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Abstract: The aim of this paper was to explore the impact of fear on the dynamics of prey and predator
species. Specifically, we investigated a reaction-diffusion predator-prey model in which the prey was
subjected to Beddington-DeAngelis type and the predator was subjected to modified Leslie-Gower
type. First, we analyzed the existence and stability of equilibria of the nonspatial model, and further
investigated the global stability and Hopf bifurcation at the unique positive equilibrium point. For the
spatial model, we studied the local and global stability of the unique constant positive steady state
solution and captured the existence of Turing instability, which depended on the diffusion rate ratio
between the two species. Then, we demonstrated the existence of Hopf bifurcations and discussed
the direction and stability of spatially homogeneous and inhomogeneous periodic solutions. Finally,
the impact of fear and spatial diffusion on the dynamics of populations were probed by numerical
simulations. Results revealed that spatial diffusion and fear both broaden the dynamical properties of
this model, facilitating the emergence of periodic solutions and the formation of biodiversity.
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1. Introduction

Recently, one of the hot issues in the ecosystem being studied is the impact of fear effect on the
dynamics of prey and predators in predator-prey models. The fear effect is an inherent psychological
reaction of the organisms to increase alertness and respond to danger [1]. It can trigger various anti-
predation responses, such as changing the reproduction capacity and strategies [2], changing foraging
behaviors and selecting new habitats [3], and reducing the birth and survival rate of offspring [4].
In 2020, Sarkara and Khajanchi [5] proposed the following predator-prey model that introduces the
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cost of fear into the prey 
du
dt
=r0u

(
η +

α(1 − η)
α + v

)
− d1u − βu2 −

auv
1 + bu

,

dv
dt
=
θauv

1 + bu
− d2v,

(1.1)

where u and v, respectively, represent the densities of prey and predator. The meaning of the parameters
can refer to [5]. In addition, in [5], g(η, α, v) = η + α(1−η)

α+v stands for a fear function which describes
that the prey is affected by the fear of predator. So, we know some characteristics of g(η, α, v) showing
limα→∞ g(η, α, v) = 1, limv→∞ g(η, α, v) = η, g(0, α, v) = α

α+v , g(η, 0, v) = η, g(η, α, 0) = 1, g(1, α, v) =
1, ∂g

∂η
> 0, ∂g

∂α
> 0, ∂g

∂v < 0, which imply that the inhibitory effect of fear on the birth rate of prey will
increase with the increase of predator population and will decrease with the enhancement of the ability
to identify the capture of predator.

In model (1.1), au
1+bu stands for the Holling II functional response [6], which expresses the prey

consumed by each predator per unit time, which only depends on the density of prey without being
disturbed by the predator. It is of great significance to use different functional response functions to
describe the relationship between prey and predator, which is caused by the difficulty of capturing the
prey by the predator and the different absorption conversion rates of the predator. As we all know,
the Beddington-DeAngelis (B-D) functional response function [7, 8] is described as u

1+au+bv , which
depends on both the density of prey and predator populations. Assume that b = 0, the B-D functional
response becomes the Holling II functional response, which implies that it is more comprehensive and
accurate in describing the interference and handling of populations. In 1960, Leslie and Gower [9]
proposed a novel functional response v

cu to describe the conversion rate of prey to predator, called the
Leslie-Gower (L-G) functional response. Compared with the Holling II functional response, the L-G
functional response is affected by prey and interfered with by predators [10]. Therefore, the Holling II
functional response function in model (1.1) can be replaced by the B-D functional response and L-G
functional response, respectively, to study further the impact of different functional response functions
on populations. Therefore, we consider the following predator-prey model, in which prey is subject to
B-D functional response and predator is subject to modified L-G functional response

du
dt
=r0u

(
η +

α(1 − η)
α + v

)
− d0u − βu2 −

(1 − δ)uv
a1 + (1 − δ)u + e(1 − δ)v

,

dv
dt
=v

(
b −

cv
a2 + (1 − δ)u

)
,

(1.2)

where the meaning of the parameters are the same as model (1.1), b is the growth rate of predator, and
δ stands for the strength of prey refuge [11] with δ ∈ [0, 1). u

a1+u+ev represents the B-D functional
response. cv

a2+u represents a modified L-G functional response, where c is the maximum value of the
diminishment rate of predator due to prey, and a2 measures the extent to which environment
provides predator.

To explore how the fear effect acts on the populations, many scholars have constructed and studied
a large number of models with different functional response functions. For example, Wang et al. [12]
as well as Sarkara and Khajanchi [5], both proposed a predator-prey model with fear and Holling
II. They all found that prey and predator populations were affected by fear effect. Pal et al. [13]

Electronic Research Archive Volume 32, Issue 12, 6503–6534.



6505

constructed a B-D predator-prey model with fear, which found that fear has a destructive effect on
stability. Wang et al. [14] investigated an improved L-G predator-prey model with fear. They found
that as the degree of fear increases, it will lead to a decrease in population density and the extinction
of prey.

For simplicity, let x = c
a1

u, y = c
a2bv, τ = bt, and model (1.1) can transform into the following

simplified model (for simplicity, u, v, t represent x, y, τ again, respectively):


du
dt
=u

(
θ

1 + Kv
+ r − γu −

v
p + hu + mv

)
,

dv
dt
=v

(
1 −

v
1 + qu

)
,

(1.3)

where r = r0η−d0
b , γ = a1β

bc , θ = r0(1−η)
b , K = a2b

cα , p = a1c
a2(1−δ) , q = a1(1−δ)

a2c , h = a1
a2

, m = be. Here, r can be
positive or negative. Now, we give an analysis of the nature of r as follows:

(1) When r0η > d0, that is, 1 > η > d0
r0

, we have r > 0, which means that when the cost of minimum
fear is high, the birth rate of prey affected by fear is higher than the mortality rate of prey.

(2) When r0η < d0, that is, d0
r0
> η > 0, one has r < 0, which means that when the cost of minimum

fear is small, the birth rate of prey affected by fear effect is lower than the mortality rate of prey.
(3) When η = 1, i.e., without the effect of the fear effect, we have r0 > d0, which means that the birth

rate is higher than the mortality rate, which is consistent with the actual situation of biological
species in the ecosystem.

(4) θ + r represents the natural growth rate of prey, which is greater than 0, meaning that prey will
survive for a long time.

Then, some natural questions arise from model (1.3):

• What are the conditions for the existence and stability of the equilibria?
• What are the conditions for the occurrence of Hopf bifurcation, and, if so, how to determine its

stability and direction?

On the other hand, species not only evolve on the timescale but also move randomly on the spatial
scale. So, it is inevitable to consider the issues of species in time and space. In 1952, Turing [15] first
described the movement of species on time and space scales via using the reaction-diffusion
equations. He found that the steady state equilibrium in the spatial model is stable in the absence of
diffusion but transforms unstable in the presence of diffusion, which means that diffusion can induce
instability of populations [16, 17]. In addition to the instability driven by diffusion, the
reaction-diffusion system also can be triggered by other mechanisms, such as steady states
solutions [18], Hopf bifurcation [19], pattern formation and etc [20]. Han et al. [21] considered a
modified L-G predator-prey model with cross-diffusion and indirect predation effect, which shows
that cross-diffusion can drive Turing instability and pattern formation. Tiwari et al. [22] proposed and
analyzed a B-D predator-prey interaction model with fear. They investigated some properties of
bifurcation, such as Hopf bifurcation and pitchfork bifurcation.
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Motivated by these works, we construct a reaction-diffusion predator-prey model as follows

∂u
∂t
= d1∆u + u

(
θ

1 + Kv
+ r − γu −

v
p + hu + mv

)
, x ∈ Ω, t > 0,

∂v
∂t
= d2∆v + v

(
1 −

v
1 + qu

)
, x ∈ Ω, t > 0,

∂u
∂n
=
∂v
∂n
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) ≥ 0, v(x, 0) ≥ 0, x ∈ Ω,

(1.4)

where d1 ≥ 0 and d2 ≥ 0 are, respectively, the diffusion rate of prey and predator. Laplacian operator
∆ = ∂2

∂x2 is in the one-dimensional diffusion, ∆ = ∂2

∂x2 +
∂2

∂y2 is in the two-dimensional diffusion, ∆ =
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 is in the three-dimensional diffusion, Ω ⊂ Rn is a bounded domain with smooth boundary
∂Ω, and n is the outward unit normal vector of the boundary ∂Ω as in [23]. There is no population flux
across the boundaries owing to homogeneous Neumann boundary conditions. Then, we ask:

• What are the critical conditions that determine Turing instability?
• What are the conditions for the occurrence of the spatially homogeneous and spatial

inhomogeneous periodic solutions?
• If spatial homogeneous and spatial inhomogeneous periodic solutions occur, what are the

conditions for determining the stability and direction?

