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Abstract: Patients with congenital analgesia who lack the ability to sense temperature generally face 

low survival rates, highlighting a critical need to understand the underlying mechanisms of heat 

sensation. While previous research has focused on modeling neural responses to stimuli, the specific 

mechanisms by which heat-sensitive neurons respond to external temperature changes remain unclear. 

This gap in knowledge is particularly relevant, as identifying how these neurons react to diverse 

stimuli can provide insight into sensory deficits linked to congenital analgesia. In this study, we 

developed a model of heat-sensitive neurons based on the FitzHugh-Nagumo (FHN) neural circuit to 

investigate neuronal response patterns to external heat stimuli. Two distinct stimulus patterns, each 

combined with Gaussian white noise, were applied to the model to induce varied firing modes. By 

calculating the Hamilton energy for each firing mode, we quantified the impact of each external 

stimulus on neuronal activity. A correlation function was further defined to explore how different 

stimuli influence the selection of firing modes. Simulation results demonstrate that heat-sensitive 

neurons show a preferential response to stimuli that induce spike discharge over stimuli that induce r-

clonic patterns, as seen in changes to the periodic attractor contours. When exposed to Chua’s circuit 

stimulus, chaotic emission patterns reveal significant shifts in attractor contour, indicating a strong 

response to spike, r-clonic, and periodic stimuli. These findings suggest that external stimuli capable 

of inducing spike-and-wave or r-clonic patterns are sensitively detected by thermosensitive neurons, 

leading to heightened Hamilton energy release and increased regularity in neural activity. This study 

enhances our understanding of thermosensitive neuronal dynamics under complex stimuli, shedding 

light on potential response mechanisms relevant to sensory dysfunction in congenital analgesia and 

advancing the broader field of neural response modeling. 
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1. Introduction 

The human brain is the most advanced and complex organ known in the world. Highly 

advanced and organized, the human brain is undoubtedly an excellent computer and signal processor 

composed of neurons with different functions. Different regions correspond to different specific 

functions, and neurons primarily contribute to these functions [1−4]. For example, auditory neurons 

are responsible for transmitting sound signals to the brain for processing and interpretation, and the 

auditory nerve is very sensitive to the frequency, intensity, and direction of sound, allowing us to 

perceive the source and distance of sound [5−7]. Olfactory neurons are responsible for transmitting 

odor information and can distinguish different odors by comparing and analyzing different olfactory 

signals [8−10]. Visual neurons can distinguish different shapes and sizes of objects under certain 

circumstances [11−13]. Skin and temperature-sensitive neurons can effectively sense changes in 

temperature [14−16]. These functional neurons not only operate independently but also interact with 

one another to form complex neural networks. This interconnectedness allows for enhanced 

processing capabilities and the emergence of intricate behaviors, which are essential for 

understanding the dynamics of neural circuits. The study of neural networks, constructed from these 

functional neurons, reveals how individual neuron properties contribute to the overall dynamics of 

the system. Understanding the interactions among these neurons is critical for elucidating the 

mechanisms underlying their collective behavior. Yamakou et al. [17] designed scale-free FHN 

neural networks through mixed coupled slow recovery variables and studied the stochastic resonance 

phenomenon of the networks. Murza et al. [18] analyzed the dynamic oscillator of an electrically 

coupled modified FHN network. Yu et al. [19] analyzed the effects of bounded noise and delay on 

subthreshold signal transmission in FHN neural networks. Jiang et al. [20] reported the chimera state 

of non-local attractively repulsive coupling in FHN neural networks. In bipartite neural networks of 

the FHN model, in which nodes interact with one another only when they are in separate layers, Wu 

et al. [21] examined chimera states. The bipartite networks discovered rich chimera behaviors and 

multistability. In the study by Yang et al. [22], the basic FHN neural circuit was enhanced by 

simultaneously integrating a thermistor and a phototube into distinct branches of the circuit. This 

modification renders the neuron sensitive to both light and temperature. The references mentioned 

above can provide some direction for this study of the FHN neuron model. In order to understand in 

detail the propagation and interaction of electrical signals within and between neurons, it is necessary 

to simplify the model setup of individual neurons.  

