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Abstract: Human T-lymphotropic virus type 2 (HTLV-2) and human immunodeficiency virus type 1
(HIV-1) are two infectious retroviruses that infect immune cells, CD8+ T cells and CD4+ T cells, re-
spectively. Multiple studies have revealed co-infected patients with HTLV-2 and HIV-1. In this paper,
we formulated a new mathematical model for the co-infection of HTLV-2 and HIV-1 in vivo. The HIV-
1-specific B-cell response is included. Six ordinary differential equations made up the model, which
depicted the interactions between uninfected CD4+ T cells, HIV-1-infected CD4+ T cells, HIV-1 parti-
cles, uninfected CD8+ T cells, HTLV-2-infected CD8+ T cells, and HIV-1-specific B cells. We carried
out a thorough study of the model, demonstrating the boundedness and nonnegativity of the solutions.
Additionally, we determined the equilibrium points and demonstrated, under specific conditions, their
global stability. The global asymptotic stability of all equilibria was established by constructing ap-
propriate Lyapunov functions and applying the Lyapunov-LaSalle asymptotic stability theorem. We
provide numerical simulations to corroborate the theoretical findings. We investigated how the B-cell
response affects the dynamics of HIV-1 and HTLV-2 co-infection. The results suggested that the B-cell
response regulates and inhibits the spread of HIV-1. We present a comparison between HTLV-2 or HIV-
1 mono-infections and co-infections with HTLV-2 and HIV-1. Our findings support earlier research,
suggesting that co-infection with HTLV-2 may be able to maintain the behavior dynamics of the CD4+

T cells, inhibit HIV-1 replication, and postpone the onset of AIDS. However, co-infected patients with
HTLV-2 and HIV-1 may experience a greater occurrence of HTLV-2-related T-cell malignant diseases.
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1. Introduction

Persistent viral infections, such those brought on by two different families of retroviruses human im-
munodeficiency viruses (HIVs) and the human T-lymphotropic viruses (HTLVs), are one of the largest
clinical problems. In addition to sharing an in vivo preference for immune system cells, particularly
T lymphocytes, the viruses are known to transmit along both vertical and horizontal pathways [1].
UNAIDS 2024 reports that in 2023, there were 630,000 HIV-related deaths, 1.3 million new HIV in-
fections, and 39.9 million HIV-positive people globally [2]. HIV comes in two varieties: HIV-1 and
HIV-2 [3]. HIV-2 has a slower rate of development and spread than HIV-1, despite the fact that both
impair immunity by infecting and destroying the cental component of the adaptive immune response,
CD4+ T cells. Certain drugs that are used to treat HIV-1 do not work on HIV-2. Acquired immune
deficiency syndrome (AIDS) can result from either HIV-1 or HIV-2 [3]. In a healthy person, the ex-
pected number of CD4+ T cells is 1000 cells/mm3. Following HIV-1 infection, there is a reduction in
CD4+ T cells that can last for years. An individual is considered to have acquired immunodeficiency
syndrome (AIDS) when the count of these cells falls below 200 cells/mm3 [4].

Of the four HTLV types, only two—HTLV-1 and HTLV-2—have been connected to diseases [5].
Both HTLV-1 and HTLV-2 are closely related retroviruses that share shared mechanisms of transmis-
sion and comparable biological characteristics [6]. In 2012, there were an estimated 5 million to 10
million individuals worldwide who were infected with HTLV-1 [7]. Murphy et al. [8] estimated that the
number of known cases of HTLV-2 infection is thought to be between 670,000 and 890,000 in 2015,
a far smaller number than there are for HTLV-1. HTLV-1 mainly targets the CD4+ T cells and can
cause two diseases, adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic
paraparesis (HAM/TSP) [9]. In contrast, HTLV-2 mainly targets CD8+ T cells, also called cytotoxic
T-lymphocytes (CTLs), which eliminate the cells that are infected with the virus [9]. HTLV-2 has been
linked to peripheral neuropathy and may also be connected to tropical spastic paraparesis [9]. HTLV-1
and HTLV-2 depend on direct cell-to-cell contact for efficient transmission. Both viruses use the En-
velope (Env) glycoproteins to facilitate cell attachment and entry into the host cells, enabling them
to establish infection effectively. This mechanism plays a critical role in their persistence and abil-
ity to spread within the host [10]. Martinez et al. [10] conducted a comprehensive review comparing
HTLV-1 and HTLV-2, focusing on key areas such as epidemiology, pathobiology, gene products, and
genomic structure. Their work highlights the similarities and differences in how these viruses spread,
their genetic makeup, and the diseases they cause, providing a deeper understanding of their biological
characteristics and public health impact.

Co-infections between HIV-1 and HTLV-1/-2 are known to happen more often, because the viruses
have the same pathways of acquisition and dissemination [11]. This is especially true in big cities
where injection drug users (IDUs) and sexual activity are the major ways that HIV-1 and HTLV-1/-2
viruses spread [11]. IDUs may found in the US, Europe, Asia, South America, and many Native
American Indian groups are endemic to HTLV-2 infection. It would seem that injectable drug users
who are also HIV-1 infected are more likely to have HTLV-2 infection in several countries [6]. Since
routine HTLV-1/-2 testing is not often done in outpatient clinics, HTLV-1/HIV-1 and HTLV-2 and
HIV-1 coinfections likely occur more frequently than doctors realize [11]. HIV-1-positive people are
thought to have rates of HTLV-1 or HTLV-2 coinfections that are at least 100–500 times higher than
those in the general population. Five to ten percent of those living with HIV-1 infection may also
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have HTLV-1 or HTLV-2 co-infection in particular geographical areas [11]. Several publications have
described cases of co-infection between HTLV-2 and HIV-1 (see the review articles [12–14]).

Our knowledge of viral dynamics has significantly increased thanks to rigorous mathematical mod-
eling and analysis, which can help us come up with workable and efficient management plans to erad-
icate viral infections. One of the areas of mathematical immunology that is progressing the fastest is
the formulation of mathematical models of the dynamics of HIV-1 infection. Three populations are
included in the classic model of HIV-1 mono-infection [15]: Free HIV-1 particles, uninfected CD4+

T cells and infected cells. The model was expanded to incorporate the influence of CD8+ T cells in
several publications (see e.g., [15–20]). B cells is another arm of the adaptive immune response, which
produce antibodies to attack the viruses. Models with B-cell response have been investigated in many
papers (see e.g., [21–26]). The HIV-1 mono-infection model under the impact of both B cells and
CD8+ T cells can be written as [27]:

U̇ = λ︸︷︷︸
production rate of CD4+ T cells

− dU︸︷︷︸
death rate

− β1UV︸︷︷︸
HIV-1 infectious transmission rate

,

Ẏ = β1UV︸︷︷︸
HIV-1 infectious transmission rate

− a1Y︸︷︷︸
death rate

− ϕYE︸︷︷︸
killing rate of HIV-1-infected cells by CD8+ T cells

,

V̇ = k1Y︸︷︷︸
generation rate of HIV-1

− c1V︸︷︷︸
clearance rate of HIV-1

− rVW︸︷︷︸
neutralization rate of HIV-1 by B cells

,

Ė = Ψ(Y, E)︸  ︷︷  ︸
proliferation rate of CD8+ T cells

− ζE︸︷︷︸
death rate

,

Ẇ = Φ(V,W)︸   ︷︷   ︸
proliferation rate of HIV-1-specific B cells

− µW︸︷︷︸
death rate

,

where U = U(t), Y = Y(t), V = V(t), E = E(t), and W = W(t) are the concentrations of uninfected
CD4+ T cells, HIV-1-infected CD4+ T cells, HIV-1 particles, uninfected CD8+ T cells and HIV-1-
specific B cells at time t. Here, the proliferation rate of CD8+ T cells and B cells are represented,
respectively, byΨ(Y, E) andΦ(V,W). The model has been extended in several works (see e.g., [28–30]).
The literature took into consideration the following particular forms ofΨ(Y, E) andΦ(V,W) as follows:

SS-(I): Self-regulating immune response, Ψ(Y, E) = ξ and Φ(V,W) = κ, where ξ, κ > 0 [31],
SS-(II): Linear immune response, Ψ(Y, E) = π̃Y [32–34] and Φ(V,W) = ς̃V [24, 35], where π̃, ς̃ > 0,

SS-(III): Predator-prey like immune response, Ψ(Y, E) = πYE [15, 20, 31] and Φ(V,W) = ςVW [22, 24, 31,
36], where π, ς > 0

SS-(IV): Combination of SS-(I), SS-(II) and SS-(III), Ψ(Y, E) = ξ + π̃Y + πYE [31, 37] and Φ(V,W) =
κ + ς̃V + ςVW [31],

SS-(V): Combination of predator-prey like immune and self-proliferation immune responses: Ψ(Y, E) =
πYE + qE

(
1 − E

Emax

)
, where q, Emax > 0 [17].

SS-(VI): Saturated immune response: Ψ(Y, E) = πYE
ϑ+E [18, 38–40], Φ(V,W) = ςVW

ϑ+W [41, 42], where ϑ > 0.

The infection rate of cells, denoted as β1UV , is influenced by some biological factors, such as
saturation and pyroptosis. Saturation is considered when the concentration of the viruses is high. In
this case the infection rate is reduced and given by β1UV

1+νV , where ν is the saturation constant [43].
Pyroptosis is a highly inflammatory type of programmed cell death triggered during incomplete HIV-1
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infection, leads to the release of pro-inflammatory cytokines. These cytokines have the ability to attract
more CD4+ T cells to the infection site, expanding the number of cells susceptible to HIV infection.
This makes the deterioration of the immune system worse [44,45]. The impact of pyroptosis on HIV-1
dynamics was initially explored in a model presented in [46]. The infection rate was modeled by a
bilinear incidence β1UV , which is enhanced by the inflammatory cytokine (C ) with a factor γ as
β1(1 + γC)UV . This model was later extended to incorporate reaction-diffusion processes, as studied
in subsequent works [47–50]. These extensions aimed to capture spatial effects and the spread of
infection in tissues, providing deeper insights into the role of pyroptosis in HIV-1 infection.

