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Abstract: Previous works have analyzed finite/fixed-time tracking control for nonlinear systems. In 
these works, achieving the accurate time convergence of errors must be under the premise of known 
initial values and careful design of control parameters. Then, how to break through the constraints 
of initial values and design parameters for this issue is an unsolved problem. Motivated by this, we 
successfully studied prescribed-time tracking control for single-input single-output nonlinear 
systems with uncertainties. Specifically, we designed a state feedback controller on [0, 𝑇௣), based on 
the backstepping method, to make the tracking error (TE) tend to zero at 𝑇௣ , in which 𝑇௣  is the 
arbitrarily selected prescribed-time. Furthermore, on [𝑇௣, ∞), another controller, similarly to that on [0, 𝑇௣), was designed to keep TE within a precision after 𝑇௣, while TE may not stay at zero. Therefore, 
on [𝑇௣, ∞), another new controller, based on sliding mode control, was built to ensure that TE stays at 
zero after 𝑇௣. 
Keywords: prescribed-time control; backstepping method; nonlinear system; sliding mode control; 
trajectory tracking 
 

1. Introduction 

The stability of automatic systems, being a significant property, has been extensively studied for 
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several decades. Compared with asymptotic stability [1–7], finite-time stability is more practical, 
having been first introduced in [8]. Sliding mode control (SMC), a classical method, can achieve finite-
time stability effectively due to its simplicity and high robustness. Furthermore, high-order sliding 
modes and terminal sliding modes were developed in subsequent research [9–11]. However, due to 
the discontinuous switching function, high-frequency chattering occurs in sliding mode control, 
restricting its practical application. To overcome this flaw, a method based on Lyapunov differential 
inequality was proposed to realize finite-time control [12,13]. For finite-time stability, although the 
system can converge to the equilibrium solution in a finite time, the estimation of the settling time 
always requires knowledge about the initial conditions. Nevertheless, in many real cases, the initial 
system conditions are unavailable, such as in state monitoring exceptions for unmanned aerial 
vehicles caused by sensor failure [14]. As a result, fixed-time stability (FxT stability) was introduced, 
in which the upper bound of settling time can be presented irrespective of initial values. The FxT 
control can be traced back to [15], which used polynomial feedback and modifications of the second-
order SMC algorithm to achieve the stabilization of the linear system. Later, the FxT control, 
implemented by odd-order plus fractional-order feedback, was applied to higher-order nonlinear 
systems and multi-agent systems [16,17]. 

Although the FxT scheme can provide the upper bound of settling time by adjusting control 
parameters, choosing proper parameters is a complex problem. Furthermore, achieving convergence at a 
desired moment by FxT control is almost impossible. To overcome this, the prescribed-time (PT) stability 
was introduced [18] by converting the original system to a new one via a time-varying transformation; 
the desired convergent time was independent of arbitrarily designed parameters and initial conditions. 
In recent years, this interesting feature has attracted more and more attention [19–33], and various 
methods of prescribed-time control have been proposed, such as nonlinear feedback [21], extracting 
the characteristics of systems to design the controller [22], parametric Lyapunov equation [23,24], 
SMC [25], time transformation function [26], and Lyapunov differential inequality [29].  

For special strict-feedback systems, our research focus, some results on PT control have been 
reported [27,28,30]. With the development of PT control, the PT tracking issue has emerged. By 
importing a new time-varying function, the PT tracking issue of nonlinear systems was achieved [31]. 
Based on the Barrier Lyapunov function, PT tracking control with pre-set properties for known 
nonlinear systems was achieved [32]. In [33], authors investigated PT tracking for completely certain 
systems in strict feedback form using the backstepping method. However, it should be noted that 
systems are not always fully observed in many cases. For systems with uncertainties, such as unknown 
functions and disturbance, the methods in [32,33] seem to be limited. Hence, a natural question arises: 
For nonlinear systems with uncertainties, can the prescribed-time tracking control be realized by the 
single-control approach, such as the backstepping approach, at the prescribed time and afterward? If 
not, another question emerges: can hybrid control approaches, such as the backstepping method and 
sliding mode control, be combined to achieve it? Answering these two questions is the main motivation 
of this paper.  

Based on the above discussions, we will explore the single backstepping approach and the 
combined approach of backstepping and SMC to implement the PT tracking control for the single-
input single-output (SISO) nonlinear system accompanied by uncertainties. The detailed contributions 
are listed as follows: 

1) For the SISO system accompanied by unknown functions and disturbance, a state feedback 
controller on [0, 𝑇௣), by backstepping method, is designed to make the tracking error (TE) tend to zero 
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at the prescribed time 𝑇௣ (not dependent on initial values and designed parameters). Additionally, on [0, 𝑇௣), the controller can always be kept bounded. 
2) A further controller on [𝑇௣, ∞), by backstepping method similarly to 1), is imported to keep 

the TE within a precision after 𝑇௣. It should be pointed out that the TE may not stay at zero after 𝑇௣, 
which is the motivation of 3). 

3) Another further controller on [𝑇௣, ∞), by SMC, is introduced to guarantee that the TE stays at 
zero after 𝑇௣, which compensates the deficiency of 2).  

