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Abstract: The Hestenes-Stiefe (HS) conjugate gradient method is very effective in resolving larger-
scale sophisticated smoothing optimization tasks due to its low computational requirements and high
computational efficiency. Additionally, the algorithm has been employed in practical applications to
address image restoration and machine learning issues. In this paper, the authors proposed an improved
Hestenes-Stiefe conjugate gradient algorithm having characteristics like: i) The algorithm depicts the
decreasing features and trust region properties free of conditionalities. ii) The algorithm satisfies global
convergence. iii) The algorithm can be applied to tackle the image restoration problem, monotone
nonlinear equations, and machine learning problems. Numerical results revealed that the proffered
technique is a competitive method.

Keywords: conjugate gradient; global convergence; image restoration; nonlinear equations; machine
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1. Introduction

Solving systems of nonlinear equations is an important part of optimization theory and algorithms
and is essential to applications in machine learning, artificial intelligence, economic planning, and other
important fields. The theoretical study of algorithms for nonlinear systems of equations is an important
research topic in the fields of computational mathematics, operations research and optimal control, and
numerical algebra. As early as the 1970s, the monographs Orrega [1] and Rheinboldt [2] had done
systematic research on nonlinear systems of equations in terms of theory and solutions.

An early and very famous method was the Newtonian method [3]. It has the advantage that the algo-
rithm converges quadratically when the initial point chosen is close to the minima; however, Newton’s
method does not necessarily converge when the initial point is away from the minima, and Newton’s
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method requires the computation and storage of Jacobian matrices. So a wide range of researchers have
built proposed quasi-Newtonian methods [4, 5]. Such algorithms utilize approximate Jacobian matrices,
inheriting the fast convergence of Newton’s algorithm. In addition, methods for solving problems
with linear equations are the Gaussian-Newton method, Levenberg-Marquardt algorithm, and their
various modified forms [6–8]. The above methods necessitate computing and banking Jacobian matrices
or approximate Jacobian matrices for each iteration step. The nonlinear conjugate gradient method
belongs to the classical computational methods in the first-order optimization methods, which has the
characteristics of simple structure, small storage, and low computational complexity, and thus has been
widely studied by the optimization community [9–13]. Derivative-free algorithms are one of the popular
algorithms for solving large-scale nonlinear systems of equations; they utilize the hyperplane projection
technique [14] with a structure of first-order optimization methods, which have an R-linear convergence
speed under appropriate conditions. These algorithms have a simple structure, a small amount of storage,
a low computational complexity, and they do not require derivative information, thus they are favored
by a wide range of researchers.

To ensure the descent of search direction, adjusting search direction structure becomes another
important way to study the nonlinear conjugate gradient method. Yuan et al. [15] proposed a further
improved weak Wolfe-Powell line-search and proved the method’s global convergence in determining
average functions given appropriate conditions. [16] proposed the adaptive scaled damped BFGS
method (SDBFGS) for solving gradient non-Lipschitz non-convex objective functions. The above
approach is attractive because the algorithm has strong self-correcting properties for large eigenvalues. In
recent years, under influence from [17], some 1st-order optimization methods exemplified by conjugate
gradient (CG) techniques are widely accepted to solve large-scale unconstrained optimization projects
and are straightforward and low-memory [9–13]. These extensions, together with the freshly elaborated
techniques, are permutations of renowned conjugate gradient algorithms, another key numerical tool for
unconstrained optimization [18–21].

The three-term conjugate gradient method [22] is considered to have tantalizing numerical capabilities
and good theoretical properties. Yuan [23] presented an adaptive three-term Polak-Ribière-Polyak (PRP)
method for non-convex functions and non-Lipschitz continuous functions with gradient. The efficient
conjugate gradient algorithm is notorious for requiring both rapid convergence and high precision. [24]
proposed a mixed inertia spectral conjugate gradient projection method for solving constrained nonlinear
monotone equations, which is superior in solving large-scale equations and recovering blurred images
contaminated by Gaussian noise. [25] described two families of self-tuning spectral hybrid DL conjugate
gradient methods. The search directions of methods are improved by integrating negative spectral
gradients and a final search direction with a convex combinatorial structure. [26] proposed a biased
stochastic conjugate gradient (BSCG) algorithm with adaptive step size that combines the stochastic
recursive gradient method (SARAH) and the improved Barzilai-Borwein (BB) technique into a typical
stochastic gradient algorithm. [27] applied an improved triple conjugate gradient method and linear
search technique to machine learning. The same convergence speed as stochastic conjugate gradient
algorithm (SCGA) is obtained under weaker conditional assumptions.

The idea of this paper is to combine family weak conjugate gradient methods proposed in [28] with
a new parametric formulation of the HS conjugate gradient algorithm proposed in [29]. An efficient HS
conjugate gradient method (EHSCG) is proposed and used for image restoration problems and machine
learning. Basic characterization of the algorithm is given below:
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• The new algorithms have decreasing and trust-region properties requiring no extras.
• They converge globally in well-suited circumstances.
• The new algorithms can solve image restoration, nonlinear monotone equations, and machine

learning issues.

In Section 2, we present procedures for solving nonlinear equation models and attest to the related
properties. In Section 3, global convergence of the algorithm is proved using the weak Wolfe-Powell
line-research condition under normal conditions for non-convex functions. In Section 4, we demonstrate
the implementation of the algorithms toward image restoration and machine learning tasks and nonlinear
monotone equations.

