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Abstract: In this paper, we study a chemotaxis system with nonlinear indirect signal production
ut = ∆ (γ (v) u) + ru − µul, x ∈ Ω, t > 0,
vt = ∆v − v + wβ, x ∈ Ω, t > 0,
wt = −δw + u, x ∈ Ω, t > 0,

under homogeneous Neumann boundary conditions in a smooth bounded domain Ω ⊂ Rn(n ≥ 2),
where the parameters r, µ, β, δ > 0, and l > 1, the motility function γ ∈ C3([0,∞)), γ(v) > 0 is
bounded, γ

′

(v) < 0, and γ
′
(v)
γ(v) is bounded. We show that if l

β
> n

2 , the system has a unique global

classical solution. Moreover, the solution exponentially converges to (( r
µ
)

1
l−1 , (1

δ
)β( r
µ
)
β

l−1 , 1
δ
( r
µ
)

1
l−1 )) in the

large time limit under some extra hypotheses.

Keywords: chemotaxis; global existence; signal-dependent motility; nonlinear indirect signal
production; logistics source

1. Introduction

The chemotaxis models, introduced by Keller and Segel in 1970 [1], have cast a long and profound
shadow across the disciplines of mathematics and biology alike. Based on the biological background,
the cells move toward the chemical signal, which is secreted by the cells themselves, and many
researchers have studied the chemotaxis-production system{

ut = ∆u − χ∇ · (u∇v) + f (u) x ∈ Ω, t > 0,
vt = ∆u − v + u, x ∈ Ω, t > 0,

(1.1)

where u(x, t) denotes the density of cells and v(x, t) signifies the concentration of the chemical signal.
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The cross-diffusion term −χ∇ · (u∇v) means the cells are moving toward the high concentration of
chemical signal. Moreover, f (u) is the logistic source; it represents the rate of the cells reproduction
and death. Many particular cases and derivatives of this system have been successfully investigated up
to now (see the surveys [2–6] and references therein for details).

Furthermore, in order to explain more complex biological phenomena, some researchers have
proposed the following models with signal-dependent motility [7–9]:{

ut = ∆(γ(v)u) + f (u) x ∈ Ω, t > 0,
vt = ∆u − v + u, x ∈ Ω, t > 0.

(1.2)

The model was developed based on an experimental study of Escherichia coli (E. coli), which
revealed the formation of a stripe pattern through a mechanism known as “self-trapping”. Here, u(x, t)
signifies the density of E. coli, while v(x, t) denotes the concentration of acyl-homoserine
lactone(AHL), which secreted by E. coli. The motility function γ(v) is a sufficiently smooth and
positive function with the property γ

′

(v) ≤ 0. Since the first equation of (1.2) can be rewritten as
ut = ∇ · (γ(v)∇u) + ∇ · (γ

′

(v)u∇v) + f (u), it can be regarded as a chemotaxis model of Keller-Segel
type, where both the diffusion rate of the cells and the chemotactic sensitivity depend nonlinearly on
the concentration of the chemical signal. When f (u) ≡ 0, if the positive function γ(v) is bounded, Tao
and Winkler [10] demonstrated that (1.2) admits a global classical solution in two dimensions and
global weak solutions in higher dimensional settings. For the particular cases γ(v) = c0

vk , γ(v) = e−v, or
γ(v) = 1

c0+vk , the existence of global solutions to (1.2) has been detected in [11–16], respectively.
In the presence of the logistic source (i.e. f (u) = λu − µul), Jin et al. [17] established the existence

of a global classical solution to (1.2) in two-dimensional settings in the case l = 2; when l > 2, many
interesting results on the existence of global classical solutions to (1.2) have been demonstrated by Lv
and Wang in [18–20]. Furthermore, when the second equation in (1.2) is replaced by vt = ∆u − v + uβ,
Tao and Fang [21] showed that the system (1.2) has a global classical solution for n ≥ 2 and l

β
> n+2

2 .
Similarly, under the same conditions, the system with nonlinear signal consumption has also been
studied by Tian and Xie in [22].

In the classical Keller-Segel model, the chemical signal is directly produced by the cells
themselves. However, signal generation is often a complex process, which may involve external
factors or the interplay of multiple signals generated through diverse mechanisms. Inspired by the
spread and aggregative behaviors of the mountain pine beetle (MPB) in forest habitats, Strohm et
al. [23] proposed a chemotaxis-growth system with indirect signal generation

ut = ∆(u) − χ∇ · (u∇v) + µ(u − ul), x ∈ Ω, t > 0,
vt = ∆v − v + w, x ∈ Ω, t > 0,
wt = −δw + u, x ∈ Ω, t > 0.

(1.3)

Here, u(x, t) and w(x, t) denote the density of flying MPB and nesting MPB, respectively. v(x, t) stands
for the concentration of MPB pheromone, which is secreted only by those nesting MPB. When l = 2,
Hu and Tao [24] employed the coupled Lp estimate method to demonstrate that, under sufficiently
regular initial conditions, model (1.3) admits a unique global smooth solution in three-dimensional
spaces. Similar results were considered in higher dimensions [25]. For l > n

2 , Li and Tao [26]
established the existence of a classical solution for model (1.3). Additionally, when l = n

2 , Ren and

Electronic Research Archive Volume 32, Issue 11, 6301–6319.



