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Abstract: This paper proposes a modified Rivaie-Mohd-Ismail-Leong (RMIL)-type conjugate gradi-
ent algorithm for solving nonlinear systems of equations with convex constraints. The proposed algo-
rithm offers several key characteristics: (1) The modified conjugate parameter is non-negative, thereby
enhancing the proposed algorithm’s stability. (2) The search direction satisfies sufficient descent and
trust region properties without relying on any line search technique. (3) The global convergence of
the proposed algorithm is established under general assumptions without requiring the Lipschitz con-
tinuity condition for nonlinear systems of equations. (4) Numerical experiments indicated that the
proposed algorithm surpasses existing similar algorithms in both efficiency and stability, particularly
when applied to large scale nonlinear systems of equations and signal recovery problems in compressed
sensing.
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1. Introduction

1.1. Background

This paper focuses on solving the problem of finding x ∈ C such that:

F(x) = 0, (1.1)

where C ⊆ Rn is a bounded, closed, and convex set, and the function F : C → Rn is both continuous
and monotone. Specifically, the monotonicity condition of the function is defined by the following
inequality:

(F(x) − F(y))T(x − y) ≥ 0, for any x, y ∈ C. (1.2)
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The study of such a function plays a crucial role in various scientific fields, such as economic equi-
librium systems, chemical equilibrium, and signal recovery [1–4]. Extensive researches have been
devoted to developing numerical methods for solving this class of nonlinear systems of equations,
leading to a variety of methods such as Newton’s methods, quasi-Newton methods, Gauss-Newton
methods, Levenberg-Marquardt methods, and so on [5–9].

Newton’s methods and quasi-Newton methods have been extensively utilized to solve the problem
(1.1) due to their straightforward implementation and rapid convergence properties. However, these
methods necessitate the computation of the Jacobian matrix or its approximation value at every itera-
tion. This can become inefficient when addressing large scale problems. As a result, conjugate gradient
methods [10–13] have emerged as an effective numerical solution for large scale problems, primarily
due to their lower memory requirements. In these conjugate gradient methods, the iterative sequence
of points is defined as follows:

xk+1 = xk + tkdk, k = 0, 1, 2, . . .

where xk+1 and xk are the next and current iteration points, respectively. The step size tk is determined
through a line search technique, and dk denotes the search direction. Generally, the search direction dk

is updated by using the following formula:

dk = −Fk + βkdk−1, k ≥ 1, d0 = −F0, (1.3)

where F(xk) is abbreviated as Fk. Here, βk is a crucial parameter in the iterative process, reflecting the
fundamental characteristics of conjugate gradient methods, and is commonly known as the conjugate
parameter.

A key aspect of conjugate gradient methods ensures that the search direction exhibits sufficient de-
scent and trust region properties, which are critical for guaranteeing global convergence. For example,
Narushima et al. [14] developed a method capable of generating a descent direction and rigorously
proves its global convergence under certain conditions. Moreover, Narushima et al. [15] proposed a
novel conjugate gradient method that combines smoothing techniques with the Polak-Ribière-Polyak
(PRP) method to address unconstrained non-smooth equations. Huang et al. [16] proposed a biased
stochastic conjugate gradient algorithm for nonconvex problems, which integrates the stochastic recur-
sive gradient method and the modified Barzilai-Borwein technique into the typical stochastic gradient
algorithm. Jiang et al. [17] proposed two restart conjugate gradient methods for unconstrained opti-
mization, employing different restart procedures. Their restart conditions are based on the Fletcher-
Reeves and Dai-Yuan conjugate gradient parameters, with the objective of ensuring that the search
directions maintain sufficient descent. In recent years, conjugate gradient methods for unconstrained
optimization problems have been a widespread application in solving nonlinear systems of equations.
For example, Cheng et al. [18] presented a PRP-type method designed for monotone equations, which
effectively combines the PRP method from unconstrained optimization with hyperplane techniques.
Subsequently, Yu et al. [19] introduced a spectral gradient method for large scale nonlinear systems
of equations, together with the classical PRP method used in unconstrained minimization problems.
Lastly, Waziri et al. [20] developed a Hager-Zhang-type conjugate gradient method aimed at solving
monotone nonlinear systems of equations. Recently, Liu et al. [21] extended a classical three-term
framework to a family of three-term conjugate gradient projection methods with a restart procedure
and their inertial versions for constrained nonlinear pseudo-monotone equations. Ibrahim et al. [22]
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extended a spectral three-term conjugate gradient method framework for unconstrained optimization
to two derivative-free methods.

1.2. Conjugate parameter design

We will discuss the design of the conjugate parameter in detail. For conjugate gradient methods
in unconstrained optimization problems, Rivaie et al. [23] proposed a significant modification to the
PRP-type conjugate parameter, with the modified expression as follows:

βRMIL
k =

FT
k (Fk − Fk−1)
∥dk−1∥

2 .

It is important to note that if the denominator ∥dk−1∥
2 in the above expression is replaced by ∥Fk∥

2,
then the expression degenerates into the classical PRP-type conjugate parameter. To address the non-
negativity issue of the conjugate parameter βRMIL

k , Dai et al. [24] introduced a modified RMIL conjugate
parameter, specifically formulated as follows:

βRMIL+
k =

 FT
k (Fk−Fk−1)
∥dk−1∥2

, if 0 ≤ FT
k Fk−1 ≤ ∥Fk∥

2,

0, otherwise.
(1.4)

It is particularly noteworthy that if FT
k Fk−1 is negative or greater than or equal to ∥Fk∥

2, then the conju-
gate parameter βRMIL+

k becomes redundant, causing the search direction to degenerate into the classical
steepest descent direction. Therefore, to ensure that the search direction exhibits both sufficient descent
and trust region properties, we further refine (1.4) and design a revised RMIL conjugate parameter, i.e.,

βMRMIL
k =

min
{
|FT

k (Fk − Fk−1)|, ∥Fk∥
2
}

µ
(
∥Fk∥

2 + ∥dk−1∥
2) + ∥dk−1∥

2 , (1.5)

which implies that the non-negativity holds, i.e.,

0 ≤ βMRMIL
k ≤

∥Fk∥
2

µ
(
∥Fk∥

2 + ∥dk−1∥
2) + ∥dk−1∥

2 . (1.6)

2. Search direction properties and algorithm framework

In this section, we delve into the intricate aspects of the search direction properties, the line search
technique, and the fundamental concept of the projection operator, all of which are critical components
in the formulation and analysis of the proposed algorithm.

First, we begin by discussing the sufficient descent and trust-region properties, which are essential
for ensuring the convergence and stability of the proposed algorithm. The sufficient descent property
ensures that each iteration of the algorithm decreases the objective function by a significant amount.
To this end, we multiply both sides of (1.3) by FT

k on the left, yielding:

FT
k dk = FT

k (−Fk + β
MRMIL
k dk−1) = −∥Fk∥

2 + βMRMIL
k FT

k dk−1.

Incorporating the non-negatively condition from (1.6) and µ
(
∥Fk∥

2 + ∥dk−1∥
2
)
+∥dk−1∥

2 ≥ 2µ∥Fk∥∥dk−1∥,
we can further derive:

FT
k dk ≤ −∥Fk∥

2 +
∥Fk∥

2

2µ∥Fk∥∥dk−1∥
∥Fk∥∥dk−1∥ = −P1∥Fk∥

2, P1 = 1 −
1

2µ
, (2.1)
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which clearly demonstrates that the sufficient descent property is satisfied. The trust-region property is
another critical aspect that ensures the stability of the algorithm by bounding the search direction. By
applying the Cauchy-Schwarz inequality to (2.1), we can derive the following inequality:

−∥Fk∥∥dk∥ ≤ FT
k dk ≤ −P1∥Fk∥

2,

which implies that P1∥Fk∥ ≤ ∥dk∥ holds. In addition, from (1.3) and (1.6), we obtain:

∥dk∥ ≤ ∥Fk∥ +
∥Fk∥

2

2µ∥Fk∥∥dk−1∥
∥dk−1∥ = ∥Fk∥ +

1
2µ
∥Fk∥ = P2∥Fk∥, P2 = 1 +

1
2µ
.

Hence, the trust-region property is satisfied, i.e.,

P1∥Fk∥ ≤ ∥dk∥ ≤ P2∥Fk∥. (2.2)

Next, we turn our attention to the line search technique, a method used to determine the appropriate
step size tk along the search direction dk. The step size is calculated by using the formula tk = ξρ

mk ,
where mk is the smallest non-negative integer m that satisfies the following condition:

− F(xk + ξρ
mdk)Tdk ≥ σξρ

m∥F(xk + ξρ
mdk)∥∥dk∥

2. (2.3)

Algorithm 1
1: Initialize x0 ∈ R

n, d0 = −F0, µ > 1, σ > 0, ρ ∈ (0, 1), ξ > 0, 0 < ϵ < 1, and set the counter k := 0.
2: while ∥Fk∥ > ϵ do
3: Calculate the step size tk by (2.3).
4: Set the point wk = xk + tkdk.
5: if xk ∈ C and ∥F(wk)∥ ≤ ϵ then
6: Break.
7: else
8: Calculate the next iteration by

xk+1 = PC
[
xk − γθkF(wk)

]
, θk =

F(wk)T(xk − wk)
∥F(wk)∥2

. (2.4)

9: end if
10: Calculate θMRMIL

k by (1.5) and dk by (1.3).
11: Set the counter k := k + 1.
12: end while

Lastly, we define the projection operator, an essential tool in optimization, particularly in con-
strained problems. The projection operator ensures that the iteration point of the algorithm remain
within the feasible region defined by the problem’s constraints. The projection operator PC onto a
convex set C is defined as follows:

PC[x] = arg min {∥x − y∥ | y ∈ C} , x ∈ Rn,

where ∥x − y∥ denotes the Euclidean distance between x and y. To be specific, the projection operator
possesses a well-known non-expansive property, which can be expressed as:

∥PC[x] − PC[y]∥ ≤ ∥x − y∥, ∀x, y ∈ Rn.

