϵ3 =

∫ 1

0
ϵ

{
∂ f̃ ϵ(s, η)
∂Kl

i

−
∂ f̃ ϵ(s, 0)
∂Kl

i

}
dη, s ∈ [0, t],

where El
i denotes the matrix in which the elements in row i and column l are 1 and the rest are 0.

Based on Lemmas 5 and 6 and the continuous differentiability of the functions f , we can obtain that
there exist two constants M1 > 0 and M2 > 0 such that

∥
∂ f̄ ϵ(s, 0)
∂x

∥ ≤ M1, ∥
∂ f̄ ϵ(s, 0)
∂x̃

∥ ≤ M2,

where ∥ · ∥ denotes the natural matrix norm on Rn×n. In addition, by Lemmas 5 and 6, the following
limits exist uniformly with respect to η ∈ [0, 1]:

lim
ϵ→0
{x(s) + ηφϵ(s)} = x(s),

lim
ϵ→0
{x̃(s) + ηθϵ(s)} = x̃(s).

Thus, for each δ > 0, there exists an ϵ1 > 0 such that for all ϵ satisfying |ϵ | < ϵ1,∥∥∥∥∂ f̄ ϵ(s, η)
∂x

−
∂ f̄ ϵ(s, 0)
∂x

∥∥∥∥ < δ, η ∈ [0, 1],

∥∥∥∥∂ f̄ ϵ(s, η)
∂x̃

−
∂ f̄ ϵ(s, 0)
∂x̃

∥∥∥∥ < δ, η ∈ [0, 1],

and ∥∥∥∥∂ f̄ ϵ(s, η)
∂Kl

i

−
∂ f̄ ϵ(s, 0)
∂Kl

i

∥∥∥∥ < δ, η ∈ [0, 1].

Thus, it follows from Lemma 6 that

|∆ϵ1(s)| ≤ L2δ|ϵ |, |∆
ϵ
2(s)| ≤ L2δ|ϵ|, |∆

ϵ
3(s)| ≤ δ|ϵ |. (3.3)

Now, let δ > 0 be arbitrary but fixed and choose ϵ ∈ Θ such that 0 < |ϵ | < ϵ1. Then, by the chain rule,
we have

∂ f̄ ϵ(s, η)
∂η

=
∂ f̄ ϵ(s, η)
∂x

·
∂x
∂η
+
∂ f̄ ϵ(s, η)
∂x̃

[∂x̃
∂η
+
∂x̃
∂τ

∂τ(F2(K))
∂F2

∂F2(K)
∂Kl

i

∂Kl
i

∂η

]
+
∂ f̄ ϵ(s, η)
∂Kl

i

·
∂Kl

i

∂η

=
∂ f̄ ϵ(s, η)
∂x

· φϵ(s) +
∂ f̄ ϵ(s, η)
∂x̃

·
[
θϵ(s) +

∂x̃
∂τ

∂τ(F2(K))
∂F2

∂F2(K)
∂Kl

i

ϵ
]
+
∂ f̄ ϵ(s, η)
∂Kl

i

· ϵ.
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Recall that t ∈ (0,T ] is a fixed time point. Then, by the fundamental theorem of calculus, we get

φϵ(t) = xϵ(t) − x(t) =
∫ t

0
f̄ ϵ(s, 1) − f̄ ϵ(s, 0)ds =

∫ t

0
(
∫ 1

0

∂ f̄ ϵ(s, η)
∂η

dη)ds.

Thus, the chain rule follows:

φϵ(t) =
∫ t

0
(
∫ 1

0

∂ f̄ ϵ(s, η)
∂x

· φϵ(s)dη)ds +
∫ t

0

{ ∫ 1

0

∂ f̄ ϵ(s, η)
∂x̃

[
θϵ(s) +

∂x̃
∂τ

∂τ(F2(K))
∂F2

∂F2(K)
∂Kl

i

ϵ
]
dη
}
ds

+

∫ t

0
(
∫ 1

0

∂ f̄ ϵ(s, η)
∂Kl

i

· ϵdη)ds. (3.4)