6303

Liu [27] confirmed the existence of a global bounded classical solution to (1.3) under the critical
parameter condition. For more related research, readers can refer to [28–30] etc.

To the best of our knowledge, the following chemotaxis production system with both
signal-dependent motility and nonlinear indirect signal production only has very little research so far:

ut = ∆(γ(v)u) + ru − µul, x ∈ Ω, t > 0,
vt = ∆v − v + wβ, x ∈ Ω, t > 0,
wt = −δw + u, x ∈ Ω, t > 0,
∂u
∂υ
= ∂v
∂υ
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x),w(x, 0) = w0(x), x ∈ Ω,

(1.4)

where Ω ⊂ Rn is a smooth bounded domain. The initial data u0, v0, and w0 satisfy

u0 ∈ C0(Ω), v0 ∈ W1,∞(Ω),w0 ∈ W1,∞(Ω), u0 ≥ 0, v0 ≥ 0,w0 ≥ 0, (1.5)

and

γ ∈ C3([0,∞)), γ(v) > 0 is bounded , γ
′

(v) < 0 and
γ
′

(v)
γ(v)

is bounded . (1.6)

When the signal production is linear (i.e., β = 1), the dynamical behaviors of (1.4) were investigated
in [31]. Motivated by the aforementioned works, we continue to explore the global dynamics for (1.4)
with nonlinear signal production, that is, β . 1. The purpose of our paper is to clarify the global
existence and large time behavior of (1.4) under the conditions

r, µ, β, δ > 0, l > 1 and
l
β
>

n
2
. (1.7)

Our main results are as follows.

Theorem 1.1. Let Ω ∈ Rn(n ≥ 2) be a bounded domain with smooth boundary. Assume that the initial
data (u0, v0,w0), the motility function γ, and the parameters satisfy (1.5), (1.6), and (1.7), respectively.
Then, model (1.4) possesses a global bounded classical solution (u, v,w) in the sense that

∥u(·, t)∥L∞(Ω) + ∥v(·, t)∥W1,∞(Ω) + ∥w(·, t)∥L∞(Ω) ≤ C for all t > 0,

where C is a positive constant independent of t.

Remark 1.1. Theorem 1.1 shows that the propagation of signal is much weaker than the death of the
cells, i.e., β < 2

n l is conducive to ensuring the existence of global bounded classical solutions to (1.4).
Inspired by this, it is interesting to consider whether there is a critical exponent a∗. That is, if β < a∗l,
(1.4) has a global solution, while blow-up occurs when β > a∗l. However, for (1.4), the exact value of
a∗ remains unknown.

Theorem 1.2. Let Ω ∈ Rn(n ≥ 2) be a bounded domain with smooth boundary. Assume that the initial
data (u0, v0,w0), the motility function γ, and the parameters satisfy (1.5), (1.6), and (1.7), respectively.
Moreover, l ≥ 2 and 0 < β ≤ 1, then there exist some positive constants τ, C, T , and µ0 > 0 such that
if µ > µ0,

∥ u − (
r
µ

)
1

l−1 ∥L∞(Ω)+ ∥ v − (
1
δ

)β(
r
µ

)
β

l−1 ∥L∞(Ω) ∥ +∥ w −
1
δ

(
r
µ

)
1

l−1 ∥L∞(Ω) ≤ Ce−τt

for all t > T.
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The structure of the paper is as follows. In Section 2, we address the local existence of solution
to (1.1) and some preliminary estimates which are essential for proving Theorem 1.1. In Section 3,
we prove the global existence of the solution to (1.4) by using a priori estimates, some important
inequalities, and the standard Alikakos-Moser iteration. In Section 4, we study the large time behavior
of system (1.4) with the aid of a Lyapunov function.

2. Preliminaries

In order to prove the main result, we will introduce some useful lemmata. Initially, we begin by
establishing the local existence of solution, which can be referenced in [32].

Lemma 2.1. (Local existence) Let Ω ∈ Rn(n ≥ 2) be a bounded domain with a smooth boundary.
Assume that the initial data (u0, v0,w0), the motility function γ, and the parameters satisfy the
conditions (1.5), (1.6), and (1.7), respectively. Then, there exists Tmax ∈ (0,∞] and a uniquely
determined non-negative triple of functions (u, v,w)

u ∈ C0(Ω × [0,Tmax))
⋂

C2,1(Ω × (0,T max)),

v ∈
⋂
θ>n

C0([0,Tmax); W1,θ(Ω))
⋂

C2,1(Ω × (0,Tmax)),

w ∈ C0(Ω × [0,Tmax))
⋂

C0,1(Ω × (0,Tmax)),

which solves (1.4) in the classical sense. If Tmax < ∞, we have

lim
t→Tmax

sup(∥u(., t)∥L∞(Ω) + ∥v(., t)∥W1,∞(Ω) + ∥w(., t)∥L∞(Ω)) = ∞.