2. Preliminaries 

Consider the SISO nonlinear system as follows: 

 ቐ𝑥ሶ௝ = 𝑥௝ାଵ + 𝑓௝൫𝑥̄௝൯, 𝑗 = 1, . . . , 𝑛 − 1,𝑥ሶ௡ = 𝑔(𝑥)𝑢 + 𝑓௡(𝑥) + 𝑑(𝑡),𝑦 = 𝑥ଵ,  (1) 

in which  𝑥௝ ∈ 𝑅௡  is the state, 𝑔(𝑥) ≠ 0  is a known continuous function, 𝑥 = [𝑥ଵ, . . . , 𝑥௡]் ∈𝑅௡ and 𝑓௝൫𝑥̄௝൯, 𝑥̄௝ = [𝑥ଵ, … , 𝑥௝]் ∈ 𝑅௝, 𝑗 = 1, … , 𝑛 − 1 are known nonlinear and continuous functions, 𝑓௡(𝑥) is an unknown nonlinear continuous function, 𝑢 ∈ 𝑅 denotes the control input, 𝑑(𝑡) denotes a 
bounded continuous disturbance, and 𝑦 ∈ 𝑅 denotes the output. 

The goal is to design a controller to allow 𝑦(𝑡) to track the pre-set trajectory 𝑥ଵௗ(𝑡). To implement 
our control scheme, the following lemma and assumptions are listed. 
Lemma 1 ([34]): Consider a scalar differential equation: 

 𝐻ሶ (𝑠) = 𝐹(𝐻(𝑠), 𝑠), 𝐻(𝑠଴) = 𝐻(0),  

in which 𝐹(𝐻(𝑠), 𝑠) is the continuity on 𝑠 and local Lipschitz continuity on 𝐻(𝑠), for ∀𝑠 ≥ 0, 𝐻(𝑠) ∈𝑀 ⊂ 𝑅.  Denote [𝑠଴, 𝑇)  by the maximal interval for solution 𝐻(𝑠) , and suppose 𝐻(𝑠) ∈ 𝑀 ⊂ 𝑅  for ∀𝑠 ∈ [𝑠଴, 𝑇). Assume 𝑄(𝑠) is continuous with Dini upper right-hand 𝐷ା𝑄(𝑠), 

 𝐷ା𝑄(𝑠) ≤ 𝐹(𝐻(𝑠), 𝑠), 𝑄(𝑠଴) ≤ 𝐻(𝑠଴),  

with 𝑄(𝑠) ∈ 𝑀 ⊂ 𝑅 for ∀𝑠 ∈ [𝑠଴, 𝑇). Then, 𝑄(𝑠) ≤ 𝐻(𝑠), ∀𝑠 ∈ [𝑠଴, 𝑇). 
Assumption 1: A smooth and bounded function 𝑓ሜ(𝑥) and number 𝜆 exist for 

 |𝑓௡(𝑥)| ≤ 𝑓ሜ(𝑥), |𝑑(𝑡)| ≤ 𝜆.  

Assumption 2: For ∀𝑗 = 1, . . . , 𝑛, 𝑓௝(𝑥̄௝) and 𝑥ଵௗ(𝑡) is smooth enough to be differentiable of order n. 
This assumption is a general consideration of the backstepping design, see [32,33,35,36]. 
Before designing the controller, let us define the following n-dimensional error variables: 

 
𝑒ଵ = 𝑥ଵ − 𝜂ଵ,𝑒௝ = 𝑥௝ − 𝜂௝, 𝑗 = 2, . . . , 𝑛, (2) 

where 𝜂ଵ = 𝑥ଵௗ is the desired trajectory we will track, and 𝜂௝, 𝑗 = 2, . . . , 𝑛 are the virtual controllers 
that will be designed later. 
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3. Main results 

3.1. Controller design based on a backstepping approach 

In this section, we will design a controller to implement the PT tracking control for system (1). 
The controller is divided into two phases–prescribed-time tracking controller 𝑢௣ when 0 ≤ 𝑡 < 𝑇௣ and 
infinite-time tracking controller 𝑢෤  when 𝑡 ≥ 𝑇௣. 

Case 1 (0 ≤ 𝑡 < 𝑇௣): We use the backstepping method to design the controller at this stage. It 
contains 𝑛 steps. 

Step 1: The derivative of 𝑒ଵ is 

 𝑒ሶଵ = 𝑒ଶ + 𝜂ଶ + 𝑓ଵ(𝑥̄ଵ) − 𝜂ሶଵ, (3) 

According to Eq (3), we design the virtual controller 𝜂ଶ as 

 𝜂ଶ = − ௞௘భ೛்ି௧ + 𝜂ሶଵ − 𝑓ଵ(𝑥̄ଵ), (4) 

where 𝑘 > 𝑛 > 0, then  

 𝑒ሶଵ = 𝑒ଶ − ௞௘భ೛்ି௧. (5) 

Choose 

 𝑉ଵ = 0.5𝑒ଵଶ, (6) 

then, along Eq (3),  

 𝑉ሶଵ = − ௞௘భమ೛்ି௧ + 𝑒ଵ𝑒ଶ. (7) 