In this paper, a highly simplified dynamic model with appropriate parameters can be used to 

describe the main characteristics of neural firing behavior by applying appropriate external stimuli 

and adding a Gaussian white noise. To simulate the FHN neuron model, we have taken into account a 

basic circuit that is powered by an external voltage source or a photocell that has been activated. For 

a biological neuron, its internal field energy is represented by changes in action potential and 

membrane potential. The main biophysical properties of biological neurons can be reproduced by 

functional biophysical neural circuits, and their internal energy can be described by equivalent 

Hamilton energy function [23−25]. The Hamilton energy balance based on Helmholtz’s theorem by 

Leutcho in [26] explains the dependence of the initial conditions on the macrostability mechanism 

and shows how the isosurface with constant Hamilton energy is strongly dependent on the state 

variable. In the presence of noise interference [27,28], most neurons can be tamed in the form of 

external periodic currents to form regular discharge patterns and high neural activity regularity [29]. 

In the absence of periodic stimulation, a certain intensity of noise can also effectively induce 

nonlinear resonance [30−32]. In addition, similar coherent resonances and regular spatial patterns 
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can be formed when noise is applied to a network of neurons [33,34]. However, little research has 

been designed to investigate the effect of AWGN white Gaussian noise added to the original stimuli 

on different firing patterns of heat-sensitive neurons. A neural circuit using a thermistor and 

phototube adjusts neuron excitability in response to temperature and light, effectively simulating 

various firing patterns. Through bifurcation analysis, this model offers insights into neuron dynamics 

and potential sensor applications [35,36]. 

When a single stimulus from a single channel acts on a neuron, most neurons can be activated, 

showing different firing patterns. When neurons are stimulated by multiple channels at the same time, 

their mode selection becomes complex and variable. For example, when two different external 

stimuli are applied to an isolated neuron, which external stimulus will predominantly determine the 

firing pattern? The isolated neuron will respond preferentially to which external stimulus? 

Discovering and studying this mechanism is interesting. Taking it a step further, it is even more 

meaningful to discover the underlying biophysical mechanisms of information encoding and 

processing in these biophysical neurons. For example, by studying the response kinetics and 

excitability of Moris-Lecar neurons to two kinds of temperature-sensitive ion channels, calcium ion 

channel and leakage current, the co-dimensional bifurcation and frequency response curves under 

different temperatures show that the excitability of neurons varies from grade II to grade I with the 

increase of temperature under temperature-sensitive conditions [37].  

The first motivation for this research was to build a heat-sensitive neuron model based on the 

simple FHN neural circuit. Our model is designed to simulate the behavior of heat-sensitive neurons 

by incorporating both chaotic stimuli and noise, allowing for the analysis of adaptive neuronal 

responses. The advantage of this model lies in its ability to reproduce complex firing behaviors in 

response to multiple stimuli, particularly the ability to switch between different firing patterns based 

on external inputs. The self-adaptive property is reflected in the neuron’s ability to filter and select 

specific stimuli frequencies, a process akin to synaptic plasticity and wave filtering. We will 

elaborate further on this mechanism, supported by recent studies such as Ma et al. and Xu et al., 

which discuss that any activation of biophysical function and self-adaption of biological neurons may 

be dependent on energy flow, and synapse connection is controlled to reach energy balance between 

neurons [38,39]. The second motivation for this research was to investigate the effect of AWGN 

white Gaussian noise added to the original stimuli on different firing patterns of heat-sensitive 

neurons. Gammaitoni et al. supported this claim by explaining that it manifests in nonlinear systems, 

where generally weak input signals can be amplified and optimized with the assistance of noise [40]. 

In this paper, we attempted to explore the potential response mechanism of heat-sensitive neurons 

when two different external stimuli, both supplemented with Gaussian white noise, stimulate the 

FHN neural circuit. From a physical perspective, any type of external stimulus to a nonlinear circuit 

is simply the injection of a certain amount of energy, some of which is absorbed and propagated to 

more electronic components. The interference of multi-channel synchronous input will cause some 

conflicts in the nonlinear response, and the nonlinear system will show different emission modes 

under the guidance of energy flow. By calculating the field energy in the neural circuit and equivalent 

Hamilton energy in functional neurons [41], it is confirmed that neurons tend to respond to any 

external stimulus only when stimulated, showing higher Hamilton energy and certain regularity. That 

is to say, neurons are more responsive to external stimuli with higher energy, and neural activity can 

be regularly induced by particular stimuli, so as to effectively capture the energy injected by the 

outside world. However, neurons and neural circuits must meet particular energy absorption 

standards, which can greatly enhance nonlinear resonance, and obtain higher Hamilton energy 

through appropriate discharge modes; also, they must remain silent to some external stimuli of lower 
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energy and maintain robustness to some incentives that destroy regularity. In order to clearly explain 

the principle of this phenomenon, we employed two distinct external stimulus types, which added 

Gaussian white noise to identify the priority of pattern selection in neural activity, and calculated the 

Hamilton energy under different discharge modes. 

