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Abstract: Unsupervised domain adaptation (UDA) aims to transfer the knowledge from labeled
source domain to unlabeled target domain. The main challenge of UDA stems from the domain shift
between the source and target domains. Currently, in the discrete classification problems, most exist-
ing UDA methods usually adopt the distribution alignment strategy while enforcing unstable instances
to pass through the low-density areas. However, the scenario of ordinal regression (OR) is rarely re-
searched in UDA, and the traditional UDA methods cannot preferably handle OR since they do not
preserve the order relationships in data labels, like in human age estimation. To address this issue,
we proposed a structure-oriented adaptation strategy, namely, structure preserved ordinal unsupervised
domain adaptation (SPODA). More specifically, on one hand, the global structure information was
modeled and embedded into an auto-encoder framework via a low-rank transferred structure matrix.
On the other hand, the local structure information was preserved through a weighted pair-wise strategy
in the latent space. Guided by both the local and global structure information, a well-performance la-
tent space was generated, whose geometric structure was adopted to further obtain a more discriminant
ordinal regressor. To further enhance its generalization, a counterpart of SPODA with deep architecture
was developed. Finally, extensive experiments indicated that in addressing the OR problem, SPODA
was more effective and advanced than existing related domain adaptation methods.
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1. Introduction

Nowadays, in-depth research on neural networks has promoted the rapid development of machine
learning, such as convolutional neural networks (CNN) for computer vision [1–3], recurrent neural
networks (RNN) for natural language processing [4–6], and graph neural networks (GNN) for recom-
mendation systems [7–9]. Although the above methods have received success in various tasks, a strong
hypothesis should be guaranteed, i.e., the training and test data must comply with the independent and
identically distribution. However, the hypothesis is too strict and even impracticable for real-world
applications. For instance, a human facial age predictor, trained on training images with ideal lighting,
tends to make mistakes when deployed on wild environments [10]. The reason is that facial appearance
and recognizability are highly susceptible to environmental factors, such as scene illumination. This
phenomenon induces a robust model to be constructed for out-of-distribution data to handle the issue
of distribution shift.

(a) Amazon (b) AgeDB

Figure 1. Visualization of the latent representation space of the Amazon dataset and the
AgeDB dataset. The representations of the former are extracted from DeCaf architecture
with Cross-Entropy loss, while the representations of the latter are extracted from ResNet-50
architecture with ordinal margin loss, namely, ODFL [11]. To visualize more clearly, on the
AgeDB dataset, each neighboring five ages are set as one class, and each age contains about
40 facial instances. The circles with different colors represent different classes.

Over the past decades, domain adaptation community has emerged and became more and more
active. The aim of unsupervised domain adaptation (UDA) is to transfer the knowledge from the
labeled data to the unlabeled data [1, 12, 13]. In this field, the labeled data sampled from a certain
distribution is named source domain, and the unlabeled data sampled from another distribution is
distinguished as target domain. As a result, the main challenge of UDA stems from the domain shift
between the source and target domains.

To quantitatively measure the difference between two domains, the H-divergence [14, 15] is intro-
duced to derive the generalization bounds based on the Vapnik-Charvonenkis (VC) dimension [16].
Along this line, the UDA has theoretical guarantee and a variety of valid methods have been succes-
sively derived, which follows two major methodologies, i.e., feature matching and instance reweigh-
ing. Specifically, the feature matching aims to seek a latent representation space in which either the
marginal distributions [17], the conditional distributions [18], or both of them [19, 20] across the do-
mains are aligned. For the instance reweighing methodology, it mainly assumes that the target domain
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sample space can be constructed by the reweighed source samples [21]. Hence, its goal is to estimate
the weights of the source domain data similar to the target domain [22, 23]. To further enhance the
discrimination performance of UDA, in recent years, entropy regularization [24] has been introduced
into UDA [25, 26] and other DA settings, such as source-free UDA [27,28], open-set UDA [29,30],
universal UDA [31, 32] and so on. The reason is that the entropy regularization can enforce those un-
stable instances across the domains to pass the low-density area, enlarging the interclass margins and
consequently improving the discrimination.

The aforementioned methods focus on handling the discrete classification problems, and unfortu-
nately cannot better handle the continuous regression problems since they do not preserve the “order-
ness” characteristics of the distributed ordinal data in labels. Figure 1 demonstrates this phenomenon
visually on the Amazon dataset [33] and Morph Album II dataset [34]. Herein, the former denotes the
discrete case, while the latter denotes the continuous case. Beyond the expectation, surprisingly, the
performance of the regression case is poor despite more training data with deeper architecture being
adopted. We can observe that compared with the clearly separated data clusters in the classification
task on Amazon, there is no clear data class boundaries but continuous manifold in the ordinal re-
gression task on AgeDB. Therefore, intuitively, such strategies that enforce unstable instances across
the low-density area or enlarge the margin in the target domain, like large-margin learning or en-
tropy regularization, are no longer applicable for the ordinal UDA scenario. To perform ordinal DA,
the class-related latent factors are modeled through recursive conditional Gaussian (RCG) to capture
sequential structures. Moreover, the separation of class-related and class-unrelated factors and self-
training conducted on a shared ordinal latent space are introduced to realize the alignment of source
and target domains [35,36]. Although the above methods have achieved good adaptation performance,
the global and local structural information has not been well preserved, which may lead to suboptimal
decision boundary.

In the ordinal regression scenarios, the data instances like human facial images are typically dis-
tributed within a low-dimensional manifold space [37], as illustrated in Figure 1(b). Given that the
domains share the same task in ordinal UDA, their underlying manifold structures should be similar.
In addition, target instances from the same class tend to exhibit higher affinity than those from differ-
ent classes. Motivated by these observations, we investigate a structure-oriented adaptation strategy,
coined as structure preserved ordinal unsupervised domain adaptation (SPODA). More specifically,
inspired by the self-representation learning in spatial clustering [38], the global structure information
is embedded into an auto-encoder framework by a transferred structure matrix in SPODA. In this way,
the cross-domain structure knowledge is captured through the structure matrix. Meanwhile, the style
transformation can be represented to further guide a more well-performance latent space through the
autoencoder framework. In addition, not only intra-domain but also inter-domain local structure infor-
mation can be explored and exploited simultaneously. Besides, the above local information can also
assist in the reconstruction of input space. As a result, a common latent space is consequently gen-
erated and guided by both the local and global structures, which will be beneficial in improving the
generalization of the ordinal UDA regressor to learn. Further, in the generated latent space, a more
discriminative regressor guided by the geometric structure automatically [39] is designed to generate
pseudo labels in the target domain. Then, with the confident pseudo label annotation, the previous
steps in SPODA are updated in turn until the whole procedure converges, and, consequently, the ordi-
nal UDA can be fulfilled. To sum up, the main contributions of this article are highlighted as follows:
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1. A novel kind of SPODA is proposed by exploiting both the local and global structure information
from the source and target domains, in which the global structure knowledge is captured by low-
rank learning while the intra/inter-domain local structure information is preserved by manifold
learning in designed latent space.