To sum up, we propose a modified RMIL conjugate gradient algorithm (abbreviated as the MRMIL
algorithm). The procedure of this algorithm can be outlined and discussed as shown in Algorithm 1.

Electronic Research Archive Volume 32, Issue 11, 6153–6174.



6157

3. Convergence analysis

In the following discussion, we consistently assume that the sequences {tk}, {dk}, {xk}, {wk}, and {Fk}

are generated by the MRMIL algorithm. Additionally, we introduce the following general assumptions:
Assumption S:

(S1) The solution set C∗ of the problem (1.1) is non-empty.
(S2) The function F is monotone and continuous on Rn.

It is important to note that the continuity condition in Assumption S2 is less restrictive than the Lip-
schitz continuity, which is the more traditional assumption in algorithms designed to solve nonlinear
systems of equations.

Lemma 1. The line search technique is well-defined. That is, for all k ≥ 0, there exists a non-negative
integer mk such that (2.3) holds.

Proof. Similar to Lemma 3.2 in [4], the proof can be completed straightforwardly. □

Lemma 2. The following conclusions hold:

(1) The sequence {∥xk − x∗∥} converges for any x∗ ∈ C∗.
(2) The sequence {xk} is bounded.
(3) lim

k→∞
tk∥dk∥ = 0.

Proof. Similar to Lemma 3.3 in [4], the proof can be completed easily. □

Theorem 1. The sequence {xk} globally converges to a solution of the problem (1.1), i.e.,

lim
k→∞

inf ∥Fk∥ = 0.

Proof. To establish the global convergence of the sequence {xk}, we consider two possible cases based
on the behavior of ∥Fk∥ as k → ∞.

Case 1 (lim
k→∞

inf ∥Fk∥ = 0): In this case, the continuity of F implies that the sequence {xk} has an
accumulation point x∗ such that F(x∗) = 0. Additionally, the convergence of {∥xk−x∗∥} further indicates
that the sequence {xk} converges to x∗.

Case 2 (lim
k→∞

inf ∥Fk∥ > 0): Assume, for the sake of contradiction, that there exists a constant r > 0
such that ∥Fk∥ ≥ r for any k ≥ 0. This assumption, together with (2.2), implies that ∥dk∥ ≥ P1∥Fk∥ ≥

P1r. Combining this and Lemma 2(3), it follows that lim
k→∞

tk = 0. Due to the boundary of the sequences
{xk} and {dk}, there exists an infinite index set L such that

lim
l→∞,l∈L

xkl = ä and lim
l→∞,l∈L

dkl = d̈.

From the sufficient descent condition defined in (2.1), we have −F(xkl)
Tdkl ≥ P1∥F(xkl)∥

2 for any l ∈ L.
Taking the limit as l→ ∞ in the above inequality, we obtain

−F(ä)Td̈ ≥ P1∥F(ä)∥2 > P1r2 > 0.
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Additionally, applying the line search technique defined in (2.3), we obtain −F(xkl + ρ
−1tkldk1)

Tdk1 <

σρ−1tkl∥F(xk1 + ρ
−1tkldk1)∥∥dk1∥

2 for any l ∈ L. Taking the limit as l→ ∞ in this inequality, we obtain

−F(ä)Td̈ ≤ 0.

The two inequalities are clearly contradictory. Therefore, the assumption that lim
k→∞

inf ∥Fk∥ > 0 must
be false, which implies that lim

k→∞
inf ∥Fk∥ = 0. □

4. Numerical experiments

In this section, we present the general experimental setups and conduct two distinct experiments:
one focused on solving nonlinear systems of equations and the other on sparse signal restoration.

4.1. General setups

To validate the effectiveness of the MRMIL algorithm, we conduct a comparative analysis against
other similar algorithms, including the modified fletcher-reeves method (MFRM) algorithm [25] and
the hybrid three-term conjugate gradient projection (HTTCGP) algorithm [26]. This comparative study
provides a robust framework for evaluating the performance of the MRMIL algorithm, particularly in
large scale nonlinear systems of equations and sparse signal restoration problems. All experimental
codes are executed on a system running the Ubuntu 20.04.2 LTS 64-bit operating system, equipped
with an Intel(R) Xeon(R) Gold 5115 processor with a clock speed of 2.40 GHz. In the comparative
analysis, the MRMIL algorithm is directly compared to the MFRM and HTTCGP algorithms. A
key aspect of the analysis is the modification of step 10 in the MRMIL algorithm, where the search
direction is calculated by using both the MFRM and HTTCGP algorithms. This modification allows
us to isolate and assess the impact of different search direction strategies on the overall performance
of the algorithm. Importantly, all other steps of the MRMIL algorithm remain unchanged during this
comparison, ensuring that any differences in performance could be attributed to the search direction
computation.

The parameters for the MRMIL algorithm are carefully selected to optimize its performance.
Specifically, the parameters are set as follows: µ = 2, σ = 10−4, ρ = 0.74, ξ = 1, and ϵ = 10−5.
For the MFRM and HTTCGP algorithms, the parameters are maintained according to their default
setting as specified in the original references.

4.2. Experiments on nonlinear systems of equations

To thoroughly evaluate the performance of the proposed algorithm, we selecte a set of bench-
mark problems with varying dimensions, where the number of variables ranges from [1000 5000
10,000 50,000 100,000]. The initial points for these benchmark problems are set as follows to pro-
vide diverse starting conditions, ensuring a comprehensive assessment of the algorithm: x1 = [0, 1]n,
x2 =

(
1 − 1

n , 1 −
2
n , . . . , 1 −

n
n

)T
, x3 =

(
1
3 ,

1
32 , . . . ,

1
3n

)T
, x4 =

(
1
n ,

2
n , . . . ,

n
n

)T
, x5 =

(
1, 1

2 , . . . ,
1
n

)T
,

x6 = (1, 1, . . . , 1)T, x7 =
(

1
2 ,

1
22 , . . . ,

1
2n )

)T
, x8 =

(
0, 1

n , . . . ,
n−1

n

)T
. The benchmark problems are for-

mulated as F(x) = (F1(x), F2(x), . . . , Fn(x))T with x = (x1, x2, . . . , xn)T, as defined in Problems 1–8.
Each algorithm is executed on these benchmark problems with a termination setting: ∥Fk∥ ≤ ϵ or when
the number of iterations exceeded 2000.
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Figure 1. Performance profiles on NIter.
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Figure 2. Performance profiles on NF.

Problem 1. Let the function F(x) be defined as:

F1(x) = ex1 − 1,
Fi(x) = exi + xi − 1, for i = 2, 3, · · · , n,

where the feasible region is C = Rn
+.

Problem 2. Let the function F(x) be defined as:

Fi(x) = exi − 1, for i = 1, 2, · · · , n,

where the feasible region is C = Rn
+.

Problem 3. Let the function F(x) be defined as:

Fi(x) = 2xi − sin(xi), for i = 1, 2, · · · , n,
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where the feasible region is C = [−2,+∞).
Problem 4. Let the function F(x) be defined as:

Fi(x) = log(xi + 1) −
xi

n
, for i = 1, 2, · · · , n,

where the feasible region is C = [−1,+∞).
Problem 5. Let the function F(x) be defined as:

Fi(x) = (exi)2 + 3 sin(xi) cos(xi) − 1, for i = 1, 2, · · · , n,

where the feasible region is C = Rn
+.

Problem 6. Let the function F(x) be defined as:

F1(x) = 2x1 + sin(x1) − 1,
Fi(x) = 2xi−1 + 2xi + sin(xi) − 1, for i = 2, 3, · · · , n − 1,
Fn(x) = 2xn + sin(xn) − 1,

where the feasible region is C = Rn
+.

Problem 7. Let the function F(x) be defined as:

Fi(x) =
1
n

exi − 1, for i = 1, 2, · · · , n,

where the feasible region is C = Rn
+.

Problem 8. Let the function F(x) be defined as:

Fi(x) = xi − 2 sin(|xi − 1|), for i = 1, 2, · · · , n,

where the feasible region is C = Rn
+.
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1

τ

ρ(
τ)

 

 

MRMIL
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HTTCGP

Figure 3. Performance profiles on CPUT.