The key contributions of this research are two-fold: first, the final emission mode is mainly 

controlled by a stimulus that activates a higher Hamilton energy within the neuron. Second, the 

addition of periodic excitation modes helps to excite nonlinear resonances, and new periodic 

excitation modes can be generated even at lower Hamilton energies. The structure of this article is as 

follows: a detailed description of the model and stimulus is given in Section 2, the process of 

numerical simulation is introduced in Section 3, and conclusions are drawn in Section 4. 

2. Description of model and method 

2.1. Description of improved FHN neural circuit 

By adding thermistors to different branches of a simple FHN neural circuit, a temperature-

thermistor neural circuit is constructed, with its schematic diagram shown in Figure 1. The modified 

neural circuit consists of a nonlinear resistor NR, an induction coil L, a thermistor RT, an external 

constant voltage source E, a capacitor C, a photocell, and a linear resistor RS. When signal S1 (W1) 

and white Gaussian noise stimulate neurons, firing mode 1 (x1) is triggered; firing mode 2 (x2) is 

triggered when the neurons are stimulated with signal S2 (W2) and white Gaussian noise; and firing 

mode 3 (x3) is generated by stimulating the piezoelectric neurons with signal S1 and signal S2 (W1 + 

W2) and Gaussian white noise. 

 

Figure 1. Schematic diagram for neural circuit. The thermistor, C, L, RT, E, NR, and AC 

represent the capacitor, induction coil, thermistor, constant voltage source, nonlinear 

resistance, and AC current, respectively. 
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2.2. Description of the neural principle 

 

Figure 2. Schematic diagram of the response mechanism of heat-sensitive neurons under 

combined noise stimulation. The neural principle depicted here involves the neuron’s 

ability to process and respond to external stimuli (S1 or S2) and noise inputs, resulting in 

distinct firing patterns. The combination of temperature control (Proper T), stimuli, and 

noise leads to specific neural responses, illustrating how heat-sensitive neurons integrate 

multiple signals to generate coordinated activity. 

2.3. Derivation of related formulas 

 

Figure 3. Chaotic sequence and attractor of Chua’s circuit. (a) β = 19.5; (b) β = 19.9; (c) 

β = 14; (d) β = 19.7. Parameters are fixed to α = 8, γ = 0, m0 = −1.664, m1 = −0.598, 

initial value for (x', y', z') = (0.1,0.1,1). 
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In accordance with Kirchhoff’s current law and Kirchhoff’s voltage law, the circuit equation of 

the neural circuit drawn in Figure 1 is composed of 

S L NR

L
T L

dV
C i i i

dt

di
L V E R i

dt


= − −


 = + −


,                                                                      (1) 

where V represents the voltage of the capacitor C and is the current through the inductor L. The 

current through the nonlinear resistance iNR can be estimated as 
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when the linear resistor RS in series with the photocell is selected with high resistance, the phototube 

behaves as a voltage source, and its current can be estimated by 
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where Vp represents the output voltages of the photocell; the resistance of a negative temperature 

coefficient thermistor can be determined by 
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In the above equation, q is the activation energy, T is the temperature, K is the Boltzmann 

constant, and R∞ is the maximum resistance at T→∞. The physical parameters and variables are 
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The dynamics of thermal neurons powered by photocurrent are calculated by changing the circuit 

equation to an analogous form 

21
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where the variables x and y represent the film potential and recovery variables, respectively, at slow 

currents. The firing pattern of biophysical neurons can be altered by parameters a, b(T  ), c, ξ and 

external physical stimuli that we select in the form of cycles  

cos( );Su B w= ,                                                                     (7) 

In the above formula, B and w represent amplitude and angular frequency, respectively. The 

dimensionless Hamilton energy HZ can take the place of the field energy present in an electrical 
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component 
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As shown in (8), this neuron’s Hamilton energy is determined by the intrinsic parameter c and 

two variables (x, y). Therefore, any change in the firing patterns and parameters of neurons can have 

a noticeable effect on the Hamilton energy of isolated neurons. In this paper, we will discuss 

switching external stimuli to detect mode shifts in electrical activity and the dependence of different 

modes on Hamilton energy. 