The co-infection of HIV-1 and HTLV-1 has been modeled in a number of recent research (see
e.g., [43, 51–53]). The models presented in [43, 51, 52] were built on the premise that both HIV-
1 and HTLV-1 compete for the same target cells, CD4+ T cells. The effect of CTL response and
latently infected cells have been included in model presented in [51, 52]. In [52], it was assumed that
HIV spreads through two main pathways: Virus-to-cell transmission and direct cell-to-cell contact.
In contrast, HTLV-1 is transmitted via two distinct mechanisms: (i) horizontally through direct cell-
to-cell interactions, and (ii) vertically during the mitotic division of Tax-expressing HTLV-1-infected
cells. In [43], both uninfected and infected CD4+ T cells are modeled to proliferate according to a full
logistic growth form. Additionally, the infection rate is modeled using a saturated incidence form. A
stochastic model for the co-infection dynamics of HIV and HTLV-1, which also includes the effects of
AIDS-related cancer cells, was explored in [53].

To the best of our knowledge, no earlier studies on modeling HTLV-2 and HIV-1 co-infection within
a host have been conducted. In this study, we construct a new in vivo model of co-infection between
HIV-1 and HTLV-2. Apart from the global stability of the equilibria, we investigate the fundamental
characteristics of the solutions to the model. By constructing suitable Lyapunov functions and employ-
ing Lyapunov-LaSalle asymptotic stability theorem (L-LAST), the six equilibria’s global stability is
demonstrated. We conduct numerical simulations to demonstrate and validate the theoretical findings.
We conclude by discussing the results.

Our proposed model and its analysis may provide valuable insights into the dynamics of co-infection
between different human viruses. By capturing the interactions between multiple infections and the
immune system’s response to chronic viral co-infections, this model serves as a tool to explore how co-
infection influences disease progression. Additionally, the framework has the potential to forecast new
treatment approaches, offering predictions on optimal therapies that could address viral co-infections
more effectively. This comprehensive analysis could contribute to developing strategies for improving
patient outcomes.

2. Model formulation

In this section, we propose a new model for the co-infection of HTLV-2 and HIV-1 in vivo. To
formulate our model, we need the following hypothesis:

(H1) The key components of the model include the concentration of, uninfected CD4+ T cells (U(t)),
HIV-1-infected CD4+ T cells (Y(t)), HIV-1 particles (V(t)), uninfected CD8+ T cells (E(t)),
HTLV-2-infected CD8+ T cells (H(t)) and HIV-1-specific B cells (W(t)) at time t. The death
(or clearance or decay) rates of compartments U, Y , V , E, H and W are denoted by dU, a1Y , c1V ,
ζE, a2H and µW, respectively. The HTLV-2 and HIV-1 co-dynamics is depicted in the schematic
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diagram in Figure 1.

Figure 1. The diagram depicts the co-dynamics model of HIV-1 and HTLV-2.

(H2) HIV-1 primarily targets uninfected CD4+ T cells. Uninfected CD4+ T cells are produced at a
constant rate λ and become infected by HIV-1 particles through virus-to-cell transmission at a
rate β1UV [15] (see Eq (2.1)).

(H3) HIV-1-infected CD4+ T cells are generated at a rate of β1UV due to the interaction between un-
infected CD4+ T cells and free HIV-1 particles. These infected cells are subsequently eliminated
by CD8+ T cells at a rate of ϕYE [15] (see Eq (2.2)).

(H4) Free HIV-1 particles are generated from HIV-1-infected CD4+ T cells at the rate of k1Y . These
viral particles are then neutralized at a rate of rVW, where the neutralization is carried out by
HIV-1-specific antibodies which are produced by the HIV-1-specific B cells [31] (see Eq (2.3)).

(H5) HTLV-2 mainly infects CD8 + T cells [9]. We assume that, in the absence of both HIV-1 and
HTLV-2 infections, the baseline level of CD8+ T cells is represented by ξ/ζ, where ξ signifies the
source of CD8+ T cells that are specific to HIV-1. Upon HIV-1 infection, the immune system is
triggered, leading to an expansion of CD8+ T cells at a rate πYE, which is influenced by the con-
centrations of CD4+ T cells infected with HIV-1 and CD8+ T cells [31]. Therefore, the production
rate of uninfected CD8+ T cells results from a combination of self-regulation mechanisms (ξ) and
immune responses similar to a predator-prey interaction (πYE), modeled by ξ + πYE. Uninfected
CD8+ T cells become infected upon contact with HTLV-2-infected CD8+ T cells via cell-to-cell
transmission, occurring at a rateβ2EH [10] (see Eq (2.4)).

(H6) HTLV-2-infected CD8+ T cells are generated at rate of β2EH due to the cell-to-cell interaction
between uninfected CD8+ T cells and HTLV-2-infected CD8+ T cells [10] (see Eq (2.5)).
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(H7) HIV-1-specific B cells are stimulated at rate ςVW, which is influenced by the concentrations of
free HIV-1 particles and HIV-1-specific B cells [22, 31] (see Eq (2.6)).

Based on hypothesis H1-H7, our proposed HTLV-2 and HIV-1 co-infection model is given by:

U̇ = λ − dU − β1UV, (2.1)
Ẏ = β1UV − a1Y − ϕYE, (2.2)
V̇ = k1Y − c1V − rVW, (2.3)
Ė = ξ + πYE − ζE − β2EH, (2.4)
Ḣ = β2EH − a2H, (2.5)
Ẇ = ςVW − µW. (2.6)

The definition of variables and parameters are given in Table 1. The model’s parameters are all positive.
The initial condition is given by:

U(0) > 0,Y(0) ≥ 0, V(0) ≥ 0, E(0) > 0, H(0) ≥ 0, W(0) ≥ 0.

We emphasize that our proposed HTLV-2 and HIV-1 co-infection model (2.1)–(2.6) is different from
the HTLV-1 and HIV-1 co-infection models presented in [43, 51, 52] in such away that both HTLV-
1 and HIV-1 compete for the same target cells, CD4+ T cells (i.e., Eq (2.1) becomes U̇ = λ − dU −
β1UV− β̄1UK, where, K denotes the HTLV-1-infected CD4+ T cells). A detailed analysis of the system
described in model (2.1)–(2.6) will be addressed in next sections, where an in-depth examination of
the model’s dynamics will be carried out.

3. Preliminaries

In this section, the fundamental qualitative characteristics of the system (2.1)–(2.6), such as non-
negativity and boundedness of solutions, are examined. We find the model’s equilibria and determine
a set of threshold parameters which determine the existence of the model’s equilibria.

3.1. Non-negativity and boundedness

We demonstrate that the model (2.1)–(2.6) is well-posed by establishing the nonnegativity and
boundedness of the solutions.

Lemma 1. Solution of the system (2.1)–(2.6) are non-negative and bounded.

Proof. From Eqs (2.1)–(2.6) We get

U̇ |U=0 = λ > 0, Ẏ |Y=0 = β1UV ≥ 0, ∀V,U ≥ 0,
V̇ |V=0 = k1Y ≥ 0, ∀Y ≥ 0, Ė |E=0 = ξ > 0,
Ḣ |H=0 = 0, Ẇ |W=0 = 0.

Therefore, in accordance with the Proposition B.7 of [61]

(U(t),Y(t),V(t), E(t),H(t),W(t)) ∈ R6
≥0 for any t ≥ 0 when (U(0),Y(0),V(0), E(0),H(0),W(0)) ∈ R6

≥0.
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To demonstrate the solutions’ boundedness, let define Γ(t) as:

Γ = U + Y +
a1

2k1
V +
ϕ

π
[E + H] +

a1r
2k1ς

W.

Next, we get

Γ̇ = U̇ + Ẏ +
a1

2k1
V̇ +
ϕ

π

[
Ė + Ḣ

]
+

a1r
2k1ς

Ẇ

= λ − dU − β1UV + β1UV − a1Y − ϕYE +
a1

2k1
[k1Y − c1V − rVW] +

ϕ

π

[
ξ + πYE − ζE − β2EH

+β2EH − a2H
]
+

a1r
2k1ς

[
ςVW − µW

]
= λ +

ξϕ

π
− dU −

a1

2
Y −

a1c1

2k1
V −
ϕζ

π
E −

a2ϕ

π
H −

a1rµ
2k1ς

W

≤ λ +
ξϕ

π
− ϱ

[
U + Y +

a1

2k1
V +
ϕ

π
(E + H) −

a1r
2k1ς

W
]
= λ +

ξϕ

π
− ϱΓ,

where ϱ = min{d, a1/2, c1, ζ, a2, µ}. Thus, Γ ≤ λ
ϱ
+
ξϕ

πϱ
= τ1, if Γ(0) ≤ τ1. It follows that

0 ≤ U(t),Y(t) ≤ τ1, 0 ≤ V(t) ≤ τ2, 0 ≤ E(t),H(t) ≤ τ3, 0 ≤ W(t) ≤ τ4

if
U(0) + Y(0) +

a1

2k1
V(0) +

ϕ

π
[E(0) + H(0)] +

a1r
2k1ς

W(0) ≤ τ1,

where τ2 =
2k1
a1
τ1, τ3 =

π
ϕ
τ1 and τ4 =

2k1ς
a1r τ1. □

3.2. Equilibria and thresholds

Lemma 2. For model (2.1)–(2.6), there exist six equilibria besides seven threshold parameters (Ri,

i = 1, 2, . . . , 7) such that

(I) Infection-free equilibrium, ∆0, is always presented, where ∆0 = (U0, 0, 0, E0, 0, 0).

(II) If R1 > 1, then an HTLV-2 mono-infection equilibrium, ∆1, exists besides ∆0, where ∆1 =

(U1, 0, 0, E1,H1, 0).