The performance of the MRMIL, MFRM, and HTTCGP algorithms is evaluated through a series of
benchmark problems, with the results shown in Tables 1–8. In these tables, the term “Init(n)” denotes
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the initial points and the corresponding dimension multiplied by 1000. The results are presented in
the format CPUT/NF/NIter/Norm, where “CPUT” denotes the CPU time in seconds, “NF” denotes
the number of function evaluations, “NIter” denotes the number of iterations, and “Norm” denotes the
norm of the function at the approximate optimal point. The tables demonstrate that all three algorithms
effectively solved the benchmark problems across a range of initial points and dimensions. It is par-
ticularly noteworthy that the MRMIL algorithm consistently outperforms the others in most cases. To
thoroughly analyze the performance of these three algorithms, we can employ the performance profiles
methodology developed by Dolan and Moré [27], which is defined by the following fraction:

ρ(τ) ≜
1
|Tp|

∣∣∣∣∣∣
{

tp ∈ Tp : log2

(
tp,q

min{tp,q : q ∈ Q}

)
≤ τ

}∣∣∣∣∣∣ ,
where Tp is the test set, |Tp| is the number of problems in the test set, Q is the set of solvers, and tp,q

is the performance indicator (e.g., NIter, NF, and CPUT) for tp ∈ Tp and q ∈ Q. These profiles offer a
comprehensive way for comparing algorithms, where a higher curve indicates better performance of the
associated method. By plotting these performance profiles for the three algorithms in terms of CPUT,
NF, and NIter, we can visually assess and compare their efficiency and effectiveness (see Figures 1–3).
According to Figure 1, the MRMIL algorithm demonstrates remarkable efficiency, solving 75% of the
benchmark problems with the least NIter. Furthermore, Figures 2 and 3 provide additional insights into
the the algorithm’s effectiveness: the MRMIL algorithm successfully solves approximately 72% (73%)
of the benchmark problems with less NF (CPUT) compared to the MFRM and HTTCGP algorithms,
which solve around 20% (19%) and 27% (21%) of the problems, respectively. These results underscore
the superior efficiency of the proposed algorithm, highlighting its ability to optimize computational
resources while maintaining high performance across a broad range of test cases.

4.3. Experiments on sparse signal restoration

To further illustrate the effectiveness of the MRMIL algorithm in addressing real-world challenges,
we apply it to a sparse signal restoration problem [28] as a case study. The objective of this problem is
to accurately restore a sparse signal, denoted as â, from an observed signal ã, where both signals have
a dimension of n. The quality of the signal restoration is assessed by the mean squared error (MSE),
a widely accepted evaluation metric in signal processing. The MSE is defined as MSE = ∥â − ã∥2/n,
where â represents the original signal, and ã represents the restored signal. In this experiment, the
original signal is configured with a length of n = 5120 and k = 1280. Notably, these non-zero elements
are randomly distributed across the signal, with a total of 160 such elements.

Figure 4 provides the results of the three algorithms for the sparse signal restoration problem, where
the MRMIL algorithm clearly outperforms the others in terms of both NIter and CPUT. To account for
the inherent randomness in the experiment, we conducted 10 independent trials for each algorithm,
utilizing different random seeds in each trial. The average results from these experiments are shown
in Table 9. The data clearly indicate that the MRMIL algorithm excels in restoring the original signal,
surpassing both the MFRM and HTTCGP algorithms by requiring fewer iterations and less computa-
tional time. These findings not only validate the superior efficiency of the MRMIL algorithm but also
highlight its robustness and consistency across multiple trials.
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Table 1. Numerical results for Problem 1.

Inti(n) MRMIL MFRM HTTCGP
CPUT/NF/NIter/Norm CPUT/NF/NIter/Norm CPUT/NF/NIter/Norm

x1(1) 1.26e-02/7/1/0.00e+00 2.44e-02/252/33/3.09e-07 4.00e-03/6/1/0.00e+00
x2(1) 3.03e-03/6/1/0.00e+00 2.11e-02/329/38/9.30e-07 4.54e-03/6/1/0.00e+00
x3(1) 9.16e-03/77/18/1.78e-07 1.91e-02/392/45/2.85e-07 7.43e-03/29/6/2.47e-15
x4(1) 3.24e-03/8/1/0.00e+00 1.54e-02/301/34/9.37e-07 4.33e-03/8/1/0.00e+00
x5(1) 1.84e-03/16/3/0.00e+00 2.21e-02/441/49/9.06e-07 3.22e-03/28/6/0.00e+00
x6(1) 1.34e-03/22/4/0.00e+00 4.23e-02/1032/76/9.89e-07 2.60e-03/36/8/0.00e+00
x7(1) 1.35e-03/22/4/0.00e+00 3.65e-02/1002/68/2.95e-07 2.74e-03/36/8/0.00e+00
x8(1) 1.17e-03/22/4/0.00e+00 1.54e-02/366/33/9.55e-07 2.96e-03/46/10/1.28e-07
x1(5) 1.66e-03/7/1/0.00e+00 2.31e-02/169/22/2.70e-07 1.10e-03/6/1/0.00e+00
x2(5) 9.46e-04/6/1/0.00e+00 2.10e-02/157/18/8.89e-07 9.84e-04/6/1/0.00e+00
x3(5) 7.05e-04/4/1/0.00e+00 3.36e-03/21/6/2.35e-07 1.54e-03/4/1/0.00e+00
x4(5) 1.20e-03/8/1/0.00e+00 3.09e-02/235/26/6.05e-07 1.22e-03/8/1/0.00e+00
x5(5) 2.35e-03/16/3/0.00e+00 6.94e-02/531/59/5.93e-07 5.15e-03/28/6/0.00e+00
x6(5) 3.53e-03/22/4/0.00e+00 1.75e-01/2609/80/7.33e-07 4.21e-03/36/8/0.00e+00
x7(5) 2.15e-03/22/4/0.00e+00 1.26e-01/1844/81/4.47e-08 3.95e-03/36/8/0.00e+00
x8(5) 2.18e-03/22/4/0.00e+00 6.14e-02/860/61/8.52e-07 5.36e-03/45/10/3.03e-07
x1(10) 1.68e-03/7/1/0.00e+00 4.37e-02/237/27/9.40e-07 1.42e-03/6/1/0.00e+00
x2(10) 1.22e-03/6/1/0.00e+00 1.01e-02/55/6/7.04e-07 1.34e-03/6/1/0.00e+00
x3(10) 1.27e-03/4/1/0.00e+00 5.24e-03/21/6/2.35e-07 1.16e-03/4/1/0.00e+00
x4(10) 1.82e-03/8/1/0.00e+00 3.60e-02/191/24/8.25e-07 1.70e-03/8/1/0.00e+00
x5(10) 3.68e-03/16/3/0.00e+00 1.17e-01/639/71/9.32e-07 6.97e-03/28/6/0.00e+00
x6(10) 4.95e-03/22/4/0.00e+00 5.52e-01/3359/110/4.83e-07 8.96e-03/36/8/0.00e+00
x7(10) 4.73e-03/22/4/0.00e+00 6.01e-01/3682/99/7.85e-08 9.22e-03/36/8/0.00e+00
x8(10) 4.77e-03/22/4/0.00e+00 3.26e-01/1880/101/5.74e-07 2.15e-02/87/18/0.00e+00
x1(50) 8.73e-03/7/1/0.00e+00 1.21e-01/153/17/5.71e-07 5.71e-03/6/1/0.00e+00
x2(50) 5.32e-03/6/1/0.00e+00 4.34e-02/55/6/1.81e-07 5.40e-03/6/1/0.00e+00
x3(50) 3.66e-03/4/1/0.00e+00 1.98e-02/21/6/2.35e-07 3.94e-03/4/1/0.00e+00
x4(50) 7.14e-03/8/1/0.00e+00 6.33e-02/80/8/6.29e-07 7.28e-03/8/1/0.00e+00
x5(50) 1.49e-02/16/3/0.00e+00 3.38e-01/423/47/9.80e-07 2.83e-02/28/6/0.00e+00
x6(50) 2.05e-02/22/4/0.00e+00 9.17e+00/12,419/238/2.45e-07 3.65e-02/36/8/0.00e+00
x7(50) 2.02e-02/22/4/0.00e+00 7.79e+00/10,783/214/9.55e-07 3.37e-02/36/8/0.00e+00
x8(50) 2.36e-02/22/4/0.00e+00 6.39e+00/8720/188/8.76e-08 3.65e-02/36/8/0.00e+00
x1(100) 1.23e-02/7/1/0.00e+00 9.73e-02/76/8/8.07e-07 8.84e-03/6/1/0.00e+00
x2(100) 7.71e-03/6/1/0.00e+00 6.93e-02/55/6/2.13e-07 8.89e-03/6/1/0.00e+00
x3(100) 6.32e-03/4/1/0.00e+00 3.27e-02/21/6/2.35e-07 6.34e-03/4/1/0.00e+00
x4(100) 1.16e-02/8/1/0.00e+00 1.08e-01/80/8/8.84e-08 1.18e-02/8/1/0.00e+00
x5(100) 2.37e-02/16/3/0.00e+00 8.60e-01/657/73/9.97e-07 4.43e-02/28/6/0.00e+00
x6(100) 3.16e-02/22/4/0.00e+00 3.98e+01/32,638/539/1.18e-07 6.42e-02/36/8/0.00e+00
x7(100) 3.63e-02/22/4/0.00e+00 4.13e+01/30,472/505/3.09e-07 8.34e-02/36/8/0.00e+00
x8(100) 4.42e-02/22/4/0.00e+00 2.24e+01/13,024/253/1.09e-07 8.61e-02/36/8/0.00e+00

Electronic Research Archive Volume 32, Issue 11, 6153–6174.