Additionally, the chaotic sequence of Chua’s circuit (Figure 3) is used as a chaotic sound wave, 

and the dynamics of Chua’s system can be represented by (9), with x', y', and z' standing for the 

variables representing the voltage of the two capacitors and the induced current on the induction coil . 

α, β, γ are normalized parameters that describe the capacitance, inductance, and resistance in a circuit. 
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Where m0 and m1 are normalized parameters for the conductance in the curve i-v for Chua’s diode. 

The nonlinear function f (x') describes the dimensionless current across the nonlinear resistor (diode) 

of Chua’s circuit. By setting appropriate parameters, Chua’s system can present chaotic state and 

periodic state, and then the first variable x' will be used as a realistic signal source for checking the 

sensitivity of the neural circuit.  

Additional Gaussian white noise is described by formula (11): 

( , , )y awgn x snr sigpower= .                                                      (11) 

The AWGN white Gaussian noise is added to the vector signal x. The scalar SNR specifies the 

ratio of signal to noise in dB at each sampling point. If x is complex, AWGN will add complex noise. 

This syntax assumes that the energy of x is 0 dBW. The initial value of signal power is fixed at 10 

dBW and the SNR is 20 dBW [42]. 

A statistical correlation function, where the symbol <*> denotes the average calculation of the 

variable over time over a specific transient duration, is constructed in order to identify the influence of 

various external stimuli on neural mode selection and firing mode. Additionally, the correlation 

function in (11) is normalized to calculate the pattern selection’s dependence on external stimuli [43]. 
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When r1(x1, x3) is greater than r2(x2, x3), it shows that the firing mode will be more similar to the 

r1 sampling time series, and the firing mode is mainly determined by the external stimulus W1  and 

noise. Otherwise, when the two external stimuli (W1+W2) and noise are applied simultaneously, the 

external W2 will completely control the firing mode and the firing mode r2. 
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3. Numerical simulation and discussion 

3.1. Same amplitude and different frequency 

Calculations are made in the MATLAB environment in our simulation. The classical fourth-order 

Runge–Kutta method is used to solve, and the integration step is chosen to be 1 ms, the initial values 

for the two variables are (0.2, 0.1), and the transient period for the calculation is around 4000 time 

units. The excitability can be managed by external forcing current and, thereby, the firing mode in 

membrane potential is regulated fully. A discrete mode transition from a quiescent state, simple 

oscillation, peaking, r-clonic, to a chaotic state can be induced by carefully controlling the amplitude 

and frequency of the external stimuli. Furthermore, it is possible to choose the right parameters to 

activate the chaotic attractor in Chua’s circuit; the outcomes are displayed in Figure 3 [44,45]. 

 

Figure 4. Evolution of the membrane potential firing patterns (a) neuron membrane 

potential and (b) Hamilton energy of isolated neuron. In S0 stage, static state without 

external stimuli. In S1 stage, periodic W1 is applied with w1 = 0.11, and peak mode is 

triggered. In S2 stage, periodic W2 is applied with w2 = 0.19, and r-clonic mode is 

triggered. In S3 stage, periodic W1 and W2 are applied with w1 = 0.11 and w2 = 0.65. The 

parameters are fixed as a = 0.7, b = 0.8, c = 0.1, ξ = 0.175, B1 = B2 = 0.48, T   = 2.1, 

SNR = 20, and the initial value is (0.2,0.1).  
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First, with the same amplitude (B1 = B2 = 0.48), we assigned two external stimuli while 

applying Gaussian white noise of the same intensity. In the S0 stage, the neuronal membrane 

potential reached a static state within 0–500 time units without external stimulation. In stage S1, the 

spiking discharge state was triggered by W1 and Gaussian white noise in 500–1500 time units. In 