In addition, we also need to utilize the Lp − Lq estimate.

Lemma 2.2. ( [5] Lemma 1.3) Let (et∆)t≥0 be the Neumann heat semigroup in Ω, and λ1 > 0 denote
the first nonzero eigenvalue of −∆ in Ω under the homogeneous Neumann boundary condition. Then,
we obtain the following estimates with positive constants k1, k2 depending only on Ω.
(i) If 1 ≤ q ≤ p ≤ ∞, then

∥ ∇et∆u ∥Lp(Ω)≤ k1(1 + t−
1
2−

n
2 ( 1

q−
1
p ))e−λ1t∥ u ∥Lq(Ω) (2.1)

for all u ∈ Lq(Ω) and t > 0.
(ii) If 2 ≤ p < ∞, then

∥ ∇et∆u ∥Lp(Ω)≤ k2e−λ1t∥ ∇u ∥Lp(Ω) (2.2)

for all u ∈ W1,p(Ω) and t > 0.

Furthermore, the subsequent inequality is crucial for our proof.

Lemma 2.3. For all q > 1, there exists k3 = k3(q) > 0 such that

∥ ∇et∆ϕ ∥Lq(Ω)≤ k3∥ ∇ϕ ∥L∞(Ω) (2.3)

for all ϕ ∈ W1,∞(Ω) and t > 0.
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Proof. We can easily obtain (2.3) by Lemma 2.2 and Hölder’s inequality. □
Finally, we introduce the lemma related to the comparison principle, as referred to in [33].

Lemma 2.4. Let T > 0, t0 ∈ (0,T ), a > 0, and b > 0. Assume that y : [0,T ) → [0,∞) is uniformly
continuous and satisfies

y′(t) + ay(t) ≤ h(t) for a.e. t ∈ (0,T ),

where h is a nonnegative function in Ll
loc([0,T )) satisfying∫ t+t0

t
h(s)ds ≤ b for all t ∈ [0,T − t0).

Then, we obtain

y(t) ≤ max
{

y(0) + b,
b

at0
+ 2b

}
for all t ∈ (0,T ).

3. Global existence and boundedness

In this section, we aim to demonstrate the global existence and boundedness of the classical solution
of (1.4). At first, it is essential to verify the L1 boundedness of u(x, t).

Lemma 3.1. Let (1.5), (1.6), and (1.7) hold, then there exist constants C1 > 0 and C2 > 0 such that∫
Ω

u ≤ C1 (3.1)

for all t ∈ (0,Tmax) and ∫ t+τ

t

∫
Ω

ul ≤ C2 (3.2)

for all t ∈ (0,Tmax − τ), where τ := min
{
1, 1

2Tmax

}
.

Proof. Integrating the first equation of (1.4), we have

d
dt

∫
Ω

u = r
∫
Ω

u − µ
∫
Ω

ul

≤ r
∫
Ω

u − µ|Ω|1−l

(∫
Ω

u
)l (3.3)

for all t ∈ (0,Tmax). Subsequently, utilizing an ODE comparison argument leads us to deduce (3.1).
Integrating (3.3) from t to t + τ, we obtain∫ t+τ

t

d
dt

∫
Ω

u = r
∫ t+τ

t

∫
Ω

u − µ
∫ t+τ

t

∫
Ω

ul (3.4)

Therefore, we have ∫ t+τ

t

∫
Ω

ul =
r
µ

∫ t+τ

t

∫
Ω

u +
1
µ

∫
Ω

u(., t) −
1
µ

∫
Ω

u(., t + τ)

≤
r
µ

∫ t+τ

t

∫
Ω

u +
1
µ

∫
Ω

u(., t)

≤
C1

µ
(rτ + 1) := C2

(3.5)
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for all t ∈ (0,Tmax − τ), where τ := min
{
1, 1

2Tmax

}
. Thus, we get (3.2) □

Due to (3.1), we can obtain the Lq boundedness of w.

Lemma 3.2. If 1 ≤ q ≤ l and δ > 0, then there exists a constant C3 > 0 such that∫
Ω

wq(·, t) ≤ C3 (3.6)

for all t ∈ (0,Tmax).

Proof. Multiplying the w-equation of (1.4) by qwq−1, we obtain

d
dt

∫
Ω

wq = −qδ
∫
Ω

wq + q
∫
Ω

uwq−1 (3.7)

for all t ∈ (0,Tmax). Now, we will prove (3.6) in two cases: q = 1 and q > 1.
If q = 1, we can get

d
dt

∫
Ω

w = −δ
∫
Ω

w +
∫
Ω

u (3.8)

for all t ∈ (0,Tmax). Combining (3.1) and an ODE comparison argument, we can obtain (3.6).
If q > 1, by using Young’s inequality, we can find there exists a constant c1 > 0 such that

d
dt

∫
Ω

wq ≤ −
qδ
2

∫
Ω

wq + c1

∫
Ω

uq (3.9)

for all t ∈ (0,Tmax), where c1 = (2(q−1)
δq )q−1. Combining Lemma 2.4 and (3.2), we complete the proof of

Lemma 3.2. □
Based on Lemma 3.2, we can get the L1 boundedness of v.