The rest of the paper is organized as follows. In Section 2, we focus on discussing the existence and
stability of the equilibria and give the Hopf bifurcation analysis of the nonspatial model (1.3). In
Section 3, we investigate the Hopf bifurcation analysis of the spatial model (1.4). In Section 4, we
present a series of numerical simulations to reveal the theoretical analysis.

2. Analysis of the nonspatial model (1.3)

2.1. Positivity and boundedness

From the nonspatial model (1.3), one has

u(t) =u(0) exp
(∫ t

0

[
θ

1 + Kv(s)
+ r − γu(s) −

v(s)
p + hu(s) + mv(s)

]
ds

)
,

v(t) =v(0) exp
(∫ t

0

[
1 −

v(s)
1 + qu(s)

]
ds

)
.

We know u(t), v(t) ≥ 0 based on the above two expressions. Then, R2
+ = {u > 0, v > 0} is positively

invariant for the nonspatial model (1.3).

Lemma 2.1. All solutions (u(t), v(t)) of model (1.3) are contained in the region U =
{
(u, v) ∈ R2

+ : 0 ≤

u(t) ≤ r+θ
γ
, 0 ≤ v(t) ≤ 1 + q(r+θ)

γ

}
as t → +∞.
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2.2. Existence of equilibria

Define thresholds

R0 = θ + r, θ∗ =
(1 + K)[1 − r(p + m)]

p + m
.

From model (1.3), we denote
H1(u, v) =u

(
θ

1 + Kv
+ r − γu −

v
p + hu + mv

)
,

H2(u, v) =v
(
1 −

v
1 + qu

)
.

(2.1)

Clearly, model (1.3) has three boundary equilibrium points: E0 = (0, 0), E1 =
(
θ+r
γ
, 0

)
, E2 = (0, 1),

where E0 and E2 always exist, and E1 existes when R0 > 0.
By solving (2.1), we obtain that v = 1 + qu and

A0u3 + A1u2 + A2u + A3 = 0, (2.2)

where

A0 = γKq(h + mq),
A1 = γ[(1 + K)(h + mq) + Kq(p + m)] + Kq2 − Krq(h + mq),
A2 = γ(1 + K)(p + m) + q(1 + 2K) − r[(1 + K)(h + mq) + Kq(p + m)] − θ(h + mq),
A3 = (1 + K)[1 − r(p + m)] − θ(p + m).

It is obvious that Eq (2.2) is a third-order algebraic equation, which has one, two, or three positive
roots. Hence, discussing the number of positive equilibria of model (1.3) is equivalent to discussing
the number of positive roots of Eq (2.2).

First, let
f (u) = A0u3 + A1u2 + A2u + A3,

∆1 = A2
1 − 3A0A2,

∆2 = A2
1A2

2 − 27A2
0A2

3 − 4A3
1A3 − 4A0A3

2 + 18A0A1A2A3.

From Eq (2.2), we know A0 > 0, and the signs of A1, A2 and A3 are uncertain. First, we discuss the
sign of A3.

(1) When R0 > 0 and r > 0 hold, that is, θ + r > 0 and 1 > η > d0
r0

, if 1
p+m > r, we know that

1− r(p+m) > 0, which can be obtained that A3 > 0 when θ < θ∗, A3 < 0 when θ > θ∗, or A3 = 0 when
θ = θ∗; if 1

p+m ≤ r, we know that 1 − r(p + m) ≤ 0, which we can get that A3 < 0.

(2) When R0 > 0 holds, if r < 0, that is, d0
r0
> η > 0, which implies that 1 − r(p + m) > 0, then we

get that A3 > 0 when θ < θ∗, A3 < 0 when θ > θ∗, or A3 = 0 when θ = θ∗.
(3) When R0 > 0 and r = 0 hold, we know that A3 > 0 when 1+K

p+m > θ > 0, that is, θ < θ∗, A3 < 0
when θ > θ∗, or A3 = 0 when θ = θ∗.
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Figure 1. The positive roots of f (u) = 0 when A3 ≥ 0.
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Figure 2. The positive roots of f (u) = 0 when A3 < 0.

Therefore, we get the following lemma:

Lemma 2.2. Regarding the sign of A3, we have

(1) A3 ≥ 0 if (S1) : R0 > 0, θ ≤ θ∗,
1

p + m
> r;

(2) A3 < 0 if (S2) : R0 > 0, θ > θ∗,
1

p + m
> r;

(3) A3 < 0 if (S3) : R0 > 0, r > 0,
1

p + m
≤ r.

From Lemma 2.2(1), we know that A3 ≥ 0 when (S1) holds, which means that Eq (2.2) has at most
two positive roots (see Figure 1). Next, by discussing the sign of ∆2, we obtain the number of positive
roots of Eq (2.2), seeing the following lemma:

Lemma 2.3. Suppose that (S1) holds. Then, we have

(1) if ∆2 < 0, then Eq (2.2) has no positive root;

(2) if ∆2 = 0, then Eq (2.2) has a unique positive root;

(3) if ∆2 > 0, then Eq (2.2) has two different positive roots.

Electronic Research Archive Volume 32, Issue 12, 6503–6534.



6509

From Lemma 2.2(2),(3), we know that A3 < 0 when (S2) or (S3) holds, which means that Eq (2.2)
has at least one positive root and at most three positive roots (see Figure 2). Then, by discussing the
sign of ∆1 and ∆2, one has the following lemma:

Lemma 2.4. Suppose that (S2) or (S3) holds. We obtain

(1) if ∆2 < 0, then Eq (2.2) has a unique positive root;

(2) if ∆2 = 0, and

(i) ∆1 = 0, then Eq (2.2) has a unique positive root;
(ii) ∆1 > 0, then Eq (2.2) has two positive roots;

(3) if ∆2 > 0, then Eq (2.2) has three different positive roots.

Therefore, summarizing the above lemmas, we obtain the following theorem (for convenience, we
summarize Theorem 2.1 in Table 1).

Table 1. The existence of the equilibria of model (1.3).

Condition Equilibria
R0 < 0 E0, E2

R0 > 0

θ ≤ θ∗
∆2 > 0 E0, E1, E2, E∗2, E∗3

1
p+m > r ∆2 = 0 E0, E1, E2, E∗

∆2 < 0 E0, E1, E2

θ > θ∗
∆2 > 0 E0, E1, E2, E∗1, E∗2, E∗3

1
p+m > r

∆2 = 0, ∆1 > 0 E0, E1, E2, E∗, E∗1(or E∗3)
∆2 = 0, ∆1 = 0 E0, E1, E2, E∗∗
∆2 < 0 E0, E1, E2, E∗3

r > 0
∆2 > 0 E0, E1, E2, E∗1, E∗2, E∗3

1
p+m ≤ r

∆2 = 0, ∆1 > 0 E0, E1, E2, E∗, E∗1(or E∗3)
∆2 = 0, ∆1 = 0 E0, E1, E2, E∗∗
∆2 < 0 E0, E1, E2, E∗3

Theorem 2.1. (I) Model (1.3) has a unique trivial equilibrium E0 = (0, 0) and one semi-trivial
equilibrium E2 = (0, 1);

(II) if R0 > 0, model (1.3) also has a semi-trivial equilibrium E1 = (u1, 0) =
(
θ+r
γ
, 0

)
;

(III) when (S1) holds, model (1.3) has at most two positive equilibria. Moreover,

(1) if ∆2 > 0, then model (1.3) has two different positive equilibria E∗i (i = 2, 3);
(2) if ∆2 = 0, then model (1.3) has a unique positive equilibrium E∗;
(3) if ∆2 < 0, then model (1.3) has no positive equilibrium;

(IV) when (S2) or (S3) holds, model (1.3) has at least one positive equilibrium and at most three
positive equilibria. Moreover,

(1) if ∆2 > 0, then model (1.3) has three different positive equilibria E∗i (i = 1, 2, 3);
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(2) if ∆2 = 0, and
(i) ∆1 > 0, then model (1.3) has two positive equilibria E∗ and E∗1(orE∗3);

(ii) ∆1 = 0, then model (1.3) has a unique positive equilibrium E∗∗ =
(
−

A1
3A0
, 1 − qA1

3A0

)
;

(3) if ∆2 < 0, then model (1.3) has a unique positive equilibrium E∗3.

