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Abstract: In this paper, we provided, first, a general symbolic algorithm for computing the symme-
tries of a given rational surface, based on the classical differential invariants of surfaces, i.e., Gauss
curvature and mean curvature. In practice, the algorithm works well for sparse parametrizations (e.g.,
toric surfaces) and PN surfaces. Additionally, we provided a specific, and symbolic, algorithm for
computing the symmetries of ruled surfaces. This algorithm works extremely well in practice, since
the problem is reduced to that of rational space curves, which can be efficiently solved by using ex-
isting methods. The algorithm for ruled surfaces is based on the fact, proven in the paper, that every
symmetry of a rational surface must also be a symmetry of its line of striction, which is a rational
space curve. The algorithms have been implemented in the computer algebra system Maple, and the
implementations have been made public. Evidence of their performance is given in the paper.
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1. Introduction

The topic addressed in this paper is the computation of the Euclidean symmetries of a certain type
of algebraic object, namely rational surfaces. Thus, in the rest of this paper, a “symmetry” will mean an
isometry of the ambient space that leaves the embedded surface invariant; in particular, such a mapping
also leaves invariant the Gauss and mean curvatures of the surface. Capturing the information on the
Euclidean symmetries of an object is a natural step if one wants to understand its geometry, visualize
it accurately, or store it efficiently. Although in applied mathematics the computation of symmetries
has been addressed for decades, with a very wide variety of techniques often involving numerics and
statistical methods, in the past fifteen years, there has been a growing interest in applying methods
from symbolic computation to this problem. In this sense, in applied mathematics the object to be
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analyzed is usually a 2D or 3D image, and in practice often a 2D or 3D point cloud, and one seeks
approximate symmetries, rather than exact ones. When the problem is seen from the point of view
of symbolic computation, which is the perspective we use in this paper, one is attracted toward exact
objects with more structure, and looks for their exact symmetries. Typically, the objects considered are
(algebraic) varieties defined by polynomials with integer coefficients, either implicitly given, i.e., as
zeros of a given set of polynomials, or defined by means of a parametrization with rational components,
i.e., quotients of polynomials.

Although implicitly defined varieties have been addressed (see [1–3] for implicit planar curves,
and [4–6] for implicit surfaces), the case that has attracted more attention has been that of rational
curves and surfaces, probably because the rational representation is preferred in computer-aided ge-
ometric design, a field where the problem has some relevance. For rational parametric curves, the
problem is quite well-understood, and in fact a more general question, namely identifying whether or
not two rational curves are affinely or projectively equivalent, has been investigated in many papers.
Although a complete list would be long, some notable contributions are [7], on symmetries of space
curves, and [5, 8], on projective equivalences of rational curves in any dimension; see the bibliogra-
phies of these papers for other references. Observe also that isometries and affine equivalences are
special instances of projective equivalences.

However, for rational surfaces the problem is harder, both theoretically and computationally. Here
we have two types of contributions, a first group providing more general algorithms, and a second group
focused on special types of surfaces whose properties one can exploit. Among the first group, [9] con-
siders involutions of parametric polynomial surfaces, [10] addresses affine and projective equivalences
of rational surfaces without projective base points (although base points are not uncommon; note that
rational curves do not have base points, which makes the problem easier for curves), and [11], which
improves on the results of [10] and provides an algorithm for computing the projective equivalences
between two rational surfaces without additional requirements. The algorithm in [11] is certainly very
general, but still has some drawbacks: on one hand, the problem is reduced to five possible cases, but
only two of them are solved in the paper; on the other hand, the algorithm is involved (check the partial
implementation in [12]) and requires a strong background of algebraic geometry, so it is not so easily
accessible for readers not familiar with such a topic. Let us also mention that in [10], the input is a
polynomial or rational parametrization (in projective form) of a surface, with real coefficients; in [11],
the input is a rational parametrization of a surface with coefficients over an algebraically closed field.

Among the second group of papers, namely papers related to rational surfaces with special proper-
ties, one has [13], for canal surfaces, [14], for translational and minimal surfaces, and [5,15], for ruled
surfaces; in fact, [14, 15] address the more general question of computing affine equivalences, and [5]
studies projective equivalences.

In this paper, we present two contributions to the problem. The first one is a general algorithm which
uses the two natural invariants for surfaces, namely Gauss curvature and mean curvature, therefore
generalizing to surfaces the idea of [7] for space curves. The algorithm is very easy to implement,
although it can be computationally costly. The reason is that the algorithm requires one to compute the
resultant of two polynomials derived from the two curvatures; however, while the Gauss curvature of
a rational surface is always rational, the mean curvature in general has a square root, so we need to use
the square of the mean curvature instead, which increases the degree. If we work with a PN surface,
namely a rational surface where the modulus of the normal vector is rational (see for instance [16]),
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we can skip that part and reduce the computational cost, so the algorithm works better; otherwise, we
need very sparse parametrizations. As for a comparison with existing algorithms, compared to [10],
projective base points are not a problem for our algorithm, although unlike ours, [10] also works in
higher dimension. Compared to [11], our algorithm is much simpler. However, it is true that for non-
sparse, non-PN surfaces, the computational cost can be high, so in the cases covered by [10, 11] and
without further advantages that make our algorithm competitive (e.g., the cases already mentioned or
ruled surfaces, see the next paragraph), using [10, 11] could be preferrable.

The second contribution is a specific algorithm for rational ruled surfaces. We prove that every
symmetry of a rational ruled surface is a symmetry of the line of striction of the surface, which is a
rational space curve. Thus, we reduce the problem to that of space curves, which can be efficiently
solved. The resulting algorithm provides better timings than the general algorithm described in the
previous paragraph and the algorithm in [15], as we will show with several examples. Compared to [5],
it is worth noticing that the algorithm in [5] also reduces the problem to the case of curves. However,
there are two main differences with our algorithm: (i) [5] uses rational curves in P5, so the dimension
of the curves is higher; (ii) the algorithm in [5] requires one to solve a quadratic system of equations
in 7 parameters, which may cause difficulties in some cases (see page 8 of [5]). It is true though that
the algorithm in [5] can solve the more general problem of finding the projective equivalences between
two ruled surfaces, while our algorithm only aims to compute the symmetries of a given surface.