2. SPODA adopts an autoencoder reconstruction idea and a novel regularization term to obtain
domain-consistent feature representations and protect cross-domain intra-class structural infor-
mation in the hidden space. Moreover, the MLG-LSC model and cumulative attribute coding are
introduced to derive more discriminative regression boundaries.

3. An alternating optimization algorithm is derived to efficiently solve the SPODA model. Besides,
SPODA is extended with deep neural network architecture to further boost its generalization
performance.

4. Extensive experiments on different benchmark datasets are conducted to evaluate the effectiveness
of the SPODA method.

The remainder of this article is organized as follows. In Section 2, the existing UDA methods
are reviewed briefly. In Section 3, our proposed method, SPODA, and the optimization algorithm
are presented in detail. In Section 4, comprehensive experiments are reported and the corresponding
results are analyzed. Finally, in Section 6, conclusions are drawn.

2. Related work

In this section, we review the related domain adaptation methods briefly, which can be classified
into two taxonomies: domain adaptation classification and DA regression.

2.1. DA classification

In terms of DA classification, Ben-David et al. [14] proposed a generalization bound based on H-
divergence [15] to theoretically guarantee the feasibility of the learning paradigm. Inspired by this
theorem, a variety of methods have been developed, which can be classified into two categories, i.e.,
feature matching and instance reweighing. For feature matching, the maximum mean discrepancy
(MMD) [17] and adversarial model [40] are widely adopted strategies. Along this line, TCA [17]
alleviates the marginal distribution between the source and target domains via the MMD metric. More-
over, both the JDA [20] and BDA [19] leverage the marginal and conditional distributions using the
pseudo label strategy. Subsequently, BDA is further introduced into heterogeneous domain adaptation
scenarios, which is named DDA [41]. To reduce the computational complexity of kernel function in
MMD, the CMD measures [42] with lower moments alignment has been proposed. Further, instead
of central mean alignment, CORAL [43] matches the cross-domain covariance, i.e, the second-order
moment. In addition, the MMD is incorporated with multilayer representation learning in DAN [44] to
yield unbiased deep features. Moreover, to improve the discriminability in DA procedure, the margin
dragging strategy is employed in JDDA [45]. Following the methodology of the generative adver-
sarial network (GAN) [46], the DANN model [40] is built with the gradient reversal layer to obtain
better domain invariant representations. The discriminative modeling, untied weight sharing, and ad-
versarial learning are integrated together in ADDA [47] to perform more powerful DA. Furthermore,
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in DADA [48], the domains are aligned in terms of their joint distributions through a decoupling cat-
egory and entropy regularization. Moreover, a novel bi-classifier adversarial paradigm [49, 50] by
maximizing classifier discrepancy is introduced to realize cross-domain knowledge transfer. Recently,
to enhance the discrimination and confidence of the output predictions, entropy regularization [25,27]
is employed to handle domain adaptation [29,32,51]. Along the direction of instance reweighing, the
nonparametric feature learning [52] is proposed to perform DA. Moreover, in SPL [53], the progressive
sample selection strategy is adopted to weigh the adjacent pair-wise instances between the source and
target domains. Besides, the block-wise generative transfer methodologies are also employed to select
similar source data for taregt adaptation [23,54]. Further, the manifold regularization is placed on the
weighted data samples to preserve their structure in the process of DA [12]. Impressed by the success
of MoCo [55] and SimCLR [56], some works [57–59] attempt to introduce the contrastive learning into
DA. For example, CDCL [57] generates the target pseudo-labels based on the prototype-initialized K-
Means clustering and realizes the cross-domain contrastive learning by attracting samples from the
same category in two domains. Furthermore, EIDCo [59] explores the limitations of directly transfer-
ring the instance discrimination contrastive loss to DA, and introduces the class relationship embedded
features and target-dominant mixup to overcome the above restrictions. In recent works, Wang et al. [2]
introduced a new property termed equity to reveal the effectiveness of nuclear norm maximization in
UDA. In addition, two novel loss functions that incorporate equity constraints into the squares loss are
designed to encourage predictive discriminability and equity. Furthermore, CDSA [3] generates more
diverse augmented data through the proposed CrossSmooth technique, and CrossVariance is developed
to enable each domain to capture the styles of multiple domains.

For structure preserved UDA methods, Liu et al. [60] implemented multisource UDA tasks by mix-
ing data from the source and target domains for clustering and simultaneously exploring the structure
of both domains. On this basis, SP-UDA [61] redefines the domain adaptation problem as a semi-
supervised clustering problem, which guides the learning of the target domain structure by preserving
the inherent structure of the source domain. Specially, an augmented matrix and a nontrivial solution
are developed to transform the UDA problem into a K-means optimization problem. Further, SPTR
[62] preserves local semantic structure during the knowledge transfer by enforcing structural consis-
tency in the feature space and label space of the source and target domains. Besides, a novel sample
reweighing strategy is introduced to reduce the harm of inaccurate pseudo labels to the target model.
Moreover, HCSA [63] applies the concept of spatial structure preservation to heterogeneous domain
adaptation to achieve more accurate classification decisions.

However, as shown in Figure 1(a), the aforementioned methods focus on the discrete classification
tasks. In this way, there are usually large low-density areas in the representation space or label space.
Therefore, strategies such as entropy regularization are taken into consideration to force the marginal
instances to be more confident.