Note that we have∫ 1

0

∂ f̄ ϵ(s, η)
∂x

φϵ(s)dη = ∆ϵ1(s) +
∂ f̄ ϵ(s, 0)
∂x

φϵ(s), (3.5)∫ 1

0

∂ f̄ ϵ(s, η)
∂x̃

θϵ(s)dη = ∆ϵ2(s) +
∂ f̄ ϵ(s, 0)
∂x̃

[
θϵ(s) +

∂x̃
∂τ

∂τ(F2(K))
∂F2

∂F2(K)
∂Kl

i

ϵ
]
, (3.6)∫ 1

0
ϵ
∂ f̄ ϵ(s, η)
∂Kl

i

dη = ∆ϵ3(s) + ϵ
∂ f̄ ϵ(s, 0)
∂Kl

i

. (3.7)

Substituting (3.5)–(3.7) into (3.4) gives

φϵ(t) =
∫ t

0
(∆ϵ1(s) +

∂ f̄ ϵ(s, 0)
∂x

φϵ(s))ds +
∫ t

0

{
∆ϵ2(s) +

∂ f̄ ϵ(s, 0)
∂x̃

[
θϵ(s) +

∂x̃
∂τ

∂τ(F2(K))
∂F2

∂F2(K)
∂Kl

i

ϵ
]}

ds

+

∫ t

0
(∆ϵ3(s) + ϵ

∂ f̄ ϵ(s, 0)
∂Kl

i

)ds. (3.8)

Note that

Λl
i(t|K) =

∫ t

0

{∂ f (x(s), x̃(s),K)
∂x

Λl
i(s) +

∂ f (x(s), x̃(s),K)
∂x̃

[
Λl

i(s − τ(F2(K))) +
∂x̃
∂τ

∂τ(F2(K))
∂F2

∂F2(K)
∂Kl

i

]
+
∂ f (x(s), x̃(s),K)

∂Kl
i

}
ds. (3.9)

Then multiplying (3.8) by ϵ−1, subtracting (3.9), taking the norm of both sides, and finally
applying (3.3) yields

|ϵ−1φϵ(t) − Λl
i(t|K)| ≤ (L2 + L2 + 1)δT + M1

∫ t

0
|ϵ−1φϵ(s) − Λl

i(s)|ds

+M2

∫ t

0
|ϵ−1φϵ(s − τ(F2(K))) − Λl

i(s − τ(F2(K)))|ds. (3.10)

Also, we know that φϵ(t) = 0, t ≤ 0, Λl
i(s) = 0, s ≤ 0, and then the last integral term on the right-hand

side of (3.10) can be simplified as follows:∫ t−τ

−τ

M2|ϵ
−1φϵ(s) − Λl

i(s|K)|ds ≤
∫ t

0
M2|ϵ

−1φϵ(s) − Λl
i(s|K)|ds.
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Thus, (3.10) becomes

|ϵ−1φϵ(s) − Λl
i(s|K)| ≤ (2L2 + 1)δT + (M1 + M2)

∫ t

0
|ϵ−1φϵ(s) − Λl

i(s|K)|ds.

By the Gronwall-Bellman lemma, it follows that

|ϵ−1φϵ(s) − Λl
i(s|K)| ≤ (2L2 + 1)δT exp [(M1 + M2)T ],

which holds whenever 0 < |ϵ | < ϵ1. Since δ is arbitrarily chosen, we conclude that ϵ−1φϵ(t) → Λl
i(t|K)

as ϵ → 0.
Then, we get

lim
ϵ→0

φϵ(t)
ϵ
= Λl

i(t|K).

Because of
lim
ϵ→0

φϵ(t)
ϵ
= lim
ϵ→0

xϵ(t) − x(t)
ϵ

= Λl
i(t|K), i ∈ Im, l ∈ In,

we obtain
∂x(t|K)
∂Kl

i

= Λl
i(t|K), i ∈ Im, l ∈ In,

thereby completing the proof.

We now present the following algorithm for computing the cost function of Problem P7 and its
gradient at a given controller K.

