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Abstract: Let X be a compact Riemann surface of genus g ≥ 2 and M(G2) be the moduli space
of polystable principal G2-bundles over X. The Harder-Narasimhan types of the bundles induced a
stratification of the moduli space M(G2) called Shatz stratification. In this paper, a description of the
Shatz strata of the unstable locus of M(G2) corresponding to certain family of Harder-Narasimhan
types (specifically, those of the form (λ, µ, 0,−µ,−λ) with µ < λ ≤ 0) was given. For this purpose,
a family of vector bundles was constructed in which a 3-form and a 2-form were defined so that it
was proved that they were strictly polystable principal G2-bundles. From this, it was proved that,
when the genus of X was g ≥ 12, these Shatz strata were the disjoint union of a family of G2-Hecke
curves in M(G2) that will be constructed along the paper. Therefore, the presented results provided an
advance in the knowledge of the geometry of M(G2) through the study of its Shatz strata and presented
a methodological innovation, by using Hecke curves for this study.
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1. Introduction

The group G2 is a simple complex Lie group of exceptional type which is defined to be the group
of automorphisms of a complex vector space V � C7, which preserves certain nondegenerate skew-
symmetric 3-form and also a nondegenerate symmetric 2-form. The group G2 has been recently studied
because of its interest in many fields such as geometry, physics, or dynamical systems. In theoretical
physics, for instance, M-theory suggests that the structure of the universe can be described in terms
of a 7-dimensional manifold M which admits a holonomy whose group is a real form of G2 [1]. This
shows the growing interest in studying geometric structures related to G2. There are also many relevant
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papers, like [2], which uses G2 strongly in the context of integrable dynamical systems.
The main focus of this research is on principal G2-bundles over a complex projective curve. Let X

be a compact Riemann surface of genus g ≥ 2. A principal G2-bundle over X is a holomorphic complex
vector bundle E of rank 7 equipped with a holomorphic nondegenerate skew-symmetric globally-
defined trilinear form Ω. The bundle E will be also equipped with a holomorphic nondegenerate
globally-defined symmetric bilinear form ω. There is a suitable notion of polystability for principal
G2-bundles, according to Ramanathan’s framework [3–5] that allows the construction of the moduli
space M(G2) of polystable principal G2-bundles over X. This is a coarse moduli scheme of complex
dimension 14(g − 1).

The deepening of the study of the geometry of moduli spaces of principal bundles has been aided by
the understanding of the stratifications of these moduli spaces. In this article it is relevant to consider
the Shatz stratification [6], which is defined from the Harder-Narasimhan filtrations. Any vector bundle
V over X admits a filtration into vector sub-bundles

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vk−1 ⊂ Vk = V

such that V j/V j−1 is semi-stable and the slopes of the successive quotients are decreasing, that is,
if µ(V j/V j−1) denotes the slope of V j/V j−1 for j = 1, . . . , k, then µ(V j/V j−1) > µ(V j+1/V j) for j =
1, . . . , k − 1 (recall that the slope of a vector bundle is the quotient of its degree and its rank). Given a
vector bundle V of rank r, its Harder-Narasimhan filtration induces the so-called Harder-Narasimhan
type, which is a vector (µ1, . . . , µr) given by the slopes of the quotients of the sub-bundles of the Harder-
Narasimhan filtration, where each µ j is repeated as many times as the rank of V j/V j−1 specifies. The
Shatz stratification is then defined by the equality of the Harder-Narasimhan type.

This construction can be extended to principal G-bundles for a semi-simple complex Lie group
G. Indeed, Ramanathan [7] proved that each principal G-bundle V admits a single reduction VP to a
parabolic subgroup P of G, called canonical reduction, such that the extension of the structure group to
the Levi factor of P is semi-stable and the degree of the line bundle χ∗VP, where χ is an anti-dominant
character of P, is ≥ 0. This concept of Harder-Narasimhan filtration corresponds to the one proposed
by Atiyah and Bott [8], who considered the Harder-Narasimhan filtration of the adjoint bundle of a
given principal G-bundle, the equivalence having been proved by Anchouche, Azad, and Biswas [9].
Also, a Shatz stratification can be defined for other geometric objects, including Higgs bundles [10].