6163

Table 2. Numerical results for Problem 2.

Inti(n) MRMIL MFRM HTTCGP
CPUT/NF/NIter/Norm CPUT/NF/NIter/Norm CPUT/NF/NIter/Norm

x1(1) 4.09e-03/5/1/0.00e+00 3.49e-03/30/8/1.60e-07 4.40e-04/5/1/0.00e+00
x2(1) 3.43e-04/4/1/0.00e+00 1.67e-03/22/7/1.65e-07 3.65e-04/4/1/0.00e+00
x3(1) 8.20e-04/11/3/2.22e-16 4.46e-03/68/21/8.58e-07 1.41e-03/17/6/5.44e-16
x4(1) 4.77e-04/7/1/0.00e+00 2.09e-03/33/7/3.68e-07 4.78e-04/7/1/0.00e+00
x5(1) 9.15e-04/13/3/0.00e+00 9.62e-03/171/52/6.35e-07 1.62e-03/30/10/0.00e+00
x6(1) 1.05e-03/21/6/0.00e+00 9.47e-03/213/49/4.69e-07 1.54e-03/30/10/0.00e+00
x7(1) 9.91e-04/21/6/0.00e+00 9.83e-03/231/51/2.37e-07 2.23e-03/48/14/9.84e-08
x8(1) 9.73e-04/21/6/0.00e+00 9.76e-03/234/58/6.14e-07 1.55e-03/32/10/0.00e+00
x1(5) 7.07e-04/5/1/0.00e+00 3.78e-03/30/8/3.57e-07 7.51e-04/5/1/0.00e+00
x2(5) 5.34e-04/4/1/0.00e+00 2.94e-03/22/7/3.68e-07 6.11e-04/4/1/0.00e+00
x3(5) 4.55e-04/4/1/0.00e+00 2.56e-03/21/6/2.35e-07 5.77e-04/4/1/0.00e+00
x4(5) 8.23e-04/7/1/0.00e+00 3.74e-03/33/7/8.22e-07 9.06e-04/7/1/0.00e+00
x5(5) 1.42e-03/13/3/0.00e+00 2.37e-02/183/57/7.52e-07 4.47e-03/30/10/0.00e+00
x6(5) 2.66e-03/21/6/0.00e+00 4.00e-02/335/58/4.78e-07 5.79e-03/30/10/0.00e+00
x7(5) 3.43e-03/21/6/0.00e+00 6.19e-02/433/64/9.33e-07 5.65e-03/30/10/0.00e+00
x8(5) 3.03e-03/21/6/0.00e+00 3.94e-02/304/55/3.17e-07 2.91e-03/15/5/0.00e+00
x1(10) 1.80e-03/5/1/0.00e+00 7.33e-03/30/8/5.06e-07 1.32e-03/5/1/0.00e+00
x2(10) 9.49e-04/4/1/0.00e+00 6.07e-03/22/7/5.20e-07 1.35e-03/4/1/0.00e+00
x3(10) 1.01e-03/4/1/0.00e+00 5.48e-03/21/6/2.35e-07 1.22e-03/4/1/0.00e+00
x4(10) 1.60e-03/7/1/0.00e+00 9.28e-03/36/8/1.16e-07 2.88e-03/7/1/0.00e+00
x5(10) 3.66e-03/13/3/0.00e+00 4.31e-02/128/39/9.28e-07 1.76e-02/50/15/0.00e+00
x6(10) 6.02e-03/21/6/0.00e+00 7.64e-02/283/73/4.39e-07 1.16e-02/30/10/0.00e+00
x7(10) 5.56e-03/21/6/0.00e+00 1.30e-01/629/43/2.45e-07 1.13e-02/30/10/0.00e+00
x8(10) 5.85e-03/21/6/0.00e+00 7.20e-02/246/73/8.77e-07 7.60e-03/21/7/1.63e-07
x1(50) 5.18e-03/5/1/0.00e+00 2.61e-02/32/9/0.00e+00 5.08e-03/5/1/0.00e+00
x2(50) 2.84e-03/4/1/0.00e+00 2.28e-02/25/8/1.16e-07 3.42e-03/4/1/0.00e+00
x3(50) 2.96e-03/4/1/0.00e+00 1.89e-02/21/6/2.35e-07 3.11e-03/4/1/0.00e+00
x4(50) 5.56e-03/7/1/0.00e+00 2.91e-02/36/8/2.60e-07 5.44e-03/7/1/0.00e+00
x5(50) 9.20e-03/13/3/0.00e+00 1.02e-01/117/35/2.52e-07 5.70e-02/43/13/2.80e-07
x6(50) 1.77e-02/21/6/0.00e+00 3.81e-01/552/69/9.63e-07 3.13e-02/30/10/0.00e+00
x7(50) 1.56e-02/21/6/0.00e+00 6.29e-01/1005/75/8.66e-07 3.24e-02/30/10/0.00e+00
x8(50) 1.78e-02/21/6/0.00e+00 3.15e+00/5101/178/4.94e-07 2.80e-02/30/10/0.00e+00
x1(100) 6.73e-03/5/1/0.00e+00 3.90e-02/32/9/0.00e+00 5.41e-03/5/1/0.00e+00
x2(100) 4.53e-03/4/1/0.00e+00 2.78e-02/24/8/0.00e+00 4.64e-03/4/1/0.00e+00
x3(100) 3.75e-03/4/1/0.00e+00 2.40e-02/21/6/2.35e-07 5.36e-03/4/1/0.00e+00
x4(100) 6.68e-03/7/1/0.00e+00 3.71e-02/35/8/0.00e+00 7.71e-03/7/1/0.00e+00
x5(100) 1.45e-02/13/3/0.00e+00 1.64e-01/152/47/9.66e-07 7.29e-02/43/13/7.00e-07
x6(100) 2.38e-02/21/6/0.00e+00 1.60e+00/1826/110/2.78e-07 4.44e-02/30/10/0.00e+00
x7(100) 2.26e-02/21/6/0.00e+00 1.76e+00/1964/84/5.00e-07 3.67e-02/30/10/0.00e+00
x8(100) 2.07e-02/21/6/0.00e+00 3.22e+00/3680/118/4.66e-07 5.22e-02/37/12/0.00e+00
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Table 3. Numerical results for Problem 3.

Inti(n) MRMIL MFRM HTTCGP
CPUT/NF/NIter/Norm CPUT/NF/NIter/Norm CPUT/NF/NIter/Norm

