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Abstract: In order to address the issue of multi-information fusion, this paper proposed a method for 
bearing fault diagnosis based on multisource and multimodal information fusion. Existing bearing fault 
diagnosis methods mainly rely on single sensor information. Nevertheless, mechanical faults in 
bearings are intricate and subject to countless excitation disturbances, which poses a great challenge 
for accurate identification if only relying on feature extraction from single sensor input. In this paper, 
a multisource information fusion model based on auto-encoder was first established to achieve the 
fusion of multi-sensor signals. Based on the fused signals, multimodal feature extraction was realized 
by integrating image features and time-frequency statistical information. The one-dimensional 
vibration signals were converted into two-dimensional time-frequency images by continuous wavelet 
transform (CWT), and then they were fed into the Resnet network for fault diagnosis. At the same time, 
the time-frequency statistical features of the fused 1D signal were extracted from the integrated 
perspective of time and frequency domains and inputted into the improved 1D convolutional neural 
network model based on the residual block and attention mechanism (1DCNN-REA) model to realize 
fault diagnosis. Finally, the tree-structured parzen estimator (TPE) algorithm was utilized to realize the 
integration of two models in order to improve the diagnostic effect of a single model and obtain the 
final bearing fault diagnosis results. The proposed model was validated using real experimental data, 
and the results of the comparison and ablation experiments showed that compared with other models, 
the proposed model can precisely diagnosis the fault type with an accuracy rate of 98.93%. 



6277 

Electronic Research Archive  Volume 32, Issue 11, 6276–6300. 

Keywords: fault diagnosis; CNN; residual block; Resnet; bearing fault; attention mechanism 
 

1. Introduction  

Industry 4.0 has led to advanced technologies led by artificial intelligence to lead the change of 
production methods at an unprecedented speed. In this context, the importance of machinery fault 
diagnosis as an indispensable key link in industrial production is becoming more and more significant. 
Along with advances in the Internet of Things (IoT) and big data technologies, the sensors are 
increasingly being deployed as core components of the Industry 4.0 infrastructure, providing powerful 
technical support to accurately monitor system status. Nevertheless, as the working environment of 
engineering systems is complicated and changeable with multiple interfering factors, a single sensor 
cannot fully reflect the system status, which is prone to misjudgment or omission, and cannot meet the 
requirements of engineering systems for high-precision diagnosis. Besides, certain faults may manifest 
themselves in multiple features, whereas it is difficult to distinguish different features accurately based 
on single sensor data, leading to diagnostic difficulties. Therefore, how to effectively integrate and 
utilize multi-sensor data to provide reliable data support for the stable operation of the system and fault 
prevention has become a crucial research topic. 

Data-driven fault diagnosis methods have been widely used for accurate diagnosis of bearing 
faults in the field of intelligent manufacturing. There are many data-driven fault diagnosis methods, 
and the traditional method is to directly start from the time-domain signal, and establish the feature 
selection model and diagnostic model based on processing the signal by Fourier transform [1], 
variational modal decomposition [2], wavelet transform and other methods. Nonetheless, this method 
only extracts the time-frequency features of the measurement information to describe the fault 
information, which neglects the spatial relationship of the signal and fails to capture the local modes, 
leading to the limitation of feature expression. Meanwhile, methods of time-domain feature and 
frequency-domain feature extraction tend to be insensitive to signal variations and cannot effectively 
deal with complex nonlinear signal variations, resulting in poor performance in certain complex 
situations. In addition, the additional establishment of feature selection models increases the workload. 

With the rapid development of machine learning technology, deep learning has been widely used 
in machinery fault diagnosis due to its advantage of automatically learning hierarchical representations 
utilizing multiple hidden layers to characterize faults from massive input data [3–5]. In deep learning-
based fault diagnosis, vibration signals and their feature images are widely used as input samples to 
realize intelligent recognition of the data to be measured from the perspective of image processing. 
Several studies have utilized continuous wavelet transform [6–8], Gramian angular difference field 
(GADF) [9,10], S-transform [11], simultaneous compressed wavelet transform (SWT) [12], Markov 
transfer field [13], signal image mapping (STIM) [14], constant Q-nonstationary Gabor transform 
(CQ-NSGT) [15], compressed sensing (CS) [16] and other methods to convert one-dimensional 
vibration signals into time-frequency images in preparation for fully extracting the spatial features of 
the signals. Convolutional neural network (CNN), as a representative deep learning network, has 
shown great potential in the field of rotating machinery fault diagnosis [17,18] and reported good 
results [19–21]. However, since time-frequency signals usually have complex spatiotemporal features, 
traditional deep neural networks may encounter problems such as gradient vanishing or gradient 
explosion when processing, resulting in networks that are difficult to train or are poorly trained. Instead, 
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Resnet introduces residual connectivity, which allows the network to learn the residuals and thus train 
the deep network easier. This residual connectivity helps the information to pass better, allowing the 
network to better capture complex features in time-frequency signals, improving the performance and 
generalization of the network. Although the image-based classification method can deal with the 2D 
time-frequency image of the signal, it is unable to directly extract the time-domain features and 
frequency-domain features of the signal, resulting in the loss of some important information. 