THE S2 stage, the W1 and Gaussian white noise stimuli are removed, and the W2 and Gaussian 

white noise stimuli are used to generate r-clonic discharge patterns in 1500–2500 time units [46]. In 

stage S3, W1 and W2 combined with white Gaussian noise stimulus simultaneously trigger a hybrid 

emission mode close to both in 2500–3500 time units. Then, the W1, W2, and Gaussian white noise are 

removed, the static state is maintained within 3500 ~ 4000 time units, and the correlation function is 

computed. Figure 4 plots the emission mode change process and the evolution of Hamilton energy at 

each stage when the external stimulus switches over time. As depicted in Figure 4, when periodic 

stimulation of W1 and W2 is combined with Gaussian white noise and applied simultaneously to the 

neurons, the periodic discharge state is suppressed. The resulting discharge mode tends to be a mixed 

mode of W1 and W2, with a tendency to align more closely to the peak discharge mode. This 

periodic behavior can be confirmed through the formation of attractors and analysis of the power 

spectrum. Periodic firing coexists with spiking, and the Hamilton energy further increases compared 

with that in the S1 stage. 

 

Figure 5. Evolution of membrane potential firing patterns (a) neuron membrane potential 

and (b) Hamilton energy of isolated neuron. In the S0 stage, static state without external 

stimuli. In the S1 stage, periodic W1 is applied with w1 = 0.11 and peak mode is triggered. 

In S2 stage, chaotic W2 is applied with w2 = 0.65 and chaotic mode is triggered. In S3 

stage, periodic W1 and chaotic W2 are applied with w1 = 0.11 and w2 = 0.65. The 

parameters are fixed as a = 0.7, b = 0.8, c = 0.1, ξ = 0.175, B1 = B2 = 0.48, T   = 2.1, 

SNR = 20, and the initial value is (0.2,0.1). 

The value of the correlation function r1(x1, x3) is 1.3162, and the value of r2(x2, x3) is –0.3162. 

The correlation function r1(x1, x3) is greater than r2(x2, x3), indicating that external stimulus W1 and 

white Gaussian noise play a significant part in regulating the discharge pattern, and the excitation 

from W2 and white Gaussian noise can be suppressed in neurons. Due to this, neurons tend to 

respond quickly to external stimuli W1 and Gaussian white noise. It is worthwhile to mention the 

situation in which two external stimuli can induce a chaotic state and a periodic spiking state, whose 
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outcomes are displayed in Figure 5. The Hamilton energy of neurons varies greatly when they 

change from the spiking state to the chaotic state, with much higher Hamilton energy in the spiking 

state. When W1, W2, and Gaussian white noise are applied simultaneously, the neurons show a 

combination of chaotic state and spiking firing mode and a higher Hamilton energy. This is 

somewhat different from the result in Figure 4, since the final discharge mode is a combination of 

chaotic state and spiking discharge mode. The occurrence of periodic spiking discharge mode creates 

a certain periodic oscillation profile in the final discharge mode; the correlation function r1(x1, x3) is 

greater than r2(x2, x3), and the outcomes show that the peak discharge mode has a significant impact 

on the chaotic mode with low Hamilton energy, which leads to the sensitivity of neurons to both 

kinds of external stimuli. A large number of studies have demonstrated that periodic attractors with 

multiple orbits are formed under two different types of external stimuli. When the final state of 

electrical activity is not represented by a different discharge, the electrical response of the neuron is 

sensitive to both kinds of external stimulus; otherwise, the neuron tends to respond to the external 

stimulus only when it is effectively stimulated to take on a higher Hamilton energy. 

 

Figure 6. Evolution of membrane potential firing patterns (a) neuron membrane potential 

and (b) Hamilton energy of isolated neuron. In the S0 stage, static state without external 

stimuli. In the S1 stage, periodic W1 is applied with w1 = 0.19 and simple oscillation 

mode is triggered. In the S2 stage, chaotic W2 is applied with w2 = 0.65 and chaotic mode 

is triggered. In the S3 stage, periodic W1 and chaotic W2 are applied with w1 = 0.19 and 

w2 = 0.65. The parameters are fixed as a = 0.7, b = 0.8, c = 0.1, ξ = 0.175, B1 = B2 = 

0.48, T   = 2.1, SNR = 20, and the initial value is (0.2,0.1). 

As shown in Figure 6, the simple oscillation pattern of neuronal activity shows a higher 

Hamilton energy than the chaotic state of neurons driven by a single cycle of stimulation. When the 

two external stimuli and Gaussian white noise activate neurons at the same time, the final firing 

mode shows an oscillation state close to the blasting mode, and the Hamilton energy increases greatly. 

