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Abstract: Accurate and effective landslide prediction and early detection of potential geological 
hazards are of great importance for landslide hazard prevention and control. However, due to the 
hidden, sudden, and uncertain nature of landslide disasters, traditional geological survey and 
investigation methods are time-consuming and laborious, and it is difficult to timely and accurately 
investigate and predict slope stability over a large area. Machine learning approaches provide an 
opportunity to address this limitation. Here, we present an intelligent slope stability assessment method 
based on a genetic algorithm optimization of random forest algorithm (GA-RF algorithm). Based on 80 
sets of typical slope samples, weight (γ), slope height (H), pore pressure value (P), cohesion force (C), 
internal friction angle (φ) and slope inclination angle (°) were selected as characteristic variables for 
slope stability evaluation. Based on the GA-RF algorithm and incorporating 10-fold cross validation, 
a regression prediction model is trained on the training dataset, and then regression prediction is 
performed on the test dataset to verify the predictive performance of the model. The results indicate 
that the GA-RF prediction model has decent regression performance and has certain potential for slope 
stability analysis. 
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1. Introduction  

Landslide disasters are influenced by multiple factors, and their combination and interaction can 
be complex. Traditional technical methods for investigating landslides have low efficiency and poor 
precision. Additionally, the characteristics of landslide disasters, such as their hidden, sudden, and 
uncertain nature, make them difficult to predict and prevent. Therefore, it is crucial to develop more 
effective methods for disaster reduction and prevention. The machine learning method can extract 
hidden rules and features from large amounts of data, enabling accurate research and assessment of 
landslide stability. 

Machine learning methods have advanced the development of geological disaster prevention and 
mitigation towards intelligence [1,2]. In the field of intelligent landslide disaster prevention and 
mitigation, common machine learning methods that consider both classification and regression 
functions include naive Bayes, logistic regression, and K-nearest decision tree. These models are 
intuitive and easy to implement. More complex and effective methods include support vector machines, 
random forests, and extreme gradient boosting. Many scholars have explored these methods. 

With the rapid development of machine learning (ML) as a Data Science branch, and its spread 
over many engineering fields, many researchers have started looking into disciplinary or thematic 
applications of ML methods [3,4]. For instance, Hossein et al. investigated the applicability of machine 
learning based model combination in slope stability assessment [5,6]. They compared several 
algorithms by estimating the factor of safety (FOS) for slope stability evaluation and concluded that 
random forest (RF) outperforms other intelligent models; Kardani et al. used a hybrid stacking 
ensemble method with the artificial bee colony (ABC) algorithm to select the best combination of 
classifiers from a pool of 11 individual optimized machine learning (OML) algorithm classifiers and 
determine a suitable meta-classifier [7]. They found that the hybrid stacking ensemble method 
outperformed the basic ensemble method. Mahmoodzadeh et al. employed six machine learning 
techniques to forecast slope safety systems [8]. They found that Gaussian process regression was the 
most precise model for predicting slope stability among the various models tested. Ma and Mei 
introduced six typical deep learning models and reviewed the application of deep learning in geohazard 
analysis around six typical geological hazards such as landslides, and summarized common application 
examples [9]. Ahangari et al. investigated the performance of five machine learning models in 
predicting slope safety factor [10]. They estimated 70 slopes in the South Pars region (Southwest Iran) 
and found that the multilayer perceptron model had the highest rating. To quickly and accurately 
estimate the factor of safety. Habib et al. used advanced integrated machine learning techniques to 
calculate the factor of safety and comprehensively evaluated the performance of these integrated 
techniques in comparison with established methods such as finite element methods and empirical 
modeling, and identified their potential as robust and reliable alternatives in the field of slope stability 
assessment [11]. Bansal and Sarkar investigated the safety determination process under dry and 
saturated conditions using the limit equilibrium method and the commercial software Geo Studio [12]. 
They analyzed and compared the results using computational intelligence and machine learning 
methods. They identified the novel integrated method, R-Boost, to provide maximum accuracy; (Zhang 
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et al.) clearly listed the advantages and disadvantages of the methods developed in these papers by 
reviewing papers published between 2002 and 2022 on the topic of applying ML to slopes [2], among 
others. Then, we focus on comparing three algorithmic models within the random forest model to 
determine the better prediction algorithm and parameter settings. 

The random forest algorithm is a widely used and highly flexible method that is suitable for non-
linear and high-dimensional data sets. However, parameter tuning is typically performed using either 
the grid search method or default values [2]. If the grid division is too small, it can result in long 
computation times and low efficiency. Conversely, if the grid division is too large, it can lead to the 
model falling into a local optimum, resulting in a poor model. Here, we present the GA-RF hybrid 
intelligent algorithm, which is based on the genetic algorithm and is used to optimize the random forest 
algorithm. The algorithm is then used to establish a slope stability prediction model. The GA-RF 
algorithm has a wider search space, which enables it to search for the optimal solution globally, and it 
has higher accuracy for the regression prediction of slope stability. 