2. Algorithm

2.1. Motivation of the algorithm

Consider the following nonlinear model:

g(x) = 0, (2.1)

where g : ℜn → ℜn is a continuously differentiable monotone function, including x ∈ ℜn. g(x)
characterization suggests that the inequality is true:

(g(m1) − g(m2))T (m1 − m2) ≥ 0, ∀m1, m2 ∈ ℜ
n. (2.2)

Scholars have come up with a number of interesting theories about this model.
To solve this optimization problem, we typically have iteration xk+1 = xk + αkdk, which stipulates

that symbol xk signifies the iteration point, xk+1 is the following point, αk is the step length, and dk is the
current direction, which is framed as below:

dk = −gk + βk−1dk−1. (2.3)

In [14] covered projection techniques to find large-scale nonlinear equation systems, noted that
projection technology is strictly coupled to direction and step size. In particular, hyperplane and
projection technologies were leveraged to obtain a formulation for further iteration point:

xk+1 =

wk, ∥g(wk)∥ = 0,
xk −

g(wk)T (xk−wk)g(wk)
∥g(wk)∥2 , otherwise, ,

(2.4)

where wk = xk + αkdk.
Furthermore, a linear search solution was presented within [30] to resolve step length αk in iteration

sequencing as follows:
−gT

k+1dk ≥ ϖαk∥gk+1∥∥dk∥
2, (2.5)

where step length αk = max
{
q̃, q̃ṫ, q̃ṫ2...

}
, and q̃ > 0, ṫ ∈ (0, 1), ϖ > 0.

In [28], a modified search direction is followed,

d∗k = −gk + r⋆k dk = −(1 + r⋆k )gk + r⋆k βk−1dk−1, (2.6)
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where dk is defined in (2.3), and rk+1 is designated as follows:

r⋆k = ϑ
∥gk∥

∥dk∥
.

The authors show that it can be equated with the traditional HS conjugate gradient method under the
conjugation condition. They executed numerous tests that illustrated the superiority of the formulation
in tackling large-scale optimization issues.

Yuan et al. [29] updated the parametric formulation with the following HS conjugate gradient
algorithm:

d̂k =

−τ1gk +
gT

k yk−1dk−1−dT
k−1gkyk−1

max{τ2∥dk−1∥∥yk−1∥,τ3 |dT
k−1yk−1 |}

, k ≥ 2,

−τ1gk, k = 1,
(2.7)

where yk−1 = gk − gk−1, τ1,2,3 ≥ 0. The authors prove their methods fulfill an adequate descent condition
by converging globally.

Inspired by (2.6) and (2.7), considering both the excellent theoretical and numerical performance of
the two algorithms, we obtain the equation below:

dk = −gk + ϑ
∥gk∥

∥d̂k∥
d̂k

= −gk + ϑ
∥gk∥

∥ − τ1gk +
gT

k yk−1dk−1−dT
k−1gkyk−1

max{τ2∥dk−1∥∥yk−1∥,τ3 |dT
k−1yk−1 |}

∥

(−τ1gk +
gT

k yk−1dk−1 − dT
k−1gkyk−1

max{τ2∥dk−1∥∥yk−1∥, τ3|dT
k−1yk−1|}

)

= −(1 + ν1
∥gk∥

ℏk
)gk +

∥gk∥(gT
k yk−1dk−1 − dT

k−1gkyk−1)
ℏk max{ν2∥dk−1∥∥yk−1∥, ν3|dT

k−1yk−1|}
,

where ℏk =

√
τ2

1∥gk∥
2 +

(|gT
k yk−1 |∥dk−1∥−|dT

k−1gk |∥yk−1∥)2

max{τ2∥dk−1∥∥yk−1∥,τ3 |dT
k−1yk−1 |}2

.

On account of the above derivation, eventually we acquire the improved dk+1 formulation of this
paper:

dk+1 =

−(1 + ν1
∥gk+1∥

ℏk
)gk+1 +

∥gk+1∥(gT
k+1ykdk−dT

k gk+1yk)
ℏk max{ν2∥dk∥∥yk∥,ν3 |dT

k yk |}
, k ≥ 1,

−(1 + ν1
∥gk+1∥

ℏk
)gk+1, k = 0,

(2.8)

where ℏk+1 =

√
τ2

1∥gk+1∥
2 +

(|gT
k+1yk |∥dk∥−|dT

k gk+1 |∥yk∥)2

max{τ2∥dk∥∥yk∥,τ3 |dT
k yk |}2

, yk = gk+1 − gk, ν1 = ϑτ1, ν2 =
τ2
ϑ

, ν3 =
τ3
ϑ

, and ϑ > 0,

νi > 0, and τi > 0, i = 1, 2, 3. Based on (2.8), combined with line search (2.5), the sufficient descent
characterization and trust region of the algorithm are provided. Equally the global convergence of the
algorithm can be certified. Meanwhile, numerical results also prove the effectiveness and feasibility of
the algorithm.

2.2. Convergence analysis

Assumption 2.1. (i) The problem’s solution set is not ∅. (ii) Gradient g(x) is Lipschitz continuous, and
this implies that the following inequality holds: ∃L > 0, s.t.

∥g(m1) − g(m2)∥ ≤ L∥m1 − m2∥, ∀m1, m2 ∈ ℜ
n. (2.9)
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Algorithm 1 Efficient HS conjugate gradient method (EHSCG)

1: Recognize an initial point, x0 ∈ ℜ
n; constants ϖ, ϑ, q̃ > 0; ṫ, ε ∈ (0, 1), ν1,2,3 > 0. Let k = 1.

2: If ∥gk∥ ≤ ε, stop; otherwise, calculate dk based on (2.8).
3: Selecting the right step size αk on the basis of (2.5).
4: Reset the new point to be wk = xk + αkdk.
5: If ∥gk∥ ≤ ε, stop, set xk+1 = wk. Or else, construct the iteration point xk on the basis of xk+1 =

xk −
g(wk)T (xk−wk)g(wk)

∥g(wk)∥2 .
6: Let k = k + 1, visit 2.

This assumption implies ∃ ω ∈ C s.t.
∥gk∥ ≤ ω. (2.10)

Theorem 2.1. If dk satisfies Eq (2.8), then
(1) proposed descent:

gT
k+1dk+1 ≤ −(1 − ϑ)∥gk+1∥

2, (2.11)

and (2) trust domain:

∥dk+1∥ ≤ (1 + ϑ)∥gk+1∥. (2.12)

Proof. A remarkably similar proof procedure has been granted in Yuan’s work in [28] and will not be
reiterated for here. □

Lemma 2.2. If Assumption 2.1 holds and the objective function monotones, the iterative series {xk} is
yielded by Algorithm 1, and point x⋆ satisfies the condition g(x⋆) = 0. Taking it a step further, if the
series xk is infinite, then

∞∑
k=0

∥xk − xk−1∥
2 ≤ ∞. (2.13)

Proof. A detailed proof procedure of it is available in [14]. □

Theorem 2.3. If Assumption 2.1 holds, Algorithm 1 produces a finite series of step iterations {αk} during
the iteration from an active point to the newer one.