x1(1) 5.07e-03/21/9/9.12e-07 1.18e-03/26/8/1.94e-07 2.70e-03/43/18/3.66e-07
x2(1) 1.11e-03/19/8/4.65e-07 9.81e-04/22/7/3.11e-07 1.68e-03/31/12/4.46e-07
x3(1) 1.77e-03/34/13/7.23e-07 4.20e-03/103/34/9.22e-07 4.67e-03/82/28/7.83e-07
x4(1) 1.52e-03/21/8/5.92e-07 1.25e-03/29/8/5.28e-07 2.07e-03/38/15/4.51e-07
x5(1) 2.16e-03/45/16/6.82e-07 6.51e-03/172/56/7.25e-07 3.91e-03/79/28/7.88e-07
x6(1) 1.62e-03/35/14/9.03e-07 9.44e-03/249/81/9.32e-07 3.69e-03/75/27/5.74e-07
x7(1) 2.14e-03/45/18/2.01e-07 6.46e-03/178/57/4.58e-07 3.85e-03/79/29/2.93e-07
x8(1) 2.15e-03/46/18/1.92e-07 8.01e-03/217/71/7.29e-07 2.91e-03/77/27/6.69e-07
x1(5) 2.88e-03/23/10/7.54e-07 2.46e-03/26/8/4.33e-07 6.19e-03/43/18/8.18e-07
x2(5) 2.42e-03/21/9/4.15e-07 2.09e-03/22/7/6.96e-07 4.18e-03/31/12/9.96e-07
x3(5) 2.19e-03/20/8/6.57e-08 1.73e-03/19/6/3.14e-07 4.51e-03/33/14/7.89e-07
x4(5) 2.60e-03/23/9/6.48e-07 5.50e-03/62/18/1.18e-07 5.63e-03/41/16/1.21e-07
x5(5) 4.82e-03/45/16/6.99e-07 1.65e-02/174/57/7.02e-07 1.09e-02/79/30/2.30e-07
x6(5) 5.59e-03/47/18/7.07e-07 1.46e-02/151/49/8.74e-07 1.05e-02/72/29/7.86e-07
x7(5) 4.99e-03/43/17/4.96e-07 1.69e-02/172/56/5.46e-07 1.07e-02/72/28/8.85e-07
x8(5) 5.38e-03/42/17/4.22e-07 1.83e-02/178/57/9.75e-07 1.14e-02/76/29/8.45e-07
x1(10) 5.41e-03/25/11/1.15e-07 4.89e-03/26/8/6.12e-07 1.29e-02/46/19/1.39e-07
x2(10) 5.60e-03/21/9/5.87e-07 5.01e-03/22/7/9.85e-07 1.01e-02/34/13/1.69e-07
x3(10) 4.66e-03/20/8/6.57e-08 3.96e-03/19/6/3.14e-07 1.04e-02/33/14/7.89e-07
x4(10) 5.18e-03/23/9/9.17e-07 NaN/NaN/NaN/NaN 1.09e-02/41/16/1.71e-07
x5(10) 9.01e-03/45/16/7.00e-07 2.46e-02/117/38/3.53e-07 1.98e-02/65/25/6.27e-07
x6(10) 1.05e-02/43/17/8.69e-07 5.85e-02/266/87/7.40e-07 2.32e-02/77/30/9.31e-07
x7(10) 1.03e-02/43/17/6.69e-07 4.13e-02/194/63/7.63e-07 2.84e-02/92/33/8.29e-07
x8(10) 1.10e-02/46/18/6.83e-07 4.75e-02/225/73/6.04e-07 2.67e-02/91/35/7.06e-07
x1(50) 1.92e-02/25/11/2.56e-07 1.78e-02/28/9/1.66e-21 4.10e-02/46/19/3.10e-07
x2(50) 1.60e-02/23/10/1.87e-07 7.00e-02/115/35/3.73e-07 2.85e-02/34/13/3.78e-07
x3(50) 1.22e-02/20/8/6.57e-08 1.02e-02/19/6/3.14e-07 2.55e-02/33/14/7.89e-07
x4(50) 1.69e-02/25/10/4.90e-07 5.39e-02/92/27/3.73e-07 3.10e-02/41/16/3.83e-07
x5(50) 2.68e-02/45/16/7.01e-07 7.22e-02/123/40/4.16e-07 5.73e-02/75/26/2.38e-07
x6(50) 3.24e-02/45/18/2.40e-07 1.35e-01/218/71/9.05e-07 7.50e-02/92/32/8.05e-07
x7(50) 3.53e-02/45/18/2.57e-07 1.01e-01/154/50/2.03e-07 8.53e-02/92/37/9.38e-07
x8(50) 3.79e-02/56/21/1.87e-07 1.10e-01/176/57/7.31e-07 6.61e-02/75/31/8.55e-07
x1(100) 2.42e-02/25/11/3.63e-07 2.22e-02/28/9/1.57e-21 4.82e-02/46/19/4.39e-07
x2(100) 2.32e-02/23/10/2.64e-07 1.94e-02/25/8/3.11e-07 3.30e-02/34/13/5.35e-07
x3(100) 1.41e-02/20/8/6.57e-08 1.36e-02/19/6/3.14e-07 3.10e-02/33/14/7.89e-07
x4(100) 2.39e-02/25/10/6.94e-07 2.41e-02/31/9/2.20e-20 4.39e-02/41/16/5.42e-07
x5(100) 3.48e-02/45/16/7.01e-07 1.26e-01/168/55/1.90e-07 6.53e-02/68/24/7.36e-07
x6(100) 4.50e-02/45/18/3.76e-07 2.14e-01/254/83/8.14e-07 9.31e-02/86/33/4.98e-07
x7(100) 4.24e-02/45/18/3.85e-07 1.90e-01/227/74/8.90e-07 8.96e-02/86/33/5.74e-07
x8(100) 3.96e-02/47/18/6.74e-07 1.59e-01/189/62/2.28e-07 1.21e-01/105/41/7.49e-07
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Table 4. Numerical results for Problem 4.

Inti(n) MRMIL MFRM HTTCGP
CPUT/NF/NIter/Norm CPUT/NF/NIter/Norm CPUT/NF/NIter/Norm

x1(1) 9.47e-03/23/10/7.78e-08 1.47e-03/11/5/3.60e-08 6.54e-03/53/25/8.18e-07
x2(1) 2.36e-03/19/8/5.31e-07 8.59e-04/7/3/5.17e-07 5.73e-03/49/23/9.64e-07
x3(1) 3.79e-03/40/15/4.65e-07 1.96e-02/208/75/9.12e-07 6.22e-03/63/24/8.79e-07
x4(1) 2.96e-03/26/11/3.98e-07 1.58e-03/13/6/1.74e-08 5.97e-03/51/24/8.99e-07
x5(1) 4.14e-03/43/17/4.58e-07 1.84e-02/217/78/8.85e-07 5.64e-03/64/23/3.29e-07
x6(1) 2.93e-03/46/17/5.90e-07 1.86e-02/291/109/8.46e-07 5.77e-03/73/26/9.67e-07
x7(1) 3.95e-03/44/17/7.42e-07 1.36e-02/205/74/9.36e-07 6.73e-03/95/34/9.34e-07
x8(1) 3.55e-03/52/19/2.11e-07 1.53e-02/237/84/8.63e-07 4.28e-03/65/25/7.98e-07
x1(5) 4.96e-03/23/10/2.08e-07 2.40e-03/11/5/6.26e-09 1.26e-02/52/24/6.55e-07
x2(5) 3.93e-03/21/9/5.73e-07 1.62e-03/7/3/1.75e-07 1.25e-02/53/25/8.20e-07
x3(5) 3.00e-03/16/7/1.83e-07 1.98e-03/9/4/2.00e-09 8.10e-03/36/16/8.24e-07
x4(5) 4.79e-03/26/11/8.90e-07 2.60e-03/13/6/2.36e-09 1.70e-02/55/26/7.71e-07
x5(5) 9.46e-03/45/17/2.06e-07 4.25e-02/177/62/8.65e-07 1.81e-02/66/26/9.53e-07
x6(5) 1.18e-02/50/19/3.77e-07 9.35e-02/271/97/9.78e-07 3.62e-02/85/31/6.06e-07
x7(5) 1.48e-02/44/17/1.40e-07 7.01e-02/211/76/2.42e-07 3.40e-02/116/37/3.72e-07
x8(5) 1.46e-02/51/19/3.17e-07 6.78e-02/263/93/9.99e-07 3.11e-02/105/36/5.28e-07
x1(10) 1.10e-02/23/10/3.00e-07 6.53e-03/11/5/3.62e-09 3.28e-02/52/24/9.35e-07
x2(10) 1.05e-02/21/9/8.62e-07 3.14e-03/7/3/1.21e-07 2.72e-02/50/23/6.50e-07
x3(10) 6.52e-03/16/7/2.03e-07 3.37e-03/9/4/9.73e-10 1.83e-02/36/16/8.28e-07
x4(10) 1.53e-02/28/12/1.39e-07 5.89e-03/13/6/1.24e-09 3.80e-02/52/24/6.11e-07
x5(10) 1.82e-02/43/16/7.79e-07 7.53e-02/178/63/7.91e-07 3.82e-02/78/28/8.98e-07
x6(10) 2.26e-02/49/18/8.21e-07 7.14e-02/163/60/5.61e-07 4.75e-02/91/31/1.42e-07
x7(10) 2.15e-02/49/18/9.55e-07 1.08e-01/231/83/5.07e-07 4.71e-02/91/32/8.91e-07
x8(10) 1.62e-02/46/18/5.27e-07 5.20e-02/163/59/6.17e-07 5.75e-02/126/42/8.53e-07
x1(50) 3.24e-02/23/10/6.82e-07 2.04e-02/11/5/1.34e-09 9.80e-02/51/23/7.02e-07
x2(50) 2.97e-02/25/10/2.55e-07 8.31e-03/7/3/6.32e-08 8.49e-02/52/24/8.77e-07
x3(50) 2.88e-02/16/7/2.21e-07 2.05e-02/9/4/2.18e-10 4.89e-02/31/13/7.71e-07
x4(50) 3.35e-02/28/12/3.12e-07 2.54e-02/13/6/4.01e-10 1.05e-01/54/25/8.26e-07
x5(50) 4.97e-02/42/16/7.40e-07 1.95e-01/156/54/8.16e-07 8.89e-02/72/27/6.90e-07
x6(50) 6.08e-02/50/19/7.08e-07 2.92e-01/210/74/9.78e-07 1.82e-01/119/37/8.99e-07
x7(50) 6.98e-02/50/19/9.13e-07 3.01e-01/260/95/4.00e-07 1.70e-01/102/38/9.01e-07
x8(50) 6.69e-02/56/21/2.67e-07 2.42e-01/212/75/6.80e-07 1.42e-01/82/31/1.80e-07
x1(100) 3.66e-02/23/10/9.66e-07 1.70e-02/11/5/9.27e-10 1.00e-01/51/23/9.93e-07
x2(100) 3.99e-02/25/10/3.61e-07 1.08e-02/7/3/5.40e-08 8.99e-02/49/22/6.89e-07
x3(100) 2.96e-02/16/7/2.23e-07 1.41e-02/9/4/1.28e-10 5.88e-02/31/13/7.71e-07
x4(100) 6.17e-02/28/12/4.42e-07 2.77e-02/13/6/2.71e-10 1.08e-01/51/23/6.49e-07
x5(100) 7.02e-02/50/18/2.25e-07 3.47e-01/216/74/2.32e-07 1.31e-01/73/28/8.05e-07
x6(100) 9.04e-02/53/20/1.91e-07 3.31e-01/197/68/6.68e-07 1.81e-01/94/35/6.66e-07
x7(100) 9.46e-02/53/20/2.18e-07 4.07e-01/221/79/4.32e-07 1.95e-01/100/37/7.41e-07
x8(100) 1.25e-01/54/20/2.42e-07 4.69e-01/267/94/8.29e-07 2.64e-01/120/42/8.12e-07
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Table 5. Numerical results for Problem 5.