In the case of principal G2-bundles, Beckers, Hussin, and Winternitz [2] proved that G2 admits
two parabolic subgroups, P1 and P2, and a Borel subgroup, B. Notice that the homogeneous spaces
G2/P1, G2/P2, and G2/B parametrize flags of a given principal G2-bundle V over X corresponding to
the reductions of structure group to the corresponding parabolic subgroups. From this, it follows that
there are three basic Harder-Narasimhan types for the strictly polystable G2-bundles, which can be
described in this way: (λ, 0, − λ) for λ < 0 and with an associated isotropic vector sub-bundle of rank
1; (λ, 0,−λ) for λ < 0 and with a corresponding rank-2 isotropic sub-bundle; and (λ, µ, 0,−µ,−λ) for
µ < λ ≤ 0, with two associated isotropic sub-bundles, of ranks 1 and 2, respectively (Section 3). Here,
the Shatz strata given by Harder-Narasimhan types of the last form are considered. In particular, the
main objective is giving a description of these strata as the union of certain G2-Hecke curves that will
be constructed.

In this work, certain Hecke curves will be constructed for the moduli space of polystable principal
G2-bundles over X that lie in the unstable locus of the moduli space (Section 5). Hecke transformations
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and Hecke curves have gained great importance in research in algebraic geometry because they have
been extensively used in several contexts [11, 12]. For example, they provide a suitable context for
giving a precise description of the group of automorphisms of the moduli space of vector bundles
over a Riemann surface [13] and, thus, give a new proof of the classical result of Kouvidakis and
Pantev [14]. Moreover, Hecke curves have also been used to compute the group of automorphisms
of the moduli spaces of orthogonal or symplectic bundles [15]. In the present paper, Hecke curves
will allow us to deepen the knowledge of the geometry of the moduli space of G2-bundles through
the study of its subvarieties, in particular, of the Shatz strata described above. The construction of
these G2-Hecke curves will be done by generalizing the construction made in [15] for orthogonal
and symplectic bundles. It is worth noting that the use of Hecke curves for the study of the Shatz
strata constitutes a methodological novelty of the present study. The techniques employed are strongly
linked to the geometry of the Lie group G2, so the paper is focused on the moduli of G2-bundles whose
interest is supported by the preceding literature, as already mentioned. Specifically, it will be proved
that the maps defining the G2-Hecke curves considered are generically injective (Proposition 5.1) in
the case when g ≥ 5 (the assumption on the genus of X will be necessary due to technical constraints).
Finally, in the main result of the paper (Theorem 5.1), it is proved that, under the technical assumption
that g ≥ 12, the G2-Hecke curves constructed are disjoint and cover the whole Shatz strata given by
Harder-Narasimhan types of the form (λ, µ, 0,−µ,−λ) for µ < λ ≤ 0.

Theorem. The G2-Hecke curves defined in (5.2) fall into the Shatz strata defined by the Harder-
Narasimhan types of the form (λ, µ, 0,−µ,−λ) for µ < λ ≤ 0. Moreover, if the genus of the compact
Riemann surface is g ≥ 12, then, for different choices of Lx, the corresponding G2-Hecke curves are
disjoint. Finally, the union of the G2-Hecke curves is the union of all the abovementioned Shatz strata
of the moduli space of polystable principal G2-bundles over X.

The paper is structured as follows. Section 2 is devoted to the presentation of some essential ques-
tions on the group G2 that will be necessary throughout the article, such as its parabolic subgroups and
the flags that they induce on the vector space where the group is represented. In Section 3, the moduli
space of polystable principal G2-bundles over a compact Riemann surface is presented, with special
emphasis on the description of the possible Harder-Narasimhan types of a given G2-bundle. The actual
construction of the G2-Hecke curves is done in Sections 4 and 5. The bundles involved are constructed
in Section 4, where it is proved that those bundles that are constructed are truly G2-bundles, and the
construction of the G2-Hecke curves and the main result of the paper will be performed in Section 5.