2. A slope stability prediction model based GA-RF algorithm 

2.1. Basic principles of random forest model 

The Random Forest algorithm is a machine learning method that comprises multiple decision 
trees [13]. Each decision tree is trained by randomly sampling samples and features from the training 
dataset. The random forest algorithm uses self-service resampling technology to generate a new set of 
training samples by randomly sampling n samples from the original training sample set N. This new 
set is then used to train the decision tree, which is then used to generate a random forest. The 
classification of new data is determined by a vote among the decision trees in the forest. The language 
has been made more objective, concise, and clear, with technical terms explained and passive tone 
employed. The sentence structure has been simplified and grammatical errors corrected. The content 
has not been changed beyond improving clarity and objectivity. Essentially, this is an enhancement of 
the decision tree algorithm that combines multiple decision trees. Each tree is established based on 
independently drawn samples. 

2.1.1. The decision tree algorithm 

The decision tree model is a tree structure used for classification and regression. It consists of 
nodes and directed edges. Figure 1 shows a typical decision tree with a root node, internal nodes, 
and leaf nodes. The decision-making process for a decision tree should begin at the root node and 
compare the data to be measured with the feature nodes in the tree. The next comparison branch 
should be selected based on the comparison results until the leaf node is reached, which will provide 
the final decision result. 
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Figure 1. Decision tree diagram. 

Assuming that x and y are input and output variables respectively, and are continuous variables, 
assume that the training data set is as follows: 

 𝐷 ൌ ሼሺ𝑥ଵ, 𝑦ଵሻ, ሺ𝑥ଶ, 𝑦ଶሻ, ⋯ ሺ𝑥ே, 𝑦ேሻሽ         (1) 

The feature vector is: 

 𝑥௜ ൌ ሺ𝑥௜
ሺଵሻ, 𝑥௜

ሺଶሻ, ⋯ , 𝑥௜
ሺ௡ሻሻ         (2) 

The n is the number of features, 𝑖 = 1, 2... N, N is the sample size. 
Before partitioning, a feature subset is selected at random with equal probability from the feature 

vector. In each partition, all values of the features in the subset are traversed, and the optimal 
segmentation point is selected as the point with the smallest root mean square error. Write it as the 𝑗th 
feature variable in the training set and its value 𝑠, and define two regions: 

 𝑅ଵሺ𝑗, 𝑠ሻ ൌ ሼ𝑥|𝑥ሺ௝ሻ ൑ 𝑠ሽ         (3) 

And: 

 𝑅ଶሺ𝑗, 𝑠ሻ ൌ ሼ𝑥|𝑥ሺ௝ሻgt𝑠ሽ           (4) 

The optimal 𝑗 and 𝑠 are obtained by solving the following formula: 

 min
௝,௦

൤min
௖భ

∑ ሺ௫೔∈ோభሺ௝,௦ሻ 𝑦௜ െ 𝑐ଵሻଶ ൅ min
௖మ

∑ ሺ௫೔∈ோమሺ௝,௦ሻ 𝑦௜ െ 𝑐ଶሻଶ൨             (5) 

The optimal intersection point ሺj, sሻ can be found by solving the least squares error. This point 
is then used to minimize the sum of the squared errors of the two partitions. According to the theoretical 
proof, cଵ and  cଶ represent the mean of the corresponding Y values in the two regions, respectively. 
The input space is divided into two regions based on the optimal segmentation points, and the 
partitioning process is repeated for each newly generated region until the stop condition is met. A 
regression tree, also known as a least squares regression tree, is constructed using this method. 

After completing the division, the predicted values for the leaf nodes must be determined. If the 
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output value on the leaf node is unique, it is taken as the predicted value. Otherwise, the predicted 
value for that leaf node is the average of all sample output values. 

2.1.2. Decision tree attribute partitioning  

The selection of the partition attribute is a crucial step in constructing a decision tree. The goal is 
to have the samples belong to the same class as much as possible while the tree grows, resulting in 
reduced impurity of the nodes. To assess the impact of node partitioning, compare the impurity of the 
parent node before partitioning with that of the child node after partitioning. The evaluation of 
partitioning is based on the measurement of impurity reduction, as expressed in Eq (6). 

∆୍ൌ Iሺparentሻ െ ∑ ୒ሺ୨ሻ

୒
୩
୨ୀଵ Iሺjሻ                          (6) 

The ∆ூ indicates the degree to which the impurity is reduced. 𝐼ሺ𝑝𝑎𝑟𝑒𝑛𝑡ሻ represents the amount 
of father node impurity; 𝑘 indicates the number of partition attribute values; 𝑁ሺ𝑗ሻ is the number of 
samples on the 𝑗 th son node; 𝑁  represents the number of samples on the parent node; and 𝐼ሺ𝑗ሻ 
represents the impurity measure of the 𝑗th son node. 

