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Abstract: We studied the Sobolev estimates and inverse Hölder estimates for a class of variational
inequality problems involving divergence-type parabolic operator structures. These problems arise
from the valuation analysis of American contingent claim problems. First, we analyzed the uniform
continuity of the spatially averaged operator with respect to time in a spherical region and the Sobolev
estimates for solutions of the variational inequality. Second, by using spatial and temporal trunca-
tion, we obtained the Caccioppoli estimate for the variational inequality and consequently derived the
inverse Hölder estimate for the solutions.
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1. Introduction

This study investigates a specific variational inequality problem described by
min{−Lu, u − u0} = 0, (x, t) ∈ ΩT ,

u(x, 0) = u0(x), x ∈ Ω,
u(x, t) = ∂u

∂ν
= 0, (x, t) ∈ ∂Ω × (0,T )

(1)

with a non-divergence parabolic operator

Lu = ut − udiv(|∇u|p−2∇u) − γu|∇u|p. (2)

Here, Ω denotes a bounded and open subset of Rn. We consider the case where p ≥ 2, γ ∈ (0, 1) and
T > 0 are positive constants, ΩT = Ω × (0,T ), and u0 satisfies

u0 ∈ C(Ω̄) ∩W1,p
0 (Ω).
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From (1), we can infer that u > u0 and Lu ≤ 0 in ΩT . It is easily observed that when u > u0, then
Lu = 0 in ΩT ; conversely, when u = u0, it follows that Lu ≤ 0. Therefore, in some literature [1–3], the
variational inequality (1) is often stated in the following manner:

Lu ≤ 0, (x, t) ∈ ΩT ,

u ≥ u0, (x, t) ∈ ΩT ,

Lu × (u − u0) = 0, (x, t) ∈ ΩT ,

u(0, x) = u0(x), x ∈ Ω,
u(t, x) = ∂u

∂ν
= 0, (x, t) ∈ ∂Ω × (0,T ).

It is evident that the above formulation is not as concise as the model presented in (1). This paper
adopts the statement of the model in (1) for clarity and simplicity.

The study of variational inequality problems of the form (1) originated from the pricing problems of
American contingent claims with the inclusion of early exercise provisions [1]. The inclusion of early
exercise provisions results in a variational inequality model that is characterized by Eq (1). Further
studies on this aspect can be found in [2, 3], and necessary explanations are provided in Section 2.
Therefore, we will not repeat them here.

In recent years, there has been an increasing amount of theoretical research on variational inequal-
ities under the framework of linear and quasilinear parabolic operators. In [4], the solvability and
regularity of quasilinear parabolic obstacle problems were studied using a symmetric dual-wind dis-
continuous Galerkin (DG) method. Reference [5] investigated a new class of constrained abstract
evolutionary variational inequalities in three-dimensional space. By utilizing mathematical analysis of
the unsteady Oseen model for generalized Newtonian incompressible fluids, sufficient conditions for
the existence of weak solutions were obtained. Reference [6] focused on studying the existence and
stability of weak solutions to variational inequalities under fuzzy parameters. By introducing two pa-
rameters into the mappings and constraint sets involved, [6] established the existence results for weak
solutions of parameter fuzzy fractional differential variational inequalities (PFFDVI) and further ana-
lyzed the compactness and continuous dependence on the initial values of PFFDVI. For more results
on the existence of solutions, please refer to [7–9].

There have been some novel results in theoretical research on variational inequalities as well. Ref-
erence [10] established the local upper bounds, Harnack inequalities, and Hölder continuity up to the
boundary for solutions of variational equations defined by degenerate elliptic operators. Studies on the
Hölder continuity of solutions to variational inequalities under parabolic operator structures and other
regularity results can be found in [11,12]. Reference [13] applied regularization and penalization oper-
ator methods to prove the existence of solutions to nonlinear degenerate pseudo-parabolic variational
inequalities defined in regions with microstructures, and derived a priori estimates for solutions to the
microscale problem.