Lemma 3.3. Let Ω ⊂ Rn be a bounded domain with smooth boundary. Assume that the initial data
(u0, v0,w0), the motility function γ, and the parameters satisfy the conditions (1.5), (1.6), and (1.7),
respectively. Then, we have ∫

Ω

v ≤ C4 (3.10)

for all t ∈ (0,Tmax), where C4 is some positive constant.

Proof. We will also prove (3.10) in two cases: 0 < β < 1 and 1 ≤ β < 2
n l ≤ l.

In case of 0 < β < 1, integrating the second equation of (1.4), combining Hölder’s inequality and (3.6),
we can obtain

d
dt

∫
Ω

v +
∫
Ω

v =
∫
Ω

wβ

≤ (
∫
Ω

wq)
β
q · (

∫
Ω

1
q

q−β )
q−β

q

≤ C
β
q · |Ω|

q−β
q

(3.11)

for all t ∈ (0,Tmax). The ODE comparsion argument leads to (3.10).
In case of 1 ≤ β < 2

n l ≤ l, integrating the second equation of (1.4) and combining (3.6), we have

d
dt

∫
Ω

v +
∫
Ω

v =
∫
Ω

wβ ≤ C (3.12)
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for all t ∈ (0,Tmax). Thus, we get (3.10). □

To prove the global existence and boundedness of the classical solution to (1.4), we need to calculate
the boundedness of ∥∇v(., t)∥Lq(Ω).

Lemma 3.4. Let conditions (1.5), (1.6), and (1.7) hold. Then, for all

q ∈


[
1, nl

nβ−l

)
l
β
≤ n,

[1,∞] l
β
> n,

there exists C5 = C5(q) > 0 such that

∥∇v(., t)∥Lq(Ω) ≤ C5 (3.13)

for all t ∈ (0,Tmax).

Proof. Applying the variation-of-constants formula for v, we have

v(., t) = et(∆−1)v0 +

∫ t

0
e(t−s)(∆−1)wβ(., s)ds (3.14)

for all t ∈ (0,Tmax). Without losing the generality, we suppose q > l
β
. Combining Lemma 2.2, Lemma

2.3, and Hölder’s inequality, we can find a constant c1 > 0 such that

∥∇v(., t)∥Lq(Ω) ≤ ∥∇et(∆−1)v0∥Lq(Ω) +

∫ t

0
∥∇e(t−s)(∆−1)wβ(., s)∥Lq(Ω)ds

≤ c1∥∇v0∥L∞(Ω) +

∫ t

0
∥∇e(t−s)(∆−1)wβ(., s)∥Lq(Ω)ds

(3.15)

and ∫ t

0
∥∇e(t−s)(∆−1)wβ(., s)∥Lq(Ω)ds

≤ k1

∫ t

0

(
1 + (t − s)−

1
2−

n
2 ( βl −

1
q )
)

e−λ1(t−s)∥wβ(., s)∥
L

l
β (Ω)

ds

= k1

∫ t

0

(
1 + (t − s)−

1
2−

n
2 ( βl −

1
q )
)

e−λ1(t−s)∥w(., s)∥β
Ll(Ω)ds

(3.16)

for all t ∈ (0,Tmax). Due to (3.6), we can choose c1 fulfilling

∥w(., s)∥β
Ll(Ω) ≤ c1 (3.17)

for all t ∈ (0,Tmax).
If l
β
≤ n, we have

−
1
2
−

n
2

(
β

l
−

1
q

)
> −

1
2
−

n
2

(
β

l
−

nβ − l
nl

)
= −1

(3.18)
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If l
β
> n, we have

−
1
2
−

n
2

(
β

l
−

1
q

)
>

1
2
−

n
2

(
1
n
−

1
q

)
≥ −

1
2
−

n
2
·

1
n

= −1

(3.19)

Thus, combining (3.18) and (3.19), we can find a constant c2 > 0 such that∫ t

0

(
1 + (t − s)−

1
2−

n
2 ( βl −

1
q )
)

e−λ1(t−s)ds ≤ c2 (3.20)

for all t ∈ (0,Tmax). Inserting (3.17) and (3.20) into (3.16), there exists a constant c3 > 0 such that∫ t

0
∥∇e(t−s)(∆−1)wβ(., s)∥Lq(Ω)ds ≤ c3 (3.21)

for all t ∈ (0,Tmax). Thus, combining (3.15) and (3.21), we can get (3.13). □

Owing to (3.13), we can use an Ehrling-type inequality to demonstrate the boundedness of v.

Lemma 3.5. Suppose that (1.5), (1.6), and (1.7) are valid. Then there exists C6 > 0 such that

∥v(., t)∥L∞(Ω) ≤ C6 (3.22)

for all t ∈ (0,Tmax).