Given any node 𝑡, we need to define its measure of impurity, let 𝑝ሺ𝑖ሻ be the proportion of Class 𝑖 
samples in node 𝑡, then the impurity measurement of node 𝑡 mainly includes the following three kinds. 

1) Entropy: A measure that expresses the uncertainty of a random variable; the greater the entropy, 
the greater the uncertainty of the random variable. 

 Entropyሺtሻ ൌ െ ∑ pୡ
୧ୀଵ ሺiሻlogଶpሺiሻ                  (7) 

 ∆୉୬୲୰୭୮୷ൌ Entropyሺparentሻ െ ∑ ୒ሺ୨ሻ

୒
୩
୨ୀଵ Entropyሺjሻ               (8) 

2) Gini index: A measure of the purity of a node. It is used to assess the degree of mixing of 
samples in a node. The smaller the Gini index, the purer the samples in the node, i.e., the higher the 
percentage of samples belonging to the same category. 

 Giniሺtሻ ൌ 1 െ ∑ pୡ
୧ୀଵ ሺiሻଶ                            (9) 

 ∆ୋ୧୬୧ൌ Gimiሺparentሻ െ ∑ ୒ሺ୨ሻ

୒
୩
୨ୀଵ Gimiሺjሻ                    (10) 

3) Misclassification rate: indicates the proportion of misclassified samples to the total number of 
samples in a classification problem. 

 Errorሺtሻ ൌ 1 െ maxpሺiሻ                           (11) 

 ∆୉୰୰୭୰ൌ Errorሺparentሻ െ ∑ ୒ሺ୨ሻ

୒
୩
୨ୀଵ Errorሺjሻ                  (12) 

2.1.3. Bagging series algorithms 

The Bagging Series Algorithms are an integrated learning approach designed to address data 
imbalances and enhance overall model performance by combining the prediction results of multiple 
base learners [14]. 

The Bagging algorithm involves obtaining the training set of the base learner through random 
sampling of the original samples. If there are M original samples, N sets of samples are taken. Each 
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group of samples is obtained through random sampling with replacement, with a sample size of M. This 
results in N groups of sampling sets, which are trained independently to obtain N base learners. The 
Bagging algorithm is then used to combine these base learners into a strong learner. The probability of 

each sample in the original set not being selected is ሺ1 െ ଵ

ெ
ሻெ. When M tends to converge to positive 

infinity, the lim
ெ→ஶ

ሺ1 െ ଵ

ெ
ሻெ ൌ ଵ

௘
, approximately 36.8%. This indicates that about one-third of the samples 

in the original sample set are not included each time, effectively increasing the model’s tolerance to noise. 
This method is suitable for poorly stabilized models or those prone to overfitting. 

2.1.4. Random forest algorithm modeling process 

The random forest model is built as shown in Figure 2, which is a combination of Bagging 
integration algorithm and decision tree. The specific process is as follows: 

1) The Bagging algorithm involves sampling the original sample from a set of M samples and 
then returning the completed samples to the sample set, where they may or may not be selected multiple 
times. This process generates N training sets; 

2) Train with N training sets to generate N complete decision trees; 
3) At each node of the decision tree, a subset of features is randomly selected from all available 

features. The data is then divided into two subsets by selecting the optimal splitting point based on 
the division criteria (e.g., entropy, Gini index, misclassification rate, etc.) described in Section 2.1.2 
of this paper; 

4) Finally, the generated multiple decision trees are composed into the final random forest. The 
decision tree categorizes the samples to be classified, records the number of votes for each category, 
and selects the category with the most votes as the final prediction result. For the regression problem, 
each decision tree predicts the samples to be predicted, and the final prediction result is obtained by 
calculating the average of the prediction results of all the decision trees. 

 

Figure 2. Schematic diagram of the random forest algorithm. 
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2.2. Construction of slope stability prediction model based on GA-RF algorithm 

We present the GA-RF algorithm, a hybrid intelligent algorithm that optimizes the genetic 
algorithm to the random forest algorithm. The algorithm exhibits lower variance, higher model stability, 
and a reduced propensity for overfitting at higher performance levels. Furthermore, the GA-RF 
algorithm enables the observation of feature importance, facilitating the visualization of the 
contribution of each parameter. The algorithm is used to establish a slope stability prediction model 
and intelligently evaluate the slope stability state. The establishment process involves four steps: 
feature variable selection and data set establishment, training set and test set division, data pre-
processing, and model parameter optimization. 