Proof. This conclusion is supported by contradiction. Assume the indication set φ = N ∪ {0}, take any
k ∈ φ, and consider the iteration of xk. Assume that the step size satisfying the line search does not
occur; that is, there occurs a step size such that α⋆ = q̃ṫa satisfies:

−g̊T dk ≤ ϖα
⋆∥g̊∥∥dk∥

2, (2.14)

where g̊ = g(xk + α
⋆dk). Referring to the previous (2.9) and (2.14), we have

∥gk∥
2 = −

1

1 + ϑ ∥gk∥

ℏk

gT
k dk

=
1

1 + ϑ ∥gk∥

ℏk

((g̊ − gk)T dk − g̊T dk)
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≤
1

1 + ϑ ∥gk∥

ℏk−1

(∥g̊ − gk∥∥dk∥ +ϖα
⋆∥g̊∥∥dk∥

2)

≤
1

1 + ϑ ∥gk∥

ℏk−1

(L∥xk + α
⋆dk − xk∥∥dk∥ +ϖα

⋆∥g̊∥∥dk∥
2)

≤
1

1 + ϑ ∥gk∥

ℏk

(Lα⋆∥dk∥
2 +ϖα⋆∥g̊∥∥dk∥

2)

≤
1

1 + ϑ ∥gk∥

ℏk

α⋆(L +ϖ∥g̊∥)∥dk∥
2.

By (2.9) and (2.10), then

∥g̊∥ ≤ ∥g̊ − gk∥ + ∥gk∥

≤ L∥xk + α
⋆dk − xk∥ + ω

= Lα⋆∥dk∥ + ω

= Lα⋆(1 + ϑ)∥gk∥ + ω

≤ (Lα⋆(1 + ϑ) + 1)ω.

Further we obtain that

α⋆ ≥
(1 + ϑ ∥gk∥

ℏk
)∥gk∥

2

(L +ϖ∥g(xk + α⋆dk)∥)∥dk∥
2

≥
(1 + ϑ ∥gk∥

ℏk
)∥gk∥

2

(L +ϖ(Lq̃(1 + ϑ) + 1)ω)∥dk∥
2

≥
2 + ϑ

(L +ϖ(Lq̃(1 + ϑ) + 1)ω)(1 + ϑ)3 > 0.

The above inequality shows that the step size α⋆ is bounded. □

Theorem 2.4. If Assumption 2.1 stands, Algorithm 1 yields {αk}, {dk}, {xk}, and {gk}, and then
lim infk→∞ ∥gk∥ = 0.

Proof. This theorem is still proved by the converse method. We denote the indicator set φ = N ∪ {0},
and set k ∈ φ. According to Assumption 2.1, assume that ∃ ϱ, n0 > 0 s.t.

∥gk∥ ≥ ϱ and ∀k ≥ n0, (2.15)

where ϱ is a constant and n0 is an index. According to (2.11) and (2.10), we have

∥dk+1∥ ≤ (1 + ϑ)∥gk+1∥ ≤ (1 + ϑ)ϱ.

Consider the Eq (2.11) with (2.12), and we have

∥gk∥∥dk∥ ≥ gT
k dk = −(1 +

∥gk∥

ℏk
)∥gk∥

2,
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∥dk∥ ≥ −(1 + ϑ
ϱ

∥dk∥
)ϱ,

∥dk∥
2 − ϱ∥dk∥ ≥ ϑϱ2,

(∥dk∥ −
ϱ

2
)2 ≥ (ϑ +

1
4

)ϱ2,

∥dk∥ ≥

√
ϑ +

1
4
ϱ +
ϱ

2
,

√
ϑ +

1
4
ϱ +
ϱ

2
≤ ∥dk∥ ≤ (1 + ϑ)ϱ.

It can be concluded that direction dk+1 is bounded, we suppose that limk→∞ dk = d⋆, and follow (2.13)
with the Theorem 2.3 iteration points limk→∞ xk = x⋆. Step size αk is bounded, and we have

∞∑
k=0

∥xk+1 − xk∥
2 =

∞∑
k=0

∥αkdk∥
2 < ∞, (2.16)

∥αkdk∥ → 0,

αk → 0.

We obtain that the following inequality,

−gT
k+1dk ≤ ϖαk∥gk+1∥∥dk∥

2.

Both parts of the given inequality take the limit, the one has

−(g⋆)T d⋆ ≤ 0.

Let k tend to infinity, gT
k+1dk+1 = −(1 + ϑ ∥gk+1∥

ℏk+1
)∥gk+1∥

2, and each side of

(g⋆)T d⋆ ≤ 0,

which implies
∥g⋆∥ = 0,

but this contradicts (2.15). Thus, the conclusion of the theorem holds. □

3. Unconstrained optimization problems

We apply (2.8) to the massive unconstrained optimization problem. Consider the issues below:

min
x∈ℜn

f (x), (3.1)

where f : ℜn →ℜ is a continuously differentiable function. Set ∇ f (x) = 𭟋(x).
Motivated by the description in Section 2, the following formula for dk is proposed:
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dk =

−(1 + ν1
∥𭟋k∥

ℏk
)𭟋k +

∥𭟋k∥(𭟋T
k ŷk−1dk−1−dT

k−1𭟋k ŷk−1)
ℏk max{ν2∥dk−1∥∥ŷk−1∥,ν3 |dT

k−1ŷk−1 |}
, k ≥ 2,

−(1 + ν1
∥𭟋k∥

ℏk
)𭟋k, k = 1,

(3.2)

where ℏk =

√
τ2

1∥𭟋k∥
2 +

(|𭟋T
k ŷk−1 |∥dk−1∥−|dT

k−1𭟋k |∥ŷk−1∥)2

max{τ2∥dk−1∥∥ŷk−1∥,τ3 |dT
k−1ŷk−1 |}2

, ŷk = 𭟋k+1 − 𭟋k, ν1 = ϑτ1, ν2 =
τ2
ϑ

, ν3 =
τ3
ϑ

, ϑ > 0, and

τi > 0, i = 1, 2, 3. Analogous to the targeted algorithm in Section 2, dk bears the following traits:

𭟋T
k dk ≤ −(1 − ϑ)∥𭟋k∥

2, (3.3)

and
∥dk∥ ≤ (ϑ + 1)∥𭟋k∥, (3.4)

where ϑ > 0 is a constant. The proofs of the above traits have been given in Section 2 and will not be
repeated in this section.