Inspired by [10–12], this study investigates the inverse Hölder estimate for solutions of the varia-
tional inequality (1), which has not yet been addressed in the literature. First, we define the integral
mean operator I(t) on a spherical region and analyze its uniform continuity with respect to the time
variable. Second, using the integral mean operator I(t) and other inequality amplification techniques,
we obtain a Sobolev estimate for the variational inequality (1). Then, by combining the Caccioppoli
inequality for the variational inequality (1), we derive the inverse Hölder estimate for the gradient
of solutions, which allows us to estimate the higher-order norms of the gradient of solutions using
lower-order Lp norms. Such results play a key role in many regularity studies.
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2. Statement of the problem and its background

The valuation of American options ultimately boils down to a well-posed problem of variational
inequality similar to Eq (1). An American call option gives the investor the right to purchase an
underlying asset at a predetermined price K at any time within the investment horizon [0,T ]. It is
known that the value of an American option on the maturity date T is given by

C(S ,T ) = max{S − K, 0}.

American options only grant the investor the right to exercise their option within the investment horizon
[0,T ] without imposing any obligations. Thus, we have

C(S , t) ≥ max{S − K, 0}, ∀ t ∈ [0,T ].

If the value of the option C(S , t) at time t exceeds max{S − K, 0},the investor may consider exercising
the option, thereby forfeiting the opportunity for higher past returns. In this case, it follows that

L1C
∆
= ∂tC +

1
2
σ2S 2∂S S C + rS ∂S C − rC = 0 (3)

as stated in [1]. Here, σ represents the volatility of the underlying asset linked to the American option,
and r denotes the risk-free rate of return in the financial market. On the other hand, if the value C(S , t)
of the option at time t is max{S − K, 0}, the investor can retain the option to capture higher returns,
leading to

L1C ≥ 0 (4)

as indicated in [1].
This is a backward differential inequality. Let us define τ = T − t and x = ln S . By combining Eqs

(3) and (4), we have
min{−L2C,C −max{ex − K, 0}} = 0, (x, t) ∈ (0, B) × (0,T ),
C(x, 0) = max{ex − K, 0}, x ∈ (0, B),
C(0, t) = u(B, t) = 0, t ∈ (0,T ),

(5)

where
L2C = ∂τC +

1
2
σ2∂xxC + (r −

1
2
σ2)∂xC − rC.

It is worth noting for the reader that x is a one-dimensional variable here, as in this financial example,
the American option is linked to only one risky asset. Model (5) represents a specific financial case of
the main problem studied in model (1), and thus, in model (1), we set x as an n-dimensional variable.
Additionally, the variational inequality suitable for American options shows a high degree of structural
similarity with Eq (1).

On the other hand, transaction costs are often associated with the exercise of options, which neces-
sitates a modification of the volatility σ. For instance, Pars and Avellaneda provided a transaction cost
model where the volatility σ satisfies [13]

σ2 = σ0
2(1 + ψsign(∂x(|∂xC|p−2∂xC))).

Electronic Research Archive Volume 32, Issue 11, 5975–5987.



5978

Here, σ0
2 represents the long-term volatility level, and the constant ψ is determined by the trading

frequency and cost ratio. This adjustment is also consistent with the parabolic operator structure of
model (1).

Lastly, the spatial gradient of solutions to the variational inequality (5) applicable to American
options not only measures the change in option value with respect to the underlying asset, but it also
allows Black and Scholes to construct a risk-free portfolio to hedge against risk.

Based on this, we examine more general cases than variational inequality (5). This article mainly
analyzes the Sobolev estimation of the solution to variational inequality (1) and the inverse Hölder
estimation of the spatial gradient. Before that, let us give a few useful symbols.

Expanding upon this framework, we broaden our analysis to encompass wider scenarios than those
addressed in variational inequality (5). The main objective of this paper is to conduct a thorough
investigation into the Sobolev estimation for solving variational inequality (1), along with exploring
the inverse Hölder estimation of the spatial gradient. Before delving into these aspects, we introduce a
set of relevant mathematical symbols. For a given non-negative constant ρ, and any (x0, t0) ∈ ΩT , we
define

Dρ = Dρ(x0) = {y ∈ Rn : |y − x0| < ρ}

to denote the ball in space Rn that is also contained within the bounded region Ω. Similarly, we use

Qρ,s = Qρ,s(x0, t0) = Dρ(x0) × (t0 − s, t0 + s)

to denote the cylinder in space Rn+1 that is also contained within ΩT . Lastly, let |Dρ| represent the
Lebesgue measure of the set Dρ in space Rn, then the averaging operator of u on Dρ is defined as Iρ(t),
given by

Iρ(t) =
∮

Dρ

u dx =
1
|Dρ|

∫
Dρ

u dx.