Proof. We see that βl <
2
n ensures that nl

nβ−l > n, which allows us to select q1 ∈ (n, nl
nβ−l ). We can use

Lemma 3.4 to choose a positive constant c1 such that

∥∇v(., t)∥Lq1 (Ω) ≤ c1 (3.23)

for all t ∈ (0,Tmax). Combining (3.10), (3.23), and the Gagliardo-Nirenberg inequality, we can find
some constants c2 > 0 and c3 > 0 such that

∥v(., t)∥Lq1 (Ω) ≤ c2∥∇v(., t)∥

1− 1
q1

1
n +1− 1

q1
Lq1 (Ω) ∥v(., t)∥

1
n

1
n +1− 1

q1
L1(Ω) + c2∥v(., t)∥L1(Ω)

≤ c3

(3.24)

for all t ∈ (0,Tmax). Combining (3.23) and (3.24), we have

∥v(., t)∥W1,q1 (Ω) ≤ c4 (3.25)

for all t ∈ (0,Tmax), where c4 := c1 + c3. Consequently, by using the Sobolev embedding theorem, we
can conclude (3.22). □

Drawing on Lemma 3.4 and a series of important inequalities, we estimate the Lp boundedness of
u.
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Lemma 3.6. Assume that conditions (1.5), (1.6), and (1.7) exist. Then, for any p ≥ 2, there exists a
positive constant C7 such that ∫

Ω

up ≤ C7 (3.26)

for all t ∈ (0,Tmax).

Proof. Multiplying the u-equation of (1.4) by up−1, integrating by parts in Ω, and using Young’s
inequality, we have

d
dt

∫
Ω

up = −p(p − 1)
∫
Ω

up−2γ(v)|∇u|2 − p(p − 1)
∫
Ω

up−1γ
′

(v)|∇u||∇v|

+ rp
∫
Ω

up − µp
∫
Ω

up+l−1

≤ −
p(p − 1)

2

∫
Ω

up−2|∇u|2γ(v) +
p(p − 1)

2

∫
Ω

up |γ
′

(v)|2

γ(v)
|∇v|2

+rp
∫
Ω

up − µp
∫
Ω

up+l−1

(3.27)

for all t ∈ (0,Tmax). Because of Lemma 3.5 and (1.6), we can find some positive constants c1 and c2

such that

γ(v) ≥ c1 and
|γ
′

(v)|2

γ(v)
≤ c2 (3.28)

for all t ∈ (0,Tmax). Inserting (3.28) into (3.27), and using Young’s inequality, we can find some
positive constants c3, c4, and c5 such that

d
dt

∫
Ω

up + c3

∫
Ω

|∇u
p
2 |2 +

∫
Ω

up ≤ c4

∫
Ω

up|∇v|2 + (rp + 1)
∫
Ω

up − µp
∫
Ω

up+l−1

≤ c4

∫
Ω

up|∇v|2 −
µp
2

∫
Ω

up+l−1 + c5

(3.29)

for all t ∈ (0,Tmax). Next, we will prove (3.26) in two cases.
In the case of l

β
> n, for some positive constants c6 and c7, combining Lemma 3.4 and Young’s

inequality, we have

c4

∫
Ω

up|∇v|2 ≤ c6
2c4

∫
Ω

up

≤
µp
4

∫
Ω

up+l−1 + c7

(3.30)

for all t ∈ (0,Tmax). Inserting (3.30) into (3.29), we can obtain

d
dt

∫
Ω

up + c3

∫
Ω

|∇u
p
2 |2 +

∫
Ω

up +
µp
4

∫
Ω

up+l−1 ≤ c5 + c7 (3.31)

for all t ∈ (0,Tmax), which completes the proof of (3.26).
In the case of n

2 <
l
β
≤ n, fixing q0 ∈ (n, nl

nβ−l ) and using Lemma 3.4, we can find a positive constants
c8 such that

∥∇v(., t)∥Lq0 (Ω) ≤ c8 (3.32)
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for all t ∈ (0,Tmax). Now, using Hölder’s inequality, the Gagliardo-Nirenberg inequality, and (3.32),
we can choose some positive constants c9 and c10 such that

c4

∫
Ω

up|∇v|2 ≤ c4

(∫
Ω

|∇v|q0

) 2
q0

(∫
Ω

u
pq0

q0−2

) q0−2
q0

≤ c4c8
2∥u

p
2 ∥2

L
2q0

q0−2 (Ω)

≤ c9

(
∥∇u

p
2 ∥

2n
q0 L2(Ω)∥u

p
2 ∥

2(q0−n)
q0 L2(Ω) + ∥u

p
2 ∥2L2(Ω)

)
≤

c3

2
∥∇u

p
2 ∥2L2(Ω) +

µp
4

∫
Ω

up+l−1 + c10

(3.33)

for all t ∈ (0,Tmax). Therefore, (3.29) can be changed to

d
dt

∫
Ω

up +
c3

2

∫
Ω

|∇u
p
2 |2 +

∫
Ω

up +
µp
4

∫
Ω

up+l−1 ≤ c5 + c10 (3.34)

for all t ∈ (0,Tmax). Hence, we complete the proof of (3.26). □
To sum up, we can easily prove Theorem 1.1.