2.2. DA regression

Different from the DA classification, the challenge of DA regression stems not only from the do-
main shift but also the continuous data distributions. Unfortunately, few of the existing DA methods
pay attention on such scenarios. Due to the sparsity of regression output space in keypoint detection,
the authors of [64] bridge the gap between regression and classification by optimizing an adversarial
regressor complying with a spatial probability distribution. In reference [65], a transfer ordinal label
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Figure 2. The framework of our proposed method SPODA. It contains four modules: i) the
encoder E, ii) the decoder D, iii) the transferred structure matrix S, and iv) the regressor
P. Flow ② denotes a procedure of the reconstruction, where a fake target domain would be
transformed from the source domain through E and D and combined with S to reconstruct
the target domain. Flow ① denotes a procedure of the explioting structure of the latent space
through E. Flow ③ indicates the procedure of developing regressor with the underlying
structure under the source domain through E and P. Flow ④ denotes a procedure of the
prediction through E and P.

learning model is proposed by expanding the solution space with an ensemble of ordinal classifiers
from multiple relevant source domains. The research [66] reveals that aligning the distribution of deep
representations would alter feature scale and hamper DA regression. To alleviate such issues, they
attempt to reduce the domain shift via a set of orthogonal bases of the representation space instead.
DINO [67] studies the UDA regression problem by integrating the ideas of feature matching, sample
weight, and adaptive Gaussian process into the proposed distribution-informed neural networks. More-
over, DARE-GRAM [68] addresses the cross-domain regression challenge by matching the scale and
angle within a subspace formed by the pseudo-inverse gram matrices of the two domains. Unlike the
above works, we concentrate on a more challenging scenario, that is ordinal UDA, in which all the
data patterns have an orderly trend and neighboring classes even overlap, as shown in Figure 1(b). It
is worth noting that although the setting of CIDA [69] is quite similar to ours, their sampling domains
are continuous and sampling classes discrete, so this method can be regarded as a classification model
essentially while ours is definitely ordinal regression.

3. Proposed method

In this section, we first propose some preliminaries. Along this line, we present our proposed
method, SPODA, and the corresponding optimization algorithm in details. Subsequently, the counter-
part with deep architecture is developed to further boost its generalization performance.

3.1. Preliminaries

In our proposed ordinal UDA scenario, we are given the labeled source domain Ds =
{(

xs
i , y

s
i

)}ns

i=1
,

where xs
i ∈ R

d represents the representation of the i-th instance with d dimensions, ys
i ∈ R represents

the ground truth of the i-th instance, and ns represents the number of instances sampling from the
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source domain. Cs is the label set of the source domain, and yi ∈ {1, 2, . . . ,K}, where K = |Cs| is the
number of classes. In the target domain, we are also given the unlabeled instancesDt =

{
xt

i

}nt

i=1
, where

xt
i ∈ R

d represents the representation of the i-th target domain instance, and nt represents the number
of instances sampling from the target domain. Ct is the label set of the target domain as the same as
Cs. The marginal distributions of the source and target domains are denoted as Ps and Pt, while their
conditional distributions are denoted as Qs and Qt, respectively. In our settings, we tackle a close-set
UDA task, where |Cs| = |Ct|, Ps , Pt, and Qs , Qt. It is worth noting that while our regression settings
are consistent with the domain adaptation classification task, they, however, are essentially different.
On the one hand, at the label level, our classes are mutually dependent while they are independent in
domain adaptation classification. On the other hand, except for the domain shift, at the representation
level we have a relatively dense representation space and the neighbor classes may overlap and differ
from classification task where the representations are clustering. These observations are demonstrated
in Figure 1 and bring more challenges.

3.2. SPODA

To tackle the issues above, we propose a structure-oriented adaptation strategy, namely, SPODA,
whose framework is exhibited in Figure 2. Specifically, inspired by the self-representation learning [38]
in the spatial clustering, we adapt it for the target domain and obtain the objective function as follows:

minS ∥Xt − XtS∥2F + λ f (S) (3.1)

where S represents the self-representation matrix in clustering, which aims to explore and exploit the
relationships of the global structure among instances, and f (S) represents a regularization term to
further capture more precise relationships. λ represents a hyper-parameter to leverage the balance
between the self-representation loss and the regularization term.

To transfer the knowledge maintained in the source domain, we plan to adopt a subspace alignment
learning paradigm, assuming that after the spatial transformation of the projection matrix W ∈ Rd×p,
Ps

(
WT Xs

)
= Pt

(
WT Xt

)
. However, unlike existing works that align directly in the hidden space, in or-

der to obtain stable feature representations between domains, we extend the above self-representation
learning to a cross-domain structure-exploiting strategy analogous to PCA or auto-encoder [33]. There-
fore, Eq (3.1) can be reformulated:

minW,S
∥∥∥Xt −WWT XsS

∥∥∥2

F
+ λ f (S)

s.t. WTW = Ip
(3.2)

where S ∈ Rns×nt is used to capture the global cross-domain structure information and is slightly dif-
ferent from the one in Eq (3.1), and Ip represents a p-order identity matrix. The orthogonal constraint
prevents trivial solutions w.r.t. W. For such a modeling methodology, the following advantages can be
drawn:

1. Aligning inter-domain covariance: Compared to the modeling strategy of subspace alignment
inter-domain expectations, using a PCA-like modeling strategy can implicitly align inter-domain
covariance.
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2. Removing essential differences: The MMD metric treats each dimensional feature representation
equally, but not all feature representations are effective. We use auto-encoder to remove inconsis-
tent features between domains and improve the robustness of the hidden space.

3. Mining spatial structure: While aligning covariance, use the representation matrix S to syn-
chronously mine potential spatial structure relationships between domains.

Nevertheless, the structure information at the class level has not been explored and exploited. More-
over, the local neighbor structure may be neglected in the latent space so that the knowledge transfer is
quite an effort and the global structure, captured by S, may lose its effectiveness. To alleviate this is-
sue, while preserving the manifold structure inherent in data, the linear approximation of the nonlinear
Laplacian eigen-map is constructed to explore and exploit not only intra-domain but also inter-domain
local structure information and to further assist in the reconstruction of input space. To this end, Eq
(3.2) can be derived as follows:

minW,S
∥∥∥Xt −WWT XsS

∥∥∥2

F
+ λ f (S)

+α
∑n

i=1
∑n

j=1

∥∥∥WT xi −WT x j

∥∥∥2

2
mi j + β

∥∥∥WT X
∥∥∥2

F
s.t. WTW = Ip

(3.3)

where n = ns + nt represents the total number of the instances both in the source domain and the target
domain, X = [Xs, Xt] ∈ Rd×n represents the instances matrix consisted by all instances both in two
domains, and xi and x j represent the i-th instance and the j-th instance in X, respectively. The last term
controls the complexity of latent space. The third term indicates the cross-domain manifold structure
information with neighbor instances in the latent space and mi j represents the weights between xi and
x j, which is defined as follows:

mi j =

 exp
(
−
∥xi−x j∥

2
2

2

)
, yi = y j

0, otherwise
(3.4)

where yi and y j represent the ground truth or the pseudo label in the source domain or the target domain,
respectively.