With the help of the maximal monotone operator,

ξ(x) =
{

0, x > 0,
M0, x = 0,

References [8, 11, 12] analyzed the existence of generalized solutions, whose definition is as follows:
Definition 2.1 A pair (u, ξ) is defined as a generalized solution of the variational inequality (1) if it

satisfies the following conditions:

(a) u ∈ L∞(0,T,W1,p(Ω)) and ∂tu ∈ L∞(0,T, L2(Ω)),

(b) u(x, t) ≥ u0(x), u(x, 0) = u0(x) for any (x, t) ∈ ΩT ,
(c) For every test function φ ∈ C1(Ω̄T ) and for each t ∈ [0,T ], the following equality holds:∫ ∫

Ωt

∂tu · φ + u|∇u|p−2∇u∇φdxdt + (1 − γ)
∫ ∫

Ωt

|∇u|pφdxdt =
∫ ∫

Ωt

ξ · φdxdt.

In order to ensure the solvability of the problem, we still impose the restriction γ ∈ (0, 1) in this
study.
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Lemma 2.2 The solution u of variational inequality (1) is uniformly bounded in ΩT . That is, for
any (x, t) ≤ ΩT , there exists a constant ϑ0, independent of (x, t), such that

|u| ≤ ϑ0.

Proof Note that from (1), we obtain Lu ≤ 0 for any (x, t) ∈ ΩT . By multiplying both sides of Lu ≤ 0
by ϕ = (u − ϑ0)+, we have∫

Ω
∂t(u − ϑ0) · (u − ϑ0)+dx +

∫
Ω

u|∇(u − ϑ0)|p−2∇(u − ϑ0) · ∇(u − ϑ0)+dx
+(1 − γ)

∫
Ω

u|∇(u − ϑ0)|p(u − ϑ0)+dx ≤ 0.
(6)

Note that when u ≤ ϑ0 , ∂t(u − ϑ0)+ = 0 and ∇(u − ϑ0)+ = 0; when u ≤ ϑ0, ∂t(u − ϑ0)+ = ∂tu and
∇(u − ϑ0)+ = ∇u, thus∫

Ω

u|∇(u − ϑ0)|p−2∇(u − ϑ0) · ∇(u − ϑ0)+dx =
∫
Ω

u|∇(u − ϑ0)|pdx ≥ 0. (7)

By further removing the non-negative terms
∫
Ω

u|∇(u − ϑ0)|pdx and
∫
Ω

u|∇(u − ϑ0)|p(u − ϑ0)+dx from
(6), we obtain ∫

Ω

∂t(u − ϑ0)2
+dx ≤ 0.

Clearly, when ϑ0 is sufficiently large,
∫
Ω

(u0 − ϑ0)2
+dx = 0 holds. Therefore, for any t ∈ (0, T ),

1
2

∫
Ω

(u − ϑ0)2
+dx ≤ 0.

This demonstrates u ≤ ϑ0 a.e. in ΩT □.
Note that from (1), it is easy to see that Lu ≤ 0 in Q2ρ,2s. By choosing the test function ϕ =

ψ2(u − λ)+, and then integrating ϕLu ≤ 0 over Q2ρ,2s,∫
Q2ρ,2s

∂tu · udxdt +
∫

Q2ρ,2s

|∇u|p−2∇u · ∇udxdt + (1 − γ)
∫

Q2ρ,2s

u|∇u|pdxdt ≤ 0.

From Eq (13) in [11] or Theorem 2.1 in [12], it is easy to see that when γ ∈ (0, 1), for any t ∈ (0,T ),

∇u ∈ Lp(Ω). (8)

3. Sobolev estimates under lower-order W p
1 norm

This section examines the Sobolev estimates for the solution u. A Sobolev estimate on a local
spherical region Qρ,s(x, t) is constructed using the lower-order W p

1 norm of the solution u. Initially, we
investigate the time continuity results of an operator Iρ(t).