Step 2: The derivative of 𝑒ଶ is 

 𝑒ሶଶ = 𝑒ଷ + 𝜂ଷ − 𝜂ሶଶ + 𝑓ଶ(𝑥̄ଶ), (8) 

then the virtual controller 𝜂ଷ is designed as 

 𝜂ଷ = − ௞௘మ೛்ି௧ − 𝑒ଵ + 𝜂ሶଶ − 𝑓ଶ(𝑥̄ଶ). (9) 

Substituting Eq (9) into Eq (8), we can get 

 𝑒ሶଶ = 𝑒ଷ − 𝑒ଵ − ௞௘మ೛்ି௧. (10) 

Introduce Lyapunov function 𝑉ଶ = 𝑉ଵ + 0.5𝑒ଶଶ, then the derivative of 𝑉ଶ satisfies 

 𝑉ሶଶ = 𝑉ሶଵ + 𝑒ଶ𝑒ሶଶ = − ௞௘భమ೛்ି௧ − ௞௘మమ೛்ି௧ + 𝑒ଶ𝑒ଷ. (11) 

Step 𝑗(𝑗 = 3, . . . 𝑛 − 1): From Eq (7) to Eq (11), we can get the derivative of 𝑒௝: 

 𝑒ሶ௝ = 𝑒௝ାଵ + 𝜂௝ାଵ − 𝜂ሶ௝ + 𝑓௝(𝑥̄௝). (12) 
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The 𝜂௝ାଵ can be set as 

 𝜂௝ାଵ = − ௞௘ೕ೛்ି௧ − 𝑒௝ିଵ + 𝜂ሶ௝ − 𝑓௝(𝑥̄௝). (13) 

Then 

 𝑒ሶ௝ = 𝑒௝ାଵ − 𝑒௝ିଵ − ௞௘ೕ೛்ି௧. (14) 

Select 𝑉௝ = 𝑉௝ିଵ + 0.5𝑒௝ଶ and its derivative satisfies 

 𝑉ሶ௝ = − ௞೛்ି௧ ∑ 𝑒௜ଶ௝௜ୀଵ + 𝑒௝𝑒௝ାଵ. (15) 

Step 𝑛: From Eq (2), the derivative of 𝑒௡ is 

 𝑒ሶ௡ = 𝑔(𝑥)𝑢 + 𝑓௡(𝑥) + 𝑑(𝑡) − 𝜂ሶ௡. (16) 

Choosing Lyapunov function as 𝑉 = 𝑉௡ିଵ + 0.5𝑒௡ଶ, the controller 𝑢௣ is designed  

 𝑢௣ = 𝑔(𝑥)ିଵ(− ௞௘೙೛்ି௧ − 𝑒௡ିଵ − ௘೙(௙ሜ(௫)ାఒ)మଶఋ + 𝜂ሶ௡), (17) 

where 𝛿 is a positive constant. 
From Eqs (15)–(17), the derivatives of 𝑒௡ and 𝑉௡ satisfy 

 𝑒ሶ௡ = − ௞௘೙೛்ି௧ − 𝑒௡ିଵ − ௘೙(௙ሜ(௫)ାఒ)మଶఋ + 𝑓௡(𝑥) + 𝑑(𝑡),  

 

𝑉ሶ௡ = 𝑉ሶ௡ିଵ − ௞௘೙మ೛்ି௧ + 𝑓௡(𝑥)𝑒௡ + 𝑑(𝑡)𝑒௡ − ௘೙మ(௙ሜ(௫)ାఒ)మଶఋ + 𝑒௡𝑒௡ିଵ= − ௞೛்ି௧ ∑ 𝑒௝ଶ௡௝ୀଵ + 𝑓௡(𝑥)𝑒௡ + 𝑑(𝑡)𝑒௡ − ௘೙మ(௙ሜ(௫)ାఒ)మଶఋ≤ − ௞೛்ି௧ ∑ 𝑒௝ଶ௡௝ୀଵ + 𝑓ሜ(𝑥)|𝑒௡| + 𝜆|𝑒௡| − ௘೙మ(௙ሜ(௫)ାఒ)మଶఋ .  (18) 

By Young’s inequality, based on Eq (18), we can get 

 𝑉ሶ௡ ≤ − ௞೛்ି௧ ∑ 𝑒௝ଶ௡௝ୀଵ + ఋଶ = −2𝑘 ௏೙்ುି௧ + ఋଶ. (19) 

Case 2 (𝑡 ≥ 𝑇௣): For this case, we will design an infinite-time controller to ensure the tracking 
effect when 𝑡 ≥ 𝑇௣. First, define a new serious of error variables 

 
𝑧ଵ = 𝑒ଵ = 𝑥ଵ − 𝜂ଵ,𝑧௝ = 𝑥௝ − 𝜂෤௝, 𝑗 = 2, . . . , 𝑛. (20) 

Step 1: Easily get 

 𝑧ሶଵ = 𝑧ଶ + 𝜂෤ଶ − 𝜂ሶଵ + 𝑓ଵ(𝑥̄ଵ). (21) 

According to Eq (20), we design the new virtual controller 𝜂෤ଶ as 
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 𝜂෤ଶ = −𝜎𝑧ଵ + 𝜂ሶଵ − 𝑓ଵ(𝑥̄ଵ), (22) 

where 𝜎 > 0 is a positive constant, then 𝑧ሶଵ becomes 

 𝑧ሶଵ = 𝑧ଶ − 𝜎𝑧ଵ. (23) 