(III) If R2 > 1, then an HIV-1 mono-infection equilibrium in the absence of HIV-1-specific B-cell
response, ∆2, exists besides ∆0, where ∆2 = (U2,Y2,V2, E2, 0, 0).

(IV) If R3 > 1, then an HIV-1 mono-infection equilibrium with an active HIV-1-specific B-cell re-
sponse, ∆3, exists besides ∆0, where ∆3 = (U3,Y3,V3, E3, 0,W3).

(V) If R7 ≤ 1 < R4 and R5 > 1, then an HTLV-2 and HIV-1 co-infection equilibrium in the absence of
HIV-1-specific B-cell response, ∆4, exists besides ∆0, where ∆4 = (U4,Y4,V4, E4,H4, 0).

(VI) If R6 > 1 and R7 > 1, then an HTLV-2 and HIV-1 co-infection equilibrium with an active HIV-1-
specific B-cell response, ∆5, exists besides ∆0, where ∆5 = (U5,Y5,V5, E5,H5,W5).
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Proof. Equilibria of (2.1)–(2.6) fulfill

0 = λ − dU − β1UV,

0 = β1UV − a1Y − ϕYE,

0 = k1Y − c1V − rVW,

0 = ξ + πYE − ζE − β2EH,

0 = β2EH − a2H,

0 = ςVW − µW.

We get that the provided model (2.1)–(2.6) has six equilibria:

1) Infection-free equilibrium, ∆0 = (U0, 0, 0, E0, 0, 0), where U0 =
λ
d and E0 =

ξ

ζ
.

2) HTLV-2 mono-infection equilibrium, ∆1 = (U1, 0, 0, E1,H1, 0) , where

U1 =
λ

d
= U0, E1 =

a2

β2
=

E0

R1
,H1 =

ζ

β2
(R1 − 1) ,

where
R1 =

ξβ2

a2ζ
,

which stands for the HTLV-2 mono-infection basic reproduction ratio. The parameter R1 plays
a critical role in clinical settings, as it helps determine whether an HTLV-2 infection will persist
chronically. It quantifies the average number of new HTLV-2-infected CD8+ T cells generated from
the interaction between HTLV-2-infected CD8+ T cells and uninfected CD8+ T cells, indicating the
potential for viral spread within the host.

3) HIV-1 mono-infection equilibrium in the absence of HIV-1-specific B-cell response, ∆2 =

(U2,Y2,V2, E2, 0, 0), where

U2 =
a1Y2 + ϕY2E2

β1V2
,V2 =

k1Y2

c1
, E2 =

ξ

ζ − πY2

and Y2 fulfills the following:
Ω1Y2 + Ω2Y + Ω3

ζ − πY
= 0,

where

Ω1 = β1a1k1π,

Ω2 = c1da1π − λβ1k1π − a1β1ζk1 − ϕξβ1k1,

Ω3 = λβ1k1ζ − c1da1ζ − c1ϕdξ.

We define a function G1(Y) as:

G1(Y) =
Ω1Y2 + Ω2Y + Ω3

ζ − πY
,

(
0,
ζ

π

)
.
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Note that, G1 is continuous on
(
0, ζ
π

)
. We have

G1(0) =
λβ1k1ζ − c1da1ζ − c1ϕdξ

ζ
=

c1d(a1ζ + ϕξ)
ζ

(R2 − 1)

where
R2 =

λβ1k1ζ

c1d(a1ζ + ϕξ)
,

indicates HIV-1 mono-infection basic reproduction ratio, which determines whether or not an HIV-
1 mono-infection can be established. R2, refers to the average number of newly HIV-1-infected
CD4+ T cells generated by a single infected cell in a situation where nearly all CD4+ T cells are
uninfected. It provides a measure of how efficiently a virus can spread within the host at the early
stages of infection, influencing whether the infection will proliferate or die out.

Since G1(0) > 0 if R2 > 1 in addition to lim
Y→

(
ζ
π

)−G1(Y) = −∞, there exist Y2 such that 0 < Y2 <
ζ

π
and

satisfies G1(Y2) = 0. Consequently, we get U2 > 0,V2 > 0 and E2 > 0.

4) HIV-1 mono-infection equilibrium with an active HIV-1-specific B-cell response, ∆3 =

(U3,Y3,V3, E3, 0,W3), where

U3 =
ςλ

dς + β1µ
, V3 =

µ

ς
, E3 =

ξ

ζ − πY3
, W3 =

c1

r

(
k1ς

µc1
Y3 − 1

)
and Y3 fulfills the following:

ω1Y2 + ω2Y + ω3

ζ − πY
= 0,

where
ω1 = a1π(dς + β1µ), ω2 = −λβ1µπ − (dς + β1µ)(a1ζ + ϕξ), ω3 = λβ1ζµ.

We define a function G2(Y) as:

G2(Y) =
ω1Y2 + ω2Y + ω3

ζ − πY
.

Note that G2 is continuous on
(
0, ζ
π

)
. We have G2(0) = λβ1ζµ

ζ
> 0. Moreover, lim

Y→
(
ζ
π

)−G2(Y) = −∞,

there is Y3 such that 0 < Y3 <
ζ

π
and satisfies G2(Y3) = 0. Consequently, we get

U3 =
ςλ

dς + β1µ
> 0, V3 =

µ

ς
> 0, E3 =

ξ

ζ − πY3
> 0, W3 =

c1

r
(R3 − 1) > 0

where
R3 =

k1ς

µc1
Y3.

Here, R3 is the activation number of HIV-1-specific B-cell response in the case of HIV-1 mono-
infection. The parameter R3 indicates whether the HIV-1-specific B-cell response will be activated
in the absence of HTLV-2 infection. It serves as a threshold to assess the immune system’s ability to
respond to HIV-1 without the influence of co-infection, determining whether an effective immune
response is triggered.
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5) HTLV-2/HIV-I co-infection equilibrium in the absence of HIV-1-specific B-cell response, ∆4 =

(U4,Y4,V4, E4,H4, 0), where

U4 =
c1(a1β2 + a2ϕ)

k1β2β1
, Y4 =

c1d
k1β1

(R4 − 1) , V4 =
d
β1

(R4 − 1) , E4 =
a2

β2
, H4 =

c1dπ + β1k1ζ

k1β2β1
(R5 − 1)

where

R4 =
λk1β2β1

c1d(a1β2 + a2ϕ)
, R5 =

k1β2β1

c1dπ + β1k1ζ

(
ξ

a2
+

πλ

a1β2 + a2ϕ

)
.

Consequently, if R4 > 1 and R5 > 1, then the co-infection equilibrium in the absence of HIV-1-
specific B-cell response, ∆4, exists. In this scenario, the threshold parameters R4 and R5 determine
the likelihood of HIV-1 and HTLV-2 co-infection in the absence of an HIV-1-specific B-cell re-
sponse. These values help assess whether conditions are favorable for the co-infection to establish
and persist, particularly when the immune response to HIV-1 is not fully activated.

6) HTLV-2 and HIV-1 co-infection equilibrium with an active HIV-1-specific B-cell response, ∆5 =

(U5,Y5,V5, E5,H5,W5), where

U5 =
ςλ

dς + β1µ
, Y5 =

β2β1λµ

(a1β2 + a2ϕ)(dς + β1µ)
, V5 =

µ

ς
, E5 =

a2

β2
,

H5 =
ζ

β2
(R6 − 1) , W5 =

c1

r
(R7 − 1) ,

where

R6 =
β2

ζ

(
ξ

a2
+

β1πλµ

(a1β2 + a2ϕ)(dς + β1µ)

)
,

R7 =
λk1β2β1ς

c1(a1β2 + a2ϕ)(dς + β1µ)
.

Thus, when R6 > 1 and R7 > 1, then the co-infection equilibrium with an active HIV-1-specific
B-cell response, ∆5, exists. The parameter R6 serves as an indicator of whether individuals infected
with HIV-1 could also become co-infected with HTLV-2. It reflects the conditions under which co-
infection may occur, based on the dynamics of the two viruses and the patient’s immune response.
In addition, R7 indicates the activation number of HIV-1-specific B-cell response in the case HTLV-
2/HIV-I co-infection. We note that

R7 =
λk1β2β1ς

c1(a1β2 + a2ϕ)(dς + β1µ)
=

R4

1 + β1µ

dς

< R4.

Hence, R7 < R4.

□

4. Global stability

In this section, we aim to examine the global asymptotic stability of the all model’s equilibria
(2.1)–(2.6) constructing Lyapunov functions [62] and applying Lyapunov-LaSalle asymptotic stability
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theorem (L-LAST) [63–65]. Define a function S (x) = x − 1 − ln x where S (x) ≥ 0 for all x > 0 and
S (1) = 0. Furthermore, the arithmetic mean-geometric mean inequality presented below is employed
to prove Theorems 1–6. ∑n

i=1 Xi

n
≥

 n∏
i=1

Xi


1
n

(4.1)

Consider the Lyapunov function candidate Li and define Λ′i as the largest invariant set of

Λi =

{
(U,Y,V, E,H,W) :

dLi

dt
= 0

}
, i = 0, 1, 2, 3, 4, 5.

Theorem 1. The infection-free equilibrium ∆0 is globally asymptotically stable (GAS) if R1 ≤ 1 and
R2 ≤ 1. In addition, if R1 > 1 and/or R2 > 1, then the ∆0 is unstable.

Proof. Define L0(U,Y,V, E,H,W) as:

L0 = U0S
(

U
U0

)
+ Y +

β1U0

c1
V +
ϕ

π
E0S

(
E
E0

)
+
ϕ

π
H +
β1rU0

c1ς
W.

Obviously, L0(U,Y,V, E,H,W) > 0 for any U,Y,V, E,H,W > 0 and L0(U0, 0, 0, E0, 0, 0) = 0. The
derivative of L0 along the solutions of system (2.1)–(2.6) can be calculated as:

dL0

dt
=

(
1 −

U0

U

)
U̇ + Ẏ +

β1U0

c1
V̇ +
ϕ

π

(
1 −

E0

E

)
Ė +
ϕ

π
Ḣ +
β1rU0

c1ς
Ẇ.