In summary, in order to solve the problems of incomplete information, difficult diagnosis under 
complex working conditions, and low diagnostic accuracy faced by single information source in 
bearing fault diagnosis, this paper constructs a new bearing fault diagnosis model based on multi-
sensor and multimodal information fusion to realize accurate fault diagnosis of bearings. To start, this 
paper realizes the fusion of multi-sensor signals by auto-encoder. On this basis, the fused 1D vibration 
signals are transformed into 2D time-frequency images using the continuous wavelet transform 
technique and input to the Resnet network for preliminary diagnostic analysis. Meanwhile, 14 time-
frequency statistical features are employed as substitutes for the fused one-dimensional signals, and 
the improved 1DCNN model based on the residual block and attention mechanism (1DCNN-REA) 
model is introduced to further improve the diagnostic accuracy. In order to give full play to the 
advantages of the Resnet model and the 1DCNN-REA model, this paper further adopts the TPE 
algorithm to achieve the fusion of the two, aiming to improve the performance of a single model in 
bearing fault diagnosis by complementing each other’s strengths, and realize the multimodal 
information fusion fault diagnosis. 

The rest of this article is organized as follows. Section II introduces the related theories and 
techniques. In Section III, the proposed Resnet-1DCNN-REA model is detailed. Real-world 
applications are presented in Section IV. Finally, Section V concludes this article. 

2. Relevant preparations  

2.1. Auto-encoder 

 

Figure 1. The architecture of the auto-encoder. 

Auto-encoder can be divided into two steps: encoder and decoder. The former compresses the 
high-dimensional input into a low-dimensional latent vector representation, and the latter aims to 
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recover the data based on the latent vectors [22]. Figure 1 shows the structure of the auto-encoder. 
Since the auto-encoder is trained on a large amount of data under the normal state with the goal 

of minimizing the reconstruction error, the auto-encoder that completes the training has a good ability 
to recover the normal signal. Its mathematical expression is as follows [23]. 

ℎ ൌ 𝜎ሺ𝑊௫𝑥  𝑏௫ሻ
𝑧 ൌ 𝜎ሺ𝑊௫ℎ  𝑏௫ሻ
𝑟 ൌ ‖𝑥 െ 𝑧‖

ሺ1ሻ 

where, 𝑥 is input, 𝑏 and 𝑊 denote the deviation and weight of the neural network, respectively, ℎ 
is the hidden layer, and 𝜎 represents the nonlinear transformation function. 𝑧 is the reconstructed 
result of original input signal 𝑥, and 𝑟 is reconstruction error. 

2.2. CWT 

Because the joint representation of time-frequency images in the time and frequency domains 
contains more complex structural distribution information than one-dimensional vibration signals [24], 
it is capable of reflecting fault characteristics more comprehensively. Furthermore, the convolutional 
structure of Resnet aims to process 2D input data, so it is necessary to convert one-dimensional 
vibration signals into two dimensions. CWT serves as a time-frequency conversion method that can 
effectively convert one-dimensional vibration signals into two-dimensional time-frequency spectra 
and can be directly used in convolutional layers [25]. 

For a 1-D vibration signal sequence 𝑠ሺ𝑡ሻ, the CWT is expressed as  

𝐶𝑊𝑇ሺ𝑎, 𝑏ሻ ൌ
1

√𝑎
න 𝑠ሺ𝑡ሻ

ାஶ

ିஶ
𝛹∗ ൬

𝑡 െ 𝑏
𝑎

൰ 𝑑𝑡 ሺ2ሻ 

where 𝑎 and 𝑏 are the scale and shifting variables, respectively, 𝛹 represents the mother wavelet 
function, 𝐶𝑊𝑇ሺ𝑎, 𝑏ሻ represents the wavelet coefficients, and ∗ is the complex conjugate operator. It 
is crucial to choose a suitable mother wavelet for CWT. Commonly used mother wavelet functions 
include Haar, Morlet, Meyer, Symlet, and so on [26]. 

 

(a) 
Continued on next page 
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(b) 

 
(c) 

Figure 2. The process of converting vibration signals into images. (a) Inner race fault (b) 
Rolling element fault (c) Outer race fault.  

As shown in Figure 2, multiple random points are selected on the original vibration signal, and 
each random point serves as the starting point for intercepting samples of the same length. Then, the 
sample segments are converted to time-frequency images by CWT. The complex Gaussian wavelet 
function is selected for the CWT, with a scale range of [100, 1000]. 

2.3. Resnet 

In deep learning, the training of neural networks grows more difficult as the depth of the 
network increases. This is mainly due to the fact that in the training of networks based on stochastic 
gradient descent, the multilayer back propagation of error tends to lead to dispersion or 
disappearance of gradient. Meanwhile, Resnet came along to solve this problem by using residual 
blocks to make the network deeper without overfitting, and its accuracy and precision far exceed 
that of traditional network models [27]. It is widely used for a variety of vision tasks, and competitive 
results can be obtained with only a few parameters [28]. 

Resnet is almost similar to other CNN models, consisting of convolution, pooling, activation 
mapping, and fully-connected layers. The only major difference between Resnet and other CNN is 
the connection of the input layer to the end of the residual block. Figure 3 illustrates a schematic 
structure of the conventional and residual modules. The architecture of Resnet34 starts with 
convolution and max-pooling operations, using kernels of (7*7) and (3*3) pixels in size, respectively, 
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to perform the convolution operation. Thereafter, four stages with different numbers of residual 
blocks are introduced to perform the convolution operation using kernels of size (3*3) pixels as 
shown in Table 1. While passing from one point to the next, the depth of the channel is doubled with 
the size of the input samples halved [29].  