Choose 

 𝑉෨ଵ = 0.5𝑧ଵଶ, (24) 

then along Eq (20), 

 𝑉෨ሶଵ = 𝑧ଵ𝑧ሶଵ = −𝜎𝑧ଵଶ + 𝑧ଵ𝑧ଶ. (25) 

Similarly to Case 1, we can design the subsequent backstepping as follows: 
Step 𝑗 (𝑗 = 2, . . . , 𝑛): one can get 

 𝑧ሶ௝ = 𝑧௝ାଵ + 𝜂෤௝ାଵ − 𝜂෤ሶ௝ + 𝑓௝(𝑥̄௝). (26) 

The 𝜂෤௝ାଵ can be set as 

 𝜂෤௝ାଵ = −𝜎𝑧௝ − 𝑧௝ିଵ + 𝜂෤ሶ௝ − 𝑓௝(𝑥̄௝). (27) 

Then 

 𝑧ሶ௝ = 𝑧௝ାଵ − 𝑧௝ିଵ − 𝜎𝑧௝.  (28) 

Select 𝑉෨௝ = 𝑉෨௝ିଵ + 0.5𝑧௝ଶ, and its derivative satisfies 

 𝑉෨ሶ௝ = −𝜎 ∑ 𝑧௜ଶ௝௜ୀଵ + 𝑧௝𝑧௝ାଵ. (29) 

Step 𝑛: From Eq (20),  

 𝑧ሶ௡ = 𝑔(𝑥)𝑢 + 𝑓௡(𝑥) + 𝑑(𝑡) − 𝜂෤ሶ௡. (30) 

Choose 𝑉෨௡ = 𝑉෨௡ିଵ + 0.5𝑧௡ଶ , the controller 𝑢෤  is designed as 

 𝑢෤ = 𝑔(𝑥)ିଵ(−𝜎𝑧௡ − 𝑧௡ିଵ − ௭೙(௙ሜ(௫)ାఒ)మଶఋ + 𝜂෤ሶ௡). (31) 

From Eqs (29)–(31),  

 𝑉෨ሶ௡ ≤ −𝜎 ∑ 𝑧௝ଶ௡௝ୀଵ + ఋଶ = −2𝜎𝑉෨௡ + ఋଶ. (32) 

Remark 1: We adopt different control gains in Cases 1 and 2 according to different control targets. 
The prescribed-time controller aims to make the error converge to zero at any desired prescribed-time 𝑇௣, hence a time-varying infinite gain function 𝑘(𝑇௣ − 𝑡)ିଵ is imported into the controller design of 
Case 1. On the other hand, in Case 2, our goal is to keep the convergence of the tracking error at 𝑇௣, 
so a constant 𝜎 is adopted as control gain. 
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Based on the above analysis, we can get the following assertion. 
Theorem 1: If Assumptions 1 and 2 hold, one can design the controllers (17) and (31) such that the 
system (1) can track the pre-set trajectory 𝑥ଵௗ(𝑡)  within the prescribed time 𝑇௣  and keep tracking 
within a range (i.e., the tracking error is bounded). Controller (17) is bounded when 𝑡 → 𝑇௣ି. 
Proof: The proof is divided into two parts due to complexity.  

Part 1: Based on Eq (19), we provide the proof of prescribed-time convergence for 𝑉ሶ௡ =−2𝑘 ௏೙்ುି௧ + ఋଶ, and then apply Lemma 1 to the case of 𝑉ሶ௡ < −2𝑘 ௏೙்ುି௧ + ఋଶ. 

It can be obtained by 𝑉ሶ௡ = −2𝑘 ௏೙்ುି௧ + ఋଶ that 

 𝑉௡(𝑡) = 𝐶(1 − ௧்೛)ଶ௞ + ఋଶ(ଶ௞ିଵ) ൫𝑇௣ − 𝑡൯, (33) 

where 𝐶 = ௏೙(௘ೕ(଴))೛்మೖ − ఋଶ(ଶ௞ିଵ) ೛்మೖషభ is a constant. It can easily be found that 𝑙𝑖𝑚௧→ ೛்ష𝑉௡(𝑡) = 0. For 𝑉௡ =ଵଶ ∑ 𝑒௝ଶ௡௝ୀଵ , it means 𝑙𝑖𝑚௧→ ೛்ష𝑒௝ = 0, 𝑗 = 1, . . . , 𝑛.  

Then, we will verify the boundness of the virtual controllers 𝜂௝ and 𝑢. 
Based on Eq (5), we can get 

 𝑒ଵ(𝑡) = 𝑒ଵ(0)(1 − ௧்೛)௞ + (𝑇௣ − 𝑡)௞∫଴௧ ௘మ(௦)( ೛்ି௦)ೖ 𝑑𝑠, (34) 

then we have 

 ௘భ(௧)೛்ି௧ = 𝑒ଵ(0)𝑇௣ିଵ(1 − ௧்೛)௞ିଵ + (𝑇௣ − 𝑡)௞ିଵ∫଴௧ ௘మ(௦)( ೛்ି௦)ೖ 𝑑𝑠. (35) 

By L’Hôpital’s rule for (𝑇௣ − 𝑡)௞ିଵ∫଴௧ ௘మ(௦)( ೛்ି௦)ೖ 𝑑𝑠, we can obtain 

 𝑙𝑖𝑚௧→ ೛்ష ௘భ(௧)೛்ି௧ = 𝑙𝑖𝑚௧→ ೛்ష ௘మ(௧)௞ିଵ = 0, (36) 

which implies 𝜂ଶ  is bounded when 𝑡 → 𝑇௣ି from Eq (4). According to Eqs (5) and (36), we know 𝑙𝑖𝑚௧→்ುష𝑒ሶଵ(𝑡) = 0. 