By replacing the equations mentioned in model (2.1)–(2.6), we obtain

dL0

dt
=

(
1 −

U0

U

)
(λ − dU − β1UV) + (β1UV − a1Y − ϕYE) +

β1U0

c1
(k1Y − c1V − rVW)

+
ϕ

π

(
1 −

E0

E

)
(ξ + πYE − ζE − β2EH) +

ϕ

π
(β2EH − a2H) +

β1rU0

c1ς
(ςVW − µW) .

Collecting the terms and using λ = dU0 and ξ = ζE0, we obtain

dL0

dt
=
−d
U

(U − U0)2
−
ϕ

π

ζ

E
(E − E0)2 +

(
β1k1

c1
U0 − a1 − ϕE0

)
Y +
ϕ

π
(β2E0 − a2) H −

β1rµU0

c1ς
W

=
−d
U

(U − U0)2
−
ϕ

π

ζ

E
(E − E0)2 +

a1ζ + ϕξ

ζ

(
λk1β1ζ

c1d (a1ζ + ϕξ)
− 1

)
Y +
ϕa2

π

(
ξβ2

a2ζ
− 1

)
H −
β1rµλ
c1dς

W.

Ultimately, we obtain

dL0

dt
=
−d
U

(U − U0)2
−
ϕ

π

ζ

E
(E − E0)2 +

a1ζ + ϕξ

ζ
(R2 − 1) Y +

ϕa2

π
(R1 − 1) H −

β1rµλ
c1dς

W.

Hence, dL0
dt ≤ 0 satisfies if R1 ≤ 1 and R2 ≤ 1. Moreover, dL0

dt = 0 when U = U0, E = E0, W =

0, (R2 − 1) Y = 0 and (R1 − 1) H = 0. Solutions of the system tend to Λ′0 [66]. Any element in Λ′0
satisfies U = U0, E = E0, W = 0,

(R2 − 1) Y = 0 and (R1 − 1) H = 0. (4.2)

There are four cases:
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(I) R1 = 1 and R2 = 1. Then from Eq (2.1) we get

0 = U̇ = λ − dU0 − β1U0V =⇒ V(t) = 0 for any t. (4.3)

From Eq (2.3) we have

0 = V̇ = k1Y =⇒ Y(t) = 0 for any t. (4.4)

Equation (2.4) suggests that

0 = Ė = ξ − ζE0 − β2E0H =⇒ H(t) = 0 for any t. (4.5)

Hence Λ′0 = {∆0}.

(II) R1 < 1 and R2 < 1. Then from Eq (4.2) we have Y = H = 0 and Eq (4.3) indicates V = 0.
Consequently, Λ′0 = {∆0}.

(III) R1 = 1 and R2 < 1. Then from Eq (4.2) we get Y = 0. Equations (4.3) and (4.5) imply V = H = 0.
Thus Λ′0 = {∆0}.

(IV) R1 < 1 and R2 = 1. Equation (4.2) gives H = 0 while Eqs (4.3) and (4.4) give, V = Y = 0. Thus
Λ′0 = {∆0}.

By L-LAST [63–65], ∆0 is GAS.
To establish the instability of ∆0 if R1 > 1 and/or R2 > 1, it is necessary to construct the Jacobian

matrix J = J(U,Y,V, E,H,W) of model (2.1)–(2.6) as:

J =



−d − β1V 0 −β1U 0 0 0
β1V −a1 − ϕE β1U −ϕY 0 0

0 k1 −c1 − rW 0 0 −rV
0 πE 0 πY − ζ − β2H −β2E 0
0 0 0 β2H −a2 + β2E 0
0 0 ςW 0 0 ςV − µ


. (4.6)

Therefore, at ∆0, the characteristic equation is provided by

det (J − σI) = (σ + d)(σ + ζ)(σ + µ) (b1σ + b0)
(
b̃2σ

2 + b̃1σ + b̃0

)
= 0, (4.7)

where I is the identity matrix and σ is the eigenvalue and

b1 = ζ, b0 = a2ζ (1 − R1) ,
b̃2 = dζ, b̃1 = d (ϕξ + ζ (a1 + c1)) ,
b̃0 = c1d(a1ζ + ϕξ) (1 − R2) .

If R1 > 1 and/or R2 > 1, then b0 < 0 and/or b̃0 < 0, respectively. Hence, Eq (4.7) has positive root and
then ∆0 is unstable. □

Theorem 2. HTLV-2 mono-infection equilibrium ∆1 is GAS if R1 > 1 and R4 ≤ 1. Moreover, if R4 > 1
then ∆1 is unstable.
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Proof. construct L1(U,Y,V, E,H,W) as:

L1 = U1S
(

U
U1

)
+ Y +

β1U1

c1
V +
ϕ

π
E1S

(
E
E1

)
+
ϕ

π
H1S

(
H
H1

)
+
β1rU1

c1ς
W.

Clearly L1(U,Y,V, E,H,W) > 0 for any U,Y,V, E,H,W > 0 and L1(U1, 0, 0, E1,H1, 0) = 0. Calculat-
ing dL1

dt as:

dL1

dt
=

(
1 −

U1

U

)
(λ − dU − β1UV) + (β1UV − a1Y − ϕYE) +

β1U1

c1
(k1Y − c1V − rVW)

+
ϕ

π

(
1 −

E1

E

)
(ξ + πYE − ζE − β2EH) +

ϕ

π

(
1 −

H1

H

)
(β2EH − a2H) +

β1rU1

c1ς
(ςVW − µW) .

Collecting terms results to

dL1

dt
=

(
1 −

U1

U

)
(λ − dU) − a1Y +

β1k1

c1
U1Y +

ϕ

π

(
1 −

E1

E

)
(ξ − ζE) − ϕE1Y +

ϕβ2

π
E1H

−
ϕβ2

π
H1E −

a2ϕ

π
H +

a2ϕ

π
H1 −

β1rµU1

c1ς
W.

By using the subsequent equilibrium conditions

λ = dU1, ξ = ζE1 + β2E1H1, β2E1H1 = a2H1,

we get

dL1

dt
=
−d
U

(U − U1)2
−
ϕ

π

ζ

E
(E − E1)2 +

(
β1k1

c1
U1 − a1 − ϕE1

)
Y +
ϕ

π

(
1 −

E1

E

)
β2E1H1

+
ϕ

π
(β2E1 − a2) H −

ϕβ2

π
H1E +

ϕβ2

π
E1H1 −

β1rµU1

c1ς
W.

Thus,

dL1

dt
=
−d
U

(U − U1)2
−
ϕ

π

ζ

E
(E − E1)2 +

a1β2 + a2ϕ

β2

(
λk1β2β1

c1d(a1β2 + a2ϕ)
− 1

)
Y

+
ϕ

π
β2E1H1

(
2 −

E1

E
−

E
E1

)
−
β1rµU1

c1ς
W

=
−d
U

(U − U1)2
−
ϕ

π

ξ

EE1
(E − E1)2 +

a1β2 + a2ϕ

β2
(R4 − 1) Y −

β1rµU1

c1ς
W.

Thus, if R1 > 1, R4 ≤ 1 and using inequality (4.1), we conclude that dL1
dt ≤ 0 for any U,Y,V, E,H,W >

0. In addition, dL1
dt = 0 if U = U1, E = E1,W = 0 and (R4 − 1) Y = 0. Λ′1 is reached via the solutions

of model (2.1)–(2.6). In Λ′1 we have U = U1, E = E1, W = 0 and

(R4 − 1) Y = 0. (4.8)

Two cases are at hand:
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(I) R4 = 1, then from Eq (2.1)

0 = U̇ = λ − dU1 − β1U1V =⇒ V(t) = 0 for any t. (4.9)

From Eq (2.3) we have

V̇ = 0 = k1Y =⇒ Y(t) = 0 for any t. (4.10)

Equation (2.4) implies that

0 = Ė = ξ − ζE1 − β2E1H =⇒ H(t) = H1 for any t. (4.11)

The Λ′1 = {∆1}.

(II) R4 < 1, then Eq (4.8) implies that Y = 0 and Eqs (4.9) and (4.11) give V = 0 and H = H1,
respectively. Hence, Λ′1 = {∆1}.

Thus, by L-LAST, ∆1 is GAS. To determine whether ∆1 is unstable when R4 > 1, we compute the
characteristic equation at ∆1 utilizing the Jacobian matrix provided in (4.6) as:

det (J − σI) = (σ + d)(σ + µ)
(
m2σ

2 + m1σ + m0

) (
n2σ

2 + n1σ + n0

)
= 0, (4.12)

where

m2 = a2, m1 = β2ξ, m0 = a2
2ζ (R1 − 1) ,

n2 = dβ2, n1 = a1dβ2 + a2dϕ + c1dβ2

n0 = c1d(a1β2 + a2ϕ) (1 − R4) .

If R4 > 1, then n0 < 0, and hence, Eq (4.12) has a positive root. Consequently, ∆1 is unstable. □

Theorem 3. HIV-1 mono-infection equilibrium in the absence of HIV-1-specific B-cell response, ∆2 is
GAS if R2 > 1, R6 ≤ 1 and R7 ≤ 1.

Proof. Define L2(U,Y,V, E,H,W) as:

L2 = U2S
(

U
U2

)
+ Y2S

(
Y
Y2

)
+
β1U2

c1
V2S

(
V
V2

)
+
ϕ

π
E2S

(
E
E2

)
+
ϕ

π
H +
β1rU2

c1ς
W.

Evidently, L2(U,Y,V, E,H,W) > 0 for any U,Y,V, E,H,W > 0 and L2(U2,Y2,V2, E2, 0, 0) = 0. Calcu-
lating dL2

dt as:

dL2

dt
=

(
1 −

U2

U

)
(λ − dU − β1UV) +

(
1 −

Y2

Y

)
(β1UV − a1Y − ϕYE) +

β1U2

c1

(
1 −

V2

V

)
(k1Y − c1V − rVW)

+
ϕ

π

(
1 −

E2

E

)
(ξ + πYE − ζE − β2EH) +

ϕ

π
(β2EH − a2H) +

β1rU2

c1ς
(ςVW − µW) .