To explore the global structure more effectively and eliminate redundant information, we adopt the
low-rank regularizor to the transfer structure matrix S, i.e., rank (S). However, it belongs to an NP-
hard problem [70] for solving the rank (·) regularizer directly. Instead, we utilize the nuclear-norm
regularization ∥·∥∗ [70] to calculate its approximate lower-bound, and we can reformulate Eq (3.3) to
obtain the final objective function as follows:

minW,S
1
nt

∥∥∥Xt −WWT XsS
∥∥∥2

F

+ λ1
Nmi j,0

∑n
i=1

∑n
j=1

∥∥∥WT xi −WT x j

∥∥∥2

2
mi j

+λ2

∥∥∥WT X
∥∥∥2

F
+ λ3 ∥S∥∗

s.t. WTW = Ip

(3.5)

where Nmi j,0 represents the number of nonzero weight mi j.
To fit the trend in regression, the least square regression (LSR) [39] as a basic cost is adopted in

the procedure of prediction. Differing from classification task, there are certain correlations between
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classes in regression task, especially for the tasks such as age estimation [71]. Along this line, we
herein encode the class label from the source domain as cumulative attribute (CA) coding [71]:

Yi j =

{
1, j ≤ yi

0, j > yi

where Yi j represents the j-th coding of the i-th instance. Reflected from the above definition, this
coding can depict the inherent characteristics of the neighbor-similarity and ordinality.

Moreover, due to the tuning of Eq (3.5), the well-performance representations in the latent space can
be obtained while retaining the structure information. To this end, we exploit this structure information
from the source domain as the transferred knowledge to predict the labels of the instances from the
target domain. Herein, we apply MLG-LSC [39], which is a variation of LSR with geometric mean
learning (GMML) [72], and combine it with CA coding. MLG-LSC contains a two-stage modeling
strategy, and its objective function is defined as follows:

minP,b ∥PT X̃s + b1T
N − Ys∥

2
F + λ∥P∥

2
F (3.6)

minA≻0
∑K

k=1
(
∥Ck∥

2
A + ∥D−k∥

2
A−1

)
(3.7)

where X̃s = WT Xs ∈ R
p×ns represents the representations of the instances from the source domain in

the latent space, and Ys ∈ R
K×ns represents the CA coding matrix generalized through the ground truth

in the source domain. In regression, P ∈ Rp×K represents the projection matrix, b ∈ RK represents the
bias vector, and 1n ∈ R

n represents a vector, whose each element is one. A represents the metric matrix
guided by the data, and ∥Ck∥

2
A measures the distance of the instances from the k-th class while ∥D−k∥

2
A−1

measures the distance of the instances besides the k-th class. For more details, please refer to reference
[39]. In essence, Eq (3.6) is the objective function of LSR and Eq (3.7) is its GMML extension.
Optimizing the above two objective functions jointly, we can obtain the optimized parameters P, b and
A based on the data from the source domain. Subsequently, the predicted labels of instances from the
target domain can be obtained through the following rule:

ℓ(xti) = arg min
k

{(
PT x̃ti + b − Yk

)T
A

(
PT x̃ti + b − Yk

)}
(3.8)

where x̃ti = WT xti represents the representation of i-th instance from the target domain in the latent
space, and Yk represents the CA coding of the k-th class.

3.3. Optimization algorithm

In this subsection, we provide the optimization algorithm in detail. Specifically, due to the non-
convexity of Eq (3.5), we adopt the alternating optimization strategy to solve each of the optimization
subproblems. Meanwhile, to optimize the nuclear norm regularization ∥S∥∗, we adopt the SVT strategy
[70] to obtain the analytic solution of S.

To this end, for convenience, we reformulate Eq (3.5) through an auxiliary variable Z.
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minW,S,Z
1
nt

∥∥∥Xt −WWT XsS
∥∥∥2

F

+ λ1
Nci j,0

∑n
i=1

∑n
j=1

∥∥∥WT xi −WT x j

∥∥∥2

2
mi j

+λ2

∥∥∥WT X
∥∥∥2

F
+ λ3 ∥Z∥∗

s.t. WTW = Ip

S = Z

(3.9)

Then, we adopt the inexact augmented Lagrange multiplier (ALM) optimization algorithm [70] to
solve the Eq (3.9) and the eventual optimization objective can be formulated as follows:

minW,S,Z
1
nt

∥∥∥Xt −WWT XsS
∥∥∥2

F

+ λ1
Nci j,0

∑n
i=1

∑n
j=1

∥∥∥WT xi −WT x j

∥∥∥2

2
mi j

+λ2

∥∥∥WT X
∥∥∥2

F
+ λ3 ∥Z∥∗

+tr (Φ (S − Z)) + µ2 ∥S − Z∥2F
s.t. WTW = Ip

(3.10)

Optimize W when fixing S and Z. According to reference [73], we can obtain the following objec-
tive function w.r.t. W:

minW tr
(
WT X

(
Nci j,0

λ1nt

(
SST −S
−ST 0nt

)
+L +

λ2Nci j,0

λ1
In

)
XTW

)
s.t. WT XHXTW = Ip

(3.11)

where L = H − M ∈ Rn×n represents a Laplacian matrix, M ∈ Rn×n represents the adjacency matrix
composed of mi j, and H = diag

{∑n
j m0 j, · · · ,

∑n
j mn j

}
. In represents the n-order indentity matrix and

0ns represents the ns-order zero matrix. Herein, the optimization of Eq (3.11) can be derived as a
generalized eigen-decomposition problem:

X
(

Nci j,0

λ1nt

(
SST −S
−ST 0nt

)
+ L +

λ2Nci j,0

λ1
In

)
XTW

= XHXTWΛ
(3.12)

where Λ represents the diagonal matrix composed of all Lagrange multipliers, that is, eigenvalues, and
W consists of corresponding p smallest eigenvectors.