  

(a) (b) 

Figure 3. Schematic structure of conventional and residual modules. (a) Conventional 
module (b) Residual module. 

The network structure of Resnet34 is shown in the Table 1. 

Table 1. The architecture of Resnet34. 

Layer Name Output size Convolution layer 
Conv1 112 × 112 7 × 7, 64, stride 2

Conv2_x 56 × 56 
3 × 3 max pooling, stride 2 


3 × 3,64
3 × 3,64

൨ × 3 

Conv3_x 28 × 28 
3 × 3,128
3 × 3,128

൨ × 4 

Conv4_x 14 × 14 
3 × 3,256
3 × 3,256

൨ × 6 

Conv5_x 7 × 7 
3 × 3,512
3 × 3,512

൨ × 3 

 1 × 1 Average pooling, fc, softmax 

2.4. 1DCNN-REA 

CNN is a feed-forward neural network with convolutional computation and deep structure which 
enables it to represent learning and classify the input information according to its hierarchical structure. 
1DCNN architectures are similar to 2DCNN, which usually consist of five layered structures: input 
layer, convolutional layer, pooling layer, fully connected layer, and output layer [30]. 

The convolutional layer is the core of 1DCNN, which serves to perform feature extraction, usually 
using multiple layers of convolution to obtain deeper features. The expression of the convolutional 
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layer is as follows: 

𝑌
 ൌ 𝑓ሺ  ൫𝑋

ିଵ ∗ 𝑊
 ൯  𝑏



∈ெೕ

ሻ ሺ3ሻ 

where W is the convolution kernels, j represents the number of kernels, and M denotes the channel 
number of input 𝑋

ିଵ. 𝑏 is the bias corresponding to the kernel, 𝑓ሺሻ is the activation function, and 
∗ represents the convolution operator.  

The main function of the pooling layer is to perform feature compression to retain the main 
features while simplifying the network computation. Pooling is divided into maximum pooling and 
average pooling, where average pooling is calculated according to the size of the predetermined 
pooling window, and the maximum pooling method selects the largest parameter within the 
predetermined window as the output value [31]. The paper employs average pooling methods. The role 
of the fully connected layer is to achieve classification, and each of its nodes is connected to each node 
in the previous layer to synthesize the features extracted above. The output of the last fully connected 
layer is the classification result. The expression of the fully connected layer is as follows: 

𝑧ሺ𝑥ሻ ൌ 𝑓ሺ𝑤𝑥ିଵ  𝑏ሻ ሺ4ሻ 

Although 1DCNN has achieved good results in the field of fault diagnosis, traditional 
convolutional neural networks consider each bearing fault feature channel equally important during 
the convolutional pooling process, while in reality, the information carried by each feature is of 
different importance. Simply think that each fault feature channel is the same lack of reasonableness, 
and most of the studies have ignored this point. Therefore, this paper introduces the attention 
mechanism module, which focuses on the important regions and ignores the unimportant information. 
In addition, in order to facilitate the learning of the residual information of the data and improve the 
learning ability and training effect of the model, this paper introduces the residual module in the 
1DCNN model. The structure of the proposed 1DCNN with residual and attention block (1DCNN-
REA) model is shown in Figure 4. 

 

Figure 4. The architecture of the proposed 1DCNN-REA network. 
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2.5. TPE 

TPE is a Bayesian optimization algorithm in which a set of optimal values can be obtained by 
iteratively adjusting the hyperparameters of the model. It can be expressed as: 

𝑥∗ ൌ 𝑎𝑟𝑔 min
௫∈ଡ଼

 𝑓ሺ𝑥ሻ ሺ5ሻ 

where 𝑓ሺ𝑥ሻ represents the objective function to minimize, 𝑋 represents the search space, and 𝑥∗ 
represents optimal hyperparameter settings. 

TPE works by defining a surrogate function that is based on the loss probability representation of 
previous trials [32]. It divides the trials into good 𝑔ሺ𝑥ሻ  and bad 𝑏ሺ𝑥ሻ  trial groups based on 
predetermined quantized values of losses from finished trials. The boundary between good and bad 
trial groups is represented by loss 𝑦 with 𝑦∗ representing the loss boundary. If 𝑦 ൏ 𝑦∗, the trial is in 
𝑔ሺ𝑥ሻ , otherwise the trial is in 𝑏ሺ𝑥ሻ . These trial groups are then utilized to define an expected 
improvement (EI) function derived from the Bayes theorem. The function can be expressed as: 

𝐸𝐼௬∗ሺ𝑥ሻ ൌ න ሺ𝑦∗ െ 𝑦ሻ𝑝ሺ𝑦|𝑥ሻ𝑑𝑦
௬∗

ିஶ
ሺ6ሻ 

Using the definitions above and by substituting 𝛾 ൌ 𝑝ሺ𝑦 ൏ 𝑦∗ሻ, the simplification is: 