Collecting the above terms leads to

dL2

dt
=

(
1 −

U2

U

)
(λ − dU) − β1UV

Y2

Y
− a1Y + a1Y2 + ϕY2E +

β1k1

c1
U2Y −

β1k1

c1
U2

V2

V
Y

Electronic Research Archive Volume 32, Issue 11, 6032–6071.



6047

+ β1U2V2 +
β1rU2

c1
V2W +

ϕ

π

(
1 −

E2

E

)
(ξ − ζE) − ϕE2Y +

ϕβ2

π
E2H −

ϕa2

π
H −
β1rµU2

c1ς
W.

Utilizing the equilibrium conditions

λ = dU2 + β1U2V2, β1U2V2 = a1Y2 + ϕY2E2,

k1Y2 = c1V2, ξ = −πY2E2 + ζE2,

we obtain

dL2

dt
=
−d
U

(U − U2)2
−
ϕ

π

ζ

E
(E − E2)2 +

(
1 −

U2

U

)
β1U2V2 − ϕ

(
1 −

E2

E

)
Y2E2

+

(
β1k1

c1
U2 − a1 − ϕE2

)
Y +
ϕ

π
(β2E2 − a2) H +

β1rU2

c1

(
V2 −

µ

ς

)
W − β1UV

Y2

Y

+ a1Y2 + ϕY2E −
β1k1

c1
U2

V2

V
Y + β1U2V2 + ϕY2E2 − ϕY2E2

=
−d
U

(U − U2)2
−
ϕ

π

ξ

EE2
(E − E2)2 + β1U2V2

(
3 −

U2

U
−

UVY2

U2V2Y
−

YV2

Y2V

)
+
ϕβ2

π
(E2 − E5) H +

β1rU2

c1
(V2 − V5) W.

In case R6 ≤ 1 and R7 ≤ 1, then co-infection equilibrium with an active HIV-1-specific B-cell response
∆5 does not exist since H5 ≤ 0 and W5 ≤ 0. Thus,

Ḣ = β2EH − a2H = β2

(
E −

a2

β2

)
H ≤ 0, for any H > 0.

Ẇ = ςVW − µW = ς
(
V −
µ

ς

)
W ≤ 0, for any W > 0.

This happens when E2 ≤
a2
β2
= E5 and V2 ≤

µ

ς
= V5. Then, using inequality (4.1), we obtain that dL2

dt ≤ 0
for any U, Y , V , E, H, W > 0. Moreover, dL2

dt = 0 if U = U2, Y = Y2, V = V2, E = E2, (V2 − V5) W =
0 and (E2 − E5) H = 0. Λ′2 is reached by the model’s solutions. Λ′2 has elements with U = U2, Y = Y2,
V = V2, E = E2,

(V2 − V5) W = 0 and (E2 − E5) H = 0. (4.13)

We have four cases:

(I) V2 = V5 and E2 = E5. From Eq (2.4) we have

0 = Ė = ξ + πY2E2 − ζE2 − β2E2H =⇒ H(t) = 0 for any t. (4.14)

From Eq (2.3) implies that

0 = V̇ = k1Y2 − c1V2 − rV2W =⇒ W(t) = 0 for any t. (4.15)

Hence Λ′2 = {∆2}.

(II) V2 < V5 and E2 < E5. Then from Eq (4.13) we get H = W = 0. Thus Λ′2 = {∆2}.
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(III) V2 < V5 and E2 = E5. Equation (4.13) leads to W = 0 while Eq (4.14) implies that H = 0. Thus,
Λ′2 = {∆2}.

(IV) V2 = V5 and E2 < E5. Equations (4.13) and (4.15) imply that H = W = 0. Hence, Λ′2 = {∆2}.

Consequently, by L-LAST, ∆2 is GAS. □

Theorem 4. HIV-1 mono-infection equilibrium with an active HIV-1-specific B-cell response, ∆3 is
GAS if R3 > 1, R5 ≤ 1.

Proof. Define L3(U,Y,V, E,H,W) as:

L3 = U3S
(

U
U3

)
+ Y3S

(
Y
Y3

)
+
β1U3V3

k1Y3
V3S

(
V
V3

)
+
ϕ

π
E3S

(
E
E3

)
+
ϕ

π
H +
β1rU3V3

k1ςY3
S

(
W
W3

)
.

Evidently, L3(U,Y,V, E,H,W) > 0 for any U,Y,V, E,H,W > 0 and L3(U3,Y3,V3, E3, 0,W3) = 0.
Calculating dL3

dt as:

dL3

dt
=

(
1 −

U3

U

)
(λ − dU − β1UV) +

(
1 −

Y3

Y

)
(β1UV − a1Y − ϕYE) +

β1U3V3

k1Y3

(
1 −

V3

V

)
(k1Y − c1V − rVW)

+
ϕ

π

(
1 −

E3

E

)
(ξ + πYE − ζE − β2EH) +

ϕ

π
(β2EH − a2H) +

β1rU3V3

k1ςY3

(
1 −

W3

W

)
(ςVW − µW) .

Collecting the above terms leads to

dL3

dt
=

(
1 −

U3

U

)
(λ − dU) + β1U3V − β1UV

Y3

Y
− a1Y + a1Y3 + ϕY3E +

β1U3V3

Y3
Y −
β1U3V3

Y3

V3

V
Y

−
β1c1U3V3

k1Y3
V +
β1c1U3V3

k1Y3
V3 +

β1rU3V3

k1Y3
V3W +

ϕ

π

(
1 −

E3

E

)
(ξ − ζE)

− ϕE3Y +
ϕβ2

π
E3H −

ϕa2

π
H −
β1rU3V3

k1Y3
VW3 −

β1rµU3V3

k1ςY3
W +

β1rµU3V3

k1ςY3
W3.

Utilizing the equilibrium conditions

λ = dU3 + β1U3V3, β1U3V3 = a1Y3 + ϕY3E3,

k1Y3 = c1V3 + rV3W3, ξ = −πY3E3 + ζE3, V3 = µ/ς,

We obtain

dL3

dt
=
−d
U

(U − U3)2
−
ϕ

π

ζ

E
(E − E3)2 +

(
1 −

U3

U

)
β1U3V3 − ϕ

(
1 −

E3

E

)
Y3E3 + (β1U3V3 − a1Y3 − ϕY3E3)

Y
Y3

+ β1U3

(
1 −

c1V3

k1Y3
−

rV3W3

k1Y3

)
V +
ϕ

π
(β2E3 − a2) H + β1U3V3

(
c1V3

k1Y3
+

rV3W3

k1Y3

)
+
β1rU3V3

k1Y3

(
V3 −

µ

ς

)
W

− β1UV
Y3

Y
+ a1Y3 + ϕY3E −

β1U3V3

Y3

V3

V
Y + ϕY3E3 − ϕY3E3

=
−d
U

(U − U3)2
−
ϕ

π

ξ

EE3
(E − E3)2 + β1U3V3

(
3 −

U3

U
−

UVY3

U3V3Y
−

YV3

Y3V

)
+
ϕβ2

π
(E3 − E4) H.
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In case R5 ≤ 1, then ∆4 does not exist since H4 ≤ 0. Hence,

Ḣ = β2EH − a2H = β2

(
E −

a2

β2

)
H ≤ 0 for any H > 0.

This occurs when E3 ≤
a2
β2
= E4 and using inequality (4.1), we obtain that dL3

dt ≤ 0 for any U, Y, V, E,
H, W > 0. Moreover, dL3

dt = 0 if U = U3, Y = Y3, V = V3, E = E3 and (E3 − E4) H = 0. The model’s
solutions converge to Λ′3 where U = U3, Y = Y3, V = V3, E = E3 and

(E3 − E4) H = 0. (4.16)

We have two cases:

(I) E3 = E4. From Eq (2.4) we have

0 = Ė = ξ + πY3E3 − ζE3 − β2E3H =⇒ H(t) = 0 for any t. (4.17)

From Eq (2.3) implies that

0 = V̇ = k1Y3 − c1V3 − rV3W =⇒ W(t) = W3 for any t. (4.18)

Hence Λ′3 = {∆3}.

(II) E3 < E4. Then from Eq (4.16), we get H = 0 and from Eq (4.18), we obtain W = W3. Thus
Λ′3 = {∆3}.

Consequently, by L-LAST, ∆3 is GAS. □

Theorem 5. HTLV-2/HIV-I co-infection equilibrium in the absence of HIV-1-specific B-cell response,
∆4 is GAS if R7 ≤ 1 < R4 and R5 > 1.

Proof. Define L4(U,Y,V, E,H,W) as:

L4 = U4S
(

U
U4

)
+ Y4S

(
Y
Y4

)
+
β1U4

c1
V4S

(
V
V4

)
+
ϕ

π
E4S

(
E
E4

)
+
ϕ

π
H4S

(
H
H4

)
+
β1rU4

c1ς
W.

Calculating dL4
dt as:

dL4

dt
=

(
1 −

U4

U

)
(λ − dU − β1UV) +

(
1 −

Y4

Y

)
(β1UV − a1Y − ϕYE) +

β1U4

c1

(
1 −

V4

V

)
(k1Y − c1V − rVW)

+
ϕ

π

(
1 −

E4

E

)
(ξ + πYE − ζE − β2EH) +

ϕ

π

(
1 −

H4

H

)
(β2EH − a2H) +

β1rU4

c1ς
(ςVW − µW) .