By the same method, we can get 

 𝑒௝(𝑡) = 𝑒௝(0)(1 − ௧்೛)௞ + (𝑇௣ − 𝑡)௞∫଴௧ ௘ೕశభ(௦)ି௘ೕషభ(௦)( ೛்ି௦)ೖ 𝑑𝑠, 𝑗 = 2, . . . , 𝑛 − 1,  

 𝑒௡(𝑡) = 𝑒௡(0)𝑇௣ି௞(𝑇௣ − 𝑡)௞𝜔(𝑡)ିଵ + (𝑇௣ − 𝑡)௞𝜔(𝑡)ିଵ∫଴௧ (௙೙(௫(௦))ାௗ(௦)ି௘೙షభ(௦))ఠ(௦)( ೛்ି௦)ೖ 𝑑𝑠,  

 𝑙𝑖𝑚௧→ ೛்ష ௘ೕ(௧)೛்ି௧ = 𝑙𝑖𝑚௧→ ೛்ష ௘ೕశభ(௧)ି௘ೕషభ(௧)௞ିଵ = 0, 𝑗 = 2, … , 𝑛 − 1,  

 𝑙𝑖𝑚௧→ ೛்ష ௘೙(௧)೛்ି௧ = 𝑙𝑖𝑚௧→்ುష (௙೙(௫(௧))ାௗ(௧)ି௘೙షభ(௧))ఠ(௧)௞ିଵ ≤ (௙ሜ(௫( ೛்))ାఒ)ఠ( ೛்)௞ିଵ , (37) 
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where 𝜔(𝑡) = 𝑒∫బ೟(೑ሜ (ೣ(ೞ))శഊ)మమഃ ௗ௦, which means that all virtual controllers 𝜂௝ and 𝑢௣ are bounded when 

time 𝑡 → 𝑇௣ି and 𝑙𝑖𝑚௧→்ುష𝑒ሶ௝(𝑡) = 0, 𝑗 = 2, . . . 𝑛. 

Part 2: From Eqs (34) and (37), using L’Hôpital’s rule, we can get 

 𝑙𝑖𝑚௧→ ೛்ష ௘భ(௧)( ೛்ି௧)೘ = 𝑙𝑖𝑚௧→ ೛்ష ଵ௞ି௠ ௘మ(௧)( ೛்ି௧)೘షభ,  

 𝑙𝑖𝑚௧→ ೛்ష ௘ೕ(௧)( ೛்ି௧)೘ = 𝑙𝑖𝑚௧→ ೛்ష ଵ௞ି௠ [ ௘ೕశభ(௧)( ೛்ି௧)೘షభ − ௘ೕషభ(௧)( ೛்ି௧)೘షభ], 𝑗 = 2, . . . , 𝑛 − 1, (38) 

for any integer 𝑚 ∈ (0, 𝑘). 
From Eq (38), we have 

 𝑙𝑖𝑚௧→ ೛்ష ௘భ(௧)೛்ି௧ = 𝑙𝑖𝑚௧→ ೛்ష ௘మ(௧)௞ିଵ = 0,  

 𝑙𝑖𝑚௧→ ೛்ష ௘భ(௧)( ೛்ି௧)మ = 𝑙𝑖𝑚௧→ ೛்ష ଵ௞ିଶ ௘మ(௧)( ೛்ି௧) = 0,  

 𝑙𝑖𝑚௧→ ೛்ష ௘భ(௧)( ೛்ି௧)య = 𝑙𝑖𝑚௧→ ೛்ష ଵ௞ିଷ ௘మ(௧)( ೛்ି௧)మ = 𝑙𝑖𝑚௧→ ೛்ష ଵ௞ିଷ ଵ௞ିଶ [௘య(௧)೛்ି௧ − ௘భ(௧)೛்ି௧] = 𝑙𝑖𝑚௧→ ೛்ష ଵ௞ିଷ ଵ௞ିଶ ௘య(௧)( ೛்ି௧) = 0. (39) 

Then, we can easily obtain 

 𝑙𝑖𝑚௧→ ೛்ష ௘భ(௧)( ೛்ି௧)೙ = 𝑙𝑖𝑚௧→ ೛்ష (௞ି௠)!(௞ିଵ)! ௘೙(௧)( ೛்ି௧). (40) 