2.3. Stability of equilibria

For model (1.3), there is at least one positive equilibrium and at most three. Consequently, there
are numerous rich and complex dynamical characteristics, which increases the difficulty in studying
the dynamical properties of this model. Therefore, in order to alleviate the complexity of this study,
we will only consider the case with a unique positive equilibrium, denoted as E∗. So in the subsequent
research, we consistently assume that model (1.3) has a unique positive equilibrium, namely, E∗(u∗, v∗).

Theorem 2.2. (I) E0 and E1 are always hyperbolic saddle;

(II) (1) if R0 > 0, θ ≤ θ∗, 1
p+m > r, then E2 is a stable node;

(2) if one of the conditions hold
(i) R0 > 0, θ > θ∗, 1

p+m > r;
(ii) R0 > 0, 1

p+m ≤ r,
then E2 is a hyperbolic saddle;

(3) if R0 > 0, θ = θ∗, 1
p+m > r, then E2 is a degenerate equilibrium.

Proof. The corresponding Jacobian matrix for equilibria E = (u, v) of model (1.3) is easily obtained as
follows:

JE =

(
a11 a12

a21 a22

)
,

where
a11 =

θ

1 + Kv
+ r − 2γu −

v
p + hu + mv

+
huv

(p + hu + mv)2 ,

a12 = −

(
θKu

(1 + Kv)2 +
u(p + hu)

(p + hu + mv)2

)
,

a21 =
qv2

(1 + qu)2 , a22 = 1 −
2v

1 + qu
.

We can obtain the following characteristic equation:

λ2 − tr(JE)λ + det(JE) = 0,

where
tr(JE) = a11 + a22, det(JE) = a11a22 − a12a21.

(I) For equilibrium E0 and E1, it is obvious that one of the eigenvalues is λ = 1 > 0, then E0 and E1

are hyperbolic saddle.
(II) For equilibrium E2, we obtain

tr(JE2) =
θ

1 + K
+ r −

1
p + m

− 1,

det(JE2) =
1

p + m
−

θ

1 + K
− r.
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It is obvious that the sign of det(JE2) is equivalent to the sign of A3. Then, from Lemma 2.2, we know
the sign of det(JE2). Hence, when R0 > 0, θ ≤ θ∗, 1

p+m > r, we have tr(JE2) < 0 and det(JE2) > 0, which
imply that E2 is a stable node. When (S2) or (S3) holds, we have det(JE2) < 0, which implies that E2 is
a hyperbolic saddle. When R0 > 0, θ = θ∗, 1

p+m > r, we have det(JE2) = 0, which implies that E2 is a
degenerate equilibrium. □

Theorem 2.3. Assume that E∗ exists, and

(1) if χ > max{χ∗, χ∗ + 1 − qb12}, then E∗ is stable;

(2) if χ < min{χ∗, χ∗ + 1 − qb12}, then E∗ is unstable;

(3) if χ = χ∗ and qb12 > 1, then Hopf bifurcation occurs.

Proof. For E∗(u∗, v∗), we obtain

JE∗ =

(
χ∗ − χ + 1 −b12

q −1

)
, (2.3)

where
χ∗ =

θ

1 + Kv∗
+ r − 2γu∗ − 1,

χ =
(p + mv∗)v∗

(p + hu∗ + mv∗)2 ,

b12 =
θKu∗

(1 + Kv∗)2 +
u∗(p + hu∗)

(p + hu∗ + mv∗)2 .

Then we obtain the characteristic equation of E∗

λ2 − tr(JE∗)λ + det(JE∗) = 0,

where
tr(JE∗) = χ∗ − χ,
det(JE∗) = −χ∗ + χ − 1 + qb12.

By using the Routh-Hurwitz criterion, the conditions for the stability of E∗ are established, that is to
say, E∗ is stable when χ > max{χ∗, χ∗+1−qb12}, while E∗ is unstable when χ < min{χ∗, χ∗+1−qb12}.

When χ = χ∗ and qb12 > 1, we have tr(JE∗) = 0 and det(JE∗) > 0. Then, we have roots λ1,2 =

±i
√

det(JE∗) at χ = χ∗. Choosing χ as a bifurcation parameter (in fact, θ is the control parameter),
we have [

d(Reλ(χ))
dχ

] ∣∣∣∣∣
λ=i
√

det(JE∗ ),χ=χ∗
=

1
2

d(tr(JE∗))
dχ

∣∣∣∣∣
χ=χ∗
= −

1
2
, 0.

Hence, model (1.3) undergoes a Hopf bifurcation at χ = χ∗. □

Remark 2.1. For positive equilibrium E∗, assume that qb12 > 1, and

(1) if χ > χ∗, then E∗ is stable;

(2) if χ < χ∗, then E∗ is unstable;

(3) if χ = χ∗, then E∗ emerges Hopf bifurcation.
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That means that χ∗ can determine the stability of E∗.

Remark 2.2. (1) When m = 0 and p = 0, the B-D functional response of model (1.3) changes to linear
approximations. In this case, the model has a unique positive equilibrium and exhibits limit cycles
under fear interference.

(2) When m = 0, the B-D functional response of model (1.3) becomes the Holling II functional
response. In this case, the model still has a unique positive equilibrium and exhibits limit cycles under
fear interference, but shows complexity compared to case (1). Readers can refer to the research results
in [14].

Theorem 2.4. Suppose that R0 > 0, γ > h
pm , and

√
4

1+q

(
γ − h

pm

)
>

(
1
p + q + rq2

γ

)
hold. If

γ

Kγ + q2


√

4
1 + q

(
γ −

h
pm

)
−

(
1
p
+ q +

rq2

γ

) > θ,
then E∗ is globally asymptotically stable.

Proof. Denote

V(u, v) = u − u∗ − u∗ ln
u
u∗
+ v − v∗ − v∗ ln

v
v∗
.

Then, we obtain

dV
dt
= − γ(u − u∗)2 +

hv∗(u − u∗)2 + (p + hu∗)(u − u∗)(v − v∗)
(p + hu∗ + mv∗)(p + hu + mv)

−
Kθ(u − u∗)(v − v∗)
(1 + Kv∗)(1 + Kv)

+
qv∗(u − u∗)(v − v∗) − (1 + qu∗)(v − v∗)2

(1 + qu∗)(1 + qu)

≤ −

(
γ −

h
pm

)
|u − u∗|2 −

1
1 + q

|v − v∗|2 +
(
Kθ +

1
p
+ q +

q2(θ + r)
γ

)
|u − u∗||v − v∗|

= − B1(|u − u∗|2 −
B3

2B1
|u − u∗||v − v∗|) − B2|v − v∗|2

= − B1

(
|u − u∗|2 −

B3

2B1
|u − u∗||v − v∗| −

B2
3

4B2
1

|v − v∗|2
)
−

(
B2 −

B2
3

4B1

)
|v − v∗|2

= − B1

(
|u − u∗| −

B3

2B1
|v − v∗|

)2

−

(
B2 −

B2
3

4B1

)
|v − v∗|2,

where B1 = γ −
h

pm , B2 =
1

1+q , B3 = Kθ + 1
p + q + q2(θ+r)

γ
.

Since conditions R0 > 0, γ > h
pm , and

√
4

1+q

(
γ − h

pm

)
>

(
1
p + q + rq2

γ

)
hold, we obtain B2 >

B2
3

4B1
when

(
γ −

h
pm

)
>

1 + q
4

(
Kθ +

1
p
+ q +

q2(θ + r)
γ

)2

,

which imply that dV
dt < 0. Then, the proof is finished. □
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2.4. Hopf bifurcation

Theorem 2.5. Assume that R0 > 1, qb12 > 1, and χ = χ∗ hold, periodic solutions bifurcated from Hopf
bifurcation are stable (unstable) and the direction is subcritical (supercritical) when Υ(χ∗) < 0(> 0).

Proof. Let U = u − u∗ and V = v − v∗, and we can transform model (1.3) (for brevity, u and v stand for
U and V , respectively) to

du
dt
=(u + u∗)

(
θ

1 + K(v + v∗)
+ r − γ(u + u∗) −

v + v∗

p + h(u + u∗) + m(v + v∗)

)
,

dv
dt
=(v + v∗)

(
1 −

v + v∗

1 + q(u + u∗)

)
.