Optimize S when fixing W and Z. Along this line, we reformulate Eq (3.9) w.r.t. S as follows:

J (S) = minS
1
nt

∥∥∥Xt −WWT XsS
∥∥∥2

F
+tr (Φ (S − Z)) + µ2 ∥S − Z∥2F

(3.13)

Set derivative ∂J(S)
∂S = 0, and we can obtain the closed form of S:

∂J(S)
∂S =

(
2XT

s WWT Xs + µIns

)
S

−2XT
s WWT Xt − µZ + ΦT

= 0
(3.14)
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⇒ S =
(
2XT

s WWT Xs + µIns

)−1

·
(
2XT

s WWT Xt + µZ − ΦT
) (3.15)

Optimize Z when fixing W and S. Analogous to optimizing S, we can reformulate Eq (3.9) w.r.t. Z
as follows:

J (Z) = minZ
λ3
µ
∥Z∥∗ + 1

2 ∥Z − S −Φ/µ∥2F (3.16)

Set SVD (Z +Φ/µ) = UΣVT , where σi represents the i-th singular value. Therefore, according to
SVT, we can obtain the analytic solution of Z.

Zt+1 = U × diag
({

max
(
0, σi −

λ3
µ

)
1≤i≤r

})
× VT (3.17)

Optimize P, b, and A. According to reference [39], we give their solutions directly.

P = (X̃sGX̃T
s + λId)−1X̃sGYT

s (3.18)

b =
1
ns

(
Ys1ns − PT Xs1ns

)
(3.19)

A = (C + βIk)−1♯α(D + βIk) (3.20)

where ♯ represents the geometric mean operator and C =
∑K

k=1 CT
k Ck, D =

∑K
k=1 DT

−k D−k. α ∈ [0, 1],
λ, and β are three nonnegative hyper-parameters, and G = Ins − (1/ns) 1ns1T

ns
. For more details of

solutions, please refer to reference [39].
By repeating the above steps iteratively until convergence, we can predict the label ytp of the in-

stances from the target domain without access to the ground truth. It’s worth noting that λ and α are
chosen through the gird search with the data from the source domain in each iteration. We summarize
the complete optimization algorithm in Algorithm 1.

3.4. Time and space complexity analysis

First, we provide the time complexity with optimization variables for single step updates. When
S and Z are fixed, the time complexity of updating W is O

(
nd2 + dn2 + nd2 + d3

)
. When W and Z

are fixed, the time complexity of updating S is O
(
n3

s + pn2
s + pdns + pnsnt + pdnt + ntn2

s

)
. When W

and S are fixed, the time complexity of updating Z is O
(
n3

t

)
. The time complexity of updating P is

O
(
pn2

s + n3
s + K pns

)
. The time complexity of updating b is O (Kns + K pns). The time complexity of

updating A is O
(
K3 + K2ns

)
. The time complexity of updating ytp is O

(
K2nt + Knt

)
. Second, for the

sake of clarity, we assume that the number of iterations for convergence is L, and the combination of
λ and α is u. Generally, we can have K < p < d and d < min {ns, nt}. The complete time complexity
of Algorithm 1 is O

(
Ldn2 + L max

{
n3

s , ntn2
s

}
+ Ln3

t + Lun3
s + LuK2ns + LuK2nt

)
. Obviously, the space

complexity is O (ns · nt), which is decided by the transfer structure matrix S.
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Batch 1 Batch 2 Batch 3 Batch i Batch N-2 Batch NBatch N-1··· ···

Index: 17 4 19 2076 168

Extract

76
17
4

19 8 16 20

76
17
4

19 8 16 20

Figure 3. Illustration of gerenating S. Take the i-th batch as an example, which consists
of several instances from the source domain and the target domain, respectively. We can
also obtain the indexes of corresponding instances. As shown in the figure, the ’4’, ’17’,
and ’76’ represent the 4th, 17th, 76th instances from the source domain, respectively, and
the ’8’, ’16’, ’19’, ’20’ from the target domain have the same meaning. Thus, in the i-th
batch during training, the corresponding FC layer parameters are extracted from the whole
transferred structure matrix S via the current indexes.

3.5. SPODA with deep architecture

Motivated by the huge success of deep learning across various tasks, we extend SPODA to a deep
network architecture, which we refer to as D-SPODA. Specifically, we herein regard the components
E and D as an auto-encoder network. In this work, the encoder and the decoder are constructed
based on AlexNet [74]. The specific architecture of the encoder is shown in Figure 4, and the decoder
adopts the opposite transmission structure. Moreover, the component P consists of multiple FC layers,
functioning as a classifier following the encoder network. To facilitate the optimization process, we
treat the transferred structure matrix S as an FC layer positioned after the decoder network. Given the
batch training mechanism, we adopt a dynamic FC layer generated from the index of each training
batch, as depicted in Figure 3. Intuitively, the entire transferred structure matrix can become low-rank
to some extent after training, since the partial matrices generated by the indices of randomly selected
training data aim to achieve low-rank characteristics during each epoch. At the input layer, aligned
face images of size 227 × 227 × 3 are fed to the network. At the output layer, we maintain pretrained
auto-encoder deep architecture and a classifier network by replacing its loss function with our SPODA
objective function in Eq (3.5) instead of the conventional cross-entropy loss with the softmax function.
Furthermore, cumulative attribute coding replaces one-hot coding in our output targets, optimized using
an SGD solver. In this way, the number of last full connection layer output is adjusted to the total
number of data classes K. Additionally, we employ the MLG-LSC strategy to update the parameters
involved in predicting pseudo-labels at decreasing intervals.
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Figure 4. The network architecture of encoder E.

4. Experiment

In this section, we construct extensive experiments to validate the effectiveness of our proposed
SPODA methods digit datasets and human facial datasets. Besides, we also analyze other properties of
SPODA with charts, e.g., the hyper-parameters sensitivity, and the time cost.

4.1. Datasets and settings

In this article, three widely used digit datasets and three real-world human facial datasets are used
to validate the effectiveness and superiority of our proposed methods. The digit datasets [33] contain
MNIST (M), SVHN (S), and USPS (U), and the human facial benchmark datasets contain AgeDB
(A) [75], Morph Ablum II (II) [34], and CACD (C) [71]. All digit datasets contain ten digit images,
which belong to {0, . . . , 9} sampling from different scenarios. Meanwhile, the AgeDB dataset contains
16,516 face images aged from 0 to 101 years. The Morph Ablum II dataset contains more than 55,
000 face images aged from 15 to 85 years. The CACD dataset is the largest dataset widely used
for human facial age estimation, which contains more than 160,000 face images aged from 14 to 62
years. Different from the digit datasets, where only semantic labels are ordinal, the ordinarily is both
in representation level and semantic level on the human facial datasets.