𝐸𝐼௬∗ሺ𝑥ሻ ൌ
𝛾𝑦∗𝑔ሺ𝑥ሻ െ 𝑔ሺ𝑥ሻ  ሺ𝑦∗ െ 𝑦ሻ𝑝ሺ𝑦ሻ𝑑𝑦

௬∗

ିஶ

𝛾𝑔ሺ𝑥ሻ  ሺ1 െ 𝛾ሻ𝑏ሺ𝑥ሻ
∝ ൭𝛾 

𝑏ሺ𝑥ሻ
𝑔ሺ𝑥ሻ

ሺ1 െ 𝛾ሻ൱

ିଵ

ሺ7ሻ 

3. The proposed diagnosis method 

The framework of the proposed bearing fault diagnosis method based on multisource and 
multimodal information fusion in this paper is shown in Figure 5. First, the raw data obtained from 
multi-sensor acquisition is preprocessed with minimum-maximum normalization, based on which, this 
paper establishes a multisource information fusion model based on auto-encoder to obtain multi-sensor 
fused signals, which contributes to obtaining more comprehensive fault characterization information. 
Then, the fused signal is subjected to sliding segmentation. Specifically, the signal acquired in the 0.05 
s time period is taken as a sample sequence since the sampling frequency is 25.6 kHz, i.e., each segment 
contains 1280 sample points. Meanwhile, the sample segments are generated by sliding segmentation 
at intervals of 500 sample points. The division of the training set and test set is carried out in 8:2. 
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Figure 5. Flowchart of the proposed method. 

For the obtained samples, a Resnet-based fault diagnosis model is established on the one hand. 
The one-dimensional signal samples are transformed into two-dimensional images using continuous 
wavelet transform to show more intuitively the changes of the signals in the time and frequency 
domains, which are then inputted into the Resnet34 network for fault diagnosis. On the other hand, a 
fault diagnosis model based on 1DCNN-REA is established. Specifically, the statistical features of the 
samples are extracted from both time and frequency domains to capture the key statistical information 



6285 

Electronic Research Archive  Volume 32, Issue 11, 6276–6300. 

of the signals and provide effective feature vectors for subsequent classification. Finally, the prediction 
results of the two models are combined to fully utilize the advantages of both models. With the TPE 
algorithm for optimization, the integrated model with the best diagnostic results is obtained by setting 
the weight parameter for each basic model and performing a decision fusion: 

𝑃ௗሺ𝑥ሻ ൌ 𝑎𝑟𝑔𝑚𝑎𝑥൫𝑚 ൈ 𝑃ଵேேିோாሺ𝑥ሻ  𝑛 ൈ 𝑃ோ௦௧ሺ𝑥ሻ൯ ሺ8ሻ 

0  𝑚  1 ሺ9ሻ 

𝑚  𝑛 ൌ 1 ሺ10ሻ 

where 𝑃ௗሺ𝑥ሻ  is the predicted category; 𝑃ଵேேିோாሺ𝑥ሻ  is the probability of the category 
predicted by the 1DCNN-REA model; 𝑃ோ௦௧  is the probability of the category predicted by the 
Resnet model; 𝑚 is the weight coefficient assigned to the 1DCNN-REA model; and 𝑛 is the weight 
coefficient assigned to the Resnet model. 

4. Experiments 

4.1. Dataset preparation 

In order to verify the effectiveness of the proposed method, a fault simulation test was conducted 
on the test rig shown in Figure 6. The test rig consists of motor, coupling, inertia wheel, conveyor belt, 
conveyor belt drive mechanism, crank linkage mechanism, gearbox, and reciprocating mechanism 
with spring. The MB ER-10K deep groove ball bearing mounted close to the motor side was taken as 
the object of study, and localized cracks with width and depth of 0.2 mm were implanted on the outer 
race, inner race, and rolling element surfaces of the bearing, respectively, and the three types of bearing 
faults obtained included inner race fault (IRF), outer race fault (ORF), and rolling element fault (REF). 
The motor speed was 900 r/min and the bearings were operated under no alternating load conditions 
while the signals were collected at a frequency of 25.6 kHz using an accelerometer with a sensitivity 
of 10.2 (mV/ms-2)/100 (mV/g). 

 

Figure 6. Schematic diagram of the test rig. 
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4.2. Evaluation indicators 

For multi-category classification, multiple evaluation metrics are required and the confusion 
matrix is shown in Table 2 [33]. In order to comprehensively evaluate the effectiveness of the proposed 
method in bearing fault diagnosis and to compare with other models, accuracy, precision, and F1-score 
are chosen to evaluate the performance of the selected model. 

Table 2. Confusion matrix. 

 
True class 
Positive Negative 

Predicted class 
Positive True positive (TP) False positive (FP) 
Negative False Negative (FN) True Negative (TN) 

The formula for each indicator from the confusion matrix is as follows. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ
𝑇𝑃  𝑇𝑁

𝑇𝑃  𝑇𝑁  𝐹𝑁  𝐹𝑃
ሺ11ሻ 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ
𝑇𝑃

𝑇𝑃  𝐹𝑃
ሺ12ሻ 

𝐹1 ൌ
2 ൈ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൈ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  𝑟𝑒𝑐𝑎𝑙𝑙
ሺ13ሻ 

4.3. Time-Frequency features extraction 

In this study, the time-frequency statistical features of the signals are extracted from the integrated 
perspective of time and frequency domains to characterize the information contained in the signals, as 
shown in the Table 3. Among them, 11 time-domain features and 3 frequency-domain features are 
included, specifically, 𝑓ଵ–𝑓ଵଵ are time-domain features and 𝑓ଵଶ– 𝑓ଵସ are frequency-domain features. 

Table 3. Time-frequency domain features. 