In fact, the introduction of simple oscillatory discharge will enhance the nonlinear oscillation of the 

pulse train and then make the chaotic mode close to the blasting mode. The value of the correlation 

function r1(x1, x3) is −0.2291 and the value of r2(x2, x3) is 1.2291. The correlation function r1(x1, x3) is 

less than r2(x2, x3), indicating that the chaotic state has a great influence on the simple oscillatory 

discharge mode, resulting in neurons being sensitive to both kinds of external stimuli. It is worth 
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noting that the intensity of the Gaussian white noise remains constant regardless of the difference in 

the amplitude and frequency of the two external stimuli, which means that the average Hamilton of 

the various periods and transient periods may differ depending on the two inputs [47]. 

3.2. Different amplitudes and different frequencies 

As depicted in Figure 7, we considered two distinct external stimuli, one that effectively triggers 

the spike discharge pattern and the other that effectively induces the r-clonic pattern. By altering the 

external stimulus, the neural activity changed from the spiking mode to the r-clonic mode, and the 

Hamilton energy increased. The value of the correlation function r1(x1, x3) is 1.3793, and the value of 

r2(x2, x3) is −0.3793. The correlation function r1(x1, x3) is greater than r2(x2, x3), indicating that 

neurons are perceptive of external stimuli and can induce the spiking mode rather than the r-clonic 

mode. Thus, when two periodic stimuli fire neurons by absorbing more energy, the r-clonic mode can 

be suppressed by the r-clonic mode. Therefore, the peak discharge mode is more effective in 

controlling the emission mode. This process can be compared with Figure 4. With the change of 

amplitude, the level of Hamilton energy of the two shows opposite results, indicating that the change 

of amplitude can affect the level of Hamilton energy to a certain extent and neurons are more 

inclined to respond to external stimuli with higher amplitude and present higher Hamilton energy 

when other conditions remain unchanged. 

 

Figure 7. Evolution of membrane potential firing patterns (a) neuron membrane potential 

and (b) Hamilton energy of isolated neuron. In the S0 stage, static state without external 

stimuli. In the S1 stage, periodic W1 is applied with B1 = 0.41, w1 = 0.19, and peak mode 

is triggered. In the S2 stage, periodic W2 is applied with B2 = 0.48, w2 = 0.65, and r-

clonic mode is triggered. In the S3 stage, periodic W1 and W2 are applied with B1 = 0.41, 

w1 = 0.19, and B2 = 0.48, w2 = 0.65. The parameters are fixed as a = 0.7, b = 0.8, c = 0.1, 

ξ = 0.175, T = 2.1, SNR = 20, and the initial value is (0.2,0.1). 

As shown in Figure 8, under the two kinds of periodic stimuli, the S1 stage presents the spiking 

discharge stage, and the S2 stage presents the blasting mode. Moreover, under the strong amplitude 

(B2 > B1), the burst sequence can be suppressed by the spiking discharge mode to a certain extent. 

Because W2 has a higher amplitude and more energy injected into neurons than W1, the Hamilton 
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energy corresponding to W2 is lower than that corresponding to W1. Therefore, the periodic spiking 

discharge state is accompanied by a higher Hamilton energy. Moreover, the value of the correlation 

function r1(x1, x3) is 1.5891, and the value of r2(x2, x3) is −0.5891. The correlation function r1(x1, x3) 

is greater than r2(x2, x3), confirming that neurons are more sensitive to W1. 

 

Figure 8. Evolution of membrane potential firing patterns (a) neuron membrane potential 

and (b) Hamilton energy of isolated neuron. In the S0 stage, static state without external 

stimuli. In the S1 stage, periodic W1 is applied with B1 = 0.41, w1 = 0.11, and peak mode 

is triggered. In the S2 stage, chaotic W2 is applied with B2 = 0.55, w2 = 0.65, and chaotic 

mode is triggered. In the S3 stage, periodic W1 and chaotic W2 are applied with B1 = 

0.41, w1 = 0.11, and B2 = 0.55, w2 = 0.65. The parameters are fixed as a = 0.7, b = 0.8, c 

= 0.1, ξ = 0.175, T   = 2.1, SNR = 20, and the initial value is (0.2,0.1). 

In a similar way, competition between the r-clonic mode and the chaotic state is considered in 

the presence of external stimuli and Gaussian white noise, and the outcomes are shown in Figure 9. 