Due to the fact that 𝑙𝑖𝑚௧→ ೛்ష ௘೙(௧)೛்ି௧ is bounded, from Assumption 2, using L’Hôpital’s rule to Eq (40), 

we can get 

 𝑙𝑖𝑚௧→ ೛்ష ௘భ(௧)(ೕ)(௡ି௝)!(ିଵ)ೕ௡!( ೛்ି௧)೙షೕ = 0, 𝑗 = 1, . . . , 𝑛 − 1, (41) 

which means 𝑙𝑖𝑚௧→ ೛்ష𝑒ଵ(𝑡)(௝) = 𝑙𝑖𝑚௧→ ೛்ష𝑧ଵ(𝑡)(௝) = 0, 𝑗 = 1, . . . , 𝑛 − 1. From Eq (23), we can get  

 𝑧ሶଵ(𝑇௣) = 𝑧ଶ(𝑇௣) − 𝜎𝑧ଵ(𝑇௣) = 0,  (42) 

then 𝑧ଶ(𝑇௣) = 0. From Eq (28), we can get  

 𝑧ሷଵ(𝑇௣) = 𝑧ଷ(𝑇௣) − 𝑧ଵ(𝑇௣) − 𝜎𝑧ଶ(𝑇௣) − 𝜎𝑧ሶଵ(𝑇௣) = 0, (43) 

then 𝑧ଷ(𝑇௣) = 0. Similarly, we can obtain 𝑧௝(𝑇௣) = 0, 𝑗 = 4, . . . , 𝑛, which implies 𝑉෨௡(𝑇௣) = 0. 
According to Lemma 1, from Eq (32),  

 𝑉෨௡(𝑡) ≤ (𝑉෨௡(𝑇௣) − ఋସఙ)𝑒ିଶఙ(௧ି ೛்) + ఋସఙ ≤ ఋସఙ, (44) 

which implies 𝑧ଵ ≤ ට ఋଶఙ when 𝑡 ≥ 𝑇௣. The proof is completed. 
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Remark 2: The designed controller based on the backstepping approach 𝑢௣ can make the system error 
converge to zero at 𝑇௣, which is consistent with the effect achieved in [33]. That means we can achieve 
tracking control of nonlinear systems with uncertain function and disturbance by the backstepping 
approach. Nevertheless, we must point out that the effect of the unknown function  𝑓௡(𝑥)  and 
disturbance 𝑑(𝑡) cannot be precisely eliminated, and that the tracking error cannot be maintained at 
zero after 𝑇௣ , which can be later illustrated by our example. Of course, we can adjust the control 
parameters to keep the tracking error within a controllable range. This gives a direct answer to the first 
question mentioned above. 

3.2. Controller design based on the backstepping approach and SMC 

It should be noted that, from Theorem 1, the single backstepping approach can only ensure that 
the error is within a controllable range after the prescribed time rather than staying at zero. However, 
some practical applications need to ensure accurate tracking, such as the tracking control of 
spacecraft [25]. This means that, other than the backstepping approach, other approaches need to be 
imported to guarantee the tracking error remains at zero after the prescribed time. Considering that 
SMC has a great advantage in countering disturbances through the input channel, SMC method is 
imported to the design controller, so as to achieve zero error tracking when 𝑡 ≥ 𝑇௣. The controller 
design is as follows. 

When 0 ≤ 𝑡 < 𝑇௣, the controller design based on the backstepping method can be referred to 
Case 1 of Section 3.1. Then, we mainly design the controller using SMC to ensure that the tracking 
error is kept at zero. 

First, we use 𝑒ଵ(𝑡) and its derivatives to build the following system for the SMC design: 

 𝜉ଵ(𝑡) = 𝑒ଵ(𝑡) = 𝑥ଵ(𝑡) − 𝑥ଵௗ(𝑡),  

 𝜉௝(𝑡) = 𝜉ሶ௝ିଵ(𝑡) = 𝑒ଵ(𝑡)(௝ିଵ), 𝑗 = 2, . . . , 𝑛. (45) 

The SMC variable is set as 

 𝑠(𝑡) = ∑ 𝜉௝௡௝ୀଵ (𝑡), 𝑗 = 1, . . . , 𝑛, (46) 

then 

 𝑠ሶ = ∑ 𝑥௝௡௝ୀଶ + ∑ 𝑓௝௡ିଵ௝ୀଵ (𝑥̄௝) − ∑ 𝑥ଵௗ(௝) + ∑ ∑ 𝑓௝௡ି௟௝ୀଵ௡ିଵ௟ୀଵ௡௝ୀଵ (𝑥̄௝)(௟) + 𝑔(𝑥)𝑢 + 𝑓௡(𝑥) + 𝑑(𝑡). (47) 

The controller 𝑢 is designed as  

 𝑢௦ = 𝑔(𝑥)ିଵ[−(𝑓ሜ(𝑥) + 𝜆) 𝑠𝑔𝑛( 𝑠) − 𝜀𝑠 − ∑ 𝑥௝௡௝ୀଶ − ∑ 𝑓௝௡ିଵ௝ୀଵ (𝑥̄௝) + ∑ 𝑥ଵௗ(௝) − ∑ ∑ 𝑓௝௡ି௟௝ୀଵ௡ିଵ௟ୀଵ௡௝ୀଵ (𝑥̄௝)(௟)], (48) 

where 𝜀 > 0 is a constant. 
Theorem 2: If Assumptions 1 and 2 hold, one can design the controllers (17) and (48) such that the 
system (1) can track the pre-set trajectory 𝑥ଵௗ(𝑡) within the prescribed time 𝑇௣ and keep the tracking 
error stay at zero after 𝑇௣, and controller (17) is bounded when 𝑡 → 𝑇௣ି. 
Proof: Substituting Eq (48) into Eq (47), we can obtain 