Name Definitions Name Definitions 
Maximum 
value 

𝑓ଵ ൌ max ሺ𝑋ሻ Crest factor 𝑓 ൌ
𝑓ଵ

𝑓ସ
 

Minimum 
value 

𝑓ଶ ൌ min ሺ𝑋ሻ Impulse factor 𝑓ଽ ൌ
𝑚𝑎𝑥|𝑋|

1
𝑁 ∑ |𝑥|ே

ୀଵ

 

Mean value 𝑓ଷ ൌ
1
𝑁

 𝑥

ே

ୀଵ

 Shape factor 𝑓ଵ ൌ
ට1

𝑁 ∑ 𝑥
ଶே

ୀଵ

1
𝑁 ∑ |𝑥|ே

ୀଵ

 

Continued on next page 
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Name Definitions Name Definitions 

Root mean 
square 𝑓ସ ൌ ඩ

1
𝑁

 𝑥
ଶ

ே

ୀଵ

 Margin factor 𝑓ଵଵ ൌ
𝑚𝑎𝑥|𝑋|

1
𝑁 ∑ ඥ|𝑥|ே

ୀଵ

 

Kurtosis 𝑓ହ ൌ
𝑁 ∑ ሺ𝑥 െ 𝑓ଷሻସே

ୀଵ

ሾ∑ ሺ𝑥 െ 𝑓ଷሻଶே
ୀଵ ሿଶ 

Center of gravity 
frequency 

𝑓ଵଶ ൌ
∑ 𝑓𝐴ሺ𝑘ሻ

ୀଵ

∑ 𝐴ሺ𝑘ሻ
ୀଵ

 

Skewness 𝑓 ൌ
√𝑁 ∑ ሺ𝑥 െ 𝑓ଷሻଷே

ୀଵ

ටሾ∑ ሺ𝑥 െ 𝑓ଷሻଶே
ୀଵ ሿଶయ

Root mean square 
frequency 𝑓ଵଷ ൌ ඨ

∑ 𝑓
ଶ𝐴ሺ𝑘ሻ

ୀଵ

∑ 𝐴ሺ𝑘ሻ
ୀଵ

 

Peak-to-peak 
value 

𝑓 ൌ 𝑓ଵ െ 𝑓ଶ 
Frequency 
standard deviation 𝑓ଵସ ൌ ඨ

∑ 𝐴ሺ𝑘ሻሾ𝑓 െ 𝑓ଵଶሿଶ
ୀଵ

∑ 𝐴ሺ𝑘ሻ
ୀଵ

4.4. Results and discussion 

4.4.1. Multisource information fusion based on auto-encoder 

This paper constructs an auto-encoder model to realize multisource information fusion from 
different sensors. During the construction process, in order to measure the accuracy of the model in 
reconstructing the input data, we chose the mean square error (MSE) as the loss function, which aims 
to minimize the mean squared difference between the model’s predicted values and the true values, 
thus ensuring that the model can capture the intrinsic structure of the data more accurately. In the 
choice of activation function, we adopt the parametric rectified linear unit (PReLU). As an improved 
version of ReLU, it not only inherits the nonlinear characteristics of ReLU, but also can effectively 
alleviate the dead ReLU problem, so as to improve the expressive ability and training efficiency of the 
model. As for the optimizer, we choose the Adam optimizer, which combines the adaptive learning 
rate adjustment and momentum strategy to dynamically adjust the learning rate of each parameter and 
accelerate the convergence based on the historical gradient information, which enables the model to 
find the optimal solution faster during the training process. In addition, we set the learning rate to 0.01, 
an initial value that shows good performance in most scenarios, which facilitates the model to enter a 
stable learning state quickly in the early stage of training. 

To visually assess the effectiveness of the training process, we recorded the training loss after 
each training round and plotted the corresponding loss images, as shown in Figure 7. The horizontal 
axis accurately represents the progression of training epochs, while the vertical axis clearly indicates 
the magnitude of the loss values. Observing the training loss curve, it is evident that the training loss 
consistently decreases as the number of training rounds increases, indicating that the model is 
continuously optimizing its internal parameters to reconstruct the input data more accurately. 
However, in the latter half of the training, it is noticeable that the training loss curve begins to flatten, 
suggesting that the model may have reached a relatively stable state. This plateau indicates that it 
has become increasingly challenging for the model to further reduce the loss values in the current 
training environment. 
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(a) (b) (c) 

Figure 7. Auto-encoder based data fusion training loss. (a) Inner race fault (b) Rolling 
element fault (c) Outer race fault. 

(a) (b) 

Figure 8. t-SNE visualization results. (a) Original data (b) Auto-encoder based fused data. 

To investigate the performance of the auto-encoder-based data fusion method, we visualize the 
original and fused data using the t-distributed stochastic neighbor embedding (t-SNE) technique, as 
illustrated in Figure 8(a),(b). Figure 8(a) clearly demonstrates that the original samples are nearly 
indistinguishable in 2D space. In contrast, after fusing the raw data with the auto-encoder, the inner 
race fault samples are almost completely separated from the other two fault types. This outcome 
indicates that the auto-encoder-based data fusion method effectively aids in distinguishing different 
fault types, facilitating accurate diagnosis of the three subsequent fault categories. 

4.4.2. Multimodal bearing fault diagnosis based on Resnet-1DCNN-REA 

On the basis of converting one-dimensional vibration signals into two-dimensional images 
using continuous wavelet transform, this paper utilizes deep learning models to recognize and 
classify the images. Specifically, this study compares the diagnostic performance of two models, 
Resnet and CNN, on two-dimensional vibration signal images. From a series of experiments, the 
specific values of the two models on the three key indexes of accuracy, precision and F1-score were 
obtained, as shown in Table 4. 
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Table 4. Comparison of experimental results between Resnet and 2DCNN. 