2. The group G2

The simple complex Lie group G2 is defined to be the group of complex automorphisms of the
octonions [16]. Its Lie algebra, g2, is the algebra of derivations of the octonions. The fundamental
irreducible representation of G2 has dimension 7, so G2 can be understood as a subgroup of SL(7,C).
Moreover, G2 consists of orthogonal matrices for the canonical symmetric bilinear form ω on C7 for
which the vectors e1, . . . , e7 of the canonical basis form an orthonormal basis. Then the fundamental
representation of G2 induces an inclusion of groups G2 ↪→ SO(7,C) (and, of course, g2 can also be
understood as a sub-algebra of so(7,C)). If ei jk denotes the wedge product of the vectors of the dual
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basis e∗i ∧ e∗j ∧ e∗k, i, j, k ∈ {1, . . . , 7}, then the expression

Ω = e123 + e145 + e167 + e246 − e257 − e347 − e356

defines a complex skew-symmetric 3-form on the vector space C7 on which G2 is represented. The
subgroup of SL(7,C) which fixes Ω, is exactly G2. Therefore, it can be stated that

G2 = {g ∈ SL(7,C) : g∗Ω = Ω}.

Then, G2 is the group of automorphisms of a 7-dimensional complex vector space which fixes a non-
degenerate symmetric 2-form and a nondegenerate skew-symmetric 3-form. Thus defined, the group
G2 is simply connected and centerless.

In [2] it is given a description of the parabolic subgroups of G2. The group G2 admits three parabolic
subgroups. Two of them are maximal and the third is the intersection of the maximal ones, which is the
Borel subgroup. One of the maximal parabolic subgroups, P1, induces a filtration on the vector space
C7 on which G2 is represented of the form

0 ⊂ V1 ⊂ V⊥1 ⊂ C
7,

where V1 is a subspace of dimension 1 of C7 which is isotropic for both forms, ω and Ω, and the
orthogonality with respect to ω is denoted by ⊥. Recall that a subspace W of C7 is said to be isotropic
for the trilinear form Ω if Ω(W,W,W) = 0. Similarly, the other maximal parabolic subgroup, P2,
induces a filtration of the form

0 ⊂ V2 ⊂ V⊥2 ⊂ C
7,

where V2 has rank 2 and is also isotropic for ω and Ω. The last parabolic subgroup, B = P1 ∩ P2,
induces a filtration of the form

0 ⊂ V1 ⊂ V2 ⊂ V⊥2 ⊂ V⊥1 ⊂ C
7,

where V1 and V2 are isotropic subspaces for ω and Ω with rk V1 = 1 and rk V2 = 2.

3. Principal G2-bundles and Harder-Narasimhan types

Let X be a compact Riemann surface of genus g ≥ 2. A principal G2-bundle over X is a triple
(V,Ω, ω), where V is a holomorphic vector bundle of rank 7 over X equipped with a globally-defined
nondegenerate skew-symmetric holomorphic 3-formΩ and a globally-defined nondegenerate holomor-
phic symmetric 2-form ω. For simplicity, the principal G2-bundles will be referred to by the name of
the underlying vector bundle V .

From the abovementioned description of the parabolic subgroups of G2, the following notions of
stability and polystability of principal G2-bundles are obtained, which are given in terms of filtrations of
isotropic sub-bundles of the underlying vector bundles [17]. The notions of stability and polystability
given here are clearly equivalent to those introduced by Subramanian [18].

Definition 3.1. Let (V,Ω, ω) be a principal G2-bundle over the compact Riemann surface X. The
principal G2-bundle is stable (resp., semi-stable) if deg W < 0 (resp., ≤ 0) for every rank 1 or rank 2
vector sub-bundle W, which is isotropic for Ω and ω. It is polystable if it admits a rank 1 or rank 2 and
degree 0 isotropic vector sub-bundle as a direct summand.
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Since the center of G2 is Z(G2) = {1}, a principal G2-bundle over X is said to be simple if it admits
no other automorphisms than the identity map. Thus, the moduli space M(G2) of polystable principal
G2-bundles over X is an algebraic variety of dimension 14(g − 1) which parametrizes isomorphism
classes of polystable principal G2-bundles over X, the subset M∗(G2) of stable and simple G2-bundles
being an open dense subset formed by smooth elements of M(G2) [19]. The moduli space M(G2) is
also irreducible, since the group G2 is simply connected [19].