In the event that both external stimuli are activated, the neurons exhibit r-clonic mode in the S1 stage 

of electrical activity, which is effectively modulated due to the higher amplitude (B2 > B1) of 

neurons with chaotic firing mode. The r-clonic pattern of neurons shows a higher Hamilton energy 

than the chaotic state. The balance between two separate discharge patterns brought on by two 

different stimuli determines the final discharge pattern. The value of the correlation function r1(x1, x3) 

is 0.8130, and the value of r2(x2, x3) is 0.1870. The correlation function r1(x1, x3) is greater than r2(x2, 

x3), which indicates that in the final developed mode, the r-clonic discharge mode contributes more 

than the chaotic discharge mode due to the higher Hamilton energy provided by the r-clonic mode, 

and the neurons tend to respond preferentially to the r-clonic mode. The results of Figure 9 and 

Figure 10 show that neurons are more inclined to respond to stimuli that exhibit continuous 

regularity rather than chaotic or explosive states, and exhibit higher Hamilton energies, thus forming 

different periodic firing patterns. 
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Figure 9. Evolution of membrane potential firing patterns (a) neuron membrane potential 

and (b) Hamilton energy of isolated neuron. In the S0 stage, static state without external 

stimuli. In the S1 stage, periodic W1 is applied with B1 = 0.48, w1 = 0.19, and r-clonic 

mode is triggered. In the S2 stage, chaotic W2 is applied with B2 = 0.55, w2 = 0.65, and 

chaotic mode is triggered. In the S3 stage, periodic W1 and chaotic W2 are applied with 

B1 = 0.48, w1 = 0.19, and B2 = 0.55, w2 = 0.65. The parameters are fixed as a = 0.7, b = 

0.8, c = 0.1, ξ = 0.175, T   = 2.1, SNR = 20, and the initial value is (0.2,0.1). 

 

Figure 10. Evolution of membrane potential firing patterns (a) and Hamilton firing 

patterns in isolated neuron (b). In the S0 stage, static state without external stimuli. In the 

S1 stage, periodic W1 is applied with B = 0.48, w = 0.11, and peak mode is triggered. In 

the S2 stage, chaotic W2 is applied by setting β = 17 in Chua’s circuit and chaotic 

patterns occur. In the S3 stage, periodic W1 and chaotic W2 are applied with B = 0.48, w 

= 0.11, and β = 17. The parameters are fixed as a = 0.7, b = 0.8, c = 0.1, ξ = 0.175, T   = 

2.1, SNR = 20, α = 8, γ = 0, m0 = ‒1.664, m1 = ‒0.598, and the initial values are (0.2,0.1) 

in Eq (12) and (0.01,0.1,1.0) in Eq (9). 
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3.3. Chua’s circuit stimulus 

As shown in Figure 10, the study of mode selection is also interesting when external stimuli 

trigger chaotic and periodic spike discharge patterns. When the external stimulus is forced to change 

from periodic spiking mode to chaotic mode, the Hamilton energy increases greatly. In addition, 

when spiking and chaotic stimuli are applied at the same time, the final firing pattern of neurons 

begins to oscillate irregularly and is accompanied by chaotic patterns. The value of the correlation 

function r1(x1, x3) is 0.9312, and the value of r2(x2, x3) is 0.0688. The correlation function r1(x1, x3) is 

greater than r2(x2, x3), indicating that neurons are more inclined to react to the burst mode induced by 

the spiking discharge mode stimulus than the chaotic discharge mode induced by the chaotic stimulus. 

A large number of numerical findings confirm the emergence and growth of chaotic attractors. The 

combination of chaotic activity and peak discharge activity causes Hamilton energy to fall 

dramatically, as can also be seen from the S3 stage. The Hamilton energy of the S2 stage is much 

larger than that of the S1 stage, indicating that the energy change caused by Chua’s circuit stimulation 

is larger. 

 

Figure 11. Evolution of membrane potential firing patterns (a) and Hamilton firing 

patterns in isolated neuron (b). In the S0 stage, static state without external stimuli. In the 

S1 stage, periodic W1 is applied with B = 0.48, w = 0.19, and r-clonic mode is triggered. 

In the S2 stage, chaotic W2 is applied by setting β = 17 in Chua’s circuit and chaotic 

patterns occur. In the S3 stage, periodic W1 and chaotic W2 are applied with B = 0.48, w 

= 0.19, and β = 17. The parameters are fixed as a = 0.7, b = 0.8, c = 0.1, ξ = 0.175, T   = 

2.1, SNR = 20, α = 8, γ = 0, m0 = ‒1.664, m1 = ‒0.598, and the initial values are (0.2,0.1) 

in Eq (12) and (0.01,0.1,1.0) in Eq (9). 