Inti(n) MRMIL MFRM HTTCGP
CPUT/NF/NIter/Norm CPUT/NF/NIter/Norm CPUT/NF/NIter/Norm

x1(1) 4.72e-03/6/1/0.00e+00 8.39e-04/5/1/0.00e+00 9.45e-04/9/1/0.00e+00
x2(1) 8.32e-04/9/1/0.00e+00 7.67e-03/127/7/9.16e-08 5.59e-04/8/1/0.00e+00
x3(1) 9.81e-04/19/3/9.16e-16 2.26e-02/272/7/0.00e+00 5.40e-04/11/2/1.49e-13
x4(1) 4.31e-04/4/1/0.00e+00 1.02e-03/12/1/0.00e+00 9.47e-04/10/1/0.00e+00
x5(1) 3.98e-03/73/10/0.00e+00 2.76e-02/672/40/9.84e-07 6.22e-03/124/16/4.64e-07
x6(1) 2.29e-03/43/5/0.00e+00 8.05e-02/970/28/0.00e+00 6.30e-03/129/18/8.83e-08
x7(1) 1.94e-03/43/5/0.00e+00 6.91e-02/805/22/0.00e+00 3.51e-03/78/11/0.00e+00
x8(1) 2.00e-03/43/5/0.00e+00 3.83e-02/744/23/0.00e+00 5.22e-03/127/17/3.24e-07
x1(5) 1.15e-03/6/1/0.00e+00 8.99e-04/5/1/0.00e+00 1.26e-03/9/1/0.00e+00
x2(5) 1.04e-03/9/1/0.00e+00 1.24e-02/127/7/2.05e-07 9.77e-04/8/1/0.00e+00
x3(5) 4.01e-04/3/1/0.00e+00 4.29e-04/3/1/0.00e+00 4.81e-04/3/1/0.00e+00
x4(5) 7.62e-04/4/1/0.00e+00 1.98e-03/12/1/0.00e+00 1.62e-03/10/1/0.00e+00
x5(5) 8.84e-03/65/9/0.00e+00 8.29e-02/590/21/0.00e+00 8.92e-03/77/9/0.00e+00
x6(5) 4.87e-03/43/5/0.00e+00 4.02e-01/3017/84/0.00e+00 8.59e-03/86/12/0.00e+00
x7(5) 3.63e-03/43/5/0.00e+00 2.30e-01/2575/76/0.00e+00 1.22e-02/125/17/1.80e-07
x8(5) 5.99e-03/67/8/0.00e+00 1.93e-01/1088/30/0.00e+00 1.17e-02/130/18/1.82e-07
x1(10) 1.36e-03/6/1/0.00e+00 1.11e-03/5/1/0.00e+00 1.70e-03/9/1/0.00e+00
x2(10) 1.26e-03/9/1/0.00e+00 1.69e-02/127/7/2.90e-07 1.31e-03/8/1/0.00e+00
x3(10) 4.86e-04/3/1/0.00e+00 5.53e-04/3/1/0.00e+00 6.44e-04/3/1/0.00e+00
x4(10) 9.66e-04/4/1/0.00e+00 2.78e-03/12/1/0.00e+00 2.38e-03/10/1/0.00e+00
x5(10) 1.02e-02/65/9/0.00e+00 3.46e-01/982/33/0.00e+00 1.18e-02/64/8/0.00e+00
x6(10) 7.65e-03/43/5/0.00e+00 4.97e-01/1658/50/0.00e+00 1.74e-02/93/13/0.00e+00
x7(10) 7.09e-03/43/5/0.00e+00 4.71e-01/1614/46/0.00e+00 1.69e-02/86/12/0.00e+00
x8(10) 7.56e-03/43/5/0.00e+00 5.42e-01/3336/62/0.00e+00 2.31e-02/116/16/1.46e-14
x1(50) 7.39e-03/6/1/0.00e+00 6.39e-03/5/1/0.00e+00 9.84e-03/9/1/0.00e+00
x2(50) 6.01e-03/9/1/0.00e+00 8.79e-02/127/7/6.48e-07 6.33e-03/8/1/0.00e+00
x3(50) 1.92e-03/3/1/0.00e+00 1.72e-03/3/1/0.00e+00 2.70e-03/3/1/0.00e+00
x4(50) 7.81e-03/4/1/0.00e+00 1.67e-02/12/1/0.00e+00 1.39e-02/10/1/0.00e+00
x5(50) 4.93e-02/65/9/0.00e+00 4.99e+01/68,278/423/9.90e-07 7.26e-02/76/9/0.00e+00
x6(50) 3.74e-02/43/5/0.00e+00 3.75e+00/5481/96/0.00e+00 7.21e-02/86/12/0.00e+00
x7(50) 4.49e-02/43/5/0.00e+00 2.27e+00/3313/77/4.68e-07 6.53e-02/86/12/0.00e+00
x8(50) 3.48e-02/43/5/0.00e+00 2.70e+00/3009/71/0.00e+00 1.22e-01/123/17/0.00e+00
x1(100) 1.43e-02/6/1/0.00e+00 1.26e-02/5/1/0.00e+00 1.70e-02/9/1/0.00e+00
x2(100) 1.10e-02/9/1/0.00e+00 1.42e-01/127/7/9.16e-07 9.75e-03/8/1/0.00e+00
x3(100) 2.75e-03/3/1/0.00e+00 2.83e-03/3/1/0.00e+00 3.79e-03/3/1/0.00e+00
x4(100) 2.15e-02/11/1/0.00e+00 2.23e-02/12/1/0.00e+00 2.05e-02/10/1/0.00e+00
x5(100) 9.68e-02/65/9/0.00e+00 1.31e+00/725/26/0.00e+00 8.42e-02/76/9/0.00e+00
x6(100) 6.02e-02/43/5/0.00e+00 7.76e+00/6171/118/0.00e+00 1.09e-01/86/12/0.00e+00
x7(100) 6.28e-02/43/5/0.00e+00 8.69e+00/9779/150/0.00e+00 8.73e-02/86/12/0.00e+00
x8(100) 5.39e-02/43/5/0.00e+00 6.71e+00/4351/94/0.00e+00 1.43e-01/114/16/3.83e-07
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Table 6. Numerical results for Problem 6.

Inti(n) MRMIL MFRM HTTCGP
CPUT/NF/NIter/Norm CPUT/NF/NIter/Norm CPUT/NF/NIter/Norm