2.2.1. Feature variable selection and data set establishment 

Slope stability can be affected by a range of factors. Slope height (𝐻), overall slope angle (𝛽) and 
unit weight (𝛾) are the basic geometric design parameters of slopes, which determine the conditions 
of soil slope failure, and the slope stability decreases sharply with the increase of slope height; cohesion 
(𝐶) and angle of internal friction (𝜑) are the two key mechanical parameters related to the stability of 
slopes, particularly for the Mohr-Coulomb failure criterion; Pore water pressure has a more significant 
effect on the shear strength and stability of slope geotechnical bodies. Therefore, the slope stability 
analysis was conducted using six characteristic variables: slope soil weight (𝛾), slope height (𝐻), pore 
pressure (𝑃), cohesion (𝐶), angle of internal friction (𝜑), and slope inclination (𝛽), were chosen as the 
characteristic variables for the slope stability analysis, and the slope factor of safety (𝐹𝑠) was used as 
the quantitative index of the degree of slope stability. 

We select 80 sets of sample data of circularly damaged slopes from Introduction to Intelligent 
Rock Mechanics written by Feng as the slope stability evaluation dataset [15]. The construction of 
random forests does not necessitate a vast number of samples; rather, it requires that the samples be 
representative. The 80 sets of samples are deemed to be sufficiently representative to meet this need. 
Each set of data samples contains two parts of eigenvectors as well as the corresponding safety 
coefficients. The text adheres to conventional structure, clear and objective language, formal register, 
precise word choice, and grammatical correctness. The content has not been changed beyond 
improving its adherence to the desired characteristics. The specific slope stability evaluation sample 
data set is shown in Table 1. 

Table 1. Data set of slope stability evaluation. 

Nums. 
(𝛾)/ 
kN/m3 

(𝐶)/kPa (𝜑)/° (𝛽)/° (𝐻)/m (𝑃) 𝐹𝑠 

1 12.00 0.00 30 35 8.00 0.32 0.86 
2 23.47 0.00 32 37 214.00 0.32 1.08 
3 16.00 70.00 20 40 115.00 0.32 1.11 
4 20.41 24.91 13 22 10.67 0.35 1.40 
5 19.63 11.97 20 22 12.19 0.41 1.35 
6 21.82 8.62 32 28 12.80 0.49 1.03 
7 20.41 33.52 11 16 45.72 0.20 1.28 

Continued on next page 



6127 

Electronic Research Archive  Volume 32, Issue 11, 6120–6139. 

Nums. 
(𝛾)/ 
kN/m3 

(𝐶)/kPa (𝜑)/° (𝛽)/° (𝐻)/m (𝑃) 𝐹𝑠 

8 118.84 15.32 30 25 10.67 0.38 1.63 
9 18.84 0.00 20 20 7.62 0.45 1.05 
10 25 120.00 45 53 120.00 0.32 1.30 
11 25 55 36.00 45 239.00 0.25 1.71 
12 25 63 32 44.50 239.00 0.25 1.49 
13 25 63 32.00 46 300.00 0.25 1.45 
14 25 48 40 45 330.00 0.25 1.62 
15 31.3 68.60 37 47.50 262.50 0.25 1.20 
16 31.3 68.60 37 47 270.00 0.25 1.20 
17 31.3 58.80 35.5 47.50 438.50 0.25 1.20 
18 31.30 58.80 35.5 47.5 502.70 0.25 1.20 
19 31.30 68.00 37 47 360.50 0.25 1.20 
20 31.30 68.00 37 8 305.50 0.25 1.20 
21 18.68 26.34 15 35 8.23 0.32 1.11 
22 16.50 11.49 0.00 30 3.66 0.32 1.00 
23 118.84 14.36 25.00 20 30.50 0.32 1.88 
24 18.84 57.46 20.00 20 30.50 0.32 2.05 
25 28.44 29.42 35.00 35 100.00 0.32 1.78 
26 28.44 39.23 38.00 35 100.00 0.32 1.99 
27 20.60 16.28 26.5 30 40.00 0.32 1.25 
28 14.80 0.00 17 20 50.00 0.32 1.13 
29 14.00 11.97 26 30 88.00 0.32 1.02 
30 21.43 0.00 20 20 61.00 0.50 1.03 
31 19.06 11.71 28 35 21.00 0.11 1.09 
32 18.84 14.36 25 20 30.50 0.45 1.11 
33 21.51 6.94 30.00 31 76.81 0.38 1.01 
34 14.00 11.97 26.00 30 88.00 0.45 0.63 
35 18.00 24.00 30.15 45 20.00 0.12 1.12 
36 23.00 0.00 20 20 100.00 0.30 1.20 
37 22.40 100.00 45 45 15.00 0.25 1.80 
38 22.40 10.00 35 45 10.00 0.40 0.90 
39 20.00 20.00 36 45 50.00 0.50 0.83 
40 20.00 0.00 36 45 50.00 0.25 0.79 
41 20.00 0.00 36.00 45 50.00 0.50 0.67 
42 22.00 0.00 40.00 33 8.00 0.35 1.45 
43 24.00 0.00 40 33 8.00 0.30 1.58 
44 20.00 0.00 24.5 20 8.00 0.35 1.37 
45 18.00 5.00 30 20 8.00 0.30 2.05 
46 27.00 40.00 35 43 420.00 0.25 1.15 
47 27.00 50.00 40 42 407.00 0.25 1.44 
48 27.00 35.00 35 42 359.00 0.25 1.27 