It is relevant for this research to consider the Harder-Narasimhan filtration of a principal G2-bundle.
Given any vector bundle V over X, it admits a single filtration of vector sub-bundles 0 ⊂ V1 ⊂ · · · ⊂

Vk ⊂ V⊥k ⊂ · · · ⊂ V⊥1 ⊂V characterized for the following relations of the slopes:

µ(V/Vk) < µ(Vk/Vk−1) < · · · < µ(V2/V1) < µ(V1),

where µ(W) denotes the slope of W for a sub-bundle W of V , that is, µ(W) = deg W
rk W . Given

the above Harder-Narasimhan filtration of V , the Harder-Narasimhan type of V is the vector
(µ1, . . . , µr, 0,−µr, . . . ,−µ1) of the above slopes, with r being the rank of V . In particular, the com-
ponents of the Harder-Narasimhan type satisfy µ1 ≥ µ2 ≥ · · · ≥ µr≥ 0. Moreover, each vector bundle
V admits a well-defined Harder-Narasimhan type, so this defines a stratification of the moduli space of
vector bundles, called Shatz stratification, whose strata are given by each possible Harder-Narasimhan
type [6].

If V is a strictly polystable principal G2-bundle over X, then the description of the parabolic sub-
groups of G2 gives three possible Harder-Narasimhan filtrations, so there are three possibilities for the
Harder-Narasimhan type:

• 0 ⊂ W⊂ W⊥ ⊂ V with Harder-Narasimhan type of the form (λ, 0,−λ) for some λ < 0, being the
isotropic sub-bundle W corresponding to λ of rank 1;
• 0 ⊂ W⊂ W⊥ ⊂ V with Harder-Narasimhan type of the form (λ, 0,−λ) for some λ < 0, being the

isotropic sub-bundle W corresponding to λ of rank 2;
• 0 ⊂ V1 ⊂ V2⊂ V⊥2 ⊂ V⊥1 ⊂ V with rk V1 = 1 and rk V2 = 2 and Harder-Narasimhan type of the

form (λ, µ, 0,−µ,−λ) for some µ < λ ≤ 0.

In summary, there are three different families of Harder-Narasimhan types for strictly polystable prin-
cipal G2-bundles over X (and also of Shatz strata), corresponding to the following vectors of slopes
and ranks of the sub-bundles:

• (λ, 0,−λ) for λ < 0 and such that the isotropic vector sub-bundle corresponding to λ has rank 1;
• (λ, 0,−λ) for λ < 0 and such that the isotropic vector sub-bundle corresponding to λ has rank 2;
• (λ, µ, 0,−µ,−λ) for µ < λ ≤ 0. In this case, the isotropic vector sub-bundles of the associated

filtration of V always have ranks 1 and 2, respectively.

4. Construction of the bundles

A fundamental step in the construction process of the Hecke curves under consideration is the
construction of the bundles that will compose these Hecke curves. In this section, the construction
of these bundles is carried out and it is proved that, indeed, they are principal G2-bundles by proving
that they admit the forms that define this type of bundles, according to Section 3. Additionally, the
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principal G2-bundles discussed are those whose Harder-Narasimhan type is of the form (λ, µ, 0,−µ,−λ)
for µ < λ ≤ 0, following the discussion at the end of that section, which are strictly polystable G2-
bundles.

Let V be a generic element of M(G2) equipped with a nondegenerate symmetric 2-form ω, a non-
degenerate skew-symmetric 3-form Ω, and with Harder-Narasimhan type of the form (λ, µ, 0,−µ,−λ)
for µ < λ ≤ 0. The following construction closely follows the constructions given in [20] for vector
bundles and in [15] for orthogonal and symplectic bundles. Specifically, the construction given in [15]
is generalized to the case of G2-bundles.