The two algorithms presented in the paper have been implemented in Maple, and are available on
the website of one of the authors [17]; a Zenodo version is also available [18].

The structure of the paper is the following. In Section 2, we provide the necessary background to
develop our results. The general algorithm is presented in Section 3. The algorithm for ruled surfaces
is given in Section 4, where we also analyze the special case of developable surfaces. Section 5
reports on the experimentation carried out on different types of surfaces, general and ruled, using the
implementation carried out in Maple; here we also offer some comparative results with the algorithms
in [10, 11]. We close with our conclusion in Section 6.

2. General background, notation, and hypotheses

Let x(t, s) be a rational parametrization of a surface S ⊂ R3. We say that x(t, s) is a proper
parametrization of S if the parametrization x, seen as a rational mapping x : R2 → R3, is birational
onto its image, so that the inverse x−1 exists and is also rational. Thus, proper mappings are injective
except perhaps at a subset of S of dimension at most 1. Checking whether or not a surface parametriza-
tion is proper, and reparametrizing it to be proper in the case when it is not, is not easy, but one can
always heuristically check properness by taking a random point (t0, s0), and solving x(t, s) = x(t0, s0):
if the only solution is t = t0, s = s0, then x(t, s) is proper with high probability.

The notion of properness also applies to rational parametrizations c(t) of a curve C ⊂ R3. In this
case, however, checking properness and reparametrizing non-proper parametrizations is much easier:
once all the components of c(t) have the same denominator, checking properness amounts to computing
the gcd of the components of the numerators of c(t) − c(s). If the degree of this gcd is 1, then c(t) is
proper; if it is not, one can compute a proper reparametrization using the information provided by this
gcd. The interested reader can read further on this topic in [19].

A Euclidean symmetry (also called isometry) of R3 is a mapping f : R3 → R3, f (x) = Ax + b,
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where A is an orthogonal 3 × 3 matrix, so AT A = I with I the identity matrix, and b ∈ R3; notice
that det(A) = ±1. We say that such a mapping f is a symmetry of a surface S (resp., a curve C)
if f (S ) = S (reap., f (C) = C). When we work with proper, rational parametrizations of curves or
surfaces, one can reduce the computation of the symmetries of the curve or surface, if any, to the
existence of birational parametrizations in the parameter space, R in the case of curves, and R2 in the
case of surfaces, satisfying a certain condition; see the result that follows. For curves, we can go a bit
further taking into account that the birational mappings of the real line (and in fact of the projective
complex line) are the Möbius transformations, i.e., the mappings

φ(t) =
at + b
ct + d

, ad − bc , 0.

More precisely, we have the following result; see for instance [7] for a proof.

Proposition 1. Let C ⊂ R3 be a rational curve defined by a rational, proper parametrization c(t), and
let f : R3 → R3 be a symmetry of C. Then there exists a Möbius transformation φ : R→ R such that

f ◦ x = x ◦ φ, (2.1)

i.e., making commutative the following diagram:

C
f // C

R

c

OO

φ
// R

c

OO . (2.2)

For properly parametrized surfaces, we also have a commutative diagram analogous to Eq (2.2), an
observation used in papers like [9, 10]. Indeed, if S ⊂ R3 is a rational surface defined by a rational,
proper parametrization x(t, s), and f : R3 → R3 is a symmetry of S , then there exists a birational
mapping ψ : R2 → R2 making commutative the diagram

S
f // S

R2

x

OO

ψ
// R2

x

OO , (2.3)

i.e., such that
f ◦ x = x ◦ ψ. (2.4)

Remark 1. In fact, Proposition 1 holds whenever we have a birational transformation, not necessarily
a Euclidean symmetry, f : Rn → Rn mapping two rational curves C1,C2 properly parametrized by
x1, x2. Similarly, the diagram in Eq (2.3) works also when we have two surfaces S 1, S 2, properly
parametrized, and a birational transformation mapping one of them onto the other. The hypothesis on
the properness of the parametrizations is key in both cases.

Birational mappings of the (projective) plane are called Cremona transformations, and are known
to be generated by linear projective mappings and quadratic transformations. However, while the
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birational mappings of the complex and real line are, exactly, the Möbius transformations, and therefore
we have a closed form for them, no closed form is known for the Cremona transformations. This is the
reason why in several papers related to the problem treated here, e.g., [9, 10, 15], one studies rational
parametrizations with additional properties so that a general form for the Cremona transformations
behind f can be guessed. In [9], under the considered hypotheses, the transformation is linear; in [10],
it is linear projective and in [15], the first component of the transformation is a univariate Möbius
mapping, while the second component is more complicated, but with a known general form. Notice
that, in general, Möbius transformations or Cremona transformations do not preserve the metric.

2.1. Background on differential geometry

Let us briefly recall some notions from differential geometry that will be needed later; we refer
to [20–22] for more information on this topic.

Let x(t, s) be a parametrization of a surface S ⊂ R3. We say that x(t, s) is regular at (t0, s0) ∈ R2

if the partial derivatives xt, xs are linearly independent at the point. At regular points P = x(t, s), the
tangent plane to S is well-defined and corresponds to

TP(S ) = P +L(xt, xs),

where L(xt, xs) denotes the linear variety spanned by xt, xs. The normal direction to the tangent plane
is therefore that of

Nx(t, s) = xt × xs. (2.5)

Additionally, the unitary normal vector is defined as

nx(t, s) =
xt × xs

∥xt × xs∥
. (2.6)

Notice that if x(t, s) is rational, in general nx(t, s) is not rational, since a square root is expected
in the denominator. Additionally, since nx(t, s) is unitary, one can also see nx as a mapping from the
surface S onto the unit sphere S2, i.e., nx : S → S2; this mapping is called the Gauss map.