Continued on next page 
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Nums. 
(𝛾)/ 
kN/m3 

(𝐶)/kPa (𝜑)/° (𝛽)/° (𝐻)/m (𝑃) 𝐹𝑠 

49 27.00 37.50 35.00 37.8 320.00 0.25 1.24 
50 27.00 32.00 33.00 42.6 301.00 0.25 1.16 
51 27.00 32.00 33 42.4 289.00 0.25 1.30 
52 27.30 14.00 31 41 110.00 0.25 1.25 
53 27.30 31.50 29.7 41 135.00 0.32 1.25 
54 27.30 16.80 28 50 90.50 0.32 1.25 
55 27.30 26.00 31 50 92.00 0.32 1.25 
56 27.30 10.00 39 41 511.00 0.32 1.43 
57 27.30 10.00 39.00 40 470.00 0.32 1.42 
58 25.00 46.00 35.00 47 443.00 0.32 1.28 
59 25.00 46.00 35 44 435.00 0.32 1.37 
60 25.00 46.00 35 46 432.00 0.32 1.23 
61 26.00 150.00 45 30 200.00 0.32 1.20 
62 18.50 25.00 0 30 6.00 0.32 1.09 
63 18.50 12.00 0 30 6.00 0.32 0.78 
64 22.40 10.00 35 30 10.00 0.32 2.00 
65 21.40 10.00 30.34 30 20.00 0.32 1.70 
66 22.00 20.00 36.00 45 50.00 0.32 1.02 
67 22.00 0.00 36 45 50.00 0.32 0.89 
68 12.00 0.00 30 45 4.00 0.32 1.46 
69 12.00 0.00 30 45 8.00 0.32 0.80 
70 12.00 0.00 30 45 4.00 0.32 1.44 
71 31.30 68.00 37 49 200.50 0.32 1.20 
72 20.00 20.00 36 45 50.00 0.32 0.96 
73 27.00 40.00 35.00 47.1 292.00 0.32 1.15 
74 25.00 46.00 35.00 50 284.00 0.32 1.34 
75 31.30 68.00 37 46 366.00 0.32 1.20 
76 25.00 46.00 36 44.5 299.00 0.32 1.55 
77 27.30 10.00 39 40 480.00 0.32 1.45 
78 25.00 46.00 35 46 393.00 0.32 1.31 
79 25.00 48.00 40 49 330.00 0.32 1.49 
80 31.30 68.60 37 47 305.00 0.32 1.20 

2.2.2. Training set and test set partition 

To ensure that the model fully utilizes samples during training, while effectively learning features 
and patterns from the dataset, while also considering the model's generalization ability. In this article, 
the k-fold cross validation method with k = 10 is employed for the processing of the dataset. K-fold 
crossover divides 70 random sets of data into the training set and the remaining 10 sets as the testing 
set. The training set is employed for the purpose of training the parameters and weights of the model, 
whereas the test set is utilized for the evaluation of the accuracy and generalization ability of the 
trained model.  
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2.2.3. Data preprocessing 

1) Missing value smoothing optimization 
During data preprocessing, missing values may occur in the training set. In order to maintain the 

overall feature distribution of the dataset and to reduce interference with model training, it is necessary 
to employ smoothing optimization to address the issue of missing values. This is achieved by replacing 
the missing values with the average of the features in which they are located. This practice is widely 
used in practical applications to improve model stability and generalization. 

2) Noise point removal 
To prevent noise caused by sample data errors, this paper introduces the concept of Z-score, where 

the formula of Z-score is as follows: 

 𝑍 ൌ ሺ𝑋 െ 𝜇ሻ/𝜎 (13) 

In the previous article, X is the value of the data set, μ is the mean of the data set and Z is the 
standard deviation of the data set. 

The absolute value of the Z-score allows the degree of difference between the data points and the 
mean to be determined. A Z-score close to 0 indicates that the data point is close to the mean, whereas 
a Z-score far from 0 indicates that the data point is very different from the mean. The entire training 
set was acquired through the Random Forest algorithm, and the Z-score was calculated by predicting 
the factor of safety for all the training sets by taking the value of the difference between the predicted 
and actual values. The Z-score enables the quantification of the prediction bias for each sample. During 
the debugging process, it was discovered that the empirically adopted 2 times standard deviation 
threshold was ineffective, and thus 1.5 times standard deviation was adopted as the threshold. Samples 
that exceed the specified threshold are identified as outliers and removed from the training set. The 
model is then optimized by removing these outliers and any other irrelevant data from the data set.  