(2.4)

Rewrite model (2.4) as (
ut

vt

)
= JE∗

(
u
v

)
+

(
g(u, v, χ)
h(u, v, χ)

)
, (2.5)

where JE∗ is denoted in (2.3) andg(u, v, χ) =g20u2 + g11uv + g02v2 + g30u3 + g21u2v + g12uv2 + g03v3 + O(|(u, v)|4),
h(u, v, χ) =h20u2 + h11uv + h02v2 + h30u3 + h21u2v + h12uv2 + h03v3 + O(|(u, v)|4),

with

g20 = −γ +
hχ

p + hu + mv
, g11 = −

(
θK

(1 + Kv∗)2 +
p2 + hpu∗ + mpv∗ + 2hmu∗v∗

(p + hu∗ + mv∗)3

)
,

g02 =
θK2u∗

(1 + Kv∗)3 +
mu∗(p + hu∗)

(p + hu∗ + mv∗)3 , g21 =
h(p2 + hpu∗ − m2v∗2 + 2hmu∗v∗)

(p + hu∗ + mv∗)3 ,

g12 =
θK2

(1 + Kv∗)3 +
m(p2 − h2u∗2 + mpv∗ + 2hmu∗v∗)

(p + hu∗ + mv∗)4 , g30 = −
h2χ

(p + hu∗ + mv∗)2 ,

g03 =
θK3u∗

(1 + Kv∗)4 +
m2u∗(p + hu∗)

(p + hu∗ + mv∗)4 , h20 = −
q2

1 + qu∗
, h11 =

q
1 + qu∗

,

h02 = −
1

1 + qu∗
, h30 =

q3

(1 + qu∗)2 , h21 = −
q2

(1 + qu∗)2 , h12 =
2q

(1 + qu∗)2 , h03 = 0.

Assuming that JE∗ has two characteristic roots, it can be written as λ1,2(χ) = φ(χ) ± iψ(χ), where

φ(χ) =
χ∗ − χ

2
, ψ(χ) =

√
−χ∗ + χ − 1 + qb12 − φ2.

Obviously, eigenvalues λ1(χ) and λ2(χ) are complex conjugate if −χ∗ + χ − 1 + qb12 > φ2. Then, the
eigenvectors of JE∗ corresponding to the eigenvalues of λ(χ) = iψ(χ) at χ = χ∗ are given by

ξ =

[
1

ξ1 − iξ2

]
,

where ξ1 =
χ∗−χ+2

2b12
, ξ2 =

ψ(χ)
b12
.

Based on the transformation (u, v)T =

(
1 0
ξ1 ξ2

)
(x, y)T , model (2.5) becomes[ dx

dt
dy
dt

]
=

[
φ(χ) −ψ(χ)
ψ(χ) φ(χ)

] [
x
y

]
+

[
Φ(x, y)
Ψ(x, y)

]
, (2.6)
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where
Φ(x, y) =[g20 + g11ξ1 + g02ξ

2
1]x2 + [g11 + 2g02ξ1]ξ2xy + g02ξ

2
2y2

+ [g30 + g21ξ1 + g12ξ
2
1 + g03ξ

3
1]x3 + [g12 + 3g03ξ1]ξ2

2 xy2,

Ψ(x, y) =
1
ξ2

[h20 + (h11 − g20)ξ1 + (h02 − g11)ξ2
1 − g02ξ

3
1]x2

+ [h11 + (2h02 − g11)ξ1 − 2g02ξ
2
1]xy + (h02 − g02ξ1)ξ2y2

− g03ξ1ξ
2
2y3 + [h21 + (2h12 − g21)ξ1 − 2g12ξ

2
1 − 3g03ξ

3
1]x2y.

Next, we calculate the 1st Lyapunov coefficient as follows:

Υ(χ∗) =
1

16
[Φxxx + Φxyy + Ψxxy + Ψyyy](0,0,χ∗)

+
1

16ψ(χ∗)
[Φxy(Φxx + Φyy) − Ψxy(Ψxx + Ψyy) − ΦxxΨxx + ΦyyΨyy](0,0,χ∗),

where

Φxxx(0, 0, χ∗) = 6(g30 + g21ξ1 + g12ξ
2
1 + g03ξ

3
1), Φxyy(0, 0, χ∗) = 2(g12 + 3g03ξ1)ξ2

2,

Ψxxy(0, 0, χ∗) = 2[h21 + (2h12 − g21)ξ1 − 6g12ξ
2
1 − 3g03ξ

3
1],

Ψyyy(0, 0, χ∗) = −6g03ξ1ξ
2
2, Φxx(0, 0, χ∗) = 2(g20 + g11ξ1 + g02ξ

2
1),

Φxy(0, 0, χ∗) = (g11 + 2g02ξ1)ξ2, Φyy(0, 0, χ∗) = 2g02ξ
2
2,

Ψxx(0, 0, χ∗) =
2
ξ2

[h20 + (h11 − g20)ξ1 + (h02 − g11)ξ2
1 − g02ξ

3
1],

Ψxy(0, 0, χ∗) = h11 + (2h02 − g11)ξ1 − 2g02ξ
2
1, Ψyy(0, 0, χ∗) = 2(h02 − g02ξ1)ξ2,

owing to [
∂(Reφ(χ))

∂χ

]
χ=χ∗
= −

1
2
< 0.

Therefore, one gets the 1st Lyapunov coefficient Λ = − Υ(χ∗)
φ′(χ∗) , which determines the stability and

direction of Hopf bifurcating periodic solution. □

3. Analysis of the spatial model (1.4)

3.1. Stability of E∗

Let 0 = µ0 < µ1 < µ2 < · · · < µi < · · · be the eigenvalues for the operator −∆ subject to the
homogeneous Neumann boundary condition on Ω, where µi has multiplicity mi ≥ 1 and µ1 is the
smallest eigenvalue. Denote the real-valued Sobolev space
S =

{
(u, v) ∈ H2(0, lπ) × H2(0, lπ) : ∂u

∂n |∂Ω =
∂v
∂n |∂Ω = 0

}
, and let SC = S ⊕ Si = {s1 + s2i : s1, s2 ∈ S}.

Denote N0 = N ∪ {0}.
The linearization equation of model (1.4) at E∗ is(

∂u
∂t
∂v
∂t

)
= D

(
∆u
∆v

)
+ JE∗

(
u
v

)
, (3.1)
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where D = diag(d1, d2) and JE∗ is denoted in (2.3).
Then, the characteristic equation of (3.1) is given by

λ2 − Tr(k)λ + Det(k) = 0, (3.2)

where
Tr(k) = −(d1 + d2)k2 + χ∗ − χ,

Det(k) = d1d2k4 + [d1 − (χ∗ − χ + 1)d2]k2 − χ∗ + χ − 1 + qb12.

When condition χ > max{χ∗, χ∗+1−qb12} holds, then we have Tr(0) < 0 and Det(0) > 0, which imply
that Tr(k) < 0 always holds.

Next, we analyze the sign of Det(k). (1) if d1
d2
≥ max{0, χ∗ − χ + 1}, we can obtain Det(k) > 0;

(2) if d1
d2
< χ∗−χ+1, we need to discuss the sign of ∆ = (d1−(χ∗−χ+1)d2)2+4d1d2(χ∗−χ+1−qb12),

(i) if ∆ < 0, which implies that Det(k) > 0;
(ii) if ∆ > 0, which implies that Det(k) must have negative roots, then by calculating, we have

Det(k) > 0 when −(χ∗−χ+1)+2qb12−2
√
−qb12(χ∗ − χ + 1 − qb12) < d1

d2
< χ∗−χ+1, and Det(k) < 0

when −(χ∗ − χ + 1) + 2qb12 − 2
√
−qb12(χ∗ − χ + 1 − qb12) > d1

d2
> 0.

Hence, the Theorem 3.1 is shown by the properties of E∗ in model (1.4).

Theorem 3.1. When χ > max{χ∗, χ∗ + 1 − qb12} hold, and

(1) if
d1

d2
≥ max{0, χ∗ − χ + 1},

or

−(χ∗ − χ + 1) + 2qb12 − 2
√
−qb12(χ∗ − χ + 1 − qb12) <

d1

d2
< χ∗ − χ + 1,

then E∗ is locally asymptotically stable;

(2) if

0 <
d1

d2
< −(χ∗ − χ + 1) + 2qb12 − 2

√
−qb12(χ∗ − χ + 1 − qb12),

then E∗ is unstable, and the Turing instability occurs.

Remark 3.1. In Figure 3, the blue line represents the equation

d2 =
1

(χ∗ − χ + 1) + 2qb12 − 2
√
−qb12(χ∗ − χ + 1 − qb12)

d1,

and we can see that the red region is the region where Turing instability occurs, and the green region
is the region where the steady state solution E∗ is stable. On the other hand, it also shows that when
the diffusion of predator is fixed, if the diffusion of prey is smaller, it is more difficult to maintain the
stability of populations.
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Figure 3. Diagram for Turing instability on d1 − d2 in model (1.4) with θ = 4.

Theorem 3.2. When R0 > 0 and γ > h
pm hold, if

1
2

(
Kθ +

1
p
+ q +

q2(θ + r)
γ

)
< min

{
1

1 + q
, γ −

h
pm

}
,

then E∗ is globally asymptotically stable.