 𝑠ሶ = 𝑓௡(𝑥) + 𝑑(𝑡) − (𝑓ሜ(𝑥) + 𝜆) 𝑠𝑔𝑛( 𝑠) − 𝜀𝑠. (49) 
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Choose 𝑉௦ = 0.5𝑠ଶ, then from Assumption 2, the derivative of 𝑉௦ satisfies  

 𝑉ሶ௦ = (𝑓௡(𝑥) + 𝑑(𝑡))𝑠 − (𝑓ሜ(𝑥) + 𝜆)𝑠 𝑠𝑔𝑛( 𝑠) − 𝜀𝑠ଶ ≤ 0. (50) 

From assertions Eq (38) to Eq (41), we have 𝜉ଵ(𝑇௣)(௝ିଵ) = 𝜉௝(𝑇௣) = 𝜉ሶ௝ିଵ(𝑇௣) = 0, 𝑗 = 2, . . . , 𝑛, 
which means error system (45) converge to zero when 𝑡 = 𝑇௣.  Additionally, from Eq (50), we can 
obtain that error 𝜉ଵ(𝑡) stays at zero when 𝑡 ≥ 𝑇௣. The proof is completed. 
Remark 3: It can be shown from Theorems 1 and 2 that, compared with the infinite time controller (31), 
the sliding mode controller (48) introduces a sign function sign(.) to forcibly cancel the effects of 
unknown functions and perturbation, and then zero tracking error is achieved. Of course, the sliding 
mode controller (48) requests greater control costs due to the introduction of a sign function. Therefore, 
in the application, we can choose the appropriate controller, whether infinite controller (31) or sliding 
mode controller (48), according to the practiced requirements. 
Remark 4: On the FxT tracking control scheme, the tracking error can converge to zero without relying 
on the initial state. However, it is necessary to adjust the design parameters carefully to achieve 
arbitrary time convergence through the FxT method, see [35,36]. In our control scheme, the error 
convergence can be realized at any desired time without considering any initial conditions and 
designed parameters, which is simpler and more convenient. Contrary to [18,19], the prescribed-time 
control method here is feasible for 𝑡 ∈ [0, ∞)  rather than only valid for [0, 𝑇௣).  Prescribed-time 
attitude tracking control of spacecraft was proposed by SMC [25], where the upper bound of the 
uncertainty is a constant. Compared to [25] and [33], our assumptions are broader, which makes our 
method applicable to more general systems. 
Remark 5: Compared with predefined-time control giving an upper bound on settling time [37], 
prescribed-time control can give an exact settling time. The prescribed-time tracking control, as an 
application of prescribed-time control, also gives an exact settling time. For the difference between 
predefined-time control and prescribed-time control, readers are referred to [38]. Prescribed 
performance control, such as [39], always refers to a control method with system state and convergence 
speed as expected, with no explicit requirement for settling time. The advantage of our proposed 
method lies in that it can give an exact settling time that does not depend on control parameters and 
initial values. 

4. Simulation results 

Consider a nonlinear system as follows 

 ቐ𝑥ሶଵ = 𝑥ଶ + 𝑥ଵଶ/ଷ − 0.5𝑥ଵ,𝑥ሶଶ = (𝑥ଵଶ + 1)𝑢 + 𝑎𝑥ଵ + 𝑏 𝑠𝑖𝑛( 𝑥ଵ𝑥ଶ) + 𝑐 𝑐𝑜𝑠 𝑡𝑦 = 𝑥ଵ, , (51) 

where 𝑎𝑥ଵ + 𝑏 𝑠𝑖𝑛( 𝑥ଵ𝑥ଶ)  and 𝑐 𝑐𝑜𝑠( 𝑡)  represent the uncertain function 𝑓௡(𝑥)  and disturbance 𝑑(𝑡), respectively, 𝑔(𝑥) = 𝑥ଵଶ + 1. The target trajectory is selected as 𝑥ଵௗ = 𝑠𝑖𝑛( 𝑡). Here, we select 
the parameters as 𝑎 = 0.1, 𝑏 = 1, 𝑐 = 0.2. Then, we can obtain the upper bound of 𝑓௡(𝑥) and 𝑑(𝑡) 
as follows: 

 𝑓ሜ(𝑥) = 0.1|𝑥ଵ| + 1,  

 𝜆 = 0.2.  

Based on the proposed method, the prescribed-time controller 𝑢௣ can be designed as 
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 𝑢௣ = ଵ௫భమାଵ [ି௞௘మ೛்ି௧ − 𝑒ଵ + 𝜂ሶଶ − ௘మ(ଵା଴.ଵ|௫భ|ା଴.ଶ)మଶఋ ], (52) 

where 𝜂ଶ = ି௞(௫భି௫భ೏)೛்ି௧ + 𝑥ሶଵௗ − 𝑥ଵଶ/ଷ + 0.5𝑥ଵ, 𝑒ଵ = 𝑥ଵ − 𝑥ଵௗ, 𝑒ଶ = 𝑥ଶ − 𝜂ଶ. 