3.6.2. The cost function with respect to the feedback matrix

Based on Theorem 4 and the chain rule, we have:

Theorem 5. The gradients of the cost function G(K) with respect to Kl
i , i ∈ Im, l ∈ In, is given by

∂G(K)
∂Kl

i

=

n∑
l=1

{
− 2Kl

i +

m∑
i=1

[ 2σ2

(
√

(Kl
i )

2 + 4σ2 − Kl
i )

2
(

2Kl
i√

(Kl
i )

2 + 4σ2
− 1)

+
2σ2

(
√

(−Kl
i )

2 + 4σ2 + Kl
i )

2
(

2Kl
i√

(Kl
i )

2 + 4σ2
+ 1)
]}

+ γ1
2σ2

(
√

J0(K) − J0(K∗1) − ε + 4σ2 − J0(K) + J0(K∗1) + ε)2

[ ∂J0(K)/∂Kl
i√

J0(K) − J0(K∗1) − ε + 4σ2
−
∂J0(K)
∂Kl

i

]

+ γ2
2σ2

(
√

(−J0(K) + J0(K∗1) − ε) + 4σ2 + J0(K) − J0(K∗1) + ε)2

[ −∂J0(K)/∂Kl
i√

J0(K) − J0(K∗1) − ε + 4σ2
+
∂J0(K)
∂Kl

i

]
,

where

∂J0(K)
∂Kl

i

= 2(x(T |K))⊤SΛl
i(t|K) +

∫ T

0
[(x(t|K))⊤QΛl

i(t|K) + (u(t))⊤Wu(t)]dt, i ∈ Im, l ∈ In.

Then, Problem P7 can be solved efficiently by using any gradient-based algorithm based on Theorem 5.
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4. Numerical results

4.1. Experiment design

In this section, all computational experiments are carried out in MATLAB R2021a on a computer
with a 3.70 GHz Intel Core i9-10900K CPU243 and 32.0GB RAM. The Euler method is used to solve
system (2.2) with a step size of 1/10, and the initial time and terminal time are 0 and 1, respectively.
We consider the 10th-order.

We use the gradient-based methods described in [31] for solving Problem P1 to obtain the optimal
dense feedback matrix denoted by K∗1 . Then, through the application of Algorithm 1, we solve Problem
P7 to obtain the optimal sparse feedback matrix K∗2 .

To indicate the sparse level of the feedback matrix K, we define the following indicator:

r =
Number of nonzero elements in K

Number of elements in K
,

which represents the proportion of nonzero elements in the matrix. Obviously, a smaller value of r
means a better sparse level of K.

4.2. Experiment 1

Based on empirical data, we consider a 10-th order LTI system with a state matrix

A =



−8 −10 0 −1 −9 −2 −8 −4 −4 −6
−10 −4 −9 −7 −5 −6 −4 −3 −1 0
−4 −6 −4 −7 −3 −4 −4 −8 −1 −9
−6 −9 −7 0 −4 −6 −5 −7 −5 −1
−2 −1 −5 −9 0 −2 −5 −5 −10 −7
−5 −5 −10 −2 −6 −8 −5 −3 −3 0
−4 −6 0 −9 −9 −4 −5 −10 −9 −9
−3 −3 −4 −2 −3 −6 −6 −7 −10 −5
−9 −7 −8 −6 −9 −4 −10 −2 −7 −9
0 −5 −9 −3 0 0 −1 −4 −8 −2



.

Assume that B = R = Q = E10, S = 0 ∈ R10×10, and ε = 0.1. The cost function is given by [30]:

J0(K) =
∫ 1

0
[(x(t|K))⊤x(t|K) + u(t)⊤u(t)]dt,

where u = −Kx(t − τ(∥K∥0)).
4.3. Experiment 2

Based on empirical data, we consider another 10th-order LTI system with a state matrix
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A =



3 −10 0 −1 −9 −2 −8 −4 −4 −6
−10 −4 6 −7 −5 6 −4 2 −1 0
−4 −6 7 −7 −3 −4 −4 −8 −1 −9
−6 −9 −7 0 −4 −6 −5 −7 −5 −1
−2 −1 −5 −9 0 −2 −1 −5 −10 −7
−5 −5 −10 −2 −6 −8 −5 −3 −3 0
−4 −6 0 −9 4 −4 −5 −10 −9 −9
−3 −3 −4 −2 −3 9 −6 −7 2 −5
3 −7 −8 −6 −9 −4 1 −2 −7 −9
0 −5 −9 −3 0 0 −1 −4 −8 −2



.