3) Data normalization processing 
When analyzing the various influencing factors, it is important to note that the sub-indicators have 

different scales and types, making them incomparable. Therefore, it is necessary to normalize these 
sub-indicators to a certain dimensionless interval using a utility function before conducting a 
comprehensive evaluation. 

To improve the performance and convergence speed of the machine learning algorithm, data 
normalization is necessary. This ensures that the influence of data features on the model is balanced, 
avoiding excessive influence of certain features due to different magnitudes. The following formula 
can be used: 

𝑥∗ ൌ ௫೔ି௫̅

ට భ
ಿషభ

∑ ሺಿ
೔సభ ௫೔ି௫̅ሻమ

                            (14) 

In the previous article, 𝑥∗ represents the processed slope data, The 𝑖 represents the 𝑖th data 
sample, 𝑁 represents the total number of samples, 𝑥௜ represents the original slope data at the 𝑖th 
point, and 𝑥̅ represents the mean of 𝑁 sample data. 

2.2.4. Model parameter optimization 

The conventional method for parameter optimization is the grid search method, which calculates 
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the objective function value of the parameter combination by traversing each grid point. However, this 
method is prone to falling into local optimal solutions and has high time complexity. The Random 
Forest algorithm is mainly affected by three parameters: Num Trees (number of decision trees), Min 
Leaf Size (minimum number of leaves), and Max Num Splits (maximum depth of tree). To enhance 
parameter optimization efficiency and accuracy, this paper employs a genetic algorithm for adaptive 
parameter optimization, specifically for the three parameters of the random forest algorithm. The 
RMSE serves as the applicable function of the genetic algorithm. 

The process of GA-RF parameter optimization is shown in Figure 3. and the specific steps 
are respectively: 

 

Figure 3. Flow chart of stochastic forest algorithm optimized based on genetic algorithm. 

1) The settings for the three parameters of random forests are as follows: Num Trees (number 
of decision trees) should be set between 100 and 500, Min Leaf Size (minimum number of leaves) 
should be set between 1 and 50, and Max Num Splits (maximum depth of burial of trees) should be 
set between 10 and 200. 

2) The genetic algorithm parameters were initialized according to an initialized cluster size of 5, 
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an iteration number of 50, a crossover probability of 0.8 and a variance probability of 0.1, the initial 
population was selected and the random forest parameters were determined. 

3) To create a random forest algorithm model, use genetic algorithms to predict the safety factor 
and continue iterating to optimize the parameters of the algorithm. This will make the calculated value, 
as per Eq (18), smaller. If the number of iterations is not met to update the parameters, continue 
iterating until the desired number of iterations is reached and the output parameters are complete. 

The parameters of the random forest algorithm determined by GA-RF parameter optimization are 
shown in Table 2, where all splits strategy is used for feature subset, that is, all features are used for 
each tree. The type of decision tree in random forest using Eq (10) Gini index as a partition quasi can 
reduce the impurity of the decision tree and thus improve the model performance. 

Table 2. Parameter setting table of random forest model. 

Parameters Meaning Value 
Num Trees Number of decision trees 176 
Min Leaf Size Minimum leaf number 1 
Max Num Splits The maximum depth of the tree 87 
Feature Subspace The feature subset of the tree all splits 
Split Criterion Types of decision trees in a random forest Gdi 

3. Model accuracy verification and analysis 

Figure 4 illustrates the predicted versus true values for the training and test sets, respectively, as 
depicted in charts a and b. Plot c represents the average feature importance plot, while graph d depicts 
the variation of error with the number of decision trees. 

Continued on next page 

 

(a) Comparison chart of average training set 
prediction results 

 

(b) Comparison chart of average test set 
prediction results 
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Figure 4. Result plots for random forest algorithm models containing k-fold cross-validation. 

For the landslide prediction model, R2, MAE, RMSE, MRE, and other indicators are commonly 
used to validate the prediction accuracy of the model.  