The infinite time controller 𝑢෤ is 

 𝑢෤ = −𝜎𝑧ଶ + 𝜂෤ሶଶ − 𝑧ଵ − ௭మ(ଵା଴.ଵ|௫భ|ା଴.ଶ)మଶఋ , (53) 

where 𝜂෤ଶ = −𝜎𝑧ଶ + 𝑥ሶଵௗ − 𝑥ଵଶ/ଷ + 0.5𝑥ଵ, 𝑧ଵ = 𝑥ଵ − 𝑥ଵௗ, 𝑧ଶ = 𝑥ଶ − 𝜂෤ଶ. 
The sliding mode controller 𝑢௦ is designed as  

 𝑢௦ = ଵ௫భమାଵ [−(1.2 + 0.1|𝑥ଵ|) 𝑠𝑔𝑛( 𝑠) − 𝜀𝑠 + 𝑥ሶଵௗ − 𝑥ଶ + 𝑥ሷଵௗ − 𝑥ଵଶ/ଷ + 0.5𝑥ଵ − (ଶଷ 𝑥ଵିଵ/ଷ + 0.5)𝑥ሶ ଵ], (54) 

where 𝑠 = 𝜉ଵ + 𝜉ሶଵ, 𝜉ଵ = 𝑥ଵ − 𝑥ଵௗ. We design two examples with different initial states and control 
parameters for simulation.  

Example 1: The controller parameters are selected as 𝑘 = 4 , 𝛿 = 0.09 ,  𝜎 = 0.5 , 𝑇௣ = 4 , 𝜀 =0.1 and the initial state is [2, 2]; then, the track error under the action of 𝑢෤  satisfies |𝑒ଵ| ≤ 0.3 when 𝑡 ≥ 4.  
Example 2: The controller parameters are selected as 𝑘 = 3 , 𝛿 = 0.04 , 𝜎 = 2 , 𝑇௣ = 4 , 𝜀 =0.2 and the initial state is [3, 2.5]; then, the track error under the action of 𝑢෤  satisfies |𝑒ଵ| ≤ 0.1 when 𝑡 ≥ 4.  
The simulation results of the two examples under the action of the prescribed-time controller 𝑢௣ 

and the infinite time controller 𝑢෤  are shown in Figures 1–4. 

 

Figure 1. Simulation of 𝑒ଵunder controllers 𝑢௣ and 𝑢෤  for Example 1. 
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Figure 2. Simulations of 𝑢௣ and 𝑢෤  for Example 1. 

 

Figure 3. Simulation of 𝑒ଵ under controllers 𝑢௣ and 𝑢෤  for Example 2. 

 

Figure 4. Simulations of 𝑢௣ and 𝑢෤  for Example 2. 



6547 

Electronic Research Archive  Volume 32, Issue 12, 6535–6552. 

As we can see from Figures 1 and 3, although the initial conditions and designed parameters of 
two examples are different, all tracking errors converge to zero at 𝑇௣ = 4 , and the output 𝑦  keeps 

tracking 𝑥ଵௗ(𝑡)  after 𝑇௣  with the precision being less than ඥ𝛿 ോ 2𝜎  under the single action of 

backstepping control, which is consistent with Remark 2. Additionally, Figures 2 and 4 illustrate that 
all control inputs 𝑢 are bounded for 𝑡 → 𝑇௣. 

In order to verify the effectiveness of the sliding mode controller 𝑢௦, Figures 5–8 provide the 
simulation results of two examples under the action of the prescribed-time controller 𝑢௣ and the sliding 
mode controller 𝑢௦. 

 

Figure 5. Simulation of 𝑒ଵunder controllers 𝑢௣ and 𝑢௦ for Example 1. 

 

Figure 6. Simulations of 𝑢௣ and 𝑢௦ for Example 1. 
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Figure 7. Simulation of 𝑒ଵ under controllers 𝑢௣ and 𝑢௦ for Example 2. 

 

Figure 8. Simulations of 𝑢௣ and 𝑢௦ for Example 2. 

Figures 5 and 7 show that all tracking errors converge to zero at 𝑇௣ and stay at zero after 𝑇௣ under 
the hybrid action of backstepping controller and sliding mode controller. At the same time, from 
Figures 6 and 8, the control input remains bounded and has discontinuity after 𝑡 ≥ 4  due to the 
introduction of the sign function, which is consistent with Remark 3. Numerical simulations are 
demonstrated to verify the proposed theory. 

5. Conclusions 

In our manuscript, a PT tracking control for the SISO nonlinear system is proposed. Under the 
prescribed-time controller and infinite controller designed by the backstepping method in Theorem 1, 
the system output can track the expected trajectory at any desired time, and the tracking error can be 
limited to a range, which gives an answer to the first question in the Introduction. Additionally, we 
design a controller in Theorem 2 combining the backstepping method and sliding mode method to 
make the tracking error stay at zero rather than in a range, which gives an answer to the second question. 
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Although an infinite gain function is introduced, the control behavior exhibits boundedness over the 
entire time domain. It is worth mentioning that the convergence time does not depend on initial values 
and designed parameters. Future work may focus on prescribed-time control for other nonlinear 
systems, such as network control systems [40]. 
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