Proof. Denote a Lyapunov function

V =
∫
Ω

(∫ u

u∗

ξ − u∗

ξ
dξ +

∫ v

v∗

ζ − v∗

ζ
dζ

)
dx.

Then

dV
dt
=

∫
Ω

[(
θ

1 + Kv
+ r − γu −

v
p + hu + mv

)
(u − u∗)

]
dx

+

∫
Ω

[(
1 −

v
1 + qu

)
(v − v∗)

]
dx − d1u∗

∫
Ω

|∇u|2

u2 dx − d2v∗
∫
Ω

|∇v|2

v2 dx

≤ −

∫
Ω

[
γ −

h
pm
−

1
2

(
Kθ +

1
p
+ q +

q2(θ + r)
γ

)]
(u − u∗)2dx − d1u∗

∫
Ω

|∇u|2

u2 dx

−

∫
Ω

[
1

1 + q
−

1
2

(
Kθ +

1
p
+ q +

q2(θ + r)
γ

)]
(v − v∗)2dx − d2v∗

∫
Ω

|∇v|2

v2 dx,

which is used in the inequality a2 + b2 ≥ 2ab.
Then, under the Neumann boundary conditions and 1

1+q > 1
2

(
Kθ + 1

p + q + q2(θ+r)
γ

)
,

γ > h
pm +

1
2

(
Kθ + 1

p + q + q2(θ+r)
γ

)
, we obtain that dV

dt ≤ 0, which implies that the proof of Theorem 3.2
is completed. □
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3.2. Hopf bifurcation

3.2.1. Existence

Let X = u − u∗ and Y = v − v∗, and we can transform model (1.4) (for brevity, u and v represent X
and Y again, respectively) to:

∂u
∂t
=d1∆u + (u + u∗)

(
θ

1 + K(v + v∗)
+ r − γ(u + u∗) −

v + v∗

p + h(u + u∗) + m(v + v∗)

)
,

∂v
∂t
=d2∆v + (v + v∗)

(
1 −

v + v∗

1 + q(u + u∗)

)
.

(3.3)

Then, model (3.3) can be rewritten as 
∂u
∂t
=d1∆u + g(u, v, χ),

∂v
∂t
=d2∆v + h(u, v, χ).

The linearized operator of model (3.3) at (0, 0, χ) is given by

P(χ) =
(

d1∆ + b11(χ) −b12(χ)
q d2∆ − 1

)
,

where the domain of P(χ) is SC and

b11(χ) = χ∗ − χ + 1, b12(χ) =
θKu∗

(1 + Kv∗)2 +
u∗(p + hu∗)χ
v∗(p + mv∗)

.

Let k = n2

l2 , where n2

l2 is the eigenvalue of −uxx → u and its corrsponding eigenfunction is ϕn(x) =
cos n

l x. Then, (3.2) becomes

Λ2 − Tn(χ)Λ + Dn(χ) = 0, n = 0, 1, 2, · · · ,

where

Tn(χ) = −(d1 + d2)
n2

l2 + χ
∗ − χ,

Dn(χ) = d1d2
n4

l4 + [d1 − (χ∗ − χ + 1)d2]
n2

l2 − χ
∗ + χ − 1 + qb12(χ),

(3.4)

and we obtain the eigenvalues

Λ(χ) =
Tn(χ) ±

√
T2

n(χ) − 4Dn(χ)
2

, n = 0, 1, 2, · · · .

Let χ0 be the possible Hopf bifurcation point satisfying conditions (H1): there exists n ∈ N0

such that
Tn(χ0) = 0, Dn(χ0) > 0, T j(χ0) , 0, D j(χ0) , 0 f or j , n, (3.5)

and for the unique pair of complex eigenvalues ρ(χ) ± ω(χ)i near the imaginary axis

ρ′(χ0) , 0, (3.6)
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where

ρ(χ) = −(d1 + d2)
n2

2l2 +
χ∗ − χ

2
, ω(χ) =

√
Dn(χ) − ρ2(χ).

From (3.4), when χ > max{χ∗, χ∗+1+qb12}, it is obvious that Tn(χ0) < 0 and Dn(χ0) > 0, which imply
that (u∗, v∗) is stable. Thus, any potential bifurcation points shall be in χ < min{χ∗, χ∗ + 1 − qb12}.
By calculating, we get

ρ′(χ) = −
1
2
, (3.7)

so the transversality condition (3.6) is always held.
(1) When n = 0, let χH

0 = χ
∗, then we find that χH

0 is always a Hopf bifurcation point for l > 0 due
to T0(χH

0 ) = 0, T j(χH
0 ) < 0 for any j ≥ 1, and Dk(χH

0 ) > 0 for any k ∈ N.
(2) When n ≥ 1, since b11(χH

0 ) = 0, b′11(χ) < 0 for χ0 < χ∗, we have 0 < b11(χ) < b11(0) := χ∗ + 1
for χ0 < χ

∗.
Denote

ln = n

√
d1 + d2

χ∗ + 1
, n ∈ N.

Then for ln < l < ln+1, and 1 ≤ j ≤ n, let χH
j be the root of χ∗ − χ = (d1 + d2)n2

l2 , then it satisfies
χH

0 > χH
j > 0. Moreover, by b′11(χ) < 0 for χ0 < χ

∗, we obtain

0 < χH
n < · · · < χH

3 < χH
2 < χH

1 < χH
0 < χ∗

and
T j(χH

j ) = 0, Ti(χH
j ) , 0 f or i , j, 1 ≤ j ≤ n.

Now, it is demonstrated that Dn(χH
j ) > 0 for j , n. For χ ∈ (0, χH

0 ], we get

Dn(χ) = d1d2
n4

l4 + [d1 − (χ∗ − χ + 1)d2]
n2

l2 − χ
∗ + χ − 1 + qb12(χ).

Obviously, Dn(χ) = 0 is a quadratic function of variable n2

l2 , so we have Dn(χH
j ) > 0 when

d1

d2
≥ max{0, χ∗ − χ + 1},

or

−(χ∗ − χ + 1) + 2qb12 − 2
√
−qb12(χ∗ − χ + 1 − qb12) <

d1

d2
< χ∗ − χ + 1.

Theorem 3.3. Assume that −(χ∗ − χ + 1) + 2qb12 − 2
√
−qb12(χ∗ − χ + 1 − qb12) < d1

d2
< χ∗ − χ + 1 or

d1
d2
≥ max{0, χ∗ − χ + 1} hold, and for any l ∈ (ln, ln+1], there are n points χH

j (l), j ∈ [1, n] satisfying

0 < χH
n < · · · < χH

3 < χH
2 < χH

1 < χH
0 < χ∗

such that Hopf bifurcation arises at each χ = χH
j .
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3.2.2. Direction and stability

We apply the normal form theory and center manifold theorem [24, 25] to prove Theorems 3.4
and 3.5.

Theorem 3.4. Assume the condition of Theorem 3.3 is satisfied, the bifurcating periodic solutions
of spatial homogeneous are stable (unstable), and the direction is subcritical (supercritical) when
Re(c1(χH

0 )) < 0(> 0).

Proof. Let

q = (a0, b0)T =

(
1 + ω0i

q
, 1

)T

, q∗ =
(
a
∗
0, b
∗
0
)T
=

(
q

2lπω0
i,
ω0 − i
2lπω0

)T

,

where ω0 =

√
−1 + qb12(χH

0 ), such that P(χ0)q = ω0qi, P∗(χH
0 )q∗ = −ωq∗i, ⟨q∗, q⟩ = 1, and ⟨q∗, q⟩ = 0,

where ⟨p, q⟩ =
∫ lπ

0
p

T
qdx.