Then we get

dL4

dt
=

(
1 −

U4

U

)
(λ − dU) − β1UV

Y4

Y
− a1Y + a1Y4 + ϕY4E +

β1k1

c1
U4Y −

β1k1

c1
U4

V4

V
Y + β1U4V4

+
β1rU4

c1
V4W +

ϕ

π

(
1 −

E4

E

)
(ξ − ζE) − ϕE4Y +

ϕβ2

π
E4H −

ϕβ2

π
H4E −

a2ϕ

π
H +

a2ϕ

π
H4 −

β1rµU4

c1ς
W.
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Using the equilibrium conditions

λ = dU4 + β1U4V4, β1U4V4 = a1Y4 + ϕY4E4, k1Y4 = c1V4,

ξ = −πY4E4 + ζE4 + β2E4H4, E4 = a2/β2,

we finally get

dL4

dt
=
−d
U

(U − U4)2
−
ϕ

π

ξ

EE4
(E − E4)2+β1U4V4

(
3 −

U4

U
−

UY4V
U4YV4

−
YV4

Y4V

)
+
β1r(dς + β1µ)U4

c1β1ς
(R7 − 1) W.

Thus, if R7 ≤ 1 < R4 and R5 > 1 and using inequality (4.1), we conclude that dL4
dt ≤

0 for any U,Y,V, E,H,W > 0. In addition, dL4
dt = 0 if U = U4, Y = Y4, V = V4, E =

E4 and (R7 − 1) W = 0. Solutions of model (2.1)–(2.6) converge to Λ′4 where U = U4, Y = Y4, V =
V4, E = E4 and

(R7 − 1) W = 0. (4.19)

We have two cases:

(I) R7 = 1, hence from Eq (2.4)

0 = Ė = ξ + πY4E4 − ζE4 − β2E4H =⇒ H(t) = H4 for any t, (4.20)

and Eq (2.3) implies that

0 = V̇ = k1Y4 − c1V4 − rV4W =⇒ W(t) = 0 for any t. (4.21)

Hence, Λ′4 = {∆4}.

(II) R7 < 1, then from Eq (4.19) we get W = 0 and from Eq (4.20) we get H = H4. Thus Λ′4 = {∆4}.

Thus, by L-LAST Λ′4 = {∆4} and ∆4 is GAS. □

Theorem 6. HTLV-2 and HIV-1 co-infection equilibrium with an active HIV-1-specific B-cell response,
∆5 is GAS if R6 > 1 and R7 > 1.

Proof. Define L5(U,Y,V, E,H,W) as:

L5 = U5S
(

U
U5

)
+ Y5S

(
Y
Y5

)
+
β1U5V5

k1Y5
V5S

(
V
V5

)
+
ϕ

π
E5S

(
E
E5

)
+
ϕ

π
H5S

(
H
H5

)
+
β1rU5V5

k1ςY5
S

(
W
W5

)
.

Evidently, L5(U,Y,V, E,H,W) > 0 for any U,Y,V, E,H,W > 0 and L5(U5,Y5,V5, E5,H5,W5) = 0.
Calculating dL5

dt as:

dL5

dt
=

(
1 −

U5

U

)
(λ − dU − β1UV) +

(
1 −

Y5

Y

)
(β1UV − a1Y − ϕYE) +

β1U5V5

k1Y5

(
1 −

V5

V

)
(k1Y − c1V

−rVW) +
ϕ

π

(
1 −

E5

E

)
(ξ + πYE − ζE − β2EH) +

ϕ

π

(
1 −

H5

H

)
(β2EH − a2H)

+
β1rU5V5

k1ςY5

(
1 −

W5

W

)
(ςVW − µW) .
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Collecting the above terms leads to

dL5

dt
=

(
1 −

U5

U

)
(λ − dU) + β1U5V − β1UV

Y5

Y
− a1Y + a1Y5 + ϕY5E +

β1U5V5

Y5
Y −
β1U5V5

Y5

V5

V
Y

−
β1c1U5V5

k1Y5
V +
β1c1U5V5

k1Y5
V5 +

β1rU5V5

k1Y5
V5W +

ϕ

π

(
1 −

E5

E

)
(ξ − ζE) − ϕE5Y +

ϕβ2

π
E5H

−
ϕβ2

π
EH5 −

ϕa2

π
H +
ϕa2

π
H5 −

β1rU5V5

k1Y5
VW5 −

β1rµU5V5

k1ςY5
W +

β1rµU5V5

k1ςY5
W5.

Utilizing the equilibrium conditions

λ = dU5 + β1U5V5, β1U5V5 = a1Y5 + ϕY5E5, k1Y5 = c1V5 + rV5W5,

ξ = −πY5E5 + ζE5 + β2E5H5, E5 = a2/β2, V5 = µ/ς,

We finally obtain

dL5

dt
=
−d
U

(U − U5)2
−
ϕ

π

ζ

E
(E − E5)2 +

(
1 −

U5

U

)
β1U5V5 − ϕY5E5

(
2 −

E5

E
−

E
E5

)
+
ϕβ2

π

(
2 −

E5

E
−

E
E5

)
E5H5

− β1U5V5
UVY5

U5V5Y
+ β1U5V5 − β1U5V5

YV5

Y5V
+ β1U5V5

=
−d
U

(U − U5)2
−
ϕ

π

ξ

EE5
(E − E5)2 + β1U5V5

(
3 −

U5

U
−

UVY5

U5V5Y
−

YV5

Y5V

)
.

Therefore, if R6 > 1 and R7 > 1 then based on inequality (4.1), we deduce that dL5
dt ≤

0 for any U,Y,V, E,H,W > 0. In addition, dL5
dt = 0 if U = U5,Y = Y5,V = V5, and E = E5. So-

lutions of model (2.1)–(2.6) converge to Λ′5 where U = U5,Y = Y5,V = V5, E = E5 and from Eq (2.4),
we get

0 = Ė = ξ + πY5E5 − ζE5 − β2E5H =⇒ H(t) = H5 for any t.

Equation (2.3) implies that

0 = V̇ = k1Y5 − c1V5 − rV5W =⇒ W(t) = W5 for any t.

Thus, using L-LAST, Λ′5 = {∆5} and ∆5 is GAS. □

Table 2 provides an overview of the existence and global stability conditions for each equilibria of
the model (2.1)–(2.6).

Table 2. Conditions of existence and global stability of equilibria of the model (2.1)–(2.6).

Equilibrium Existence condition Stability condition
D0 = (U0, 0, 0, E0, 0, 0) - R1 ≤ 1 and R2 ≤ 1
D1 = (U1, 0, 0, E1,H1, 0) R1 > 1 R1 > 1 and R4 ≤ 1
D2 = (U2,Y2,V2, E2, 0, 0) R2 > 1 R2 > 1, R6 ≤ 1, and R7 ≤ 1
D3 = (U3,Y3,V3, E3, 0,W3) R3 > 1 R3 > 1 and R5 ≤ 1
D4 = (U4,Y4,V4, E4,H4, 0) R4 > 1 and R5 > 1 R7 ≤ 1 < R4 and R5 > 1
D5 = (U5,Y5,V5, E5,H5,W5) R6 > 1,R7 > 1 R6 > 1 and R7 > 1
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5. Numerical simulations

In this section, we conduct numerical simulations to validate and expand on our theoretical findings,
using specific parameter values to demonstrate the model’s behavior under different conditions. We
numerically investigate the stability of the model’s equilibria, analyze the impact of HIV-1-specific B-
cell response on the co-dynamics of HIV-1 and HTLV-2, and compare the proposed model with cases
of HIV-1 and HTLV-2 mono-infections.

5.1. Stability of equilibria

In this part, we solve system (2.1)–(2.6) numerically using the parameter values from Table 1. We
present the numerical outcomes through graphical representations to clearly demonstrate the global
stability findings outlined in Theorems 1–6. The numerical solutions of the system is performed us-
ing MATLAB solver ode45 which is widely recognized for its ability to solve ODEs efficiently. Its
strengths lie in its accuracy, adaptability, robustness, and ease of use, making it highly suitable for
various applications. These features make ode45 highly practical for general-purpose ODEs solving,
particularly for problems where solutions are relatively smooth and do not exhibit stiff behavior.

We consider the following initial points:

IP.1 : U(0) = 300,Y(0) = 3,V(0) = 30, E(0) = 100,H(0) = 15,W(0) = 3,
IP.2 : U(0) = 500,Y(0) = 2,V(0) = 20, E(0) = 250,H(0) = 10,W(0) = 4,
IP.3 : U(0) = 700,Y(0) = 1,V(0) = 10, E(0) = 350,H(0) = 5,W(0) = 5.

We select various initial conditions just to demonstrate that, for any starting point within the feasible
region, the system’s solution will consistently converge to an equilibrium where the chosen parameter
values meet the corresponding stability criteria.

The following circumstances result from the selection of values for the parameters β1, β2, ς and
fixing π = 0.0000005:

Circumstance-1: β1 = 0.0001, β2 = 0.0005 and ς = 0.01. Our results show that R1 = 0.56 < 1 and
R2 = 0.42 < 1 for these parameter values. As seen in Figure 2, the trajectories that starting with
the three different initials lead to the equilibrium ∆0 = (1000, 0, 0, 333.33, 0, 0). This illustrates
that ∆0 is GAS in accordance with Theorem 1. HIV-1 and HTLV-2 will be eliminated as a result
of this.

Circumstance-2: β1 = 0.0001, β2 = 0.002 and ς = 0.01. Hence, R1 = 2.22 > 1 and R4 = 0.83 < 1
are obtained. The results shown in Figure 3 show how the solutions go closer to the equilibrium
∆1 = (1000, 0, 0, 150, 36.67, 0). As a result, Theorem 2 and the numerical results agree. This
case demonstrates what occurs when an individual is infected with HTLV-2 but not HIV-1. While
CD4+T cell concentrations are within normal limits, it is clear that HTLV-2 infection has almost
led to a drop to the half in CD8+T cell counts.