In the procedure of feature extraction from images in conventional machine learning, to effectively
evaluate the generalization ability of feature representation variances, we herein extracted the DeCAF
representations [23] for the digit datasets and the ResNet-50 representations pretrained by ODL strat-
egy [11] with cross-entropy loss for the human facial datasets. Since the label space of the target
domain coincides with the source domain, we adopt the overlapped classes among the three above
datasets, that is all instances aged from 16 to 62 years. In deep architecture, described as subsection
3.5, the AlexNet architectures [74] are adapted to build the encoder and the decoder network, and
a classifier network is built by two FC layers, where a ReLU layer followed by a dropout layer is
sandwiched between them. The transferred structure matrix is implemented by a dynamic FC layer ac-
cording to each batch. The input size of both digit datasets and human facial datasets are 227× 227× 3
randomly cropped from 256 × 256 × 3 resized images.

For the hyper-parameters involved in the proposed method, in conventional machine learning, we set
λ1 ∈ {1e -1, 1e0, · · · , 1e4}, λ2 ∈ {1e -4, 1e-3, · · · , 1e1}, λ3 ∈ {1e -4, 1e-3, · · · , 1e3}, and the dimension
of latent space p ∈ {50, 60, 70, · · · , 200}. Then, five-fold cross validation with grid search is applied
to choose the suitable hyper-parameters. Meanwhile, the hyper-parameters built in Eq (3.8), i.e., λ,
α, and β, are set in {1e -2, 1e-1, 1e0}, {0, 0.1, · · · , 1}, and {1e-6}, respectively. They are also chosen
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Algorithm 1 Optimization Algorithm for SPODA
Input:

The data matrix Xs from the source domain, their ground truth ys, the corresponding CA coding
matrix Ys, the data matrix Xt from the source domain.
Hyper-parameters λ1, λ2, λ3, β.

Output:
The predicted label ytp of the instances from the target domain.

1: Initialize A = IK , Z = Ins×nt , µ = 1e-6, Φ = 0K , µmax = 1e2, ρ = 1.1.
2: Initialize ytp via k-NN (k = 15).
3: repeat
4: Update mi j Eq (3.4).
5: Update W Eq (3.12);
6: Update S Eq (3.15);
7: Update Z Eq (3.17);
8: for the combinations of λ and α do
9: Update P Eq (3.18);

10: Update b Eq (3.19);
11: Update A Eq (3.20);
12: end for
13: Update ytp Eq (3.8);
14: Update Φ = Φ + µ (S − Z);
15: Update µ = min (ρµ, µmax);
16: until convergence of Eq (3.10)

by grid search during alternately optimizing, but not be chosen coupled with λ1, λ2, and λ3. In deep
architecture, they are set by different constant values according to each task.

To evaluate the generalization ability, mean absolute error (MAE) and cumulative score (CS) are
adopted, in which they are respectively defined as:

MAE =
1
N

N∑
i=1

|ŷti − yti|

CS =
Nε≤θ

N
× 100%

where ŷti and yti denote, respectively, the predicted and ground-truth labels of i-th instances from
target domain, and Nε≤θ denotes the number of the instances, whose error ε between the predicted and
ground-truth label is not greater than the error level θ.

To validate the effectiveness of our proposed SPODA, several related methods are introduced for
comparison, which are i) TCA [17], ii) JDA [20], iii) BDA [19], iv) CORAL [43], v) MEDA [12], vi)
Easy-TL [52], vii) MCTL [23], viii) GSL [54] for conventional methods, and i) Deep-CORAL [76], ii)
DANN [40], iii) DAAN [77], and iv) RSD [66] for deep architecture, respectively. Additionally, their
hyper-parameters are assigned by five-fold cross-validation according to the corresponding literatures.
It’s worth noting that except for Easy-TL and SPODA (ours), in the conventional setting, all the others
adopt kernel trick with radial basis function (RBF) kernel [71].
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Finally, all experiments are run on Python 3.8 and PyTorch 1.5 platform of Ubuntu 20.04 LTS with
Intel Xeon Gold 5217 CPU@3.7Ghz, 128GB RAM, and Nvidia RTX Titan GPU.

Table 1. MAE results comparison on three digit datasets.
Methods M→ S M→ U S→M S→ U U→M U→ S Avg
TCA 3.244 3.393 1.394 3.441 1.479 3.198 2.692
JDA 3.221 3.382 1.424 3.466 1.376 3.006 2.646
BDA 3.219 3.347 1.425 3.463 1.372 3.008 2.639
CORAL 3.370 3.900 1.558 3.246 1.229 3.061 2.727
MEDA 2.901 3.671 1.369 3.261 1.220 3.025 2.575
Easy-TL 2.369 3.275 1.372 3.008 1.144 3.105 2.379
MCTL 1.815 2.974 1.301 3.190 1.620 3.099 2.333
GSL 1.842 2.477 1.286 2.586 1.483 2.862 2.089
SPODA 2.236 2.381 1.352 2.375 1.363 2.493 2.033
DANN 1.467 1.334 1.169 2.070 1.074 1.829 1.491
DAAN 1.454 1.111 1.135 2.036 0.947 1.963 1.441
RSD 1.484 1.092 1.351 2.192 0.936 1.851 1.484
D-SPODA 1.503 1.064 1.200 2.071 0.891 1.834 1.427

4.2. Results and analysis

With the setup in the Section 4.1, the experiments are run on all instances on the digit datasets. Since
the human facial datasets are too large, to avoid high memory usage and computational complexity
caused by the RBF kernel, we sample 50 instances from each class of the source domain and the target
domain randomly. Along this line, the experiments are run on 10 trials on the human facial datasets in
conventional cases. Therefore, the results are reported in both Tables 1 and 3, and the averaged results
with standard deviations are reported in Table 2. In each table, the best results are in bold and italic
face and the second are in underline and italic face.