As shown in Figure 11, when periodic and chaotic stimuli are used to trigger both the r-clonic 

pattern and chaotic neural activity, the resulting discharge pattern is dominated by an oscillatory state 

accompanying the chaotic pattern. The value of the correlation function r1(x1, x3) is 1.2850, and the 

value of r2(x2, x3) is −0.2850. The correlation function r1(x1, x3) is greater than r2(x2, x3), indicating 

that r-clonic mode mostly regulated mode choice, so neurons are more sensitive to periodic 
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stimulation than chaotic stimulation. Numerous numerical studies have also confirmed the 

emergence of dense orbital chaotic attractors in the S3 stage. The attractors of the S3 stage of 

development show chaotic and dense orbits. 

In conclusion, an external drive can regulate the firing pattern of a single heat-sensitive neuron. 

A proper firing pattern can be created for any generic and functional neuron because its excitability 

and intrinsic energy pumping are also regulated. In other words, a neuron can only fire in a single 

pattern in response to a single channel of input, and when two distinct external stimuli are supplied at 

the same time, the final firing pattern becomes competitive. In the case of multi-channel stimulation, 

the competition between the two isolated discharge states as well as the injection and absorption of 

energy all affect the final discharge pattern of electrical activity. While inducing lower Hamilton 

energies, the periodic stimuli can significantly increase the occurrence of nonlinear resonance. When 

the periodic discharge mode of peak discharge and r-clonic discharge is induced, the participation of 

the periodic discharge mode helps to increase the sensitivity to the external signal. The chaotic 

excitation is increased, and the chaotic attractor's contour is altered when the chaotic discharge mode 

is activated. When the spiking emission mode interacts with the chaotic mode, the final discharge 

mode is more inclined to oscillate irregularly and is accompanied by the chaotic mode, because the 

spiking mode releases higher Hamilton energy than the chaotic mode, and the developed attractors 

tend to exhibit periodic orbits. In summary, neurons are more likely to react to stimuli that have 

higher amplitudes and energies, as well as those that cause more resonance and regularity in neuronal 

activity. 

4. Conclusions 

The main goal of the present study was to discuss which external stimulus can be rapidly 

received in neurons driven by two separate stimuli and white Gaussian noise, and then to analyze the 

potential response mechanism of the electrical activity of heat-sensitive neurons. Three main 

contributions can be drawn from the research: 

(1) When neurons are excited, the firing pattern is related to the level of Hamilton energy. For 

example, the Hamilton energy of the peak mode is higher than that of the r-clonic mode and the 

chaotic mode. Physically speaking, any external stimulus has the ability to inject energy, some of 

which is absorbed by neurons. We have defined a correlation function to estimate the primary effect 

and contribution of each external stimulus and its corresponding pattern. Appropriate excitation in 

the peak mode can suppress r-clonic as well as chaotic mode, the final emission mode usually 

remains close to the mixed emission mode profile, and periodic attractors can be developed.  

(2) The participation of periodic emission modes tends to cause significant emission mode 

changes and certain regularity, while other emission modes are suppressed due to possible nonlinear 

resonances. This means that external stimuli that produce periodic discharge patterns are more easily 

sensed and responded to. 

(3) The main excited states and attractors show periodic and chaotic characteristics when peak 

mode interacts with r-clonic and chaotic modes. When a chaotic stimulus is applied, the chaotic 

discharge patterns remain active, and the profile of attractors can be changed due to the interaction 

with pulses, spike patterns, or even periodic discharge states that can provide a certain amount of 

energy to the neuron. However, variations in the chaotic attractor profile mean that interactions 

between chaotic modes, spikes, r-clonic, and periodic states can be efficiently detected, as chaotic 

states typically exhibit lower Hamilton energies than other emission modes. However, the Hamilton 

energy of Chua’s circuit is often higher than that of the peak mode and r-clonic mode. These findings 
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imply that energy flow controls competition between various discharge patterns, which ultimately 

results in regularity of neuronal activity, and that energy input from external stimuli is essential. This 

implies that controlling energy input may be another effective method for regulating neural activity. 
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