According to [25], we obtain that

Eqq = (c0, d0)T , Eqq̄ = (e0, f0)T , Jqqq̄ = (g0, h0)T ,

where

c0 =
guu(1 − ω2

0)
q2 +

2guv

q
+ gvv +

2(guu + guv)ω0i
q

,

d0 =
huu(1 − ω2

0)
q2 +

2huv

q
+ hvv +

2(huu + huv)ω0i
q

,

e0 =
guu(1 − ω2

0)
q2 +

2guv

q
+ gvv, f0 =

huu(1 − ω2
0)

q2 +
2huv

q
+ hvv,

g0 =
guuu(1 − ω2

0)
q3 +

3guuv(1 − ω2
0)

q2 +
3guvv

q
+ gvvv +

[guuu(1 − ω2
0)

q3 +
2guuv

q2 +
guvv

q

]
ω0i,

h0 =
huuu(1 − ω2

0)
q3 +

3huuv(1 − ω2
0)

q2 +
3huvv

q
+

[huuu(1 − ω2
0)

q3 +
2huuv

q2 +
huvv

q

]
ω0i,

with

guu = −2γ +
2hχH

0

p + hu∗ + mv∗
, guuu = −

6h2χH
0

(p + hu∗ + mv∗)2 , huu = −
2q2

(1 + qu∗)
,

guv = −

(
θK

(1 + Kv∗)2 +
(p2 + hpu∗ + pmv∗2 + 2hmu∗v∗)

(p + hu∗ + mv∗)3

)
, huv =

q
(1 + qu∗)

,

gvv =
2θK2u∗

(1 + Kv∗)3 +
2mu∗(p + hu∗)χH

0

v∗(p + mv∗)(p + hu∗ + mv∗)
, hvv = −

2
1 + qu∗

,

guuv =
2h(p2 + hpu∗ − m2v∗2 + 2hmu∗v∗)

(p + hu∗ + mv∗)4 , huuu =
6q3

(1 + qu∗)2 ,

guvv =
2θK2

(1 + Kv∗)3 +
2m(p2 − h2u∗2 + mpv∗ + 2hmu∗v∗)

(p + hu∗ + mv∗)4 , huuv = −
2q2

(1 + qu∗)2 ,

gvvv = −

(
6θK3u∗

(1 + Kv∗)4 +
6m2u∗(p + hu∗)χH

0

v∗(p + mv∗)(p + hu∗ + mv∗)2

)
, huvv =

2q
(1 + qu∗)2 .
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Then, through straightforward calculations, we can get that

⟨q∗,Eqq⟩ =guu + guv +
hvv

2
+

huu(1 − ω2
0 − 2q)

2q2 −
1

2ω0

[
2guv + qgvv − hvv

−
huu(1 − ω2

0)
q2 +

guu(1 − ω2
0) − 2huuω

2
0 − 2huv(1 + ω2

0)
q

]
i,

⟨q∗,Eqq̄⟩ =
hvv

2
+

huu(1 − ω2
0)

2q2 +
huv

q

−
1

2ω0

[
2guv + qgvv − hvv −

huu(1 − ω2
0)

q2 +
guu(1 − ω2

0) − 2huv

q

]
i,

⟨q∗,Jqqq̄⟩ = −
[guvv

2
+

guuu(1 − ω2
0) − huuv(1 − 3ω2

0)
2q2 +

guuv − huvv

q

]
+

1
2ω0

[
3guvv + qgvvv +

huuu

q3 +
guuu(1 − ω2

0) + huuv(3 − ω2
0)

q2

+
3guuv(1 − ω2

0) + huvv(3 + ω2
0)

q

]
i.

According to [25], we have

Re(c1(χH
0 )) =Re

(
i

2ω0

(
f20 f11 − 2| f11|

2 −
| f02|

2

3

)
+

f21

2

)
=Re

(
i

2ω0
⟨q∗,Eqq⟩ · ⟨q

∗,Eqq̄⟩ +
1
2
⟨q∗,Jqqq̄⟩

)
=

1
4ω2

0

[
guu + guv + hvv +

huu(1 − ω2
0)

q2 +
2huv − huu

q

]
×

[
2guv + qgvv − hvv −

huu(1 − ω2
0)

q2 +
guu(1 − ω2

0) − 2huv

q

]
−

huu + huv

4q

[
hvv +

huu(1 − ω2
0)

q2 +
2huv

q

]
−

1
4

[
guvv +

guuu(1 − ω2
0) − huuv(1 − 3ω2

0)
q2 +

2(guuv − huvv)
q

]
.

From (3.7), we have ρ′(χ) < 0, then the sign of Re(c1(χH
0 )) can determine the direction and stability of

Hopf bifurcation periodic solutions. □

Theorem 3.5. Assume the conditions of Theorem 3.3 are satisfied, the bifurcating periodic solutions
of spatial inhomogeneous are stable (unstable), and the direction is subcritical (supercritical) when
Re(c1(χH

j )) < 0(> 0).

Proof. Let

q =
(
a j, b j

)T
cos

j
l

x =
(
1
q

(
1 + d2

j2

l2 + ω ji
)
, 1

)T

cos
j
l

x,

q
∗ =

(
a
∗
j, b
∗
j

)T
cos

j
l

x =
(

q
ω jlπ

i,
1
lπ
−

(
d2 j2

ω jl3π
+

1
ω jlπ

)
i
)T

cos
j
l

x,
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where ω j =

√
−1 + qb12(χH

j ) − 2d2
j2

l2 − d2
2

j4

l4 , which satisfies P(χ j)q = ω jqi, P∗(χH
j )q∗ = −ωq∗i,

⟨q∗, q⟩ = 1, and ⟨q∗, q⟩ = 0.
From [25], we obtain that

Eqq =
(
c j, d j

)T
cos2 j

l
x, Eqq̄ =

(
e j, f j

)T
cos2 j

l
x, Jqqq̄ =

(
g j, h j

)T
cos3 j

l
x,

where

c j =
guu

q2

(1 + d2
j2

l2

)2

− ω2
j

 + 2guv

q

(
1 + d2

j2

l2

)
+ gvv +

2ω j

q

[
guu

q

(
1 + d2

j2

l2

)
+ guv

]
i,

d j =
huu

q2

(1 + d2
j2

l2

)2

− ω2
j

 + 2huv

q

(
1 + d2

j2

l2

)
+ hvv +

2ω j

q

[
huu

q

(
1 + d2

j2

l2

)
+ huv

]
i,

e j =
guu

q2

(1 + d2
j2

l2

)2

− ω2
j

 + 2guv

q

(
1 + d2

j2

l2

)
+ gvv,

f j =
huu

q2

(1 + d2
j2

l2

)2

− ω2
j

 + 2huv

q

(
1 + d2

j2

l2

)
+ hvv,

g j =
guuu

q3

(
1 + d2

j2

l2

) (1 + d2
j2

l2

)2

− ω2
j

 + 3guuv

q2

(1 + d2
j2

l2

)2

− ω2
j

 + gvvv

+
3guvv

q

(
1 + d2

j2

l2

)
+
ω j

q

guuu

q2

(1 + d2
j2

l2

)2

− ω2
j

 + 2guuv

q

(
1 + d2

j2

l2

)
+ 3guvv

 i,

h j =
huuu

q3

(
1 + d2

j2

l2

) (1 + d2
j2

l2

)2

− ω2
j

 + 3huuv

q2

(1 + d2
j2

l2

)2

− ω2
j


+

3huvv

q

(
1 + d2

j2

l2

)
+
ω j

q

huuu

q2

(1 + d2
j2

l2

)2

− ω2
j

 + 2huuv

q

(
1 + d2

j2

l2

)
+ 3huvv

 i,

with

guu = −2γ +
2hχH

j

p + hu∗ + mv∗
, guuu = −

6h2χH
j

(p + hu∗ + mv∗)2 , huu = −
2q2

1 + qu∗
,

guv = −

(
θK

(1 + Kv∗)2 +
(p2 + hpu∗ + pmv∗2 + 2hmu∗v∗)

(p + hu∗ + mv∗)3

)
, huv =

q
1 + qu∗

,

gvv =
2θK2u∗

(1 + Kv∗)3 +
2mu∗(p + hu∗)χH

j

v∗(p + mv∗)(p + hu∗ + mv∗)
, hvv = −

2
1 + qu∗

,

guuv =
2h(p2 + hpu∗ − m2v∗2 + 2hmu∗v∗)

(p + hu∗ + mv∗)4 , huuu =
6q3

(1 + qu∗)2 ,

guvv =
2θK2

(1 + Kv∗)3 +
2m(p2 − h2u∗2 + mpv∗ + 2hmu∗v∗)

(p + hu∗ + mv∗)4 , huuv = −
2q2

(1 + qu∗)2 ,

gvvv = −

 6θK3u∗

(1 + Kv∗)4 +
6m2u∗(p + hu∗)χH

j

v∗(p + mv∗)(p + hu∗ + mv∗)2

 , huvv =
2q

(1 + qu∗)2 .

Electronic Research Archive Volume 32, Issue 12, 6503–6534.



6522

According to [25], we have

[(2ω jiI − P2 j(χH
j ))]−1

=
ς1 − ς2i
ς2

1 + ς
2
2

 2ω ji + 4d2
j2

l2 + 1 −b12(χH
j )

q 2ω ji + (3d1 − d2) j2

l2 − 1

 ,
[(2ω jiI − P0(χH

j ))]−1
=
ς3 − ς4i
ς2

3 + ς
2
4

 2ω ji + 1 −b12(χH
j )

q 2ω ji − (d1 + d2) j2

l2 − 1

 ,
where

ς1 = 3d2(4d1 − d2)
j4

l4 + 3(d1 − d2)
j2

l2 − 3ω2
j , ς2 = 6ω j(d1 + d2)

j2

l2 ,

ς3 = d2
2

j4

l4 − (d1 − d2)
j2

l2 − 3ω2
j , ς4 = −2ω j(d1 + d2)

j2

l2 .