The first fundamental form and the second fundamental form are two symmetric quadratic forms
defined at each tangent plane TP(S ) of S , with P being regular. The first fundamental form captures
the metric of the surface, and is defined by the matrix

Ix =

[
E F
F G

]
=

[
xt · xt xt · xs

xt · xs xs · xs

]
. (2.7)

The second fundamental form captures the local shape of the surface around the point, and is defined
by the matrix

IIx =

[
L M
M N

]
=

[
xtt · nx xts · nx

xts · nx xss · nx

]
. (2.8)

The Weingarten map Wx is the (linear) mapping Wx : TP(S ) → TP(S ) defined as Wx = −dnx,
i.e., the differential of the Gauss map with a changed sign. The matrix definingWx is

Wx = I−1
x IIx. (2.9)
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The determinant of Wx is the Gauss curvature of the surface, Kx, and the trace of Wx is the mean
curvature, Hx. In terms of the entries of the matrices Ix and IIx (see for instance Section 3.4 of [23]),

Kx =
LN − M2

EG − F2 , Hx =
EN +GL − 2FM

2(EG − F2)
. (2.10)

Observe that if x(t, s) is rational, Kx is always a rational function. However, in general Hx is not
rational because of the presence of a square root (due to the functions L,M, and N in the numerator of
the formula for Hx), but H2

x is certainly rational.

3. A general algorithm

Let x(t, s) be a rational, proper parametrization of a surface S ⊂ R3. Our goal is to provide an
algorithm for computing the symmetries f of S , if any. In order to compute the symmetries f , the idea,
from the diagram in Eq (2.3), is to first find the Cremona transformations ψ satisfying f ◦ x = x ◦ ψ,
and then compute the f themselves. Notice that if f (x) = Ax + b is a symmetry of S , Eq (2.4) yields
Ax(t, s) + b = (x ◦ ψ)(t, s); if ψ is known, one can compute A, b by directly solving the linear system
stemming from this equality, or by solving a linear system computed from Ax(t, s) + b = (x ◦ ψ)(t, s)
after giving enough values of (ti, si).

In order to find ψ, we will use the Gauss curvature Kx and the mean curvature Hx of the parametriza-
tion. The first step is to find the relationships between: (i) Kx,Hx and K f◦x,H f◦x; (ii) Kx,Hx and
Kx◦ψ,Hx◦ψ. In turn, this requires one to see how nx, Ix and IIx are affected when moving from x to
f ◦ x or x ◦ ψ. We start with f ◦ x.

Lemma 2. Let x(t, s) be a rational parametrization of a surface S , and let f (x) = Ax + b be a
Euclidean symmetry.

1) I f◦x = Ix.
2) nf◦x = det(A)Anx.
3) II f◦x = det(A)IIx.

Proof. To see 1), let x̃ = f ◦ x, so x̃(t, s) = Ax(t, s) + b. Then x̃t = Axt and x̃s = Axs. Since A is
orthogonal, x̃t · x̃t = xt · xt, x̃t · x̃s = xt · xs, x̃s · x̃s = xt · xt, and 1) follows. To see 2), we observe that

x̃t × x̃s = (Axt) × (Axs) = det(A)A−T (xt × xs).

Since A is orthogonal, A−T = A, and therefore x̃t × x̃s = det(A)A(xt × xs). Then 2) follows by
using Eq (2.6), taking into account that since A is orthogonal, norms are preserved. Finally, for 3), we
observe first that x̃tt = Axtt, x̃ts = Axts and x̃ss = Axss; and then the result follows from the definition
of the second fundamental form and statement 2), again taking into account that since A is orthogonal,
dot products are preserved.

Corollary 3. Let x(t, s) be a rational parametrization of a surface S , and let f (x) = Ax + b be a
Euclidean symmetry. Then

W f◦x = det(A)Wx, K f◦x = Kx and H f◦x = det(A)Hx. (3.1)
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Proof. The equality W f◦x = det(A)Wx follows from Eq (2.9), taking into account the statements 1)
and 3) of Lemma 2. The remaining equalities follow from the fact that K f◦x and H f◦x are the determi-
nant and trace of the matrix W f◦x.

Now let us analyze the relationship between Kx,Hx and Kx◦ψ,Hx◦ψ. In order to do this, we need
to recall first the relationship between the first and second fundamental forms of x and x ◦ ψ; this is
essentially known, but we include it here for the convenience of the reader. Let us denote y := x ◦ ψ,
ψ(t, s) = (ψ1(t, s), ψ2(t, s)). Using the Chain Rule,

yt = xt(ψ)∂ψ1
∂t + xs(ψ)∂ψ2

∂t ,

ys = xt(ψ)∂ψ1
∂s + xs(ψ)∂ψ2

∂s ,
(3.2)

where yt, ys are evaluated at (t, s), and xt(ψ), xs(ψ) denote the evaluations of xt, xs at ψ(t, s). In matrix
notation, we have [

yt

ys

]
= JT ·

[
xt(ψ)
xs(ψ)

]
,

where J represents the Jacobian of ψ. Taking Eq (2.7) into account, we get that

Iy = JT · Ix(ψ) · J,

where, again, the entries of the first fundamental form at the left-hand side must be evaluated at (t, s),
while at the right-hand side, the entries of the form are evaluated at ψ(t, s). To relate ny and nx we
also use Eq (3.2). Finally, to relate IIy and IIx we need to differentiate Eq (3.1) again, applying the
Chain Rule; although the calculations are lengthy, we get the same result that we obtained for the first
fundamental form. So we have the following lemma.

Lemma 4. Let x(t, s) be a rational parametrization of a surface S , let ψ be a planar rational mapping,
and let J be the Jacobian of ψ.

1) Ix◦ψ = JT · Ix(ψ) · J.
2) nx◦ψ =

det(J)
| det(J)|nx(ψ).

3) IIx◦ψ = JT · IIx(ψ) · J.

Now we can prove what we need.

Corollary 5. Let x(t, s) be a rational parametrization of a surface S , let ψ be a planar birational
mapping, and let J be the Jacobian of ψ. Then

Wx◦ψ = J−1 ·Wx(ψ) · J, (3.3)

and
Kx◦ψ = Kx(ψ), Hx◦ψ = Hx(ψ). (3.4)

Proof. From Eq (2.9) and statements 1) and 3) of Lemma 4,

Wx◦ψ =
(
JT · Ix(ψ) · J

)−1 (
JT · IIx(ψ) · J

)
= J−1 · I−1

x (ψ) · J−T · JT · IIx(ψ) · J,

and Eq (3.3) is proved. Since from Eq (3.3) the matrices Wx◦ψ, Wx(ψ) are similar, they have the same
determinant and trace, and Eq (3.4) follows.
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Finally we reach the following result.