This section presents the algorithm and global convergence thesis.

Algorithm 2
1: Recognize point x0 ∈ ℜ

n; constants Eps ∈ (0, 1), 0 < ζ < 1
2 , ζ < ξ < 1; ϑ, ν1,2,3 > 0. Let k = 1.

2: If ∥𭟋k∥ ≤ Eps, stop; or calculate dk based on (3.2).
3: Select the step-size αk based on

fk+1 ≤ fk + ζαk𭟋
T
k dk, (3.5)

and
𭟋T

k+1 ≥ ξ𭟋
T
k dk. (3.6)

4: Reset the new point to be xk+1 = xk + αkdk.
5: Let k := k + 1, and go to 2.

Assumption 3.1. (i) The level set Θ = {x| f (x) ≤ f (x0)} bounds.
(ii) f (x) ∈ C2 bounds below and Lipschitz continues, which implicates that there exists constant L higher
than zero so that

∥𭟋(m1) − 𭟋(m2)∥ ≤ L∥m1 − m2∥, m1, m2 ∈ ℜ
n. (3.7)

Theorem 3.1. If Assumption 3.1 holds, Algorithm 2 creates {xk}, {αk}, {dk}, and {𭟋k}, and then

lim
k→∞
∥𭟋k∥ = 0. (3.8)

Proof. We will establish this through counterfactuals. Assuming that the original theorem does not hold,
and we will have the following conclusion: an existence of a constant ε∗ larger than zero, ∀k ≥ k∗ > 0 s.t.

∥𭟋k∥ ≥ ε
∗.

By the decreasing trait (3.3) and line search method (3.5), then

fk+1 − fk ≤ ζαk𭟋
T
k dk ≤ −ζ(1 − ϑ)αk∥𭟋k∥

2.
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Consequently, let k range from 0 to∞, and then
∞∑

k=0

( fk+1 − fk) = f∞ − f0 =

∞∑
k=0

(−ζ(1 − ϑ)αk∥𭟋k∥
2) < ∞, (3.9)

where the inequality on the right side results from Assumption 3.1(ii). Significantly, Eq (3.9) expresses
that

lim
k→∞
−ζ(1 − ϑ)αk∥𭟋k∥

2 = 0.

Through the linear search method (3.6) with Assumption 3.1, then

(𭟋k − 𭟋k−1)T dk−1 ≥ (ξ − 1)𭟋T
k−1dk−1

≥ −(ξ − 1)(1 − ϑ)∥𭟋k−1∥
2,

∥𭟋k − 𭟋k−1∥∥dk−1∥ ≤ L∥αk−1dk−1∥∥dk−1∥

≤ L(1 + ϑ)|αk−1|∥𭟋k∥
2.

In conclusion, we have the fact that

αk−1 ≥
(1 − ξ − ϑ + ξϑ)∥𭟋k−1∥

2

L(1 + ϑ)∥𭟋k∥
2

≥
1 − ξ − ϑ + ξϑ

L + Lϑ
> 0,

where these two inequalities are given from (2.12). Hence we obtain (3.8). The proof is finalized. □

4. Numerical results

All methods are encoded in MATLAB R2021b running on a PC with a Windows 10 operating system
with an Intel(R) Core(TM) i5-8265U CPU @ 1.60GHz 1.80 GHz.

4.1. Monotone linear equations

We compare Algorithm 1 with the modified HS method [29], three-term PRP method [31], and
traditional PRP method [21, 32]. The termination conditions for each of the eleven test questions are

∥gk∥ ≤ 10−5.

The parameters in Algorithm 1 are chosen as: ϖ = 0.01, ϑ = 0.8, q̃ = 1; ṫ = 0.5, ν1 = 1.8, ν2 = 3000,
and ν3 = 1000. We list those problems from [33] here to preserve the neutrality of this paper. The
corresponding problems with a matching initial point x0 are tabulated here:

g(x) = (g1(x), g2(x), ..., gs(x))T .

Problem 4.1. Exponential function 1:

g1(x) = ex1−1 − 1, gt(x) = t(ext−1 − xt), t = 1, 2..., s.

point x0 = ( s
s−1 ,

s
s−1 ...,

s
s−1 , )

T .
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Problem 4.2. Singular function:

g1(x) =
1
3

x3
1 +

1
2

x2
2, gt(x) = −

1
2

x2
t +

t
3

x3
t +

1
2

x2
t+1, gs(x) = −

1
2

x2
s +

s
3

x3
s , t = 1, 2..., s.

point x0 = (1, 1..., 1)T .

Problem 4.3.
gt(x) = ln(xt + 1) −

xt

s
, t = 1, 2..., s.

point x0 = (1, 1..., 1)T .

Problem 4.4. Trigexp function:

g1(x) = 3x3
1 + 2x2 − 5 + sin(x1 − x2)sin(x1 + x2),

gt(x) = −xt−1ext−1−xt + xt(4 + 3x2
t ) + 2xt−1 + sin(xt − xt−1)sin(xt + xt−1) − 8,

gs(x) = −xsexs−1−xs + 4xs − 3, t = 1, 2..., s.

point x0 = (0, 0..., 0)T .

Problem 4.5.
gt(x) = ext − 1, t = 1, 2..., s.

point x0 = ( 1
s ,

2
s ...,

s
s )T .