 Accuracy Precision F1-score 
Resnet 0.9822 0.9830 0.9820 
2DCNN 0.8434 0.8442 0.8435 

First, from the accuracy point of view, the Resnet model achieved higher accuracy on the test set. 
This shows that the Resnet model is able to determine more accurately whether an image contains fault 
information or not when recognizing fault features in an image. Second, the precision metric reflects 
the proportion of instances predicted by the model to be positive samples that are actually positive 
samples. In this metric, Resnet also performs well, indicating that the Resnet model has higher 
reliability in predicting faulty images and can reduce the possibility of false alarms. Finally, the F1-
score, which is the reconciled average of precision and recall, combines the model’s accuracy and 
completeness rates. On F1-score, the Resnet model also outperforms the CNN model, which further 
proves the overall superiority of Resnet in fault diagnosis tasks. This may be due to the fact that the 
Resnet model adopts the residual learning idea, which is capable of constructing deeper network 
structures and thus extracting richer image features. In addition, the residual connectivity in the Resnet 
model helps to alleviate the gradient vanishing problem and improve the training efficiency and 
stability of the model. 

In order to more intuitively show the difference in the effect of the two models, we draw a bar 
chart for comparison. As shown in Figure 9, it can be clearly seen that the Resnet model is significantly 
higher than the CNN model in the three metrics of accuracy, precision, and F1-score. This result fully 
proves the effectiveness and superiority of Resnet model in image fault diagnosis task. Furthermore, 
this study compares and analyzes the fault diagnosis performance of two different models with a visual 
presentation of their results using confusion matrix plots, as shown in Figure 10. The results show that 
the Resnet model has a recognition accuracy of more than 96% for all three evaluated fault types. On 
the contrary, the 2DCNN model, while showing reasonable performance, has a maximum recognition 
accuracy of only 88.72% for the same fault patterns. This implies that the Resnet model exhibits higher 
recognition accuracy and better classification results in fault diagnosis tasks. 

 

Figure 9. Comparison results of Resnet and 2DCNN model effects. 
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(a) (b) 

Figure 10. Confusion matrix of Resnet and 2DCNN models. (a) Resnet (b) 2DCNN. 

Combining the residual module and the attention mechanism, this paper builds a 1DCNN-REA 
model aiming to improve the adequate extraction of fault information. The variation curves of 
training accuracy and validation accuracy with the number of iterations are shown in Figure 11(a), 
and the variation curves of training loss and validation loss with the number of iterations are shown 
in Figure 11(b). Based on the time-frequency statistical characteristics of the signal, the 1DCNN-REA 
model is utilized for fault diagnosis, and the confusion matrix obtained is shown in Figure 12. 

(a) (b) 

Figure 11. 1DCNN-REA model effect. (a) Accuracy curve (b) Loss curve. 

In this paper, we provide a comprehensive evaluation of the proposed method using an 
experimental dataset containing three fault types for the bearing fault diagnosis problem. By 
comparing with traditional machine learning models such as support vector machine (SVM) and 
random forest (RF), as well as common deep learning models such as long short-term memory 
network (LSTM) and gated recurrent unit (GRU), we analyze in depth the performance of the 
different models in bearing fault diagnosis with the results shown in Tables 5–7. These tables show 
the results of ablation experiments on the proposed method in addition to the comparison 
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experimental results of different methods, which comprehensively analyze the performance of 
different methods from multiple perspectives. 

 

Figure 12. Confusion matrix of 1DCNN-REA model. 

As an example, Table 5 demonstrates the classification accuracy and average accuracy of 
various models for different types of faults. The table reveals significant differences in the 
performance of the models across fault types. Specifically, for the diagnosis of ORF, the proposed 
method achieves a classification accuracy of 100%, representing an improvement of 80.77% over 
deep belief network (DBN), 15.34% over SVM, 1.07% over RF, 22.88% over LSTM, and 18.25% 
over GRU, all of which demonstrate lower accuracy. Furthermore, from the perspective of model 
classification accuracy, traditional machine learning models such as SVM and RF outperform the 
common deep learning models LSTM and GRU. In terms of REF diagnosis, it is similarly observed 
that different models exhibit varying levels of accuracy. The SVM model, a traditional machine 
learning approach, demonstrates a classification accuracy of 83.59%. In contrast, the RF model 
achieves only 68.72% accuracy for this fault type, which is significantly lower than SVM. This 
discrepancy may be attributed to the limitations of RF in handling complex fault diagnosis tasks. 
Nevertheless, the deep learning models LSTM and GRU perform exceptionally well in diagnosing this 
fault type. The LSTM model achieves an accuracy of 99.49%, which is nearly perfect for classification. 
The GRU model, a variant of LSTM, offers a more streamlined structure and faster training speed 
while maintaining a high accuracy of 98.46%. It is important to note that the diagnostic accuracy of 
our proposed model for this fault type is 86.67%, which, while slightly lower than that of the LSTM 
model, is still higher than that of SVM and RF. Considering the advantages of the proposed model in 
diagnosing other fault types, its average diagnostic accuracy across the three fault types is superior to 
that of the other models, making the accuracy of 86.67% competitive. For the diagnosis of IRF, the 
accuracy of the SVM model is only 86.59%, the DBN model reaches 97.77%, while all other models 
achieve 100%. 
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Table 5. Comparison of classification accuracy results for different models. 