x1(1) 3.58e-02/277/36/8.38e-07 7.86e-02/1320/75/7.89e-07 1.51e-02/212/30/8.96e-07
x2(1) 1.81e-02/294/38/8.90e-07 6.53e-02/1132/64/8.28e-07 1.15e-02/227/32/6.72e-07
x3(1) 1.04e-02/232/29/8.27e-07 5.34e-02/1305/74/7.88e-07 1.12e-02/218/30/6.65e-07
x4(1) 1.93e-02/304/39/4.66e-07 9.09e-02/1271/72/9.63e-07 2.08e-02/232/32/4.45e-07
x5(1) 2.28e-02/273/34/8.18e-07 7.14e-02/1237/70/7.03e-07 1.43e-02/254/35/8.51e-07
x6(1) 1.41e-02/289/37/7.08e-07 7.02e-02/1273/72/8.11e-07 1.63e-02/258/37/4.19e-07
x7(1) 1.77e-02/291/37/7.70e-07 6.04e-02/1218/69/7.97e-07 1.18e-02/218/31/9.80e-07
x8(1) 2.01e-02/280/35/7.14e-07 1.04e-01/1460/83/7.95e-07 2.31e-02/313/44/8.58e-07
x1(5) 8.27e-02/332/43/6.44e-07 2.44e-01/1200/68/9.37e-07 5.52e-02/246/34/4.06e-07
x2(5) 6.56e-02/281/36/5.38e-07 2.53e-01/1183/67/8.20e-07 5.58e-02/220/30/5.92e-07
x3(5) 6.42e-02/254/32/5.78e-07 1.88e-01/1270/72/7.75e-07 6.89e-02/236/34/8.13e-07
x4(5) 1.17e-01/301/39/8.21e-07 2.89e-01/1323/75/8.81e-07 6.86e-02/247/35/7.76e-07
x5(5) 5.08e-02/240/30/7.69e-07 2.50e-01/1222/69/5.88e-07 6.92e-02/251/35/4.08e-07
x6(5) 6.92e-02/282/36/5.93e-07 2.46e-01/1357/77/8.52e-07 3.95e-02/242/34/4.00e-07
x7(5) 4.42e-02/275/35/9.03e-07 2.41e-01/1270/72/8.76e-07 5.87e-02/237/34/7.88e-07
x8(5) 6.98e-02/297/37/3.46e-07 2.80e-01/1566/89/6.50e-07 7.49e-02/267/37/7.91e-07
x1(10) 1.51e-01/261/33/5.37e-07 6.16e-01/1403/80/8.67e-07 1.07e-01/251/35/2.74e-07
x2(10) 1.51e-01/238/30/7.13e-07 5.02e-01/1168/66/9.24e-07 1.45e-01/229/32/5.82e-07
x3(10) 1.46e-01/336/44/7.85e-07 5.94e-01/1255/71/8.25e-07 1.18e-01/224/30/8.40e-07
x4(10) 1.51e-01/289/37/7.67e-07 5.63e-01/1221/69/5.91e-07 1.12e-01/236/33/7.34e-07
x5(10) 1.44e-01/275/35/4.79e-07 7.07e-01/1375/78/8.38e-07 1.27e-01/224/31/2.81e-07
x6(10) 1.27e-01/289/37/4.16e-07 6.95e-01/1273/72/9.49e-07 1.31e-01/256/36/3.40e-07
x7(10) 2.05e-01/359/47/6.72e-07 5.95e-01/1306/74/8.20e-07 1.44e-01/238/34/6.54e-07
x8(10) 1.48e-01/289/36/8.95e-07 7.27e-01/1584/90/6.47e-07 1.40e-01/233/32/9.69e-07
x1(50) 8.52e-01/357/47/4.74e-07 2.69e+00/1289/73/7.67e-07 6.97e-01/272/38/8.76e-07
x2(50) 6.96e-01/295/38/6.17e-07 2.77e+00/1324/75/8.22e-07 5.92e-01/238/33/3.85e-07
x3(50) 6.63e-01/286/37/9.68e-07 2.56e+00/1273/72/9.25e-07 5.94e-01/237/32/4.69e-07
x4(50) 6.08e-01/260/33/4.27e-07 2.62e+00/1254/71/7.67e-07 6.29e-01/258/36/4.57e-07
x5(50) 6.11e-01/260/33/9.83e-07 2.70e+00/1306/74/7.29e-07 7.14e-01/289/41/7.99e-07
x6(50) 8.00e-01/340/44/6.55e-07 2.72e+00/1255/71/9.91e-07 6.36e-01/237/33/9.85e-07
x7(50) 9.29e-01/369/48/7.11e-07 2.73e+00/1255/71/9.26e-07 5.95e-01/241/35/4.73e-07
x8(50) 6.81e-01/304/38/8.88e-07 3.36e+00/1603/91/8.70e-07 6.36e-01/261/37/7.78e-07
x1(100) 1.08e+00/308/40/8.26e-07 4.35e+00/1355/77/9.19e-07 8.10e-01/232/33/7.15e-07
x2(100) 1.29e+00/359/47/5.06e-07 3.90e+00/1186/67/7.61e-07 9.06e-01/251/35/7.16e-07
x3(100) 1.07e+00/331/43/9.40e-07 4.69e+00/1444/82/8.90e-07 8.66e-01/245/33/7.24e-07
x4(100) 1.05e+00/297/38/9.43e-07 4.63e+00/1394/79/7.47e-07 8.32e-01/221/32/7.54e-07
x5(100) 1.24e+00/358/47/6.22e-07 4.09e+00/1255/71/8.19e-07 8.74e-01/236/33/7.22e-07
x6(100) 1.02e+00/283/36/8.83e-07 4.17e+00/1273/72/9.40e-07 9.27e-01/250/35/2.92e-07
x7(100) 1.50e+00/424/56/4.49e-07 4.01e+00/1222/69/8.51e-07 9.43e-01/255/36/6.78e-07
x8(100) 1.15e+00/311/39/8.93e-07 5.97e+00/1774/101/6.97e-07 1.04e+00/291/40/5.55e-07
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Table 7. Numerical results for Problem 7.

Inti(n) MRMIL MFRM HTTCGP
CPUT/NF/NIter/Norm CPUT/NF/NIter/Norm CPUT/NF/NIter/Norm

x1(1) 9.10e-03/29/13/5.98e-07 2.12e-03/21/10/7.94e-10 3.76e-03/35/15/9.05e-07
x2(1) 4.30e-03/29/14/3.76e-07 2.29e-03/23/11/1.33e-10 4.08e-03/40/17/5.07e-07
x3(1) 4.53e-03/51/22/5.53e-07 8.50e-03/97/36/3.38e-07 6.07e-03/61/24/9.84e-07
x4(1) 2.43e-03/26/11/4.38e-07 1.46e-03/19/9/7.57e-10 2.91e-03/38/16/4.00e-07
x5(1) 2.79e-03/44/19/2.38e-07 1.91e-02/207/76/5.84e-07 4.06e-03/54/24/6.85e-07
x6(1) 3.55e-03/56/22/6.86e-07 1.44e-02/237/85/4.40e-07 4.95e-03/75/30/8.70e-07
x7(1) 3.88e-03/64/24/1.85e-07 9.12e-03/154/55/2.30e-07 4.71e-03/72/30/6.40e-07
x8(1) 3.41e-03/58/22/7.88e-07 1.13e-02/206/76/6.43e-07 5.24e-03/89/34/6.62e-07
x1(5) 5.40e-03/29/13/1.11e-07 6.10e-03/25/12/6.91e-13 1.03e-02/40/17/2.05e-07
x2(5) 6.11e-03/29/13/9.75e-07 6.99e-03/27/13/7.07e-14 1.08e-02/45/19/1.36e-07
x3(5) 9.19e-03/46/20/5.72e-07 3.09e-02/155/57/6.97e-07 1.47e-02/57/25/6.40e-07
x4(5) 7.15e-03/33/14/5.16e-07 5.06e-03/23/11/6.91e-13 1.01e-02/40/17/9.21e-07
x5(5) 1.33e-02/66/25/8.97e-07 4.70e-02/209/74/3.37e-07 1.89e-02/68/27/5.92e-07
x6(5) 1.26e-02/62/25/4.37e-07 2.89e-02/139/50/2.94e-07 2.30e-02/85/35/2.92e-07
x7(5) 9.60e-03/55/23/3.67e-07 2.84e-02/183/64/4.58e-07 1.61e-02/93/35/8.81e-07
x8(5) 9.19e-03/61/25/2.79e-07 3.19e-02/207/77/5.18e-07 1.47e-02/81/33/6.21e-07
x1(10) 1.05e-02/36/16/8.25e-08 8.04e-03/25/12/2.96e-07 2.27e-02/45/19/1.73e-07
x2(10) 1.34e-02/36/16/1.82e-07 1.07e-02/27/13/6.88e-08 2.24e-02/42/18/3.13e-07
x3(10) 2.00e-02/52/22/9.37e-07 7.83e-02/217/81/9.84e-07 4.00e-02/86/32/7.77e-07
x4(10) 1.14e-02/28/12/3.75e-07 9.76e-03/23/11/2.95e-07 2.01e-02/43/18/1.49e-07
x5(10) 1.79e-02/53/22/9.01e-07 6.96e-02/216/76/6.30e-07 2.93e-02/68/28/9.03e-07
x6(10) 1.85e-02/48/20/3.48e-08 5.72e-02/160/57/2.03e-07 5.32e-02/77/33/7.39e-07
x7(10) 3.16e-02/48/20/1.64e-07 7.36e-02/190/67/3.00e-07 5.81e-02/94/37/7.39e-07
x8(10) 2.33e-02/58/23/3.23e-07 6.63e-02/180/64/7.49e-07 4.47e-02/81/32/6.71e-07
x1(50) 4.02e-02/37/17/6.63e-07 4.03e-02/29/14/1.19e-09 7.48e-02/49/21/2.34e-07
x2(50) 4.92e-02/33/15/8.90e-07 3.61e-02/31/15/1.76e-10 6.75e-02/44/19/6.15e-07
x3(50) 6.40e-02/59/25/3.96e-07 1.91e-01/175/65/5.17e-07 1.18e-01/76/30/6.97e-07
x4(50) 4.55e-02/38/17/2.95e-08 3.61e-02/27/13/1.19e-09 7.05e-02/45/19/3.26e-07
x5(50) 8.06e-02/64/26/2.60e-07 2.12e-01/173/62/1.09e-07 1.10e-01/70/29/9.52e-07
x6(50) 8.66e-02/65/26/4.47e-07 3.30e-01/283/105/9.08e-07 1.64e-01/94/37/6.52e-07
x7(50) 9.17e-02/65/26/5.17e-07 3.47e-01/276/99/1.93e-07 1.77e-01/96/42/6.56e-07
x8(50) 8.60e-02/66/26/6.25e-07 2.69e-01/223/79/9.42e-07 1.22e-01/91/35/9.14e-07
x1(100) 6.34e-02/33/15/8.34e-07 7.14e-02/31/15/3.30e-12 9.73e-02/47/20/3.72e-07
x2(100) 6.77e-02/35/16/1.65e-07 6.13e-02/33/16/4.92e-13 1.01e-01/51/22/3.30e-07
x3(100) 1.06e-01/53/23/5.67e-07 3.63e-01/218/81/9.71e-07 1.62e-01/68/30/2.34e-07
x4(100) 8.34e-02/38/17/5.90e-07 6.02e-02/29/14/3.30e-12 1.10e-01/47/20/3.38e-07
x5(100) 1.30e-01/69/27/8.28e-07 4.12e-01/250/90/8.45e-07 1.91e-01/70/31/6.97e-07
x6(100) 1.15e-01/63/26/8.98e-07 4.05e-01/236/83/1.45e-07 1.71e-01/73/30/9.64e-07
x7(100) 1.41e-01/72/29/2.11e-07 2.68e-01/155/56/9.14e-07 1.82e-01/85/35/8.33e-07
x8(100) 1.17e-01/69/28/4.06e-07 2.91e-01/173/62/7.20e-07 1.79e-01/86/35/8.87e-07
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Table 8. Numerical results for Problem 8.