Problem 4.6. Penalty I function:

gt(x) =
√

10−5(xt − 1), t = 1, 2..., s − 1.

gs(x) =
1
4s

(x2
1 + x2

2 + ... + x2
s) −

1
4
.

point x0 = (1
3 ,

1
3 ...,

1
3 )T .

Problem 4.7. Variable dimensioned function:

gt(x) = xt − 1, t = 1, 2..., s − 1.

gs−1(x) = (x1 − 1) + 2(x2 − 1) + 3(x3 − 1) + ... + (s − 2)(xs−2 − 1),

gs(x) = ((x1 − 1) + 2(x2 − 1) + 3(x3 − 1) + ... + (s − 2)(xs−2 − 1))2.

point x0 = (1 − 1
s , 1 −

2
s ..., 1 −

s
s )T .

Problem 4.8. Tridiagonal system:
g1(x) = 4(x1 − x2

2),

gt(x) = 8xt(x2
t − xt−1) − 2(1 − xt) + 4(xt − x2

t+1), t = 2, 3..., s − 1,

gs(x) = 8xs(x2
s − xs−1) − 2(1 − xs).

point x0 = (12, 12..., 12)T .

Electronic Research Archive Volume 32, Issue 11, 6175–6199.



6185

Problem 4.9. Five-diagonal system:

g1(x) = 4(x1 − x2
2) + x2 − x2

3,

g2(x) = 8x2(x2
2 − x1) − 2(1 − x2) + 4(x2 − x2

3) + x3 − x2
4,

gt(x) = 8xt(x2
t − xt−1) − 2(1 − xt) + 4(xt − x2

t+1) + x2
t−1 − xt−2 + xt+1 − x2

t+2, t = 3, 4..., s − 2,

gs−1(x) = 8xs−1(x2
s−1 − xs−2) − 2(1 − xs−1) + 4(xs−1 − x2

s) + x2
s−2 − xs−3,

gs(x) = 8xs(x2
s − xs−1) − 2(1 − xs) + x2

s−1 − xs−2.

point x0 = (−2,−2...,−2)T .

Problem 4.10. Seven-diagonal system:

g1(x) = 4(x1 − x2
2) + x2 − x2

3 + x3 − x2
4,

g2(x) = 8x2(x2
2 − x1) − 2(1 − x2) + 4(x2 − x2

3) + x2
1 + x3 − x2

4 + x4 − x2
5,

g3(x) = 8x3(x2
3 − x2) − 2(1 − x3) + 4(x3 − x2

4) + x2
2 − x1 + x4 − x2

5 + x2
1 + x5 − x2

6,

gt(x) = 8xt(x2
t − xt−1) − 2(1 − xt) + 4(xt − x2

t+1) + x2
t−1 − xt−2 + xt+1 − x2

t+2 + x2
t−2

+ xt+2 − xt−3 − x2
t+3, t = 4, 5..., s − 3,

gs−1(x) = 8xs−1(x2
s−1 − xs−2) − 2(1 − xs−1) + 4(xs−1 − x2

s) + x2
s−2 − xs−3 + xs + x2

s−3 − xs−4,

gs(x) = 8xs(x2
s − xs−1) − 2(1 − xs) + x2

s−1 − xs−2 + x2
s−2 − xs−3.

point x0 = (−3,−3...,−3)T .

Problem 4.11. Troesch problem:

g1(x) = 2x1 + 10(
1

s + 1
)2sin(10

1
s + 1

x1) − x2,

gt(x) = 2xt + 10(
1

s + 1
)2sin(10

1
s + 1

xt) − xt−1 − xt+1, t = 2, 3..., s − 1,

gs(x) = 2xs + 10(
1

s + 1
)2sin(10(

1
s + 1

)2xs) − xs−1.

point x0 = (0, 0..., 0)T .
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Table 1. Numerical results of the considered methods.
Alogtithmn 1 Modified HS Three-term PRP PRP