Proposition 6. Let x(t, s) be a proper parametrization of a surface S , and let f (x) = Ax + b be a
Euclidean symmetry of S . Then there exists a birational planar mapping ψ satisfying that f ◦ x =
x ◦ ψ, and

Kx = Kx(ψ), Hx = det(A)Hx(ψ). (3.5)

Proof. From the diagram in Eq (2.3), there exists a binational mapping ψ such that f ◦ x = x ◦ ψ. By
Corollary 3, K f◦x = Kx, and by Eq (3.4), Kx◦ψ = Kx(ψ). Since f ◦ x = x ◦ ψ, we get the result for Kx.
For Hx, the idea is the same.

Let us see how to derive an algorithm from Proposition 6 in order to compute the symmetries of S .
First, we will use Ĥx = H2

x, which is a rational function, instead of Hx. Writing

Kx(t, s) = Kx(u, v), Ĥx(t, s) = Ĥx(u, v),

we observe that the above equalities are satisfied, under the hypotheses of Proposition 6, for u =
ψ1(t, s), v = ψ2(t, s). Next Kx and Ĥx are rational functions, so after clearing denominators, the above
equations lead to

ξ1(t, s, u, v) = 0, ξ2(t, s, u, v) = 0, (3.6)

where ξ1 and ξ2 are two polynomials in the variables t, s, u, and v, the first one coming from Kx, and
the second one from Ĥx. By well-known properties of resultants, if t, s, u and v satisfy Eq (3.6) then
t, s and u satisfy

η1(t, s, u) = 0, with η1 := Resv(ξ1, ξ2), (3.7)

and t, s and v satisfy
η2(t, s, v) = 0, with η2 := Resu(ξ1, ξ2). (3.8)

Now let

ψ1(t, s) =
ψ1,n(t, s)
ψ1,d(t, s)

, ψ2(t, s) =
ψ2,n(t, s)
ψ2,d(t, s)

, (3.9)

where ψi,n, ψi,d, for i = 1, 2, are polynomials, and gcd(ψi,n, ψi,d) = 1 for i = 1, 2. Then we have the
following result.

Theorem 7. Let x(t, s) be a proper parametrization of a surface S , and let f (x) = Ax+b be a Euclidean
symmetry of S . Then there exists a binational planar mapping ψ = (ψ1, ψ2), with components as in
Eq (3.9), such that ψ1,d(t, s)u − ψ1,n(t, s) is a factor of η1(t, s, u), and ψ2,d(t, s)v − ψ2,n(t, s) is a factor of
η2(t, s, v).

Proof. From the diagram in Eq (2.3), there exists a birational mapping ψ such that f ◦ x = x ◦ ψ.
Then for any (t, s), we have that (t, s, ψ1(t, s), ψ2(t, s)) satisfies Eq (3.6), and therefore (t, s, ψ1(t, s))
fulfills Eq (3.7), and (t, s, ψ2(t, s)) fulfills Eq (3.8). Hence, all the points of the surface (in the (t, s, u)
space) defined by ψ1,d(t, s)u − ψ1,n(t, s) = 0 are also points of the surface η1(t, s, u) = 0. Furthermore,
since gcd(ψ1,n, ψ1,d) = 1 the polynomial ψ1,d(t, s)u − ψ1,n(t, s) is irreducible, so by Study’s Lemma (see
Section 6.13 of [24]), ψ1,d(t, s)u − ψ1,n(t, s) divides η1(t, s, u). For ψ2,d(t, s)v − ψ2,n(t, s), we argue in the
same way.
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Thus, if, say, η1(t, s, u) is not identically zero, we can look for the factors of η1 which are linear in u,
which provides the functions ψ1(t, s), substitute u = ψ1(t, s) into ξ1(t, s, u, v), ξ2(t, s, u, v), and recover
v from the linear factor in v of the gcd of the polynomials in t, s, v resulting from that substitution.
We might also work with η2(t, s, v), but we do not need to compute both resultants. Notice that in this
process it is not necessary to know a priori the form of ψ(t, s). Furthermore, once ψ is known, we can
compute f from the equality f ◦ x = x ◦ψ. This leads to an algorithm, Algorithm 1, for computing the
symmetries of S . The algorithm works whenever both resultants η1, η2 are not identically zero, if η1, η2

are both identically zero then either ξ1, ξ2 share a factor, or some of them are identically zero. We can
identify some cases where this can happen:

• Gauss curvature being constant: It is well-known that the only surfaces with nonzero constant
Gauss curvature K are isometric to the sphere, if K > 0, or to the pseudosphere, if K < 0.
However, the pseudosphere is a surface of revolution whose directrix is a trascendental curve,
the tractix, so the pseudosphere is not algebraic. This implies that the only irreducible algebraic
surface with constant nonzero Gaussian curvature is the sphere. However, there are algebraic, and
in fact rational, surfaces with vanishing Gauss curvature; these surfaces are called developable
surfaces, and will come up in the next section.
• Mean curvature being constant: These surfaces certainly exist, and among them we have the

remarkable class of surfaces where H = 0, called minimal surfaces. Symmetries of rational
minimal surfaces are treated in [14].
• Certain functional relationships between the Gauss curvature and the mean curvature: An ex-

ample is the case of linear Weingarten surfaces (see for instance [25]), which are surfaces where
aH + bK = c, for constants a, b and c; this family includes as particular cases surfaces with
constant Gauss or mean curvature.

In these cases the algorithm fails, and an alternative must be used; nevertheless, for developable
surfaces we can use the ideas in the next section, and for minimal surfaces we can use [14].

Example 1. Consider the toy example of the ellipsoid parametrized by

x(t, s) =
(
2(−s2 − t2 + 1)

s2 + t2 + 1
,
−2t

s2 + t2 + 1
,

8s
s2 + t2 + 1

)
.

In this case, Algorithm 4 provides 8 symmetries, including the trivial symmetry (the identity),
corresponding to the Cremona transformations:( t

t2 + s2 ,
−s

t2 + s2

)
,

( t
t2 + s2 ,

s
t2 + s2

)
,

(
−t

t2 + s2 ,
−s

t2 + s2

)
,

(
−t

t2 + s2 ,
s

t2 + s2

)
,

and
(−t,−s), (−t, s), (t,−s), (t, s).