Then, we have

w20 =
1
2

(
[(2ω jiI − P2 j(χH

j ))]−1 cos
2 j
l

x + [(2ω jiI − P0(χH
j ))]−1

)
·

(
c j

d j

)
=
ς1 − ς2i

2(ς2
1 + ς

2
2)


(
2ω ji + 4d2

j2

l2 + 1
)
c j − b12(χH

j )d j

qc j +
(
2ω ji + (3d1 − d2) j2

l2 − 1
)
d j

 cos
2 j
l

x

+
ς3 − ς4i

2(ς2
3 + ς

2
4)

 (2ω ji + 1)c j − b12(χH
j )d j

qc j +
(
2ω ji − (d1 + d2) j2

l2 − 1
)
d j

 .
Since

[(−P2 j(χH
j ))]−1

=
1
ς5

 4d2
j2

l2 + 1 −b12(χH
j )

q (3d1 − d2) j2

l2 − 1

 ,
[(−P0(χH

j ))]−1
=

1
ς6

 1 −b12(χH
j )

q −(d1 + d2) j2

l2 − 1

 ,
where

ς5 = 3d2(4d1 − d2)
j4

l4 + 3(d1 − d2)
j2

l2 + ω
2
j , ς6 = d2

2
j4

l4 − (d1 − d2)
j2

l2 + ω
2
j .

Then, we get

w11 =
1
2

(
[−P2 j(χH

j )]−1 cos
2 j
l

x + [−P0(χH
j )]−1

)
·

(
e j

f j

)
=

1
2ς5


(
4d2

j2

l2 + 1
)
e j − b12(χH

j )f j
qe j +

(
(3d1 − d2) j2

l2 − 1
)
f j

 cos
2 j
l

x

+
1

2ς6

 e j − b12(χH
j )f j

qe j −
(
(du + dv)

j2

l2 + 1
)
f j

 .
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Then,

Ew20q =

(
guuā jξ̃ + guv(ā jζ̃ + ξ̃) + gvvζ̃

huuā jξ̃ + huv(ā jζ̃ + ξ̃) + hvvζ̃

)
cos

2 j
l

x cos
j
l

x

+

(
guuā jγ̃ + guv(ā jχ̃ + γ̃) + gvvχ̃

huuā jγ̃ + huv(ā jχ̃ + γ̃) + hvvχ̃

)
cos

j
l

x,

Ew11q =

(
guua jξ̄ + guv(a jζ̄ + ξ̄) + gvvζ̄

huua jξ̄ + huv(a jζ̄ + ξ̄) + hvvζ̄

)
cos

2 j
l

x cos
j
l

x

+

(
guua jγ̄ + guv(a jχ̄ + γ̄) + gvvχ̄

huua jγ̄ + huv(a jχ̄ + γ̄) + hvvχ̄

)
cos

j
l

x,

where

ξ̃ =
ς1 − ς2i

2(ς2
1 + ς

2
2)

[(
2ω ji + 4d2

j2

l2
+ 1

)
c j − b12(χH

j )d j

]
,

ζ̃ =
ς1 − ς2i

2(ς2
1 + ς

2
2)

[
qc j +

(
2ω ji + (3d1 − d2)

j2

l2
− 1

)
d j

]
,

γ̃ =
ς3 − ς4i

2(ς2
3 + ς

2
4)

[
(2ω ji + 1)c j − b12(χH

j )d j

]
,

χ̃ =
ς3 − ς4i

2(ς2
3 + ς

2
4)

[
qc j +

(
2ω ji − (d1 + d2)

j2

l2
− 1

)
d j

]
,

ξ̄ =
1

2ς5

[(
4d2

j2

l2
+ 1

)
e j − b12(χH

j )f j

]
,

ζ̄ =
1

2ς5

[
qe j +

(
(3d1 − d2)

j2

l2
− 1

)
f j

]
,

γ̄ =
1

2ς6

[
e j − b12(χH

j )f j
]
,

χ̄ =
1

2ς6

[
qe j −

(
(du + dv)

j2

l2
+ 1

)
f j

]
.

Note that ∫ lπ

0
cos2 j

l
xdx =

lπ
2
,

∫ lπ

0

(
cos

2 j
l

x cos2 j
l

x
)

dx =
lπ
4
,∫ lπ

0
cos3 j

l
xdx = 0,

∫ lπ

0
cos4 j

l
xdx =

3lπ
8
.

Thus

⟨q∗,Eqq⟩ =⟨q
∗,Eqq̄⟩ = 0, ⟨q∗,Jqqq̄⟩ =

3lπ
8

(g jā
∗
j + h jb̄

∗
j),

⟨q∗,Ew20q̄⟩ =
lπ
4

[ā∗j(guuā jξ̃ + guv(ā jζ̃ + ξ̃) + gvvζ̃) + b̄∗j(huuā jξ̃ + huv(ā jζ̃ + ξ̃) + hvvζ̃)]

+
lπ
2

[ā∗j(guuā jγ̃ + guv(ā jχ̃ + γ̃) + gvvχ̃) + b̄∗j(huuā jγ̃ + huv(ā jχ̃ + γ̃) + hvvχ̃)],

⟨q∗,Ew11q⟩ =
lπ
4

[ā∗j(guua jξ̄ + guv(a jζ̄ + ξ̄) + gvvζ̄) + b̄∗j(huua jξ̄ + huv(a jζ̄ + ξ̄) + hvvζ̄)]

+
lπ
2

[ā∗j(guua jγ̄ + guv(a jχ̄ + γ̄) + gvvχ̄) + b̄∗j(huua jγ̄ + huv(a jχ̄ + γ̄) + hvvχ̄)].
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According to [25], we have

Re(c1(χH
j )) =Re

(
i

2ω0
⟨q∗,Eqq⟩ · ⟨q

∗,Eqq̄⟩ + ⟨q
∗,Ew11q⟩ +

1
2
⟨q∗,Ew20q̄⟩ +

1
2
⟨q∗,Jqqq̄⟩

)
=Re⟨q∗,Ew11q⟩ +

1
2

Re⟨q∗,Ew20q̄⟩ +
1
2

Re⟨q∗,Jqqq̄⟩.

From (3.7), we have ρ′(χ) < 0, then the direction and stability of the periodic solution of Hopf
bifurcation can be determined by the sign of Re(c1(χH

j )). □

4. Numerical simulations

We perform a series of numerical simulation on models (1.3) and (1.4) to illustrate our results. Let
initial values (u(0), v(0)) = (2, 3) and parameter values in Table 2. Then, we obtain that R0 = 4.6 > 0,
θ∗ = 2.1833 > θ = 1.2, χ = 0.6467 < χ∗ = 1.4034, which imply that model (1.3) has a stable node
E2(23, 0), an unstable positive equilibrium E∗(u∗, v∗) = (4.1418, 5.9701), and a stable limit cycle (see
Figure 4). When θ = 4, we have θ∗ = 2.1833 < θ = 4 and χ = 0.5132 > χ∗ = 0.4843, which imply
that a stable node E2(23, 0) becomes an unstable and the unstable equilibrium becomes E∗(u∗, v∗) =
(7.1403, 9.5684) which is stable; moreover, the limit cycle is disappears (see Figure 5).
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Figure 4. Phase portrait and time sequence diagram of model (1.3). In (a), red ’o’ represents
stable equilibrium E2 = (23, 0) and green ’o’ represents unstable equilibrium E∗(u∗, v∗) =
(4.1418, 5.9701) for χ = 0.6467 < χ∗ = 1.4034; the red line represents a stable limit cycle.
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Table 2. The parameter values of model (1.3).

Parameter Value Parameter Value Parameter Value Parameter Value
r 3.4 γ 0.2 K 0.34 p 0.2
θ 1.2 h 0.38 m 0.04 q 1.2

According to Figures 4 and 5, we find that as θ(1.2 → 4) increases, the positive equilibrium
E∗(u∗, v∗) of model (1.3) changes from unstable to stable, and the limit cycle changes from existence
to nonexistence, in addition, it also led to an increase in population size. This fully demonstrates that
θ can affect the stability and the population size of model (1.3).