NO Dim NI\NG\CPU\∥gk∥ NI\NG\CPU\∥gk∥ NI\NG\CPU\∥gk∥ NI\NG\CPU\∥gk∥

1 1000 293/451/0.140625/9.941213e-06 395/518/0.421875/9.960606e-06 176/177/0.078125/9.999271e-06 187/188/0.062500/9.923051e-06
1 5000 165/257/0.921875/9.904049e-06 199/270/1.359375/9.989538e-06 105/106/0.609375/9.978384e-06 109/110/0.421875/9.912454e-06
1 10,000 126/198/1.781250/9.824845e-06 155/211/2.000000/9.923827e-06 85/86/1.125000/9.994038e-06 86/87/1.156250/9.942374e-06
1 50,000 55/92/1.875000/9.742663e-06 82/113/2.515625/9.859854e-06 47/48/1.000000/9.970994e-06 50/51/1.812500/9.812461e-06
2 1000 10251/12764/6.437500/9.988723e-06 13248/13441/7.421875/9.984307e-06 24134/29845/14.515625/9.996621e-06 23798/29299/14.640625/9.996136e-06
2 5000 14093/17753/114.421875/9.991092e-06 14934/15561/110.281250/9.991112e-06 24335/42282/243.843750/9.994119e-06 23669/41392/236.50,0000/9.999623e-06
2 10,000 52760/199219/1710.968750/9.997897e-06 15418/16372/218.046875/9.996137e-06 20300/49021/466.765625/9.996696e-06 24989/53363/558.859375/9.990332e-06
2 50,000 14291/40231/991.046875/9.992350e-06 12791/15588/472.906250/9.997958e-06 22215/103750/2252.015625/9.997605e-06 22660/103815/2278.734375/9.998269e-06
3 1000 8/16/0.015625/2.973142e-06 29/110/0.031250/9.327860e-06 32/2250/0.375000/1.017432e-08 41/2195/0.343750/3.078878e-06
3 5000 8/16/0.046875/6.327004e-06 58/300/0.734375/8.380619e-06 68/6691/16.625000/2.462019e-07 76/6599/16.578125/2.149830e-06
3 10,000 8/16/0.125000/8.892321e-06 80/460/2.968750/8.076240e-06 96/10516/62.625000/1.147079e-09 106/10419/62.609375/1.607070e-06
3 50,000 10/22/0.640625/3.745708e-06 166/1152/15.50,0000/6.854968e-06 211/28900/385.796875/5.328693e-08 222/28783/388.671875/2.820361e-06
4 1000 21/126/0.046875/6.619060e-06 76/484/0.125000/9.029869e-06 4107/375958/66.140625/5.376997e-06 263/25956/4.50,0000/9.461107e-06
4 5000 21/126/0.328125/6.579547e-06 101/752/1.843750/6.951950e-06 2534/236972/613.250,000/9.063035e-06 286/32183/82.093750/9.754050e-06
4 10,000 21/126/0.875000/6.570692e-06 121/983/6.312500/8.222816e-06 2505/237950/1454.921875/6.132250e-06 319/38772/230.062500/9.991339e-06
4 50,000 21/127/1.796875/8.942224e-06 212/2078/27.140625/8.051826e-06 3857/378376/5362.843750/7.595834e-06 441/67359/953.593750/9.805361e-06
5 1000 10/23/0.015625/1.345156e-06 20/71/0.015625/7.757674e-06 69/1450/0.250,000/9.446592e-06 27/1188/0.218750/6.659137e-06
5 5000 10/23/0.140625/2.987337e-06 37/176/0.437500/6.260531e-06 81/3869/9.406250/8.030132e-06 48/3627/8.281250/1.916037e-06
5 10,000 10/23/0.343750/4.221010e-06 48/252/1.828125/6.741102e-06 91/5980/36.359375/8.876877e-06 64/5747/32.640625/2.819940e-06
5 50,000 11/26/0.421875/1.273572e-06 100/668/8.031250/7.429674e-06 139/16176/210.640625/9.126806e-06 131/15985/206.812500/9.985455e-06
6 1000 5713/5714/1.671875/9.994632e-06 6856/6857/2.031250/9.996719e-06 10285/10286/2.921875/9.999930e-06 10295/10296/2.781250/9.999854e-06
6 5000 17431/17432/91.203125/9.999935e-06 20918/20919/96.125000/9.999824e-06 31379/31380/151.609375/9.999607e-06 31389/31390/129.140625/9.999784e-06
6 10,000 27627/27628/324.546875/9.999054e-06 33153/33154/369.937500/9.999230e-06 49731/49732/579.281250/9.999510e-06 49741/49742/613.953125/9.999691e-06
6 50,000 72200/72201/1871.421875/9.999723e-06 86640/86641/1789.953125/9.999971e-06 129963/129964/3045.625000/9.999862e-06 129974/129975/3245.187500/9.999835e-06
7 1000 1/2/0.000000/0.000000e+00 1/2/0.000000/0.000000e+00 1/2/0.000000/0.000000e+00 1/2/0.000000/0.000000e+00
7 5000 1/2/0.000000/0.000000e+00 1/2/0.000000/0.000000e+00 1/2/0.000000/0.000000e+00 1/2/0.000000/0.000000e+00
7 10,000 1/2/0.000000/0.000000e+00 1/2/0.062500/0.000000e+00 1/2/0.031250/0.000000e+00 1/2/0.000000/0.000000e+00
7 50,000 1/2/0.031250/0.000000e+00 1/2/0.015625/0.000000e+00 1/2/0.031250/0.000000e+00 1/2/0.046875/0.000000e+00
8 1000 7517/52847/9.609375/9.705240e-06 6256/51420/8.187500/9.885174e-06 3867/637967/91.906250/8.900084e-06 3993/663519/92.890625/9.960198e-06
8 5000 7379/51894/130.171875/9.832652e-06 6535/56778/130.609375/9.978493e-06 4801/844439/1665.171875/8.187114e-06 4368/814256/1623.625000/9.935312e-06
8 10,000 8284/58431/381.203125/9.808342e-06 6762/61024/383.843750/9.976333e-06 4595/896457/5102.390625/8.054508e-06 4581/921975/5151.968750/9.842915e-06
8 50,000 7311/51836/708.437500/9.997653e-06 7554/78279/862.50,0000/9.988038e-06 10463/1986698/21108.781250/9.966481e-06 5525/1401847/15546.796875/9.902653e-06
9 1000 1315/8569/1.50,0000/9.980071e-06 1724/11004/2.187500/9.995043e-06 514/65030/9.437500/9.645362e-06 332/43592/6.50,0000/9.394169e-06
9 5000 1327/8684/21.875000/9.904454e-06 1465/9883/24.593750/9.959200e-06 574/84298/172.421875/9.690180e-06 421/66124/138.812500/9.520384e-06
9 10,000 1335/8771/57.531250/9.914197e-06 1537/10704/71.359375/9.886892e-06 2870/356611/2051.125000/9.956931e-06 493/85160/479.187500/9.995629e-06
9 50,000 1426/9690/137.171875/9.912140e-06 1792/14088/163.593750/9.996782e-06 988/194924/2254.156250/9.358423e-06 884/182395/2254.734375/9.294612e-06
10 1000 5788/46645/7.625000/9.518479e-06 345/3005/0.671875/8.406790e-06 422/70159/11.015625/4.510865e-06 425/70205/11.125000/9.836083e-06
10 5000 5669/45772/118.531250/9.521868e-06 608/5639/14.140625/4.101871e-06 597/110926/237.421875/6.498110e-06 500/97170/209.906250/8.589743e-06
10 10,000 5661/45800/298.265625/9.734609e-06 686/6678/41.671875/8.466836e-06 671/135838/784.437500/8.765321e-06 596/124310/694.171875/9.913071e-06
10 50,000 5472/44114/616.703125/9.804676e-06 892/10433/118.531250/6.674902e-06 1030/255267/3083.531250/8.165186e-06 1065/260264/3294.484375/9.877143e-06
11 1000 0/1/0.000000/0.000000e+00 0/1/0.000000/0.000000e+00 0/1/0.000000/0.000000e+00 0/1/0.000000/0.000000e+00
11 5000 0/1/0.000000/0.000000e+00 0/1/0.000000/0.000000e+00 0/1/0.062500/0.000000e+00 0/1/0.000000/0.000000e+00
11 10,000 0/1/0.000000/0.000000e+00 0/1/0.062500/0.000000e+00 0/1/0.000000/0.000000e+00 0/1/0.000000/0.000000e+00
11 50,000 0/1/0.015625/0.000000e+00 0/1/0.015625/0.000000e+00 0/1/0.031250/0.000000e+00 0/1/0.031250/0.000000e+00

Figure 1. Performance profile based on NI (number of iterations).
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Figure 2. Performance profile based on NF (number of function evaluations).