Circumstance-3: β1 = 0.0003, β2 = 0.0002 and ς = 0.01. Next, we compute R2 = 1.27 > 1,
R6 = 0.22 < 1, and R7 = 0.18 < 1. It is clear that the standards stated in Table 2
are clearly met. Figure 4, which illustrates how the solutions converge to the equilibrium
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∆2 = (785.97, 0.57, 9.08, 333.34, 0, 0), and thus validates Theorem 3. This case demonstrates
what occurs when an individual is infected only with HIV-1 in the absence of HIV-1-specific
B-cell response. It is obvious that a reduction in CD4+T cell counts has been caused by HIV-1
infection.

Circumstance-4: β1 = 0.0003, β2 = 0.0002 and ς = 0.1. Next, we compute R3 = 1.19 > 1 and
R5 = 0.22 < 1. The conditions outlined in Table 2 are therefore evidently satisfied. As shown in
Figure 5, the solutions converge to the equilibrium ∆3 = (932.84, 0.18, 2.4, 333.33, 0, 4.48) and
validates Theorem 4. This case illustrates what transpires when an individual infected only with
HIV-1 and possesses an active HIV-1-specific B-cell response. Compared with circumstance-3,
the concentration of uninfected CD4+ T cells is higher in patients with active HIV-1-specific B
cells than in those who don’t have it. Furthermore, the activation of HIV-1-specific B cells leads
to a decrease in the concentrations of HIV-1-infected CD4+ T cells and HIV-1 particles. That
means that HIV-1-specific B cells can control HIV-1 infection.

Circumstance-5: β1 = 0.0005, β2 = 0.00093 and ς = 0.01. The parameters R4 = 2.18 > 1,
R5 = 1.03 > 1 and R7 = 0.99 < 1 are provided by these data. As we have proven in The-
orem 5, Figure 6 demonstrates that ∆4 = (458, 1.49, 23.67, 322.58, 2.15, 0) exists and is GAS.
Here, an individual has co-infections with HIV-1 and HTLV-2. Additionally, the patient may be
experiencing a decline in their immune system, which could result in an increase in the symptoms
of their condition. The patient might be more likely to die as a result of this.

Circumstance-6: β1 = 0.0005, β2 = 0.00093 and ς = 0.1. The threshold parameters R6 =

1.03 > 1 and R7 = 1.95 > 1 are provided by these data. Figure 7 shows that ∆5 =

(892.86, 0.3, 2.4, 322.58, 2.15, 22.79) exists and is GAS, as we mentioned in Theorem 6. In this
case, an individual has co-infections with HTLV-2 and HIV-1 with an active HIV-1-specific B-cell
response. Compared to circumstance-5, the counts of uninfected CD4+T cells is higher, while the
counts of HIV-1-infected CD4+ T cells and HIV-1 particles are lower. This result suggest that,
even when there is HTLV-2 and HIV-1 co-infection, B cell activation is essential for infection
control.

To provide additional verification, a comprehensive examination of the local stability of every given
equilibrium is presented. The Jacobian matrix, denoted as J = J(U,Y,V, E,H,W) , is calculated with
respect to the variables U,Y,V, E,H and W in the model (2.1)–(2.6) as described in (4.6). In the case
of each equilibrium, the eigenvalues λi, i = 1, · · · , 6 of J are computed. An equilibrium is considered
to be locally stable if the eigenvalues of the system satisfy Re(λi) < 0 for all i = 1, 2, · · · , 6. By doing
calculations for every nonnegative equilibrium points and utilizing the parameter values specified in
Circumstance 1–6, we infer the eigenvalues associated with each equilibria. In Table 3, the positive
equilibria and the real part of the eigenvalues are presented. These result support the global stability
results provided in Theorem 1–6.

5.2. Effect of HIV-1-specific B-cell response on the HTLV-2 and HIV-1 co-dynamics

This subsection examines the impact of stimulated rate constants of HIV-1-specific B-cell, denoted
as ς, on the system dynamics described by (2.1)–(2.6). To investigate the impact of HIV-1-specific B
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Figure 2. Solutions of system (2.1)–(2.6) arrive infection-free equilibrium ∆0 =

(1000, 0, 0, 333.33, 0, 0) (Circumstance-1).
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Figure 3. Solutions of system (2.1)–(2.6) arrive the HTLV-2 mono-infection equilibrium
∆1 = (1000, 0, 0, 150, 36.67, 0) (Circumstance-2).
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Figure 4. Solutions of system (2.1)–(2.6) arrive the HIV-1 mono-infection equilibrium
in the absence of HIV-1-specific B-cell response ∆2 = (785.97, 0.57, 9.08, 333.34, 0, 0)
(Circumstance-3).
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Figure 5. Solutions of system (2.1)–(2.6) arrive the the HIV-1 mono-infection equilib-
rium with active HIV-1-specific B-cell response ∆3 = (932.84, 0.18, 2.4, 333.33, 0, 4.48)
(Circumstance-4).
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Figure 6. Solutions of system (2.1)–(2.6) arrive the HTLV-2/HIV-1 co-infection equilib-
rium in the absence of HIV-1-specific B-cell response ∆4 = (458, 1.49, 23.67, 322.58, 2.15, 0)
(Circumstance-5).
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Figure 7. Solutions of system (2.1)–(2.6) arrive the HTLV-2/HIV-1 co-infection equilibrium
with an active HIV-1-specific B-cell response ∆5 = (892.86, 0.3, 2.4, 322.58, 2.15, 22.79)
(Circumstance-6).
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Table 3. Local stability of equilibria.

Circumstance Equilibrium Re(λi) < 0, i = 1, · · · , 6 Stability

1 ∆0 = (1000, 0, 0, 333.33, 0, 0) (−5.13,−1.01,−0.24,−0.13,−0.06,−0.01) stable
2 ∆0 = (1000, 0, 0, 333.33, 0, 0) (−5.13,−1.01, 0.37,−0.24,−0.06,−0.01) unstable

∆1 = (1000, 0, 0, 150, 36.67, 0) (−4.12,−0.24,−0.18,−0.07,−0.07,−0.01) stable
3 ∆0 = (1000, 0, 0, 333.33, 0, 0) (−6.51, 0.37,−0.24,−0.23,−0.06,−0.01) unstable

∆2 = (785.97, 0.57, 9.08, 333.34, 0, 0) (−6.13,−0.23,−0.15,−0.01,−0.01,−0.06) stable
4 ∆0 = (1000, 0, 0, 333.33, 0, 0) (−6.51, 0.37,−0.24,−0.23,−0.06,−0.01) unstable

∆2 = (785.97, 0.57, 9.08, 333.34, 0, 0) (−6.13, 0.67,−0.23,−0.01,−0.01,−0.06) unstable
∆3 = (932.84, 0.18, 2.4, 333.33, 0, 4.48) (−6.57,−0.01,−0.01,−0.23,−0.06,−0.01) stable

5 ∆0 = (1000, 0, 0, 333.33, 0) (−7.48, 1.34,−0.24,−0.06,−0.01, 0.01) unstable
∆1 = (1000, 0, 0, 322.58, 2.15, 0) (−7.41, 1.39,−0.24,−0.05,−0.01,−0.01) unstable
∆2 = (471.58, 1.42, 22.41, 333.34, 0, 0) (−6.14,−0.01,−0.01,−0.06,−0.02, 0.01) unstable
∆4 = (458, 1.49, 23.67, 322.58, 2.15, 0) (−6.03,−0.01,−0.01,−0.05,−0.01,−0.01) stable

6 ∆0 = (1000, 0, 0, 333.33, 0, 0) (−7.48, 1.34,−0.24,−0.06,−0.01, 0.01) unstable
∆1 = (1000, 0, 0, 322.58, 2.15, 0) (−7.41, 1.39,−0.24,−0.05,−0.01,−0.01) unstable
∆2 = (471.58, 1.42, 22.41, 333.34, 0, 0) (−6.14, 2,−0.01,−0.01,−0.06, 0.01) unstable
∆3 = (892.86, 0.29, 2.4, 333.33, 0, 21.44) (−8.24,−0.02,−0.02,−0.06,−0.01, 0.01) unstable
∆4 = (458, 1.49, 23.67, 322.58, 2.15, 0) (−6.03, 2.13,−0.01,−0.01,−0.05,−0.01) unstable
∆5 = (892.86, 0.3, 2.4, 322.58, 2.15, 22.79) (−8.27,−0.02,−0.02,−0.05,−0.01,−0.01) stable

cells on the model’s solutions, we hold the values of β1 = 0.0007, β2 = 0.0009, and π = 0.0000005
while varying the parameter ς. By choosing the following initial points:

IP.4 : U(0) = 600,Y(0) = 2,V(0) = 20, E(0) = 250,H(0) = 10,W(0) = 4.

We can see from Figure 8 that as ς increases, the numbers of uninfected CD4+ T cells increase. In
contrast, the numbers of HIV-1-infected CD4+T cells and free HIV-1 decrease. It is noteworthy to
mention that an increase in the HIV-1-specific B cells does not have an effect on the numbers of
uninfected CD8+T cells and HTLV-2-infected CD8+T cells. Consequently, HIV-1-specific B cells
aid only in the controlling of HIV-1 infection. Due to the fact that R1 and R2 are independent of ς,
increasing ς does not result in the attainment of ∆0. As a result, HIV-1-specific B cells can’t completely
eradicate the HIV-1 infections; however, they are useful in suppressing HIV-1 progression.

5.3. Comparison results

In this section, we present a comparison of the dynamics of HTLV-2 or HIV-1 mono-infection and
HTLV-2 and HIV-1 co-infection. Our aim is to examine the influence of HTLV-2 or HIV-1 mono-
infection on each other. In this part we will fix the value of π = 0.2 and ς = 0.1.