Note that θ = r0(1−η)
b , that is, θ and η are negatively correlated. Therefore, if the minimum fear cost

η is used as a key parameter to explore the dynamic behavior and the trend of populations, it can be
replaced by θ. We find from Figures 6 and 7 that as θ increases, that is, as the minimum fear cost η
decreases, the model (1.3) exhibits a limit cycle, which first changes from a large and stable range to
a small and unstable range and gradually disappears, while the positive equilibrium gradually changes
from an unstable to a globally stable. This means that a lower cost of fear can maintain population
stability, causing a decrease in population size but not leading to extinction, while a higher cost of fear
can disrupt stability and cause periodic changes in population size.
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Figure 5. Phase portrait and time sequence diagram of model (1.3). In (a), green ’o’
represents unstable equilibrium E2 = (23, 0) and red ’o’ represents stable equilibrium
E∗(u∗, v∗) = (7.1403, 9.5684) for χ = 0.5132 > χ∗ = 0.4843. θ = 4.
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We draw the bifurcation diagram of model (1.3) with the various parameters θ, r, K, h, p, q, m (see
Figures 7–9) and observe that the various parameters can stabilize the oscillating model via Hopf
bifurcation. It is revealed that: (i) for θ, r, m, p, the small parameter values will destroy the stability
and produce Hopf bifurcation; (ii) for K, the large parameter value will destroy the stability and
produce Hopf bifurcation; (iii) for h, q, the bubble phenomenon [26] appears, which means that the
appropriate parameter values will destroy the stability and produce Hopf bifurcation, but the small
and large parameter values cannot destroy the stability of populations. Therefore, different parameters
can have an impact on the dynamic behavior of model (1.3), mainly interfering with the stability of
the equilibria and the existence, stability, and direction of Hopf bifurcations.
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Figure 6. Bifurcation diagrams of model (1.3) in u − v (left) and θ − u − v (right) parametric
space. Hopf critical point H: (u, v, θ) = (6.9341, 9.3209, 3.7210), the 1st Lyapunov coefficient
= −5.1964×10−3; LP: (u, v, θ) = (1.3198, 2.5838, 0.1392); Neutral saddle point H: (u, v, θ) =
(0.2607, 1.3128, 0.5587); BP: (u, v, θ) = (0, 1, 1.0273).

For model (1.4), let initial values be (u0(x), v0(x)) = (4.5297 + 0.2 sin(x), 7.0543 + 0.2 sin(x)), d2 =

0.2, Ω = (0, 40), and change the different parameter values θ and d1 to discuss the influence of fear and
diffusion rate of prey on the dynamics of model (1.4).

Let θ = 4, d1 = 0.1, and according to Theorem 3.1, we get that χ = 0.5132 > χ∗ = 0.4843 and
−(χ∗−χ+1)+2qb12−2

√
−qb12(χ∗ − χ + 1 − qb12) = 0.0969 < d1

d2
= 0.5 < χ∗−χ+1 = 0.9711, which

imply that the steady state solution of model (1.4) is locally asymptotically stable. If d1 is selected as
0.01 and 0.001, respectively, according to Theorem 3.1, we have

0 <
d1

d2
= 0.05 < −(χ∗ − χ + 1) + 2qb12 − 2

√
−qb12(χ∗ − χ + 1 − qb12) = 0.0969,

0 <
d1

d2
= 0.005 < −(χ∗ − χ + 1) + 2qb12 − 2

√
−qb12(χ∗ − χ + 1 − qb12) = 0.0969,

which imply that the Turing instability occurs. This further reflects that diffusion can lead to the
occurrence of Turing patterns, providing ideas for studying the morphology of populations and
effectively enriching the explosion of species diversity.
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Figure 7. Bifurcation diagram shows that θ = r0(1−η)
b can stabilize the model (1.3).
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Figure 8. Bifurcation diagram for prey of model (1.3) with various parameters.
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Figure 9. Bifurcation diagram for predator of model (1.3) with various parameters.

Next, select θ as 6 and 10, respectively, then we can also get that

χ = 0.4793 > χ∗ = 0.1598, −(χ∗ − χ + 1) + 2qb12 − 2
√
−qb12(χ∗ − χ + 1 − qb12) = 0.0403,

χ = 0.444 > χ∗ = −0.3495, −(χ∗ − χ + 1) + 2qb12 − 2
√
−qb12(χ∗ − χ + 1 − qb12) = 0.003.

By Theorem 3.1, the steady state solution of model (1.4) is locally asymptotically stable when θ = 6
or θ = 10.

By comparing Figures 10 and 11 in detail, we find that (i) the larger θ and d1, the steady state
solution of model (1.4) is more stable, indicating that the smaller the fear effect, or the larger the
diffusion rate of prey (predator), the more conducive to the stability of prey (predator) population;
(ii) the smaller θ and d1, the steady state solution of model (1.4) is more unstable, indicating that the
greater the fear effect, or the smaller the diffusion rate of prey, the less conducive to the stability of
prey(predator) population. Thus, the conclusion of Theorem 3.1 and Remark 3.1 is verified.

Electronic Research Archive Volume 32, Issue 12, 6503–6534.



6529

Figure 10. Spatiotemporal evolution of prey of model (1.4) with different θ and d1. x = 40,
t = 150.

Figure 11. Spatiotemporal evolution of predator of model (1.4) with different θ and d1.
x = 40, t = 150.
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In Figure 12, we give the time evolution of model (1.4) with different θ and d1 at x = 10, which
corresponds to Figures 10 and 11. These indicated that when the solution of model (1.4) tends to the
equilibria or periodic solution, its changing form is calm; but when its changing form undergoes a big
sudden change, it means that Turing instability has occurred.

In Figure 13(a)–(c), the dynamics of the solution of model (1.4) is a smooth oscillatory. In
Figure 13(d), the approximations have evolved into the spatially homogeneous steady states u∗ and v∗.
Then, we have a conclusion that the larger θ can keep the solution of model (1.4) to the stationary
distribution, while a small θ can make the solution tend to the smooth oscillatory, that is, the smaller
the fear effect, the more stable the prey (predator) population will be.

Figure 12. Time evolution diagram of model (1.4) with different θ and d1 at x = 10. Red line
represents prey population and green line represents predator population.
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Figure 13. Numerical simulation on the dynamics of the solution of model (1.4) with
different θ. d1 = 0.001. x = 80, t = 40. (a): θ = 4, (b): θ = 5, (c): θ = 6, (d): θ = 10.

5. Conclusions

In this paper, a predator-prey model with B-D functional response for prey and a modified L-G
functional response for predator are established to explore how fear and diffusion affect the
spatiotemporal dynamics of the model. For the nonspatial model (1.3):

(1) The model exhibits rich dynamic properties. In terms of the existence of equilibrium points, the
model has three boundary equilibria and at most three different positive equilibria (see Theorem 2.1 or
Table 2).

(2) Discussing the local stability of the positive equilibria (see Theorems 2.2 and 2.3) and the global
stability of E∗ (see Theorem 2.4), which shows that under the assumption of qb12 > 1, when χ > χ∗,
E∗ is stable; when χ < χ∗, E∗ is unstable; when χ = χ∗, the Hopf bifurcation will occur.

(3) Exploring the impact of fear on Hopf bifurcation. Fear determines the direction and stability of
periodic solutions bifurcated from Hopf bifurcation that are investigated (see Theorem 2.5). The lower
cost of fear facilitates the occurrence of Hopf bifurcation, leading to the emergence of limit cycles (see
Figures 4–7).

(4) Our results indicate that fear can enrich and destroy the dynamic properties of the model.
For the spatial model (1.4):
(1) The diffusion of populations led to the occurrence of Turing patterns. When the ratio of the

diffusion rate of prey to the diffusion rate of predator exceeds a certain critical value, Turing instability
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occurs (see Theorem 3.1 and Figure 3), which favors the formation of biodiversity.
(2) Discussing the stability and direction of spatially homogeneous and inhomogeneous periodic

solutions (see Theorems 3.4 and 3.5), which are mainly influenced by the decisive effects of fear and
diffusion (see Figures 10–13).

(3) Our results reveal that the larger fear and lower diffusion rate of prey both can destroy the
stability of populations and further promote the emergence of periodic solutions, but to a certain extent,
and it is advantageous to improve the survival of the species and the formation of biodiversity.

(4) Our results enrich and develop the dynamics of predator-prey models with diffusion and different
functional responses, such as the Holling II term [5, 12, 24], L-G term [27], and B-D term [13, 22].

In the future, we will continue to study the effects of fear and diffusion on the three population
model, food web model, partial differential population models with cross diffusion, prey-taxis, and
spatial memory. In addition, it can also study the influence of external environmental noise, impulsive,
and delay on population dynamics.
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