For instance, the symmetry corresponding to the first Cremona transformation,
( t
t2 + s2 ,

−s
t2 + s2

)
, is

f (x) = Ax with

A =


−1 0 0
0 1 0
0 0 −1

 .
Notice in particular that the above Cremona transformation is not linear projective, i.e., its compo-

nents are not quotients of linear polynomials in t, s.
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Algorithm 1 Rational Surface Symmetries
Require: A proper parametrization x(t, s) of a surface S ⊂ R3.
Ensure: Sym(S ).

1: compute K(t, s), Ĥ(t, s), and the polynomials ξ1, ξ2

2: compute the resultant η1(t, s, u) = Resv(ξ1, ξ2)
3: if η1 is not identically zero then
4: compute the univariate factors in u of η1(t, s, u), and the corresponding functions u = ψ( j)

1 (t, s)
5: for each function ψ( j)

1 (t, s) do
6: substitute u = ψ( j)(t, s) into ξ1, ξ2

7: compute the gcd of the polynomials, after the above substitution
8: compute the univariate factors in v of the gcd
9: compute v = ψ( j)

1 (t, s) by solving for v in each univariate factor
10: end for
11: else
12: compute the resultant η2(t, s, v) = Resu(ξ1, ξ2)
13: if η2 is not identically zero then
14: proceed as before, with η2

15: end if
16: end if
17: if η1, η2 are both identically zero then
18: return method fails: zero resultants

19: end if
20: for each couple ψ( j)(t, s) = (ψ( j)

1 (t, s), ψ( j)
2 (t, s)) computed in the previous process do

21: compute the symmetry f from f ◦ x = x ◦ ψ( j) and return f
22: end for

4. Symmetries of ruled surfaces

4.1. Background on ruled surfaces

We say that S ⊂ R3 is ruled if S is covered by lines, called the rulings of the surface. These surfaces
are well-known in differential geometry; one can check classical texts like [20–22] for further reading
on the topic, and also for several facts that we will be using in this subsection.

If S is rational, then we can always find [26], a rational parametrization of the form

x(t, s) = u(t) + sv(t), (4.1)

where u(t), v(t) parametrize space rational curves. The curve defined by u(t) is called the directrix.
We refer to Eq (4.1) as a standard parametrization of S , and we will assume the ruled surface S we
work with to be parametrized in this way; notice that, regardless of potential reparametrizations of
u(t), v(t), a standard parametrization of S is not necessarily unique, since different curves may serve as
directrices of the surface.

A special type of ruled surface, called developable surfaces, is classical in differential geometry,
and widely used in applications. Intuitively speaking, developable surfaces are the surfaces that can
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be “unfolded” onto the plane, so that we can find a dipheomorphic mapping ϕ : S → R2 preserving
distances.

Developable surfaces can be characterized as the ruled surfaces with vanishing Gauss curvature.
Also, if S is parametrized by Eq (4.1) then S is developable if and only if the mixed product
[u′(t), v(t), v′(t)] is identically zero. This allows us to classify developable surfaces in three types:

(i) Cylindrical surfaces: Ruled surfaces where all the rulings are parallel to the same vector. Thus,
they can be parametrized as

x(t, s) = u(t) + sv0, (4.2)

where v0 is a constant vector.
(ii) Conical surfaces: These are ruled surfaces where all the rulings intersect at the same point, called

the vertex of the surface. By applying, if necessary, a translation so that the vertex coincides with
the origin, these surfaces can be parametrized as

x(t, s) = sv(t). (4.3)

(iii) Tangential surfaces: Ruled surfaces consisting of the union of tangent lines to the directrix, which
can be parametrized as

x(t, s) = u(t) + su′(t). (4.4)

Cylindrical surfaces and conical surfaces can be recognized, for example, using the algorithm
in [27]; furthermore, in those cases we can find the constant direction of the rulings, for cylindrical
surfaces, and the vertex, for conical surfaces.

4.2. Computation of symmetries of ruled surfaces

In order to compute the symmetries of a ruled surface, we also need to recall the notion of a line of
striction (see for instance Sections 3–5 of [20] for further information on this notion and its properties).
Given a ruled surface S , parametrized as in Eq (4.1), the line of striction E is a parametric space curve
c(t), contained in S , such that c′(t) is orthogonal to v′(t). The expression for the line of striction is

c(t) = u(t) −
(v(t) × v′(t)) · (v(t) × u′(t))

∥v(t) × v′(t)∥2
v(t), (4.5)

and can be proven to be independent of the directrix considered in Eq (4.1). In particular, if Eq (4.1)
is rational then c(t) is also rational. This expression does not make sense for cylindrical surfaces; also,
for conical surfaces, the line of striction degenerates into a point. Excluding cylindrical surfaces, we
can always assume that S is parametrized as in Eq (4.1), where the directrix is the line of striction.
One can check that for tangential developable surfaces, the directrix appearing in Eq (4.4) is already
the line of striction.

The reason why the line of striction is useful in our context is that any symmetry of the surface is
also a symmetry of the line of striction. In order to see this, let the directrix u(t) be the line of striction,
and let f (x) = Ax + b be a symmetry of S . Then

x̃(t, s) = ( f ◦ x)(t, s) = Ax(t, s) + b = (Au(t) + b)︸       ︷︷       ︸
ũ(t)

+s Av(t)︸︷︷︸
ṽ(t)

(4.6)

also parametrizes S , and we can derive the following theorem.
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Theorem 8. Let f (x) = Ax+ b be a symmetry of a ruled surface S , and let E be the line of striction of
S . Then f is also a symmetry of E.

Proof. Assume that the directrix u(t) is the line of striction E. Let us see that the parametrization ũ(t)
in Eq (4.6), which parametrizes the image of E under f , is also a parametrization of E. Indeed,

ũ′(t) · ṽ′(t) = (Au′(t)) · (Av′(t)).

Since A is an orthogonal matrix, (Au′(t)) ·(Av′(t)) = u′(t) ·v′(t) = 0. Thus, ũ(t) satisfies the condition
defining the line of striction, parametrized by u(t), so ũ(t) also parametrizes E. Thus f (E) = E, and the
result follows.