Proof of Theorem 1.1. With the help of Lemma 3.6 and a standard Alikakos-Moser iteration ( [34]
Lemma A.1), we can find a positive constant C1 independent of t such that

∥u(., t)∥L∞(Ω) ≤ C1 (3.35)

for all t ∈ (0,Tmax). Applying the variation-of-constants formula for w, we conclude

w(·, t) = e−δtw0 +

∫ t

0
e−δ(t−s)u(·, s) ds

for all t ∈ (0,Tmax), which implies that there exists C2 > 0 such that

∥w(·, t)∥L∞(Ω) ≤ C2 (3.36)

for all t ∈ (0,Tmax). Besides, by using the heat semigroup theorem on the v-equation of (1.4), we can
find a constant C3 > 0 such that

∥∇v(·, t)∥L∞(Ω) ≤ C3 (3.37)

for all t ∈ (0,Tmax). Combining (3.22), we deduce that there exists a positive constant C4 > 0 such that

∥v(·, t)∥W1,∞(Ω) ≤ C4 (3.38)

for all t ∈ (0,Tmax). Thus, Theorem 1.1 is proved due to (3.35), (3.36), (3.38), and the extensibility
criterion from Lemma 2.1. □

4. Large time behavior

In this section, we will construct a Lyapunov function, which will serve as the cornerstone in
our proof of Theorem 1.2. First of all, we shall present a few auxiliary lemmas.
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Lemma 4.1. ( [21] Lemma 2.4) Let A > 0, B > 0, and 0 < p < 1. Then,

|Ap − Bp| ≤ 21−pmin
{
Ap−1, Bp−1

}
|A − B|

Lemma 4.2. Assume that (u, v,w) is the classical solution of system (1.4) in Theorem 1.1. Then, there
exist C > 0 and δ ∈ (0, 1) such that

∥u∥
C2+δ,1+ δ2 (Ω×[t,t+1])

≤ C (4.1)

for all t > 1.

Proof. we rewrite the u-equation of (1.4) as follows:

ut = ∇ · ∇(γ(v)u) + ru − µul = ∇ · (∇uγ(v) + uγ
′

(v)∇v) + ru − µul (4.2)

According to (1.6), we can find some positive constants k1, k2, and k3 such that

k1 ≤ γ(v) ≤ k2 and |γ
′

(v)| ≤ k3 (4.3)

for all t ∈ (0,Tmax). Obviously, Theorem 1.1 ensures that u, v, and ∇v are bounded. Now, by applying
Young’s inequality, we can find some positive constants c1, c2, and c3

∇u · (∇uγ(v) + uγ
′

(v)∇v) = |∇u|2γ(v) + uγ
′

(v)∇v∇u

≥ k1|∇u|2 − k3u|∇v||∇u|

≥
k1

2
|∇u|2 −

k2
3c1

2k1

(4.4)

and
ru − µul ≤ c2 (4.5)

as well as
∇uγ(v) + uγ

′

(v)∇v ≤ c3 (4.6)

From (4.4)–(4.6), according to Hölder’s regularity, there exists a positive constant c4, and we can
deduce that

∥u∥
Cδ,
δ
2 (Ω×[t,t+1])

≤ c4 (4.7)

for all t > 1. Thus, applying the standard parabolic Schauder theory [35], we can obtain (4.1). □

Lemma 4.3. Assume that (u, v,w) is the global bounded classical solution of (1.4). Let (1.5), (1.6),
and (1.7) hold. The energy functions defined by

E(t) =
∫
Ω

(
u − u∗ − u∗ln

u
u∗

)
+

B1

2

∫
Ω

(v − v∗)2 +
B2

2

∫
Ω

(w − w∗)2 (4.8)

with u∗ = ( r
µ
)

1
l−1 , v∗ = (1

δ
)β( r
µ
)
β

l−1 , w∗ = 1
δ
( r
µ
)

1
l−1 , B1 =

1
4ku∗ and B2 = δµul−2

∗ , and

F(t) =
(∫
Ω

(u − u∗)2 +

∫
Ω

(v − v∗)2 +

∫
Ω

(w − w∗)2
)

(4.9)
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for all t > 0. We have
E(t) ≥ 0 (4.10)

for all t > 0. When l ≥ 2 and 0 < β ≤ 1, there exist some positive constants ε and µ0 such that if µ > µ0

d
dt

E(t) ≤ −εF(t) (4.11)

for all t ≥ 0.

Proof. We note that
E(t) = A(t) + B(t) +C(t) (4.12)

where

A(t) :=
∫
Ω

(
u − u∗ − u∗ln

u
u∗

)
,

B(t) :=
B1

2

∫
Ω

(v − v∗)2,

C(t) :=
B2

2

∫
Ω

(w − w∗)2.

We let φ : (0,∞)→ R be defined by

φ(x) := x − u∗ − u∗ln
x
u∗
, x > 0.