From Tables 1–3, we can obverse the following findings. First, in most cases, our proposed meth-
ods SPODA or D-SPODA achieved the best MAE results, especially in conventional case. It is worth
noting that SPODA adopts linear trick while kernel trick are adopted into the others in conventional
case, and D-SPODA utilizes AlexNet, whose architecture is more shallow than the others in deep case.
These facts directly testify its generalization, effectiveness, and superiority. Second, the MAE results
of SPODA are unstable on the digit datasets. We argue that the ordinality of the digit datasets is in the
semantic level, but the representation level is relatively discrete according to the human facial datasets.
The characteristic promotes the performances of the methods about domain adaptation classification.
Third, in the almost case, the MAE results of TCA, JDA, and BDA are inferior to the other models.
This indicates that on the regression problem with fuzzy category boundary, although the alignment
strategy, i.e., MMD, can extract the most relevant features between domains, it is easy to destroy the
original structure relationships of representations, leading to the loss of discrimination ability of the
model. Fourth, the MAE results of MEDA are better than the above methods with MMD, and have
certain advantages over CORAL. It indicates that in regression, even in human facial age estimation,
the scheme is effective to a certain extent, where the first step is to align the representation through
MMD and the second step is to take the manifold regularization term into the objective to preserve
the discrimination ability. Fifth, in the conventional case, the MAE results of the last five methods are
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Table 2. MAE results comparison on three human facial datasets in conventional case.
Methods A→ II A→ C II→ A II→ C C→ A C→ II Avg
TCA 14.760 ± 0.473 15.592 ± 0.326 15.230 ± 0.471 14.454 ± 0.425 14.431 ± 0.322 14.775 ± 0.434 14.874 ± 0.409
JDA 14.339 ± 0.413 15.880 ± 0.324 14.623 ± 0.292 14.741 ± 0.342 14.748 ± 0.248 14.736 ± 0.452 14.859 ± 0.377
BDA 14.213 ± 0.409 15.560 ± 0.305 14.450 ± 0.226 14.643 ± 0.335 14.563 ± 0.305 14.614 ± 0.411 14.797 ± 0.362
CORAL 14.084 ± 0.556 15.657 ± 0.332 13.900 ± 0.275 14.000 ± 0.325 14.772 ± 0.517 14.624 ± 0.455 14.725 ± 0.374
MEDA 13.778 ± 0.549 15.088 ± 0.308 13.901 ± 0.316 13.710 ± 0.227 14.269 ± 0.349 14.136 ± 0.358 14.609 ± 0.369
Easy-TL 13.792 ± 0.539 14.399 ± 0.360 14.201 ± 0.387 13.646 ± 0.263 14.800 ± 0.324 13.636 ± 0.430 14.521 ± 0.372
MCTL 13.529 ± 0.410 14.523 ± 0.209 12.963 ± 0.527 13.006 ± 0.196 13.635 ± 0.310 13.675 ± 0.423 14.383 ± 0.368
GSL 13.194 ± 0.243 13.317 ± 0.442 13.069 ± 0.374 13.384 ± 0.232 12.492 ± 0.457 12.922 ± 0.448 14.218 ± 0.368
SPODA 10.977 ± 0.388 12.046 ± 0.389 11.053 ± 0.219 11.405 ± 0.443 11.257 ± 0.298 12.078 ± 0.397 13.912 ± 0.366

Table 3. MAE results comparison on three human facial datasets with deep architecture.

Methods A→ II A→ C II→ A II→ C C→ A C→ II Avg
DANN 7.362 8.939 9.472 9.451 9.235 8.056 8.752
DAAN 6.804 8.743 8.971 9.465 7.401 7.594 8.163
RSD 6.535 8.863 8.362 9.011 7.365 7.364 7.917
D-SPODA 6.638 8.676 8.215 8.861 7.249 7.499 7.856

usually better than the others. It indicates that in regression, especially in human facial age estimation,
it is necessary to preserve the structure information between inter-/intra- domains. Sixth, the MAE
results of GSL are a bit better than MCTL. It indicates that although MCTL generates a fake target
domain through the data from the source domain while preserving the structure information, the super-
vised information from the source domain is adopted insufficiently during training, learning to reduce
discriminability. Seventh, the MAE results of GSL are worse than ours. We argue that there are two
reasons. On the one hand, GSL loses the preservation of the interclass structure. On the other hand, the
ordinality of the task is grossly underused in GSL. Eighth, the MAE results with deep architecture are
much better than conventional case, due to the strong feature description ability of deep architecture.
Ninth, analogous to MCTL and GSL, the MAE results of DANN and DAAN as classification methods
are worse than regression methods such as RSD and ours. Finally, in most cases, the MAE results of
RSD are worse than ours, since it could not adopt the ordinality of data. In summary, the generalization
of our proposed methods are better than the others.

We also illustrate the results of CS criterion compared with all the above methods. Considering that
the CS rules on digit datasets are quite similar to these on human facial datasets, we herein only show
the results on human facial datasets in Figure 5. We can observe that both in the conventional case,
deep case, and almost case, the curve of our proposed method is closest to the upper left corner. It
validates the effectiveness and superiority of our proposed methods for DA regression once again.

Table 4. Ablation study on three human facial datasets.

Settings A→ II A→ C II→ A II→ C C→ A C→ II Avg
λ1 = 0 11.154 12.684 11.734 12.354 11.824 14.423 12.362
λ2 = 0 11.128 12.634 11.685 12.272 12.884 11.624 12.038
λ3 = 0 11.452 12.624 13.584 11.984 11.654 12.745 12.341
Full 10.977 12.046 11.053 11.405 11.257 12.078 11.469
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Figure 5. Cumulative scores comparison on human facial datasets.

4.3. Ablation study

To demonstrate the effectiveness of each proposed module, we conduct the ablation study on three
human facial datasets by setting the corresponding hyper-parameters before losses to zero. The specific
experimental results are shown in Table 4. We can find that removing the cross-domain structure regu-
larization (the LPP manifold regularization term) will result in the maximum performance degradation
of the target model. Besides, the F-norm term of the latent space and low-rank regularization play
a certain role in improving the adaptation performance of the model by exploring the cross-domain
structure and preserving the structure information.

4.4. Parameter analysis

In this section, to analyze the parameters sensitivity, we conduct the experiments for the hyper-
parameters λ1, λ2, λ3 and the dimension of latent space p. Without loss of generality, we take the
human facial datasets as the sample in the conventional case, uniformly. More specifically, we analyze
the relationship between cross-domain structure regularization and the complexity of the latent space,
and the influence of low-rank regularization and the dimension of latent space. The experimental setup
is the same as that in Subsection 4.1, where the parameters are adjusted through the grid search while
the others are fixed.

Relationship between cross-domain structure regularization and the complexity of the latent
space We first analyze the leverage between the LPP manifold regularization term and the F-norm
term of the latent space, as shown in Figure 6 for details. We can observe that the best MAE results are
generally achieved when λ1 ∈ {1e1, 1e2, 1e3}. Unlike relatively stable λ1, λ2 is sensitive on different
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Figure 6. Estimation performance with varying combinations of cross-domain structure reg-
ularization coefficient λ2 and the complexity coefficient of the latent space λ2 on human facial
datasets.

dataset pairs. Nevertheless, we can take an attempt to achieve the best performance where λ2 ∈ {1e -
2, 1e-1}.