Take a point x ∈ X and choose a line Lx of the Grassmannian of lines Gr(1,Vx) of the fiber of V over
x such that Lx is isotropic for bothω andΩ. The sheaf VLx is defined to be the kernel of the composition
V → Vx → Vx/L⊥x , where the orthogonality ⊥ is taken with respect to ω and L⊥x has co-dimension 1.
By Hecke transformation, this defines the exact sequence

0→ VLx → V →
(
Vx/L⊥x

)
⊗ Cx → 0, (4.1)

where Cx denotes the skyscraper at x. By taking the dual of the Hecke transformation and noticing that(
Vx/L⊥x

)∗ is canonically isomorphic to Lx, one obtains the exact sequence

0→ Lx → V∗x →
(
VLx
)∗

x
→ C→ 0. (4.2)

From this, a sheaf injection α1 :
(
VLx
)∗

(−x) → V∗ is defined, which gives a new sheaf injection

α2 : ∧2
(
VLx
)∗

(−2x) → ∧2V∗. Then, sheaf surjections β1 = α
∗
1 : V → VLx(x) and α2 = β

∗
2 : ∧2V →

∧2VLx(2x) are also defined by taking the dual of the corresponding injections. If qω : V∗ → V and
QΩ : ∧2V∗ → V are the morphisms of vector bundles induced by the forms ω and Ω, respectively, then
one may consider the compositions

β1 ◦ qω ◦ α1 :
(
VLx
)∗

(−x)→ V∗ → V → VLx(x)

and
β1 ◦ QΩ ◦ α2 : ∧2

(
VLx
)∗

(−2x)→ ∧2V∗ → V → VLx(x),

so a symmetric form given by Sym2
(
VLx
)∗
→ OX(2x) and a skew-symmetric form given by

∧3
(
VLx
)∗
→ OX(3x) are defined, since they come from a symmetric 2-form and a skew-symmetric

3-form, respectively, defined on V , where OX denotes the trivial line bundle over X. Now, the restric-
tion of the form Sym2

(
VLx
)∗
→ OX(2x) to the fiber at x factors through Sym2(Im(α1x)) = Sym2 Lx and

the restriction of the form ∧3
(
VLx
)∗
→ OX(3x) to the fiber at x factors through ∧2(Im(α1x)) = ∧3Lx,

being both zero Sym2 Lx and ∧3Lx, since Lx has been chosen to be isotropic for ω and Ω. This results
in the definition of a symmetric map

ωLx :
(
VLx
)∗
→ VLx(x) (4.3)

and a skew-symmetric 3-form
ΩLx : ∧2

(
VLx
)∗
→ VLx(x). (4.4)
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Let now Wx be a rank 2 subspace of
(
VLx
)∗

x
which is isotropic for ωLx and ΩLx defined in (4.3)

and (4.4), respectively, and with Lx ⊂ Wx. Let V
Wx be the bundle obtained by taking the Hecke

transformation
0→ V

Wx
→
(
VLx
)∗
→
(
(VLx
)∗

x
/W⊥

x ) ⊗ Cx → 0, (4.5)

and let VWx =

(
V

Wx
)∗

.

Proposition 4.1. Let V be a polystable principal G2-bundle over X, ω be its nondegenerate symmetric
2-form, and Ω be its nondegenerate skew-symmetric 3-form. Let Lx be a subspace of Vx of dimension
1 isotropic for ω and Ω and Wx be a subspace of

(
VLx
)∗

x
, defined in (4.2), isotropic for ωLx and ΩLx ,

defined in (4.3) and (4.4), respectively. Then, the bundle VWx defined in (4.5) admits a globally defined
nondegenerate symmetric 2-form ωWx induced by ωLx and a globally defined nondegenerate skew-
symmetric 3-form ΩWx induced by ΩLx .

Proof. Take the compositions

V
Wx
→
(
VLx
)∗ ωLx

→ VLx →

(
V

Wx
)∗

(x)

and

∧2V
Wx
→ ∧2

(
VLx
)∗ ΩLx

→ VLx →

(
V

Wx
)∗

(x).

This defines forms Sym2 V
Wx
→ OX(x) and ∧3V

Wx
→ OX(x), as adapted from [15, Lemma 4.6].