The symmetries of the line of striction can be computed using known algorithms for space rational
curves. Thus, whenever the line of striction has finitely many symmetries, we just need to test which
ones are also symmetries of S . If the line of striction has infinitely many symmetries, i.e., if the
line of striction is either a line or a circle, then we can use the algorithm in the previous section, or
other algorithms known for ruled surfaces. Notice that cylindrical and conical surfaces are excluded in
this approach.

4.3. Developable surfaces

Since developable surfaces have zero Gauss curvature, the general algorithm presented in Section 3
is not applicable to them. Also, for two of the subfamilies of developable surfaces, cylindrical and
conical surfaces, using the line of striction is not an option, either.

For cylindrical surfaces, the symmetries of the surface follow from the symmetries of a normal
section of the surface, i.e., the intersection of the surface with a plane Π normal to the direction v of
the rulings. Because Eq (4.1) is linear in s, the intersection of S with a plane Π normal to the rulings is
a rational planar curve, so its symmetries can be computed using known algorithms for rational curves.
Notice also that cylindrical surfaces are invariant under translations by any vector parallel to v.

For conical surfaces, parametrized as in Eq (4.3), we just need to consider symmetries fixing the
origin, i.e., symmetries f (x) = Ax, since in Eq (4.3) the origin is the vertex of the surface, which must
be kept invariant under any symmetry. Then we can just apply the method in Section 4.1 of [15]. Notice
that any symmetry of the curve defined by v(t) (see Eq (4.3)) will also be a symmetry of the surface,
but the converse is false (e.g., a cone of revolution, with v(t) corresponding to an ellipse contained in
the cone).

Finally, in the case of tangential developable surfaces, Theorem 8 works without any problem.
However, we can go a bit further.

Proposition 9. Let S be a rational tangential developable surface. Then f : R3 → R3 is a symmetry
of S if and only if f is a symmetry of its line of striction.

Proof. The implication (⇒) is Theorem 8, so let us address (⇐). Thus, let f : R3 → R3, f (x) = Ax+ b
be a symmetry of the line of striction of S , let u(t) be a rational parametrization of the line of striction,
and let us assume without loss of generality that u(t) is proper. By Proposition 1, Au(t)+ b = (u◦φ)(t),
with φ(t) a Möbius transformation. Considering the parametrization of S provided by Eq (4.4),

( f ◦ x)(t, s) = (Au(t) + b) + sAu′(t) = (u ◦ φ)(t) + sAu′(t). (4.7)
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Differentiating Au(t)+b = (u◦φ)(t) and using the Chain Rule, we deduce that Au′(t) = u′(φ(t))φ′(t).
Substituting this into Eq (4.7), we obtain

( f ◦ x)(t, s) = u(φ(t)) + su′(φ(t))φ′(t). (4.8)

The above equation can be written as

( f ◦ x)(t, s) = u(φ(t)) + ψ2(t, s)u′(φ(t)) = x(φ(t), ψ2(t, s)), (4.9)

with ψ2(t, s) = sφ′(t). Eq (4.9) means, by the diagram in Eq (2.3), that f is a symmetry of S .

Observe that, for tangential surfaces, the line of striction u(t) cannot be planar, since in that case the
surface S is a plane, which is a trivial case. Thus, the number of symmetries of u(t) must be finite.

5. Experimentation

In this section, we provide some experimentation on the algorithms given in the previous sections.
We have implemented both algorithms in the CAS Maple [28], and tried several examples, using an
Intel(R) Core(TM) i7 with a 3.6 GHz processor and 32 Gb RAM. All the examples and implementation
can be found in the last author’s personal website [17], and also in [18]. We start with the general
algorithm described in Section 3, and then move to ruled surfaces and the algorithm given in Section 4.

5.1. General algorithm

In order to test the algorithm for the general case, we consider several surfaces of three different
types: toric surfaces, PN surfaces, and conoids; in all these cases, the surfaces have projective base
points, so the algorithm in [10] is not applicable. Additionally, we have also considered some examples
from the papers [10, 11]. As an overall comment, let us mention that most of the time is consumed by
the computation of the resultant in Step 2 of Algorithm 1, which is the bottleneck of the algorithm.

Torics. A toric surface is a surface parametrized by x(t, s) = (tm1 sn1 , tm2 sn2 , tm3 sn3), where mi, ni ∈

Z. In Table 1, we provide the computation time (t, in seconds) for detecting symmetries of toric
surfaces with various degrees.

Electronic Research Archive Volume 32, Issue 11, 6087–6108.



6100

Table 1. CPU times t (seconds) for toric parametrizations of various degrees.

Degree Parametrization Symmetries t

2
(
t2, t

s , s
)

8 0.125

3
(

1
s2t ,

s
t2 ,

1
s

)
4 3.391

4
(
t3s, t3

s , s
)

12 0.156

5
(
t4s, t5

s , s
)

4 0.188

6
(
t5s, t2

s , s
)

4 0.094

7
(
t5s2, t3, s3

)
12 1.594

8
(
t5s3, t8, s3

)
12 0.094

9
(
s, t2

s , t
9
)

8 0.734

PN surfaces. A PN surface is a rational surface with a rational normal vector field. In the case
of PN surfaces, we replace in our algorithm the equation Ĥx(t, s) = Ĥx(u, v) by Hx(t, s) =
±Hx(u, v). This reduces the degree of the equations in the resultants. In order to generate non-
trivial PN surfaces we use the strategy given in [16], where the authors provide a method using
quaternions. First, we consider the cubic PN surface (see Figure 1b) given by the following
rational parametrization.

x(t, s) =


−1

3 s3 − 1
3 s2t + 7

3 st2 + t3 − 5
3 s2 + 26

3 st + 25
3 t2

−1
3 s3 − 5

3 s2t − 5
3 st2 + t3 − 13

3 s2 − 10st + 13
3 t2 − 46

3 s + 2
3 t

−4
3 s3 − 4s2t − 4

3 st2 − 4t3 − 9s2 + 14
3 st + 5

3 t2 − 10
3 s + 26

3 t

 .
This PN surface has one projective base point, [−3 : 1 : 0], and admits two symmetries corre-
sponding to the Cremona transformations(