Influence of low-rank regularization From Figure 6(a)–(f), we can observe that in most cases, the
MAE result decreases as the weight of the low-rank regularization becomes larger. This fact reveals
that the penalty of low rank is positive to explore and exploit the cross-domain structure, and to preserve
the structure information.

Influence of the dimension of latent space From Figure 6(g)–(l), we can observe that as a whole,
the MAE result has an increasing trend as the dimension increases. Also, we find that the best per-
formance can be achieved when p ∈ {50, · · · , 70}. Meanwhile, this fact reveals that the reconstruction
strategy can drop the style information of the source domain and extract more robust representations
to some extent.

4.5. Time efficiency comparsion

To evalute the time cost of SPODA during training, as the same as Section 4.4, we herein provide
the results about time efficiency with other methods in the conventional case, reported in Table 5.

We can observe the following findings. First, the time cost of CORAL and Easy-TL is less than
the others evidently. The reason is that CORAL is convex directly without iterative optimization, and
Easy-TL based on CORAL owns one more step to calculate the centers of the source domain classes.
Second, the time cost of JDA, BDA, and MCTL is more than the others evidently. The reason is that
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Figure 7. (a)–(f): Estimation performance with varying combinations of low-rank regular-
ization coefficient λ3 on human facial datasets. (g)–(l): Estimation performance with varying
combinations of the dimension of latent space p on human facial datasets.

they adopt the kernel trick leading to dimensionality upgrading while their solution must be optimized
iteratively. Third, the time cost of TCA and MEDA is the second highest. Although TCA is convex
directly, the kernel trick is adopted and leads to slow running efficiency. Analogous to TCA, MEDA
adopts matrix inverse operation instead. Fourth, the time cost of our proposed method SPODA is at a
medium level and faster than GSL.

5. Limitations and potential drawbacks

While this work provides some valuable insights into addressing the problem of ordinal UDA, we
must acknowledge the limitations and potential shortcomings of our approach. Based on the time com-
plexity analysis and time efficiency comparison, we can find that SPODA is computationally intensive
and requires higher computational costs. A more concise and efficient framework needs to be devel-
oped to accelerate model convergence and improve model performance. Besides, the existing datasets
may suffer from class imbalance, where each dataset contains facial images of different ages for age
estimation. How to overcome this inherent problem at the data level to avoid information masking is a
direction that needs to be studied.
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Table 5. Time efficiency comparison (in seconds) on three human facial datasets in conven-
tional case.

Methods A→ II A→ C II→ A II→ C C→ A C→ II
TCA 294.507±0.323 298.788±3.268 300.365±2.326 286.415±0.964 296.663±2.224 310.216±0.857
JDA 1496.324±26.319 1526.914±20.844 1483.640±32.618 1500.306±33.325 14863.351±25.639 1524.446±23.633
BDA 1511.169±24.812 1501.681±36.153 1492.325±36.954 1563.360±32.324 1493.659±40.327 1596.326±26.350
CORAL 37.348±0.303 38.440±1.030 37.178±0.506 38.006±2.045 41.007±0.903 38.957±1.083
MEDA 234.510±1.535 239.628±1.110 239.062±1.093 242.656±2.123 227.628±8.341 218.285±2.100
Easy-TL 44.157±0.044 45.569±0.177 44.350±0.152 45.511±0.099 49.103±0.288 46.080±0.431
MCTL 1591.829±24.320 1630.797±29.654 1551.575±26.362 1600.721±20.365 1617.210±30.652 1640.070±35.120
GSL 931.768±30.397 890.497±20.862 957.199±17.662 963.023±10.247 987.655±29.884 984.602±38.727
SPODA 651.656±28.316 612.778±39.513 686.732±22.396 627.042±37.828 609.924±26.639 626.326±40.792

6. Conclusions

In this article, we proposed a structure-oriented adaptation model, namely, SPODA. Specifically,
we achieved exploring the cross-domain structure knowledge through cross-domain structure transfer
learning via an auto-encoder. In addition, the manifold prior was incorporated to preserve the cross-
domain local structure. Considering the neighbor similarity and ordinality of the sample in order to
depict these inherent characteristics more precisely, CA coding was introduced to encode the label of
the source domain sample. The MLG-LSC method was embedded and effectively combined with CA
coding to construct the proposed model. In this way, the discriminative boundary was obtained so
that the performance for the prediction of the instances from the target domain was improved. Then,
inspired by the inexact ALM optimization algorithm, we derived an alternating optimization algorithm
to efficiently solve the SPODA model. To further boost the performance and generalization, SPODA
was extended with deep neural network architecture and achieved better results than before. Finally,
through extensive experiments, we have verified the effectiveness and superiority of the proposed meth-
ods.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgment

This work was supported by the National Natural Science Foundation of China under Grant
62176128, the Natural Science Foundation of Jiangsu Province under Grant BK20231143, the Fun-
damental Research Funds for the Central Universities No. NJ2023032, the Project Funded by the
Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) fund, the
Qing Lan Project of Jiangsu Province, as well as Postgraduate Research & Practice Innovation Program
of Jiangsu Province SJCX24 0455.

Conflict of interest

The authors declare there is no conflicts of interest.

Electronic Research Archive Volume 32, Issue 11, 6338–6363.



6358

References

1. Y. Liu, Z. Zhou, B. Sun, Cot: Unsupervised domain adaptation with clustering and optimal trans-
port, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
(2023), 19998–20007. https://doi.org/10.1109/CVPR52729.2023.01915

2. M. Wang, S. Wang, X. Yang, J. Yuan, W. Zhang, Equity in unsupervised domain adaptation by
nuclear norm maximization, IEEE Trans. Circuits Syst. Video Technol., 34 (2024), 5533–5545.
https://doi.org/10.1109/TCSVT.2023.3346444

3. M. Wang, Y. Liu, J. Yuan, S. Wang, Z. Wang, W. Wang, Inter-class and inter-domain semantic
augmentation for domain generalization, IEEE Trans. Image Process., 33 (2024), 1338–1347.
https://doi.org/10.1109/TIP.2024.3354420

4. T. Mikolov, M. Karafiát, L. Burget, J.Cernockỳ, S. Khudanpur, Recurrent neural network based
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