Since the constructed forms factor through Im
(
V

Wx
→
(
VLx
)∗)
= W⊥

x (as in [15, Lemma 4.6]) and

Im
(
∧2V

Wx
→ ∧2

(
VLx
)∗)
= ∧2W⊥

x , respectively, and kerωLx
x = Wx and kerΩLx

x = ∧
2Wx, these forms

vanish along the fiber at x, since Wx is maximal isotropic. Then they define forms ωWx : Sym2 V
Wx
→

OX and ΩWx : ∧3V
Wx
→ OX. Of course, this induces forms on VWx . □

Remark. Notice that, from (4.2), the subspace Wx may be understood as a subspace of V∗x which
contains Lx.

5. Construction of the Hecke curves

In this section, the G2-Hecke curves of M(G2) introduced are constructed from the G2-bundles
obtained in Section 4. In addition, the main result of the paper is proved, which states that the union
of all constructed G2-Hecke curves completes the strata of the Shatz stratification of M(G2) defined by
the Harder-Narasimhan types of the form (λ, µ, 0,−µ,−λ) with µ < λ ≤ 0.

Suppose that G2 is represented in a 7-dimensional vector space C7 and preserves a symmetric 2-
form ω and a skew-symmetric 3-form Ω of C7. It is well-known that G2 admits two maximal parabolic
subgroups, P1 and P2, which corresponds to the choices of a subspace of dimension 1 or dimension 2,
respectively, of C7 isotropic for both ω and Ω. That is, they correspond to flags of the form 0 ⊂ U ⊂
U⊥ ⊂ C7, where U is a subspace of dimension 1 or 2, respectively, ⊥ is taken with respect to ω, and U
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is also isotropic for Ω [16, 18]. The Borel subgroup B of G2 may be understood as the intersection of
the two maximal parabolic subgroups of G2, and gives flags of the form

0 ⊂ U1 ⊂ U2 ⊂ U⊥2 ⊂ U⊥1 ⊂ C
7, (5.1)

where U1 and U2 have dimensions 1 and 2, respectively, and are also isotropic forΩ. The G2 Grassman-
nian of dimension r subspaces of C7 (for r = 1, 2) is composed by subspaces of dimension r isotropic
for ω and Ω, and is isomorphic to the homogeneous space Fr = G2/Pr [21], which is, in turn, isomor-
phic to P4 [22]. Flags of the form (5.1) are parametrized by the homogeneous space F1,2 = G2/B, which
is isomorphic to P5. The morphism G2/B→ G2/P2 admits a copy of P1 as kernel, which parametrizes
subspaces of dimension 1 of the corresponding subspaces of dimension 2.

Fix a point x ∈ X and a generic element V of M(G2) with Harder-Narasimhan type of the form
(λ, µ, 0,−µ,−λ) for µ < λ ≤ 0, as in Section 4. Let VLx be the sheaf defined in (4.1). Consider the map
uLx : ker

(
F1,2

(
VLx

x

)
→ F2

(
VLx

x

))
� P1 → F1,2

(
VLx

x

)
� P5. For each t ∈ P1, call uLx(t) = Wt,x, which is a

subspace of VLx
x of dimension 2 isotropic for the corresponding 2-form and 3-form. If Lx is the fiber at

x of a line sub-bundle L of V , then Wt,x is the fiber at x of a sub-bundle Wt of rank 2 of
(
V

Lt
)∗

defined
in (4.2).

Then, the assign
P1 ∋ t 7→

(
VWt,x , ωWt,x ,ΩWt,x

)
, (5.2)

where VWt,x is defined in (4.5) and ωWt,x and ΩWt,x are defined in Proposition 4.1, gives a rational curve
in M(G2) by Proposition 4.1. These curves will be called G2-Hecke curves in M(G2).

Proposition 5.1. Let X be a compact Riemann surface of genus g ≥ 5. Then the map defined in (5.2)
given by a G2-Hecke curve is generically injective.