Due to φ is convex with φ(u∗) = φ
′

(u∗) = 0, so φ(x) ≥ 0 for all x > 0, we have E(t) ≥ 0. Using the first
equation in (1.4) and Young’s inequality, we can obtain

d
dt

A(t) =
∫
Ω

ut

(
1 −

u∗
u

)
= −µ

∫
Ω

(u − u∗)
(
ul−1 −

r
µ

)
− u∗

∫
Ω

γ(v)
|∇u|2

u2 − u∗

∫
Ω

γ
′

(v)
u
|∇u||∇v|

= −µ

∫
Ω

(u − u∗)
(
ul−1 − ul−1

∗

)
− u∗

∫
Ω

γ(v)
|∇u|2

u2 − u∗

∫
Ω

γ
′

(v)
u
|∇u||∇v|

≤
1
4

u∗

∫
Ω

|γ
′

(v)|2

γ(v)
|∇v|2 − µ

∫
Ω

(u − u∗)
(
ul−1 − ul−1

∗

)
(4.13)

for all t > 0. Accoring to hypothesis (1.6), we can choose k > 0, fulfilling

|γ
′

(v)|2

γ(v)
≤ k (4.14)

for all t > 0. With the help of the elementary inequality: if ζ ≥ 1, then for all x ≥ 0 , y ≥ 0, and x , y,
we can see that

xζ − yζ

x − y
≥ yζ−1 (4.15)

Electronic Research Archive Volume 32, Issue 11, 6301–6319.



6313

Hence, since l ≥ 2, combining (4.13)–(4.15), we have

d
dt

A(t) ≤
1
4

u∗k
∫
Ω

|∇v|2 − µul−2
∗

∫
Ω

(u − u∗)2 (4.16)

for all t > 0. We use the second equation in (1.4) and Young’s inequality to obtain

d
dt

B(t) = B1

∫
Ω

(v − v∗)vt

= B1

∫
Ω

(v − v∗)(△v − v + wβ)

= −B1

∫
Ω

|∇v|2 − B1

∫
Ω

(v − v∗)2 + B1

∫
Ω

(v − v∗)(wβ − v∗)

≤ −B1

∫
Ω

|∇v|2 −
B1

2

∫
Ω

(v − v∗)2 +
B1

2

∫
Ω

(wβ − v∗)2

(4.17)

for all t > 0. Also, using the third equation in (1.4) and Young’s inequality, we have

d
dt

C(t) = B2

∫
Ω

(w − w∗)wt

= B2

∫
Ω

(w − w∗)(−δw + u)

= −δB2

∫
Ω

(w − w∗)2 + B2

∫
Ω

(w − w∗)(u − δw∗)

≤ −
δ

2
B2

∫
Ω

(w − w∗)2 +
B2

2δ

∫
Ω

(u − δw∗)2

= −
δ

2
B2

∫
Ω

(w − w∗)2 +
B2

2δ

∫
Ω

(u − u∗)2

(4.18)

for all t > 0. Next, we will prove (4.11).
Let

µ0 :=
(

k

4βδ2βr
l−2β−1

l−1

) l−1
2β

,

and µ > µ0, then
1
2

(δB2 − B141−βδ2−2βu2β−2
∗ )

=
1
2

(
δ2µul−2

∗ − k4−βδ2−2βu2β−1
∗

)
=

1
2

δ2µ

(
r
µ

) l−2
l−1

−
kr

2β−1
l−1 δ2−2β

4βµ
2β−1
l−1

 > 0

Since 0 < β ≤ 1, using Lemma 4.1, we have

B1

2

∫
Ω

(wβ − wβ∗)
2 ≤

B1

2
22(1−β)w2(β−1)

∗

∫
Ω

(w − w∗)2

=
B1

2
41−βδ2−2βu2β−2

∗

∫
Ω

(w − w∗)2
(4.19)
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for all t > 0. Combining (4.16)–(4.19), we can get

d
dt

E(t) ≤
(
1
4

u∗k − B1

) ∫
Ω

|∇v|2 −
(
µul−2
∗ −

B2

2δ

) ∫
Ω

(u − u∗)2 −
B1

2

∫
Ω

(v − v∗)2

−
1
2

(
δB2 − B141−βδ2−2βu2β−2

∗

) ∫
Ω

(w − w∗)2

≤ −ε

(∫
Ω

(u − u∗)2 +

∫
Ω

(v − v∗)2 +

∫
Ω

(w − w∗)2
)

with µ > µ0 and ε = min
{

1
2µu

l−2
∗ ,

1
8ku∗, 1

2

(
δ2µul−2

∗ − k4−βδ2−2βu2β−1
∗

)}
, for all t > 0. So, we complete the

proof of Lemma 4.3. □

In the following discussion, let µ > µ0, l ≥ 2, and 0 < β ≤ 1 hold, where µ0 is defined in Lemma
4.3.