Assume that B = R = Q = E10, S = 0 ∈ R10×10, ε = 0.1. The cost function is given by [30]:

J0(K) =
∫ 1

0
[(x(t|K))⊤x(t|K) + u(t)⊤u(t)]dt,

where u = −Kx(t − τ(∥K∥0)).

4.4. Experiment analysis

The distributions of nonzero components in the feedback matrices K∗1 and K∗2 and their
corresponding state at each moment are displayed in Figures 3 and 4, where nz means the number of
nonzero elements. Their corresponding optimal cost and sparsity levels are given in Tables 1 and 2.
Figures 3 and 4 indicate that the feedback matrix K∗1 exhibits a high degree of density, while the
feedback matrix K∗2 displays a notable level of sparsity. Furthermore, from Tables 1 and 2, it follows
that the value of the cost function, specifically J0(K∗2), slightly exceeds that of J0(K∗1).

We can see that the number of zero components in K∗2 increases rapidly with only a small increase in
cost. Therefore, we can conclude that Algorithm 1 proposed in this paper can produce a better quality
solution which balances the system performance and sparsity.

Table 1. The optimal feedback matrix, the corresponding optimal cost function, and the
sparsity indicator r for Experiment 1.

the optimal feedback matrix the optimal cost function r
K∗1 J0(K∗1) = 2.59 0.88
K∗2 J0(K∗2) = 2.68 0.06
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Figure 3. Distribution of the nonzero components of K∗1 without considering sparsity and K∗2
with considering sparsity, and their corresponding change in x for Experiment 1.
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Figure 4. Distribution of the nonzero components of K∗1 without considering sparsity and K∗2
with considering sparsity, and their corresponding change in x for Experiment 2.
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Table 2. The optimal feedback matrix, the corresponding optimal cost function and sparsity
indicator r for Experiment 2.

the optimal feedback matrix the optimal cost function r
K∗1 J0(K∗1) = 2.41 0.93
K∗2 J0(K∗2) = 2.57 0.08

Algorithm 1 The gradients calculation of the cost function in Problem P7

1: Step 1: Obtain x(t|K), Λl
i(t), i ∈ Im, l ∈ In, by solving the enlarged time-delay system consisting of

the original system (2.2) and the auxiliary system in Theorem 4.
2: Step 2: Use the state values x(t|K) to compute G(K) in Problem P7.
3: Step 3: Use x(t|K), G(K) and Λl

i(t) to compute ∂G(K)
∂Kl

i
, i ∈ Im, l ∈ In.

5. Conclusions

In practical scenarios, network operators often choose sparse communication topologies to
minimize costs, but the concurrent use of the network by multiple users often leads to feedback
delays. Our goal is to determine the optimal sparse feedback control matrix K. To achieve this, we
formulate a SOC problem tailored to the CPS with variable delays, with the aim of minimizing ||K||0
while adhering to a specified maximum compromise in system costs. We employ a penalty method to
transform the SOC problem into one governed solely by box constraints. To handle the nonsmooth
aspects of the resulting problem, we utilize a smoothing technique and subsequently analyze the
errors it may introduce. The gradients of the objective function concerning the feedback control
matrix are computed by simultaneously solving the state system and the associated variational system
over time. An optimization algorithm is designed to tackle the resulting challenge, utilizing a
piecewise quadratic approximation. The paper concludes with a discussion of the simulation results.

The innovation of the paper is stated as follows: (i) The innovative use of a penalty method
transforms the problem into one constrained by box limits, simplifying the optimization process while
still enforcing necessary control constraints; (ii) the application of smoothing techniques to
approximate nonsmooth components enables the derivation of gradients efficiently, facilitating the use
of gradient-based optimization algorithms in sparse settings; (iii) the method incorporates
simultaneous solving of the state and variational systems, enhancing accuracy in gradient calculations
and improving the overall performance of the control strategy; and (iv) the development of an
optimization algorithm based on piecewise quadratic approximation offers a computationally efficient
way to navigate the optimization landscape, making the approach feasible for real-time applications.
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