Proof. Take s, t ∈ P1 such that s , t but VWs,x � VWt,x . This gives two linearly independent generic
isomorpisms between VLx and VWt,x . These automorphisms are, in particular, orthogonal isomor-
phisms, so this contradicts [15, Lemma 4.2], where it is proved that, in a more general situation,
dim H0

(
X,
(
VLx
)∗
⊗ VWt,x

)
= 1 in the case when g ≥ 5. □

Theorem 5.1. The G2-Hecke curves defined in (5.2) fall into the Shatz strata defined by the Harder-
Narasimhan types of the form (λ, µ, 0,−µ,−λ) for µ < λ ≤ 0. Moreover, if the genus of the compact
Riemann surface is g ≥ 12, then, for different choices of Lx as in (4.1), the corresponding G2-Hecke
curves are disjoint. Finally, the union of the G2-Hecke curves is the union of all the abovementioned
Shatz strata of M(G2).

Proof. For the first part, notice that, with the notation of Section 4 and the beginning of Section 5, the
Harder-Narasimhan filtration of the G2-bundle VWt,x is of the form

0 ⊂ L ⊂ W ⊂ W⊥ ⊂ L⊥ ⊂ VWt,x ,

so it falls into the strata of the Shatz stratification of M(G2) corresponding to Harder-Narasimhan types
of the form (λ, µ, 0,−µ,−λ) for µ < λ ≤ 0, which fall into the unstable locus of M(G2).

For the second part, an adaptation to G2 of the arguments of [15, Lemma 4.7] is made. Take different
subspaces Lx, say, L1

x , L2
x, with the notation of Section 4. Take Vk to be any point of the G2-Hecke

Electronic Research Archive Volume 32, Issue 11, 6109–6119.



6117

curve corresponding to Lk
x for k = 1, 2 and suppose that there exists an isomorphism f : V1 → V2.

Let VL1
x∩L2

x be the intersection VL1
x ∩ VL2

x . One has that deg VL1
x∩L2

x = deg V − 2 = −2, so two generic

isomorphisms VL1
x∩L2

x � V2 are defined. The first one by composition VL1
x∩L2

x ⊂ VL1
x ⊂ V1

f
→ V2, and the

second one by composition VL1
x∩L2

x ⊂ VL2
x ⊂ V2. By [15, Lemma 4.2], the above generic isomorphisms

must coincide, under the assumption of g ≥ 12, which is necessary for [15, Lemma 4.2] to be applied.
On the other hand, the image of the restriction of the dual map V∗2 →

(
VL1

x∩L2
x
)∗

to the fiber at x falls

into ker
((

VL1
x
)∗

x
→
(
VL1

x∩L2
x
)∗

x

)
and into ker

((
VL2

x
)∗

x
→
(
VL1

x∩L2
x
)∗

x

)
, so V2 � V , which is a contradiction,

so such an isomorphism f does not exist and, therefore, the G2-Hecke curves are disjoint.
The last part of the statement follows simply by noting that each G2-Hecke curve contains the bundle

V , so every G2-bundle of the abovementioned Shatz strata is in a G2-Hecke curve. □

6. Conclusions

There are three different families of Harder-Narasimhan types that define the Shatz strata of the
moduli space M(G2) of polystable principal G2-bundles over a compact Riemann surface X: pairs of
the form (λ,−λ) for λ < 0 and with associated sub-bundle of rank 1; pairs of the form (λ,−λ) for λ < 0
with corresponding sub-bundle of rank 2; and pairs of the form (λ, µ, 0,−µ,−λ) for µ < λ ≤ 0. These
Harder-Narasimhan types, which have been described along the paper, come from the various possible
reductions of a principal G2-bundle over X to a parabolic subgroup of G2, that define the Harder-
Narasimhan filtration of the bundle. It has been proved that, when the genus g of X satisfies g ≥ 12, the
Shatz strata corresponding to Harder-Narasimhan types of the third form are disjoint unions of certain
families of G2-Hecke curves that have been constructed for the purposes of the research. Moreover,
it has been proved that the maps that define the G2-Hecke curves are generically injective. These
findings provide new insights that enhance the understanding of the geometry of the moduli space of
G2-bundles through the analysis of its Shatz strata. Likewise, the methodological approach of using
Hecke curves for the description of the abovementioned strata, constitutes an original technique that
could be applicable to moduli spaces of bundles with other structure groups. However, the program
used here makes strong use of the orthogonal structure of the group G2, so it is not directly applicable
to any semi-simple or reductive groups. Such an extension would require the development of new
techniques, which is an interesting line of future research.
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