Figure 3. Performance profile based on CPU time (CPU seconds consumed).

Per issue, four dimensions of 1000, 5000, 10,000 and 50,000 were considered. In order to provide a
graphical and well-rounded comparison of these treatments, this paper utilizes the performance curves
of [34], which have a large resource for messages on both efficiencies and soundness. We graphed
testing issue scores P individually, where the measure differs from the corresponding best method by a
factor of τ. The performance curves are depicted in Figures 1–3, thereafter. The numerical consequences
are tabulated in Table 1, where ”Dim” denotes dimension and ∥gk∥ denotes the final value.

As can be seen from Figure 1, Algorithm 1 is the most efficient in terms of the sense of the number
of iterations, solving 50% of the problem with the least number of iterations. From Figure 2, it can be
seen that the most efficient method in the sense of the number of function evaluations is Algorithm 1,
which solves 75% of the problem with the minimum number of function evaluations. Figure 3 shows
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that Algorithm 1 is also the most efficient algorithm in terms of CPU time considerations.

It can be seen that Algorithm 1 fared splendidly in dealing with large-scale constrained monotone
equations. Conclusively, numerical investigations indicate that the suggested algorithm constitutes an
effective vehicle for solving systems of convex constrained monotone equations.

4.2. Unconstrained optimization

Numerical outcomes with the proposed Algorithm 2 and modified HS method [29], three-term PRP
method [31], and conventional PRP method [21, 32] are reported separately. The fifty problems for the
experiment were taken from [35], and the initial points for every question have been given as shown
in Table 2. All algorithms use the weak Wolfe-Powell line-search technique. Each test question’s
termination conditions are

| fk − fk+1|

| fk|
≤ 10−5,

or

∥𭟋k∥ ≤ 10−6.

The parameters in Algorithm 2 are chosen as: ζ = 0.5, ξ = 0.95, ν1 = 2, ν2 = 30, 000, and ν3 = 1000.
For each problem, we considered three dimensions of 30,000,12,000 and 300,000. The consumed
performance curves are shown in Figures 4–6.

Figure 4. Performance profile based on NI (number of iterations).
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Figure 5. Performance profile based on NFG (the sum of the total iterations and gradient
iterations).

Figure 6. Performance profile based on CPU time (CPU seconds consumed).
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4.3. Image restoration

The image restoration problems were solved by using algorithms. It is well known that in bio-
engineering, medicine, and other fields of the science and engineering, image restoration techniques
play a pivotal role. One of common image degradation models is defined by the following:

min v̆(x) =
1
2
∥υ − ℶx∥22 + ι∥x∥1, (4.1)

where υ ∈ Rm1 is the observation, Ξ is the linear function of order m1 × m2, and ι is a constant greater
than zero.

The regularized model (4.1) has attracted much concern, and several scholars have proposed various
iterative methods to deal with it [36–38].

Figueiredo [39] developed a gradient-based projection program by reformulating (4.1) as a con-
strained quadratic program. The reformulation in Figueiredo et al. is by following: split vector x into
two pieces, i.e., x = s − t, where si = (xi)+, ti = (−xi)−, and (•)+ = max{0, •}. Then (4.1) is transformed
into

min
κ≥0

1
2
κTΦκ + γTκ, (4.2)

κ = [s, t]T , γ = ιe2m2 + [−ℶTυ ℶTυ]T ,Φ =

[
ℶTℶ −ℶTℶ

−ℶTℶ ℶTℶ

]
.

Further, Xiao et al. [40] found (4.2) to be equivocated to the following system on nonlinear equations:

H(κ) = min{κ,Φκ + γ} = 0. (4.3)

Pang [41] proved that H satisfies (2.9), while Xiao [40] proved that it satisfies (2.2) too.
Codes’ stop condition

|v̆(uk+1) − v̆(uk)|
|v̆(uk)|

≤ 10−3,

or
∥uk+1 − uk∥

∥uk∥
≤ 10−3.

Table 3. CPU time results for different algorithms for gray images.

Algorithm 1 Modified HS Three-term PRP NPRP2

Man (1024 × 1024)
0.3 6.6875 24.28125 16.375 33.303140
0.7 13.09375 32.3125 42.3125 95.854068

Baboon (512 × 512)
0.3 1.6875 6.140625 3.90625 7.276346
0.7 2.765625 9.28125 12.14062 22.251381

In the experiments, ”Man”,” Baboon”, ”colorcheckertestimage”, and ”car” are the tested images.
Comparing Algorithm 1, modified HS [29], three-term PRP [31], and NPRP2 [42], the four algorithms
are not effective at adding 30%, 70% to the noise. The parameters in Algorithm 1 are chosen as:
ϖ = 0.01, ϑ = 0.8, q̃ = 1, ṫ = 0.5, ν1 = 2.2, ν2 = 3000, and ν3 = 1200. The time taken for each
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algorithm is summarized in Tables 3 and 4. From Tables 3 and 4, it can be seen that CPU time for
both contrastive and color images processed with Algorithm 1 is less than the time used by the other
algorithms, which shows that the algorithms proposed in this paper are more advantageous in dealing
with grey image and color image restoration problems.

Table 4. CPU time results for different algorithms for color images.
Algorithm 1 Modified HS Three-term PRP NPRP2

colorcheckertestimage (1541 × 1024) 0.3 9.077376 12.136426 17.377901 16.661125
0.7 14.084278 37.827917 37.333502 30.093593

car (3504 × 2336) 0.3 41.74019 62.762366 96.119989 91.296092
0.7 55.1054 160.855 219.161032 163.100240

Figure 7. From front to back for each row: the images with 30% image noise added, the
images processed by Algorithm 1, the modified HS method, the three-term PRP method, and
the NPRP2 method.