3
5

t −
4
5

s +
1
5
,

3
5

t −
4
5

s −
3
5

)
, (t, s),

with symmetries

f1(x) =


24
25

7
25 0

7
25 −24

25 0

0 0 1

 x +


−98

75
686
75

0

 ,
f2(x) =


1 0 0
0 1 0
0 0 1

 x +


0
0
0

 .
The whole computation of this example took 0.203 second. Now, consider the cubic PN surface
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(see Figure 1a) given by the following rational parametrization.

y(t, s) =


− 4

13 s + 1
13 s2 − 11

156 s3 − 3
32 s4 − 4

13 t − 6
13 ts − 9

52 ts2 − 7
13 t2 − 9

52 t2s − 3
16 t2s2 − 59

156 t3 − 3
32 t4

4
13 s2 − 11

52 s3 + 1
8 s4 + 25

52 ts2 + 4
13 t2 − 1

52 t2s + 1
4 t2s2 + 19

52 t3 + 1
8 t4

− 4
13 s + s2 − 17

78 s3 + 3
8 s4 + 28

13 t − 8
13 ts + 22

13 ts2 + 37
13 t2 − 4

13 t2s + 3
4 t2s2 + 131

78 t3 + 3
8 t4


This PN surface has two projective base points [i : 1 : 0] and [−i : 1 : 0]. The surface admits two
symmetries corresponding to the Cremona transformations(

−s −
12
13
,−t −

12
13

)
, (t, s),

with symmetries

f1(x) =
1

169


137 −96 24
−96 −119 72
24 72 151

 x +
1

28561


3840

11520
−2880

 ,
f2(x) =


1 0 0
0 1 0
0 0 1

 x +


0
0
0

 .
The whole computation of this example took 0.125 second.

(a) Cubic PN surface (b) Quartic PN surface

Figure 1. Plots of the PN surfaces.

Plücker’s conoids. Plücker’s conoid is a ruled surface defined by the following parametrization

x(r, θ) = (r cos θ, rsinθ, sin 2θ).

In our tests, we used a generalization of Plücker’s conoid, which is again a ruled surface, de-
fined by

x(r, θ) = (r cos θ, rsinθ, sin 2nθ),
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where n > 0. Using the fact that

(cos θ, sinθ)←→
(
1 − t2

1 + t2 ,
2t

1 + t2

)
,

and exploiting the Chebychev polynomials of the second kind Uk, we get a rational parametriza-
tion of the generalized Plücker’s conoid as

x(t, s) =
(
(1 − t2)s

1 + t2 ,
2ts

1 + t2 ,
2t

1 + t2 Uk

(
1 − t2

1 + t2

))
,

where k > 0 (see Figure 2 for the plots of the surfaces for k ∈ {1, 2, 3, 4}). In Table 2, we provide
the computation times for detecting symmetries of the generalized Plücker’s conoids with various
degrees. Notice that any generalized Plücker’s conoid has two projective base points, [1 : 0 : 0]
and [0 : 1 : 0].

Table 2. CPU times t (seconds) for the generalized Plücker’s conoids of various degrees.

Degree Symmetries t

4 16 0.360
6 8 1.203
8 16 6.407
10 8 16.812
12 16 41.500
14 8 107.391
16 16 162.469
18 8 195.578

(a) k = 1 (b) k = 2 (c) k = 3 (d) k = 4

Figure 2. Generalized Plücker’s conoids for different values of k.

Some examples from [10, 11].
We have tried examples of quadratically parametrizable surfaces considered in Section 5.1
of [10]. Following the notation in [10], they are denoted as Σ1, . . . ,Σ9, where Σ1, . . . ,Σ6 are
base-point free (so the algorithm in [10] can be applied), and Σ7,Σ8,Σ9 are not (and the algorithm
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in [10] cannot be applied). We list the timings in Table 3. We can also find timings in [10], al-
though in the case of [10], the algorithm finds projective mappings leaving the surface invariant,
and not only isometries. For Σ1 and Σ2, the timings in [10] are much better. For Σ3 to Σ6, the
timings for our algorithm and the one in [10] are comparable. Σ7,Σ8 and Σ9, however, cannot be
solved by [10]. In all the cases, the parametrizations have small coefficients.

Table 3. Quadratically parametrizable surfaces (see [10]).

The curve Timing in seconds
Σ1 50.016
Σ2 70.344
Σ3 0.140
Σ4 0.235
Σ5 0.688
Σ6 0.001
Σ7 1.719
Σ8 0.053
Σ9 0.023

We have also tried some concrete examples of quadratically parametrized surfaces appearing
in [10] (see Table 6 in [10]). We provide the timings in Table 4, where the first column reproduces
the classification as spelt in [10].

Table 4. Some concrete Σis.

Class of the curve The curve Timing (in seconds)
3 − 2 − 1a (t2, s2, t + s) 1.243
3 − 2 − 1c (t2, s2 + t, s) 0.078
3 − 2 − 3 (t2 − s2, ts, t) 0.363
3 − 3 − 1b (t2, s2, ts + t) 5.327
3 − 3 − 1c (t2, s2, t + s + ts) 9.243
3 − 3 − 2a (t2, s2 + t, ts) 0.0781
3 − 3 − 2b (t2, s2, ts − s) 0.095

As for a comparison with [11], in the GitHub implementation [12] of the algorithm in [11],
one can find five examples, concerning the Roman surface (Example 1 in [12]), Veronese-Segre
surfaces (Example 2), adjoints to double ruled quadrics (Example 4), the rational normal scroll
(Example 5), and conic bundles (Example 6). Out of the five examples, our algorithm can find
the 24 symmetries of the first one, the Roman surface

x(t, s) =
( t
1 + t2 + s2 ,

s
1 + t2 + s2 ,

ts
1 + t2 + s2

)
,

in 50.016 seconds. There are no timings in [11], so here we cannot compare. However, for the
remaining four examples, the computations with our algorithm were too costly, meaning that the
resultant in Step 2 of Algorithm 1 took too long to compute.
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5.2. Ruled surfaces

Here we consider the method in Section 4, which requires us to determine first the line of striction
of the surface. Then we apply the method in [7] to find the symmetries of the rational curve defined
by the line of striction. In Table 5, we compare the timing (tr) of the algorithm for ruled surfaces in
Section 4, the timing (te) of the algorithm given in [15], and the the timing (tg) for the general algorithm
given in Section 3. One can see that the method in Section 4 beats the other methods in all cases.