Proof of Theorem 1.2. Building upon the functional inequality (4.11), the proof of Theorem 1.2
can be approached in the same way as in [36]. To avoid redundancy, we do not recount the entire proof
here. However, for the reader’s convenience, we outline the main ideas of the proof.
Step 1. First, by taking E(t) and F(t) as defined in Lemma 4.3, and integrating (4.11) from 1 to t, we
deduce

E(t) + ε
∫ t

1
F(s)ds ≤ E(1) (4.20)

for all t > 1. Since E(t) is nonnegative by Lemma 4.3, this entails that
∫ ∞

1
F(s)ds is finite. According

to the definition (4.9) of F, we have∫ ∞

1

∫
Ω

(u − u∗)2 < ∞,

∫ ∞

1

∫
Ω

(v − v∗)2 < ∞ and
∫ ∞

1

∫
Ω

(w − w∗)2 < ∞ (4.21)

The weak convergence information (4.21) along with uniform Hölder’s bounds of solutions implies

∥ u − (
r
µ

)
1

l−1 ∥L∞(Ω)+ ∥ v − (
1
δ

)β(
r
µ

)
β

l−1 ∥L∞(Ω) ∥ +∥ w −
1
δ

(
r
µ

)
1

l−1 ∥L∞(Ω) → 0 as t → ∞. (4.22)

Step 2. Based on L’Hôpital’s rule, we can obtain

lim
u→u∗

u − u∗ − u∗ln u
u∗

(u − u∗)2 = lim
u→u∗

1 − u∗
u

2(u − u∗)
=

1
2u∗

According to (4.22), we can pick a positive constant t0 such that

1
4u∗

∫
Ω

(u − u∗)2 ≤

∫
Ω

(
u − u∗ − u∗ln

u
u∗

)
≤

1
u∗

∫
Ω

(u − u∗)2 (4.23)

for all t > t0.
Step 3. In order to estimate the rate of convergence in (4.22), combining (4.11) and (4.23), then there
exists a constant C1 > 0 such that

d
dt

E(t) ≤ −εF(t) ≤ −C1E(t) (4.24)
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for all t > t0. (4.24) means there exist some positive constants C2 and k such that

E(t) ≤ C2e−kt (4.25)

for all t > t0. From the definitions of E(t) and F(t), (4.23) and (4.25) allow us to choose a constant
C3 > 0 such that (∫

Ω

(u − u∗)2 +

∫
Ω

(v − v∗)2 +

∫
Ω

(w − w∗)2
)
≤ C3e−kt (4.26)

for all t > t0.
Step 4. By using Lemma 4.2 and the Gagliardo-Nirenberg inequality, we get

∥ϕ∥L∞(Ω) ≤ CGN∥ϕ∥
n

n+2

W1,∞(Ω)∥ϕ∥
2

n+2

L2(Ω)

for all ϕ ∈ W1,∞(Ω). So, we can find some constants C4 > 0 and C5 > 0 such that

∥u(., t) − u∗∥L∞(Ω) ≤ C4∥u(., t) − u∗∥
n

n+2

W1,∞(Ω)∥u(., t) − u∗∥
2

n+2

L2(Ω)

≤ C5∥u(., t) − u∗∥
2

n+2

L2(Ω)

(4.27)

for all t > t0. Together with (4.26), we can find some positive constants C6 and λ such that

∥u(., t) − u∗∥L∞(Ω) ≤ C6e−λt (4.28)

for all t > t0. Similarly, according to (3.38) and the Gagliardo-Nirenberg inequality, we can find a
constant C7 > 0 such that

∥v(., t) − v∗∥L∞(Ω) ≤ C7e−λt (4.29)

for all t > t0.
Applying the ODE theorem for the third equation of (1.4), we have

w(·, t) = e−δ(t−t0)w(., t0) +
∫ t

t0
e−δ(t−s)u(·, s) ds

= e−δ(t−t0)w(., t0) +
∫ t

t0
e−δ(t−s)(u(·, s) − u∗) ds +

∫ t

t0
e−δ(t−s)u∗ ds

= eδt0w(., t0)e−δt +
∫ t

t0
e−δ(t−s)(u(·, s) − u∗) ds +

u∗
δ

e−δt(eδt − eδt0)

(4.30)

for all t > t0. From (1.5), (4.28), and (4.30), there exist some positive constants C8, C9, and C10 such
that

∥w − w∗∥L∞(Ω) ≤ (eδt0∥w(., t0)∥L∞(Ω) + eδt0w∗)e−δt +
∫ t

t0
e−δ(t−s)∥u(·, s) − u∗∥L∞(Ω) ds

≤ C8e−δt +C9e−λt

≤ C10e−τt

(4.31)

for all t > t0, where τ := min{δ, λ}. Combining (4.28), (4.29), and (4.31), we complete the proof of
Theorem 1.2. □
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In summary, this paper establishes the global boundedness and stability of the steady-state solution
for a chemotactic system with nonlinear indirect signal production in a bounded domain, defined
under a specific parameter range. This contrasts with previous studies on chemotactic systems of this
nature that utilize linear signal production. Our next goal is to extend these results to heterogeneous
environments (see for example [37]), drawing on concepts from this work.
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