Inti(n) MRMIL MFRM HTTCGP
CPUT/NF/NIter/Norm CPUT/NF/NIter/Norm CPUT/NF/NIter/Norm

x1(1) 1.57e-02/65/15/2.66e-07 5.69e-03/105/8/1.37e-07 9.89e-03/123/30/7.24e-07
x2(1) 4.09e-03/62/14/4.49e-07 7.40e-03/104/8/3.22e-07 8.66e-03/95/23/9.30e-07
x3(1) 7.73e-03/135/24/8.20e-07 3.54e-02/646/50/9.69e-07 7.99e-03/133/24/3.84e-07
x4(1) 4.02e-03/59/15/4.26e-07 5.52e-03/101/10/3.18e-07 6.71e-03/132/33/7.88e-07
x5(1) 5.49e-03/123/22/5.46e-07 2.95e-02/729/57/9.14e-07 8.01e-03/147/25/7.83e-07
x6(1) 7.24e-03/137/24/7.56e-07 3.02e-02/623/48/7.54e-07 1.03e-02/187/31/6.60e-07
x7(1) 7.19e-03/151/26/5.22e-07 2.64e-02/623/48/8.13e-07 1.03e-02/207/34/9.91e-07
x8(1) 7.59e-03/158/27/3.90e-07 2.83e-02/610/47/9.07e-07 7.23e-03/137/23/7.80e-07
x1(5) 1.10e-02/65/15/5.94e-07 1.66e-02/105/8/3.06e-07 2.87e-02/127/31/9.46e-07
x2(5) 1.13e-02/66/15/4.92e-07 1.39e-02/104/8/7.20e-07 2.08e-02/103/25/7.11e-07
x3(5) 1.72e-02/108/19/4.27e-07 9.23e-02/679/53/8.68e-07 3.47e-02/173/30/5.18e-07
x4(5) 9.61e-03/59/15/9.54e-07 1.34e-02/101/10/7.11e-07 2.83e-02/140/35/6.02e-07
x5(5) 2.30e-02/153/27/4.14e-07 8.86e-02/598/47/9.39e-07 2.61e-02/155/27/7.88e-07
x6(5) 2.22e-02/155/26/6.23e-07 1.02e-01/649/50/9.20e-07 4.65e-02/242/42/6.85e-07
x7(5) 2.84e-02/175/30/3.52e-07 9.76e-02/649/50/9.34e-07 3.68e-02/221/38/5.04e-07
x8(5) 2.28e-02/160/27/9.05e-07 8.49e-02/649/50/7.86e-07 3.57e-02/229/37/8.19e-07
x1(10) 1.94e-02/65/15/8.41e-07 2.46e-02/105/8/4.32e-07 6.85e-02/131/32/7.82e-07
x2(10) 2.04e-02/66/15/6.96e-07 3.28e-02/117/9/9.56e-08 4.86e-02/107/26/5.87e-07
x3(10) 4.64e-02/150/26/4.89e-07 1.62e-01/633/49/9.38e-07 5.12e-02/158/28/6.03e-07
x4(10) 1.79e-02/63/16/6.62e-07 2.78e-02/114/11/9.44e-08 4.47e-02/140/35/8.51e-07
x5(10) 4.10e-02/144/25/9.30e-07 2.23e-01/804/63/8.09e-07 4.97e-02/161/28/9.11e-07
x6(10) 4.84e-02/167/28/8.87e-07 1.80e-01/662/51/9.52e-07 6.56e-02/187/32/4.46e-07
x7(10) 4.05e-02/145/24/3.64e-07 1.59e-01/662/51/9.59e-07 7.43e-02/217/38/7.83e-07
x8(10) 5.35e-02/182/31/9.02e-07 1.70e-01/662/51/8.40e-07 4.86e-02/170/28/9.47e-07
x1(50) 4.53e-02/69/16/9.22e-07 6.91e-02/105/8/9.67e-07 1.35e-01/139/34/5.97e-07
x2(50) 6.15e-02/70/16/2.89e-07 6.94e-02/117/9/2.14e-07 1.12e-01/111/27/7.68e-07
x3(50) 1.18e-01/140/25/4.75e-07 3.09e-01/479/37/8.10e-07 1.47e-01/170/31/9.28e-07
x4(50) 6.08e-02/67/17/2.75e-07 8.56e-02/114/11/2.11e-07 1.28e-01/148/37/6.50e-07
x5(50) 1.34e-01/198/34/2.85e-07 4.59e-01/722/56/7.74e-07 1.46e-01/188/32/7.55e-07
x6(50) 1.59e-01/188/32/5.83e-07 4.39e-01/701/54/8.25e-07 1.69e-01/202/37/7.58e-07
x7(50) 1.17e-01/175/30/8.79e-07 4.38e-01/701/54/8.26e-07 1.54e-01/181/31/3.12e-07
x8(50) 1.17e-01/175/30/9.66e-07 4.42e-01/701/54/8.07e-07 1.86e-01/220/38/3.22e-07
x1(100) 7.06e-02/73/17/2.42e-07 9.94e-02/118/9/1.28e-07 1.87e-01/139/34/8.45e-07
x2(100) 8.39e-02/70/16/4.09e-07 1.07e-01/117/9/3.02e-07 1.53e-01/115/28/6.34e-07
x3(100) 1.37e-01/152/26/9.75e-07 5.22e-01/633/49/7.74e-07 1.96e-01/189/32/6.73e-07
x4(100) 5.83e-02/67/17/3.89e-07 9.82e-02/114/11/2.99e-07 2.35e-01/148/37/9.19e-07
x5(100) 1.41e-01/149/26/8.92e-07 6.82e-01/755/59/9.32e-07 1.76e-01/163/30/3.99e-07
x6(100) 1.75e-01/162/28/9.85e-07 6.61e-01/714/55/8.50e-07 2.81e-01/262/45/2.82e-07
x7(100) 1.63e-01/169/29/7.24e-07 5.50e-01/714/55/8.51e-07 2.11e-01/202/34/9.27e-07
x8(100) 1.36e-01/155/27/4.23e-07 5.82e-01/714/55/8.37e-07 2.14e-01/215/36/6.65e-07
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Figure 4. From top to bottom: the original signal, the observed signal, and the recovered
signal of three algorithms.

Table 9. The comparison results of three algorithms under different randomness.

No. MRMIL MFRM HTTCGP
NIter/CPUT/MSE NIter/CPUT/MSE NIter/CPUT/MSE

1 68/0.54/1.136e-05 130/0.95/2.379e-04 94/0.70/1.323e-05
2 67/0.49/2.418e-05 141/1.03/3.226e-04 153/1.07/2.637e-05
3 68/0.51/8.482e-06 142/1.00/1.182e-04 96/0.68/9.684e-06
4 70/0.53/7.291e-06 140/1.01/1.741e-04 127/0.90/8.306e-06
5 77/0.59/1.827e-05 130/0.92/3.736e-04 153/1.08/2.019e-05
6 70/0.53/5.458e-06 132/0.94/7.814e-05 135/0.96/6.194e-06
7 73/0.54/1.109e-05 130/0.97/1.831e-04 124/0.88/1.250e-05
8 62/0.45/8.374e-06 124/0.88/1.468e-04 107/0.75/9.071e-06
9 72/0.56/1.150e-05 139/1.00/2.949e-04 106/0.75/1.312e-05
10 69/0.52/1.229e-05 139/0.98/2.162e-04 140/0.98/1.370e-05
Average 69.60/0.53/1.183e-05 134.70/0.97/2.146e-04 123.50/0.87/1.324e-05
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Figure 5. The comparison results of three algorithms.

5. Conclusions

In this paper, we presented a modified RMIL-type conjugate gradient algorithm specifically tailored
to solve nonlinear systems of equations with convex constraints. The proposed algorithm incorporates
several key innovations that enhance both its theoretical foundation and practical performance. A cen-
tral feature of the algorithm is the modification of the conjugate parameter, ensuring its non-negativity.
This adjustment plays a critical role in improving the overall stability of the algorithm by preventing
negative conjugate parameters that could destabilize the iterative process. The proposed algorithm also
guarantees sufficient descent and trust region properties in the search direction, eliminating the need for
traditional line search techniques, which often add complexity and computational cost. We established
the global convergence of the algorithm under general conditions, without relying on the commonly
imposed assumption of Lipschitz continuity. Extensive numerical experiments were conducted to eval-
uate the performance of the proposed algorithm. The results demonstrate that it consistently outper-
forms existing algorithms, particularly in terms of computational efficiency. This is especially notable
in large scale nonlinear systems of equations. Furthermore, the algorithm shows superior performance
in signal recovery problems.
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