Table 5. CPU times (seconds) for symmetries of ruled surfaces given in Table 6.

Param. Deg. Symm. tr te tg

x1 9 8 0.156 9.640 > 103

x2 7 1 0.297 1.981 > 103

x3 7 2 0.563 1.888 > 103

x4 5 2 0.016 1.684 902.213
x5 2 2 0.047 3.448 54.141
x6 7 2 0.828 1.935 986.213
x7 6 2 0.063 1.716 626.012
x8 17 8 0.172 9.828 > 103

Remark 2. The Plücker conoids analyzed in the previous subsection are also ruled surfaces, but their
striction lines are straight lines, and therefore the ideas of Section 4 are not useful for that case.

Remark 3. In Table 5, we have not included the comparison with [5], where no timings are provided.
But in any case, as we mentioned in the Introduction to this paper, the algorithm in [5] requires using
rational curves in higher dimension (P5) plus a further step involving the solution of a polynomial
quadratic system in a high number of variables, namely 7. Thus, one can expect that the timings of [5]
are, in general, much higher than ours. Recall, though, that the algorithm in [5] is aimed to the more
general problem of finding projective equivalences between ruled surfaces.

6. Conclusions

While the problem of computing the symmetries of rational curves, and related questions, has re-
ceived much attention in the literature, similar problems for rational surfaces still pose several chal-
lenges. In this paper, we have provided two algorithms related to this question. The first one is simple,
very general, and, at least theoretically, can be applied to a wide variety of parametrizations. However,
the computations can be hard, so in practice one requires some kind of advantage in the parametriza-
tions: some cases where the algorithm works well, as we have shown in the experimentation section,
are the cases of PN surfaces, toric surfaces, and Plücker conoids. The second algorithm we provide is
specific for ruled surfaces, and proceeds by reducing the problem to the case of space curves (which we
can solve efficiently) by using the line of striction of the surface. As is also shown in the experimenta-
tion section, this last algorithm beats other algorithms that have been considered for the same problem.
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Table 6. Some ruled surfaces and their lines of striction.

Parametrization Line of striction Plots of surf.

x1(t, s) =


2t8 − 10t6 − 10t4 + 5t2 + 1

t2 + 1
+ s(2t5 − 12t3 + 2t)

−
t9 − 6t7 + 6t3 + t2 − 3t + 1

t2 + 1
+ s(−t6 + 7t4 − 7t2 + 1)

t7 + 3t5 + 3t3 + t + 5 + s(t2 + 1)3



x2(t, s) =


t7 + 7t5 + 3t3 − t2 − 3t + 1

t2 + 1
+ s(−t4 − 6t2 + 3)

8t6 + 8t4 + 2t
t2 + 1

+ 8st3

t(t2 + 1) + 2 + s(t2 + 1)2



x3(t, s) =


t6 − 6t4 + t2 + 2t + s(t5 − 6t3 + t)

−t7 + 6t5 − t3 + t2 + t + s(−t6 + 6t4 − t2 + 1)

t3 + t + s(t2 + 1)



x4(t, s) =



t2

t2 + 1
+ st

t4

t2 + 1
+ st3

t5

t2 + 1
+ s



x5(t, s) =


4 + s(t + 1)2

1 + s(t + 1)

t + s



x6(t, s) =



t3

t2 + 1
+ s(−t5 + t)

t5

t2 + 1
+ 3st7

t7

t2 + 1
2st3



x7(t, s) =


t4 + t2 + t + s(t3 + t)

t6 + t3 + st5

t5 + t3 + t2 + 3t + s(t4 + t2 + 3)



x8(t, s) =


−

t17 − 6t15 + 6t11 − 6t7 + 6t3 − t2 − t + 1
t2 + 1

+ s(−t6 + 7t4 − 7t2 + 1)

−
2t16 − 10t14 − 10t12 + 2t10 + 2t8 − 10t6 − 10t4 + 2t2 + 1

t2 + 1
+ s(2t5 − 12t3 + 2t)

t(t2 + 1)3(t8 + 1) + s(t2 + 1)3
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For the general algorithm, the bottleneck of the algorithm is the computation of the resultant of the
polynomials derived from the curvatures of the surface. Using the curvatures of the surface is a quite
natural idea, so a possibility for further research is to look for strategies to compute this resultant in a
more efficient way. In any case, we do not claim that the first algorithm provided in this paper should
always be used. Apparently, all the algorithms presented so far to solve the problem considered in this
paper have some kind of limitation or drawback. We just intend to contribute to the problem with an
algorithm that can be useful in some cases, and perhaps in cases where other algorithms may fail. As
for the second algorithm, for ruled surfaces, we dare say that the algorithm is more efficient than the
other algorithms presented to this day. Nevertheless, for this second algorithm, it can certainly happen
that the line of striction is a line or a circle, in which case we would have infinitely many symmetries
to test. In that situation, one should choose an alternative algorithm among the ones reviewed in
this paper.

The ideas presented in this paper can be extended without any effort to compute isometries between
rational surfaces, both in the cases of non-ruled and ruled surfaces. As for other generalizations,
in order to detect, for instance, affine or projective equivalences between rational surfaces, we would
need to replace the Gauss and mean curvature by affine or projective invariants. Finding invariants with
the properties that we require, which include a “good” behavior with respect to reparametrizations, is
not a trivial task (see [29] for a similar question for curves). So we leave this question here as an
open problem.
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10. M. Hauer, B. Jüttler, J. Schicho, Projective and affine symmetries and equivalences
of rational and polynomial surfaces, J. Comput. Appl. Math., 349 (2019), 424–437.
https://doi.org/10.1016/j.cam.2018.06.026
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13. J. G. Alcázar, H. Dahl, G. Muntingh, Symmetries of canal surfaces and Dupin cyclides, Comput.
Aided Geom. Des., 59 (2018), 68–85. https://doi.org/10.1016/j.cagd.2017.10.001
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