R2 indicates the proportion of the variance of the dependent variable that can be explained by the 
model, with the value ranging from 0 to 1, the closer it is to 1, the better the model fits, and its 
calculation formula is as follows: 

 𝑅ଶ ൌ 1 െ ௨

௩
                                    (15) 

 𝑢 ൌ ∑ ሺே
௜ୀଵ 𝑦ො௜ െ 𝑦௜ሻଶ                               (16) 

 𝑣 ൌ ∑ ሺே
௜ୀଵ 𝑦௜ െ 𝑦തሻଶ                                  (17) 

MAE represents the absolute value of data deviation and is calculated as follows: 

 𝑀𝐴𝐸 ൌ ଵ

ே
∑ |ே

௜ୀଵ ሺ𝑦௜ െ 𝑦ො௜ሻ|                           (18) 

RMSE and MAE are basically of the same order of magnitude, but RMSE will be a bit larger than 
MAE, and RMSE penalizes data points with large prediction errors, which are calculated as follows: 

 𝑅𝑀𝑆𝐸 ൌ ටଵ

ே
∑ ሺே

௜ୀଵ 𝑦௜ െ 𝑦ො௜ሻଶ                          (19) 

MRE is used as a measure of the relative magnitude of forecast error and is calculated as follows: 

 𝑀𝑅𝐸 ൌ ଵ଴଴%

ே
∑ |ே

௜ୀଵ
௬ො೔ି௬೔

௬
|                           (20) 

The 𝑁 is the number of samples and 𝑦௜ is the true value of the 𝑖th sample; 𝑦ො௜ is the 𝑖th model 
prediction; and 𝑦ത is the average of the real value labels. In Eqs (16) and (17), 𝑢 is the sum of squares 
of residuals and the 𝑣 is the total sum of squares. 

In this paper, the accuracy of the three prediction models is compared and quantitatively evaluated 
using the four indicators of R2, MAE, RMSE, and MRE in a comprehensive manner, and the accuracy 
statistics are shown in Figure 4. 

 

 
(c) Average feature importance plot 

 

(d) Average error graph 
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Table 3. Average of model accuracy metrics after adding k-fold cross-validation. 

Training set data Test set data 
RMSE R2 MAE MBE RMSE R2 MAE MBE 
0.0823 0.8852 0.0570 -0.0009 0.1681 0.4042 0.1266 -0.0021 

In conclusion, the GA-RF model demonstrates satisfactory performance in terms of R², RMSE, 
MAE and MBE values, and is capable of making effective predictions. It can be reasonably inferred 
that the GA-RF model exhibits high prediction accuracy due to its aggregation of predictions from 
multiple trees through a voting process or weighted average calculation. 

4. Analysis of factors affecting model prediction accuracy 

The prediction model for slope stability is affected by three primary parameters. Num Trees, Min 
Leaf Size, and Max Num Splits. To quantitatively analyze the impact of each parameter on the model 
accuracy, we conducted an influence factor analysis of the model prediction accuracy using the control 
variable method. We set Num Trees at [150, 300, 450], Min Leaf Size at [1, 3, 5, 10, 20], and Max 
Num Splits at [10, 100]. The effect of these three parameters on the model accuracy was tested by 
adjusting the model code. 

4.1. Effect of Num Trees on model accuracy 

Figure 5 displays the error curve with varying Num Trees of 150, 300 and 450, respectively. The 
error curve shows that the error consistently decreases as the number of decision trees increases. Once 
the number of decision trees surpasses 200, the error stabilizes and fluctuates around 0.022. To balance 
model accuracy and computational efficiency, the optimal number of decision trees is set between 150 
and 450, and is determined through debugging. 

(a) Num Trees = 150 (b) Num Trees = 300 
Continued on next page 
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(c) Num Trees = 450 

Figure 5. The error curve with different Num Trees. 

4.2. Effect of Min Leaf Size on model accuracy 

Figure 6 displays the predicted outcome of the training set with varying Min Leaf Size of 1, 3, 5, 10, 
and 20, respectively. Figure 7 clearly displays the predicted outcome of the test set with varying Min 
Leaf Size with 1, 3, 5, 10, and 20, respectively. 

  
(a) Min Leaf Size = 1 (b) Min Leaf Size = 3 

  
(c) Min Leaf Size = 5 (d) Min Leaf Size = 10 

Continued on next page 
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(e) Min Leaf Size = 20 

Figure 6. The predicted outcome of the training set with different Min Leaf Size. 

(a) Min Leaf Size = 1 (b) Min Leaf Size = 3 

(c) Min Leaf Size = 5 (d) Min Leaf Size = 10 
Continued on next page 
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(e) Min Leaf Size = 20 

Figure7. The predicted outcome of the test set with different Min Leaf Size. 

As the minimum number of leaves increases, the root-mean-square error also increases, resulting in 
more significant deviations from the actual values. When the minimum number of leaves exceeds 10, 
the prediction values deviate even further from the actual values. To achieve better simulation results, 
control the minimum number of leaves between 1 and 5 and select a superior minimum leaf tree 
compared to the prediction. 

4.3. Effect of max Num splits on model accuracy 

Table 5. Impact of various Max Num Splits on model accuracy. 