Fault diagnosis model 
Test accuracy Average classification 

accuracy ORF REF IRF 
DBN 0.5532 0.7179 0.9777 0.7456 
SVM 0.8670 0.8359 0.8659 0.8563 
RF 0.9894 0.6872 1.0000 0.8879 
LSTM 0.8138 0.9949 1.0000 0.9359 
GRU 0.8457 0.9846 1.0000 0.9431 
1DCNN(No_res_att) 0.7340 1.0000 1.0000 0.9110 
1DCNN(No_att) 0.7606 1.0000 1.0000 0.9199 
1DCNN(No_res) 0.7660 1.0000 1.0000 0.9217 
Proposed method (1DCNN-REA) 1.0000 0.8667 1.0000 0.9537 

The comparison results of the precision rates for various models diagnosing the three types of 
faults, as presented in Table 6, indicate that for the ORF fault type, despite the variations in diagnostic 
precision rates among models such as DBN, SVM, RF, LSTM, and GRU, our model demonstrates its 
effectiveness with a precision rate of 87.85%. Notably, in diagnosing REF and IRF fault types, the 
precision rate of the proposed model achieves 100%, showcasing exceptional reliability and precision. 

The categorized F1-score as well as the average F1-score for the various models across the three 
fault types are presented in Table 7. The data in the table indicates that the proposed method achieves 
excellent F1-scores for all three fault types, with an average F1-score that surpasses those of the other 
models compared. This suggests that the proposed method effectively balances precision and recall in 
fault diagnosis, resulting in more comprehensive and accurate fault detection. Compared to the other 
models, the proposed method clearly demonstrates a significant advantage in terms of F1-score. 

Table 6. Comparison of classification precision results for different models. 

Fault diagnosis model 
Test precision Average classification 

precision ORF REF IRF 
DBN 0.6933 0.6167 0.9459 0.7472 
SVM 0.8359 0.8717 0.8611 0.8563 
RF 0.7530 0.9853 1.0000 0.9123 
LSTM 0.9935 0.8472 1.0000 0.9448 
GRU 0.9815 0.8688 1.0000 0.9483 
1DCNN(No_res_att) 1.0000 0.7959 1.0000 0.9292 
1DCNN(No_att) 1.0000 0.8125 1.0000 0.9349 
1DCNN(No_res) 1.0000 0.8159 1.0000 0.9361 
Proposed method (1DCNN-REA) 0.8785 1.0000 1.0000 0.9594 

In order to clarify the different contributions of the attention mechanism module and the residual 
module to improve model performance, we designed three sets of ablation experiments. In the first 
group of experiments, we removed both the attention mechanism module and the residual module to 
establish a baseline. The second set of experiments removed only the attention mechanism module, 
thus allowing us to isolate and quantify its impact on model performance. In the third set of 
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experiments, we excised only for the residual module while retaining the attention mechanism and 
performed a similar performance evaluation. To ensure the comprehensiveness of our findings, we 
conducted these ablation experiments with different datasets and experimental configurations. The 
experimental results clearly show that when tested individually, each module improves the overall 
performance of the model to varying degrees. Notably, the performance degradation observed after 
removing either module emphasizes the indispensability of both components of the proposed method. 
This comprehensive analysis validates the strategic integration of the attention mechanism and the 
residual module, emphasizing their synergistic effects in enhancing the model’s capabilities. 

Table 7. Comparison of classification F1-score results for different models. 

Fault diagnosis model 
Test F1-score Average classification 

F1-score  ORF REF IRF 
DBN 0.6154 0.6635 0.9615 0.7423 
SVM 0.8512 0.8534 0.8635 0.8559 
RF 0.8552 0.8097 1.0000 0.8855 
LSTM 0.8947 0.9151 1.0000 0.9353 
GRU 0.9086 0.9231 1.0000 0.9427 
1DCNN(No_res_att) 0.8466 0.8864 1.0000 0.9093 
1DCNN(No_att) 0.8640 0.8966 1.0000 0.9186 
1DCNN(No_res) 0.8675 0.8986 1.0000 0.9205 
Proposed method (1DCNN-REA) 0.9353 0.9286 1.0000 0.9536 

The proposed method enables the model to focus on the more important parts of the input data by 
introducing an attention mechanism module. In the ablation experiments, we find that the model 
performs poorly in processing complex data without the attention mechanism module or without the 
residual module. This demonstrates the effectiveness of the attention mechanism and the residual 
module in improving model performance. In addition, we also noticed interactions between different 
modules, specifically, the performance of the model was further improved when the attention 
mechanism module was used in conjunction with the residual module. This suggests that when 
designing the method, we need to fully consider the synergies between the modules in order to achieve 
optimal performance. 

To present the experimental results more intuitively, we visualized the accuracy, precision, and 
F1-score, as illustrated in Figures 13–15. The graphs clearly demonstrate that the overall performance 
of the proposed model surpasses that of the comparison models. The average accuracy, precision, and 
F1-score curves for the four models—SVM, RF, LSTM, and GRU—show a gradual increase. 
Compared to these five machine learning models, the proposed model in this paper exhibits superior 
diagnostic performance. The results of the ablation experiments reveal a decline in model performance 
with both single-module and two-module ablation compared to the full model. Notably, the model with 
two-module ablation experiences the most significant performance degradation, suggesting an 
interdependence between the two modules in the proposed model, which collectively influence overall 
performance. A comparison between the models with single-module and two-module ablation 
indicates that the model with only one module removed still outperforms the model with both modules 
removed. This finding further substantiates the independent contribution of each module to the overall 
performance of the proposed method. 