5.3.1. Comparison between HIV-1 mono-infection and HTLV-2 and HIV-1 co-infection

We compare the solutions of the HTLV-2 and HIV-1 co-infection model, represented by Eqs (2.1)–
(2.6), with the solutions of the following HIV-1 mono-infection with HIV-1-specific B-cell response
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Figure 8. Effect of HIV-1-specific B-cell response on the HTLV-2/HIV-1 co-infection dy-
namics.
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system (5.1)–(5.5):

U̇ = λ − dU − β1UV, (5.1)
Ẏ = β1UV − a1Y − ϕYE, (5.2)
V̇ = k1Y − c1V, (5.3)
Ė = ξ + πYE − ζE, (5.4)
Ẇ = ςVW − µW. (5.5)

We choose the values of the parameters β1 = 0.001 and β2 = 0.002, together with the given initial
condition:

IP.5 : U(0) = 200, Y(0) = 0.5, V(0) = 2.5, E(0) = 300, H(0) = 200, W(0) = 40.

The solutions of two systems, denoted as (2.1)–(2.6) and (5.1)–(5.5), are presented in Figure 9. We can
see from Figure 9 that, HIV-1-positive individuals who also have HTLV-2 infection had lower levels of
free HIV-1 and uninfected CD8+ T cells and higher levels of HIV-1-specific B cells. We also observe
from Figure 9 that after co-infection, the quantity of uninfected CD4+ T cells remains unchanged. Note
that

W5 =
c1

r

(
λk1β2β1ς

c1(a1β2 + a2ϕ)(dς + β1µ)
− 1

)
,

∂W5

∂β2
=

a2k1ςβ1λϕ

r(a1β2 + a2ϕ)2(dς + β1µ)
> 0.

Thus, W5 is an increasing function of the HTLV-2 infection rate constant β2. This suggests that the
presence of HTLV-2 may activate B cells specific to HIV-1, which might lead to a drop in the HIV-1’s
level. These results are consistent with the findings of other studies (see e.g., [67, 68]) showing that
co-infection with HTLV-2 is linked to the ability to control HIV-1 replication, the higher chance of
survival and the delayed onset of AIDS. HTLV-2 may work as a barrier against HIV-1 infection [69].

5.3.2. Comparison between HTLV-2 mono-infection and HTLV-2 and HIV-1 co-infection

We compare the solutions of the HTLV-2 and HIV-1 co-infection model (2.1)–(2.6) with the solu-
tions of the HTLV-2 mono-infection system.

Ė = ξ − ζE − β2EH, (5.6)
Ḣ = β2EH − a2H. (5.7)

We select the values β1 = 0.007 and β2 = 0.003 in addition to use the subsequent initial condition:

IP.6 : U(0) = 200, Y(0) = 1.5, V(0) = 2.5, E(0) = 15, H(0) = 100, W(0) = 20.

Solutions of the two systems (2.1)–(2.6) and (5.6)–(5.7) that are illustrated in Figure 10. It can be seen
the numbers of uninfected CD8+T cells in both systems gradually tend to the same values. The numbers
of HTLV-2-infected CD8+ T cells are more prevalent in HTLV-2 and HIV-1 co-infection patients than
in HTLV-2 mono-infection patients. Nevertheless, in the context of HIV-1 infection, the emergence
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Figure 9. A comparative analysis of the models’ solutions for HTLV-2/HIV-1 co-infection
and HIV-1 mono-infection.
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Figure 10. A comparative analysis of the models’ solutions for HTLV-2/HIV-1 co-infection
and HTLV-2 mono-infection.

of malignant CD8+T-lymphoproliferative diseases appears to be feasible. It is anticipated that people
who are co-infected with HTLV-2 and HIV-1 may experience a greater occurrence of HTLV-2-related
T-cell malignant diseases [1]. This may be an explanation for why the number of HTLV-2-infected
CD8+T cells is higher in patients with co-infection with HIV-1 compared to those without it as shown
in Figure 10(b).

6. Conclusions and discussion

HTLV-2 and HIV-1 are both retroviruses that target different immune cells–HTLV-2 infects CD8+ T
cells, while HIV-1 primarily targets CD4+ T cells. Several studies have documented cases of patients
co-infected with HTLV-2 and HIV-1. To optimize treatment strategies for such coinfections, mathe-
matical models have been developed to better understand the interactions between these viruses and
their effects on the immune system. These models help in predicting disease progression and eval-
uating potential therapeutic approaches. In this article, we propose a new mathematical model that
describes the co-dynamics of HIV-1 and HTLV-2 in vivo. The model was given as a system of non-
linear ODEs, which describes the interactions between six compartments: uninfected CD4+ T cells,
HIV-1-infected CD4+ T cells, HIV-1 particles, uninfected CD8+ T cells, HTLV-2-infected CD8+ T
cells, and HIV-1-specific B cells. Initially, we demonstrated that the model’s solutions are bounded
and non-negative. Additionally, we identified six equilibrium points, with their existence and stability
conditions described in terms of seven threshold parameters. A summary of all the equilibria presented
in our model is given as follows:

• Infection-free equilibrium, ∆0, which usually exists. When R1 ≤ 1 and R2 ≤ 1, ∆0 is GAS.
HTLV-2 and HIV-1 will be eradicated as a consequence of this. From a control perspective,
making R1 ≤ 1 and R2 ≤ 1 would be an effective strategy. Controlling these parameters through
the effectiveness of antiviral drugs. For physicians and researchers, curing patients of chronic
viral co-infections such as HTLV2 and HIV-1 is a top priority. Effective antiviral medication
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can stop viruses from replicating and lower R1 and R2 to less than one. There is no specific
antiviral treatment approved for HTLV-2. Unlike HIV-1, where antiretroviral therapy (ART) is
well-established.
• HTLV-2 mono-infection equilibrium, ∆1, exists if R1 > 1 and is GAS if R4 ≤ 1. An individual

who is infected with only HTLV-2 is the outcome illustrated in this case.
• HIV-1 mono-infection equilibrium in the absence of HIV-1-specific B-cell response, ∆2 is pre-

sented if R2 > 1 and is GAS if R6 ≤ 1 and R7 ≤ 1. This case illustrates the consequences that
ensue when an individual acquires only HIV-1 infection in the absence of HIV-1-specific B-cell
response. This could be due to the body’s low concentration of HIV-1 particles (i.e., V ≤ µ/ς),
which could not be sufficient to elicit an immune response.
• HIV-1 mono-infection equilibrium with an active HIV-1-specific B-cell response, ∆3 exists when

R3 > 1 and is GAS when R5 ≤ 1. This case study the outcomes that occur when an individual
is only infected with HIV-1 and exhibits an active HIV-1-specific B-cell response. The body
contains enough free HIV-1 particles (i.e., V > µ/ς) in this case to activate the immune system.
• HTLV-2 and HIV-1 co-infection equilibrium in the absence of HIV-1-specific B-cell response, ∆4,

exists when R4 > 1 and R5 > 1. Moreover, ∆4 is GAS if R7 ≤ 1. In this case, an individual is
co-infected with HTLV-2 and HIV-1, but without HIV-1-specific B-cell response.
• HTLV-2 and HIV-1 co-infection equilibrium with an active HIV-1-specific B-cell response, ∆5

exists and is GAS if R6 > 1 and R7 > 1. A person in this instance is co-infected with HTLV-2 and
HIV-1 and has an active HIV-1-specific B-cell response. This instance demonstrates that B-cell
activation is a crucial factor in infection control.

The global asymptotic stability of all equilibria was established by constructing appropriate Lya-
punov functions and utilizing the Lyapunov-LaSalle asymptotic stability theorem. We have provided
numerical simulations to demonstrate the validity and robustness of our theoretical findings. We ob-
served that the numerical and analytical results align closely, demonstrating consistency between the
two approaches. The influence of HIV-1-specific B-cell response on the dynamics of HTLV-2 and
HIV-1 co-infection was presented. We demonstrated that increasing the stimulation rate of the HIV-
1-specific B-cell response in HTLV-2 and HIV-1 co-infection enhances the concentration of CD4+ T
cells and reduces the level of free HIV-1 particles, thereby boosting the immune system’s overall ef-
fectiveness. Therefore, HIV-1-specific B-cell response plays the role of controlling and suppressing
HIV-1 progression. We compared between HIV-1 or HTLV-2 mono-infection with HTLV-2 and HIV-1
co-infection, separately. We observed that patients with HIV-1 who are also infected with HTLV-2 had
larger levels of HIV-1-specific B cells and lower levels of uninfected CD8+ T cells and HIV-1. Fur-
thermore, we note that following co-infection, the behavior dynamics of uninfected CD4+ T cells did
not alter. These outcomes agree with prior research (see [70]), which indicates that co-infection with
HTLV-2 is associated with the capacity to regulate HIV-1 replication, a greater likelihood of survival,
and a postponed start of AIDS. However, co-infected patients with HTLV-2 and HIV-1 may experience
a greater occurrence of HTLV-2-related T-cell malignant diseases.

When comparing HTLV-1 and HIV-1 co-infection and HTLV-2 and HIV-1 co-infection, studies
such as [10] report that HTLV-1 co-infection can worsen the clinical course of HIV-1, accelerating
progression to AIDS and complicating treatment. In contrast, HIV-1 and HTLV-2 co-infection appears
to be more benign, showing a neutral or even protective association, with delayed AIDS progression,
longer survival, and reduced mortality rates [71].
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The main limitation of our study is the inability to estimate the model’s parameter values using
real data. This is due to several factors: Comprehensive data on HTLV-2 and HIV-1 co-infection is
scarce, even though some data exists for patients with single HTLV-2 or HIV-1 infections. Moreover,
comparing our results to a limited number of available studies may not yield reliable conclusions.
Furthermore, obtaining real patient data for HTLV-2 and HIV-1 co-infection remains challenging.

This study could be extended by: (i) Employing real data to accurately estimate parameter values,
(ii) accounting for viral mutation, (iii) developing the model using fractional differential equations to
explore the effects of memory on viral co-dynamics, and (iv) integrating reaction-diffusion dynamics
and stochastic interactions. Additionally, the model can be treated as a nonlinear control system, where
antiviral drug efficacy functions as the control input. Then, one can focus on designing optimal control
strategies based on this framework. These research areas require further investigation, and we reserve
them for future studies.
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