Figure 8. From front to back for each row: the images with 70% image noise added, the
images processed by Algorithm 1, the modified HS method, the three-term PRP method, and
the NPRP2 method.

Figures 7 and 8 show that Algorithm 1 has performed well in tackling the gray image restoration.
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Visualizing the outcomes of color, Figures 9 and 10 are given and from the results, it is clear that the
algorithm of this paper is more competitive in dealing with color image restoration. In image restoration
experiments, we usually use the PSNR value and SSIM value to estimate the quality of the processed
image. The higher the PSNR value, the less distorted the image is. The higher the SSIM value, the
better the image setup. When two mirrors are identical, the SSIM value is 1. As can be seen from
Figures 9 and 10, the SSIM value obtained by Algorithm 1 is relatively small compared to the traditional
algorithm, and the image restoration effect is not as good as the traditional algorithm. This aspect will
be investigated in the future.

Figure 9. From front to back for each row: the images with 30% image noise added, the
images processed by Algorithm 1, the modified HS method, the three-term PRP method, and
the NPRP2 method.

Figure 10. From front to back for each row: the images with 70% image noise added, the
images processed by Algorithm 1, the modified HS method, the three-term PRP method, and
the NPRP2 method.

4.4. Machine learning

We now embed the improved HS method into a stochastic large subspace algorithm [43] by replacing
its search direction with (2.8), thus building an improved HS algorithm based on the stochastic large
subspace and variance-reducing SCGN-based algorithms (called mSCGN and mSDSCGN). Next,
we test and compare the stochastic gradient descent algorithm (SGD) [44] and the STOCHASTIC
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VARIANCE GRADIENT REDUCTION (SVRG) [45] on the following two learning models:
(i) Nonconvex SVM model with a sigmoid loss function:

min
x∈ℜd

1
t

t∑
s=0

fs(x) + λ∥x∥2 (4.4)

where fs(x) = 1− tanh(ωs < x, ϖs >),ϖ ∈ ℜ, ω ∈ {−1, 1} signify feature vectors and the corresponding
labels, respectively. Support vector machine models were implemented in different areas for pattern
recognition, currently focusing on information categorization, encompassing text and images.

(ii) Nonconvex regularized ERM model with a nonconvex sigmoid loss function:

min
x∈ℜd

1
t

t∑
s=0

fs(x) +
λ

2
∥x∥2 (4.5)

where fs(x) = 1/{1 + exp(ϵsεT
s x)}, ϵs ∈ {−1, 1} is target value of the s-th sample, εs ∈ ℜ

d is the
eigenvector of the s-th sample, and λ > 0 is the regularization parameter. Binary classification models
are instrumental in practical problems. While a non-convex ERM model concentrates on minimizing
classification inaccuracy, the s-type function is also exhibited to be usually superior to alternative loss
functions. Accordingly, nonconvex ERM models with s-type loss functions are valuable for mathematical
modeling.

The parameters in mSCGN and mSDSCGN are chosen as: ν1 = 3.8, ν2 = 300, and ν3 = 100.
The dataset comes from https://www.csie.ntu.edu.tw cjlin/libsvmtools/datasets/. All algorithms were
executed on three large datasets, with the specific details of the datasets are shown in Table 5. In all
experiments, the regularization was chosen to be λ = 10−5 and a similar batch size m was used in each
iteration. Gradient ∇ f (x) and the Hessian matrix ∇2 f (x) are estimated by:

∇ f (x)s =
f (x + σes) − f (x − σes)

2σ
,

∇2 f (x)s,r =
f (x + σes + σer) − f (x + σes) − f (x + σer) + f (x)

σ2 ,

where σ = 10−4 and es is the s-th unit-vector. Let the regularization factor λ of the learning model be
10−4, and the convergence result of the algorithms is shown in Figures 11 and 12. In this experiment,
the largest count for internal iterations is 30. In principle, the lower the value of the curve, the better
convergence in the corresponding algorithm.

Table 5. Details of data sets.

Data set Training samples (t) Dimensions (d)
Adult 32,562 123
IJCNN 49,990 22
Covtype 581,012 54
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Figure 11. Numerical performance of SGD and mSCGN for solving models 1 and 2 in three
datasets.

Figure 12. Numerical performance of SVRG and mSCGN for solving models 1 and 2 in three
datasets.

The different algorithms’ behavior is revealed by plotting the curve of function values over the
iteration. Figure 11 illustrates the behavior of mSCGN and SGD at solving (4.4) and (4.5) with
alternative decreasing steps. As verified from Figure 11, both algorithms managed to tackle the models.
The function values decline at a greater rate initially and incrementally remain constant. Notice that
when the mSCGN algorithm and the SGD algorithm share the same step-size on the datasets, the former
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decays the function value firmer. This reveals that the algorithm herein designed is well executed
for having sufficient descent and trust domain capabilities. Observe that for mSCGN, αk = 10k−0.9

converges quicker. Our algorithm exhibits superiority at appropriate step sizes, and experimental results
perform better at larger decreasing step sizes.

Figure 12 illustrates the behavior of mSDSCGN and SVRG for solving (4.4) and (4.5) at separate
constant step sizes. Analyzing Figure 12, it is obvious that even though the SVRG algorithm uses the
best step size, SVRG does not perform as well as mSDSCGN on all three datasets. We observed that
of those step sizes, 0.04 is optimally suited toward mSDSCGN. Overall, our algorithm shows more
promise and efficiency than others. Based on the analysis of the results, one can conclude that our
suggested method is useful for machine learning.

5. Conclusions

We propose a modified HS conjugate gradient method with the following characteristics: 1) Fulfills
descent and trust-region features. 2) A particular method’s global convergence for the non-convex
functions can be easily established. 3) The image restoration, machine learning issues, and nonlinear
monotone equations experiments were tested and the outcomes indicated that the algorithms have
promising numerical characterizations for tackling these issues.
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