6294 

Electronic Research Archive  Volume 32, Issue 11, 6276–6300. 

 

Figure 13. Diagnosis accuracy of different models for different faults. 

 

Figure 14. Diagnosis precision of different models for different faults. 
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Figure 15. Diagnosis F1-score of different models for different faults. 

To better assess the uncertainty of the models, this paper trains and tests each model using ten 
random initializations, calculating the standard deviation of the classification accuracies for 
comparison. The experimental results are presented in Table 8. It is evident that the standard 
deviation of the proposed 1DCNN-REA model is 0.0067, which is significantly smaller than that of 
the other models (e.g., 0.1314 for GRU and 0.0667 for RF). This indicates that the performance of 
the 1DCNN-REA model is much more stable, with almost no significant fluctuations under varying 
random initial conditions. 

Table 8. Comparison of standard deviation of accuracy for different models. 

Fault diagnosis model Standard deviation Fault diagnosis model Standard deviation 
SVM - 1DCNN(No_res_att) 0.0282 
RF 0.0667 1DCNN(No_att) 0.0261 
LSTM 0.0286 1DCNN(No_res) 0.0180 
GRU 0.1314 Proposed method 

(1DCNN-REA) 
0.0067 

DBN 0.0152 

To enhance the effectiveness of fault diagnosis, this paper employs the TPE optimization 
algorithm to integrate the ResNet-based fault diagnosis model with the 1D CNN-REA-based fault 
diagnosis model, resulting in an integrated model. The integrated model is validated using 
experimental datasets and compared to the diagnostic effectiveness of the individual models, with the 
results presented in Table 9. The diagnostic accuracy of the integrated model is 0.72% higher than that 
of the single ResNet-based fault diagnosis model and 3.73% higher than that of the single 1D CNN-
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REA-based fault diagnosis model, demonstrating the efficacy of model integration.  

Table 9. Comparison of classification accuracy results of different models. 

Fault diagnosis model Resnet 1DCNN-REA The proposed ensemble model 
Accuracy 98.22% 95.37% 98.93% 

This paper employs the integrated model to conduct ten experiments with random initialization 
for both model training and testing. The standard deviation of the model’s accuracy is calculated to 
be 0.0013, indicating that the model demonstrates a high level of stability. In Eq (8), the values of m 
and n are 0.3364 and 0.6636, respectively. When utilizing the integrated model to diagnose three types 
of bearing faults, the resulting confusion matrix is illustrated in Figure 16. The figure indicates that the 
integrated model exhibits superior diagnostic performance across all three fault types. However, it is 
evident that the model performs better than the IRF for diagnosing ORF faults, while it is relatively less 
effective for diagnosing REF faults. This outcome suggests that the integrated model displays varying 
sensitivities to the features of different fault types, demonstrating a heightened ability to capture the 
characteristics of ORF faults, thereby allowing for more accurate identification of this fault type. 

 

Figure 16. Confusion matrix of the proposed ensemble model. 

5. Conclusions 

Aiming at the problem of multi-information fusion, this paper proposes a novel Resnet-1DCNN-
REA bearing fault diagnosis method based on multisource and multimodal information fusion. The 
proposed method utilizes auto-encoder to fuse the multi-sensor signals, as well as provides a more 
comprehensive and richer feature representation by integrating the multimodal information of time-
frequency statistical information and image features to improve the understanding and analysis of 
signals by the fault diagnosis system. In addition, the accuracy and robustness of bearing fault 
diagnosis under complex working conditions are improved through integrating the advantages of 
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different models to make up for the limitations of their respective methods. 
In order to verify the effectiveness of the proposed model, this paper utilizes real experimental 

data for detailed validation. The effectiveness of the proposed auto-encoder-based multisource 
information fusion model is demonstrated by visualizing the data distribution before and after multi-
source data fusion. By comparing the results of the experiments with those of the ablation experiments, 
we observe that the proposed 1DCNN-REA model and the integrated model demonstrate a high degree 
of accuracy in the diagnosis of three types of faults, namely, outer race fault, inner race fault, and rolling 
element fault. Notably, the integrated model attains a remarkable fault diagnosis accuracy of 98.93%, 
underscoring its superiority and reliability in the domain. Compared to other diagnostic models, the 
proposed model exhibits superior diagnostic performance across several classification evaluation 
metrics, including accuracy, precision, and F1 score. Additionally, it demonstrates greater stability, 
thereby confirming its enhanced performance capabilities. This result shows that the bearing fault 
diagnosis model based on multi-sensor information fusion established in this paper can predict and 
diagnose bearing faults more accurately, which not only improves the technical level of bearing fault 
diagnosis, but also provides reference for fault diagnosis in other fields.  

The proposed method involves image computation, resulting in greater complexity compared to 
traditional machine learning algorithms such as SVM, and RF, and others like LSTM networks and 
1DCNN. In future research, we will focus on reducing computational requirements through techniques 
such as model compression, pruning, and quantization to enhance the model’s efficiency. In addition, 
future research will be devoted to further optimizing the feature extraction and classification models 
and expanding the scope of application of the method to cope with more complex and variable 
industrial environments. 
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