Max Num 
Splits 

Training set data Test set data 
R2 MAE MBE R2 MAE MBE 

10 0.6892 0.1021 -0.0012 0.2679 0.1471 -0.0020 
20 0.8390 0.0705 -0.0006 0.3672 0.1316 -0.0013 
30 0.8841 0.0577 -0.0004 0.4092 0.1266 0.0011 
40 0.8858 0.0565 -0.0010 0.3953 0.1278 -0.0032 
60 0.8851 0.0570 -0.0009 0.4041 0.1266 -0.0021 
80 0.8851 0.0570 -0.0009 0.4041 0.1266 -0.0021 
100 0.8851 0.0570 -0.0009 0.4041 0.1266 -0.0021 

Table 5 displays the impact of the varying Max Num Splits on the model accuracy with 10, 20, 
30, 40, 60, 80, and 100, respectively. As the Max Num Splits increases, both the coefficient of 
determination R2 and the mean absolute error MAE increase and stabilize, while the mean deviation 
MBE decreases and stabilizes. These findings demonstrate a clear relationship between burial depth 
and the accuracy of the results. Based on the analysis, it is recommended to set the maximum burial 
depth between 40 and 100. 

5. Discussion 

Machine learning algorithms are highly effective in overcoming the shortcomings of traditional 
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geological investigation and planning means, which are often time-consuming and labor-intensive. 
Additionally, they can surpass the limitations of single traditional landslide prediction parameters and 
achieve higher prediction accuracy [16]. As a result, machine learning algorithms provide robust 
support for the rapid development of landslide disaster prediction and forecasting. We propose a highly 
effective high-dimensional stability prediction model based on the GA-RF algorithm. It is worth 
noting that this model is specifically designed for circular damage type slopes. However, future 
research can be conducted to explore its applicability to other damage types, such as linear, folded, 
wedge, and other slopes. 

The accuracy of landslide prediction forecasting using machine learning algorithms is determined 
by various factors, such as the quality of basic data, the machine learning model, the selection and 
quantification of evaluation factors, and the cleaning of anomalous data [16]. Quality of basic data is 
the primary factor influencing the accuracy of landslide prediction and forecasting, as supported by 
both domestic and international research findings [17]. Quantity of data and algorithmic model follow 
in importance. Thus, prioritizing the quality of basic data is crucial. The ‘air-sky-earth-internal’ 
integrated multi-dimensional and multi-field three-dimensional observation technology has gained 
popularity for landslide disaster analysis. It is now more feasible and necessary than ever before to 
obtain high-quality basic data. A unified approach to data analysis is crucial for the construction of 
landslide intelligent prediction and forecasting models. Due to the heterogeneous nature of landslide 
monitoring data, which comes from multiple sources and is expressed in diverse forms, and the 
inconsistency of data scale, cross-scale, and multi-modality, it is imperative to employ assertive and 
decisive language to emphasize the importance of a unified approach. 

Landslides are essentially a nonlinear dissipative dynamical system that develops and evolves 
under the control of geotechnical body conditions and under the influence of multiple triggering factors. 
Although machine learning algorithms are commonly used for landslide prediction and forecasting, it 
is important to note that they do not consider the physical and mechanical mechanisms of landslide 
evolution. Therefore, it can be challenging to provide a comprehensive explanation for the occurrence 
of landslides [18]. Landslides occur in varying geological conditions, but with our expertise, we can 
confidently state that the prediction model has significant uncertainties. However, we can assure you 
that the model’s applicability and prediction accuracy can be improved. 

Our proposed method for intelligent predictive forecasting of landslides based on machine 
learning combines the physical and mechanical mechanisms of landslide evolution. We use a deep 
fusion and unified expression method for multi-dimensional and multi-field three-dimensional 
observation data. The result is a highly reliable and applicable model. 

6. Conclusions 

The purpose of the GA-RF slope stability prediction model with k-fold cross-validation developed 
in this paper is to create a stability prediction model based on a hybrid intelligent algorithm for high-
dimensional feature variable data of slopes. This method combines the advantages of genetic algorithm 
optimization and random forest algorithms, and also has good generalization ability by fully utilizing the 
dataset. While the model's performance is not yet optimal, it can be expected to have broad optimization 
potential. It can be posited that this represents a beneficial attempt to predict landslide disasters. It is my 
hope that this article will serve as a catalyst for further discourse on this important topic. 

This article establishes a GA-RF high-dimensional slope stability prediction model using k-fold 
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cross validation, selecting soil gravity (γ), slope height (H), pore pressure value (P), cohesion (C), 
internal friction angle (φ), and slope inclination angle (°) as characteristic variables. A series of 
experiments were conducted on the model, and acceptable conclusions were obtained. However, it 
should be noted that there are still some limitations. The model has been tested and validated only for 
circular damage types of slopes. In order to achieve greater universality and robustness, further 
experimentation and validation are required with larger sample sizes and data from a wider range of 
slope types. Furthermore, there is potential for additional optimization of the model. 
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