Lemma 3.1 For any Q4ρ,s ∈ ΩT , there exists a constant C, which depends solely on p and ϑ0, such
that

|Iρ(t1) − Iρ(t2)| ≤
Cs
ρ

∮
Q2ρ,s

|∇u|p−1dxdt.
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Proof Assume t1 < t2 , choose η sufficiently small, and suppose the function ψ1 ∈ C∞0 (t1 − η, t2 + η)
satisfies

ψ1 = 1 in (t1, t2) and 0 ≤ ψ1 ≤ 1 in (t1 − η, t2 + η).

By applying integration by parts, it is easy to obtain∫
Ω

u div(|∇u|p−2∇u) dx =
∫
∂Ω

u|∇u|p−2∇u dx −
∫
Ω

|∇u|p dx.

Furthermore, due to |Dρ̄| ×
(
Iρ̄(t1) − Iρ̄(t2)

)
=

∫ ∫
Dρ̄×(t1,t2)

∂tudxdt, we have

|Dρ̄| ×
(
Iρ̄(t1) − Iρ̄(t2)

)
≤

∫ ∫
∂Dρ̄×(t1,t2)

u|∇u|p−2∇udxdt − (1 − γ)
∫ ∫

Dρ̄×(t1,t2)
|∇u|pdxdt. (9)

Considering (1 − γ)
∫ ∫

Dρ̄×(t1,t2)
|∇u|pdxdt is non-negative, by Lemma 2.2, we obtain

|Dρ̄| ×
(
Iρ̄(t1) − Iρ̄(t2)

)
≤ ϑ0

∫ ∫
∂Dρ̄×(t1,t2)

|∇u|p−2∇udxdt. (10)

Here, we choose ρ̄ to satisfy ρ < ρ̄ < 2ρ. On the other hand, according to [14, p. 5, line 3] and Lemma
4.4 of [15], there exists a constant C that depends only on n and p such that∫ ∫

∂Dρ̄×(t1,t2)
|∇u|p−1dxdt ≤

C
ρ

∫ ∫
D2ρ×(t1,t2)

|∇u|p−1dxdt. (11)

By combining (10) and (11) and substituting the result into (9), the proposition is established. □
Theorem 3.1 Assume u is a solution to the variational inequality (1). If u ∈ Lα(τ − 2s, τ +

2s; W1,p(D2ρ(z))), then for any α ∈ (1,∞), we have∫ ∫
Qρ,s

|u(x, t) − Iρ(t)|α(1+2/n)dxdt ≤ C
(∫ ∫

Qρ,s

|∇u|αdxdt
) (

ess sup
t∈(τ−2s, τ+2s)

∫
D2ρ

|u − Iρ̂(t)|2dx
) α

n

.

Proof By selecting τ − 2s < t < τ + 2s and 1 < α < ∞ , we analyze the Sobolev-type estimates for
the solution to the variational inequality problem (1) under the condition

u ∈ Lα(τ − 2s, τ + 2s; W1,p(D2ρ(z)) ).

Define
v(x, t) = |u(x, t) − Iρ(t)|ψ(x, t), (12)

where ψ(x, t) is a cut-off function on Q2ρ,2s,

ψ(x, t) = 1 in Qρ,s, 0 ≤ ψ(x, t) ≤ 1 in Q2ρ,2s, |∇ψ(x, t)| ≤ C
1
ρ
. (13)

Evidently, when t < (τ − s, τ − s), for any x ∈ D2ρ(z) , we have ψ(x, τ) = 0. When t ∈ (τ − s, τ − s), for
any x ∈ D2ρ(z), we have

ψ(x, t) ≥ 0 and |∂tψ(x, t)| ≤
C
s

(14)
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For convenience, let ρ̂ = 2ρ, and define

J =
∫

Dρ̂

vα(1+2/n)dx =
∫

Dρ̂

v2/nvα(1+2/n)−2/ndx. (15)

Thus, by the Hölder inequality,

J ≤
(∫

Dρ̂

v2dx
)1/n(∫

Dρ̂

v[α+(2/n)(α−1)]n/(n−1)dx
)(n−1)/n

. (16)

Further applying the Sobolev inequality to
(∫

Dρ̂
v[α+(2/n)(α−1)]n/(n−1)dx

)(n−1)/n
, we get

(∫
Dρ̂

v[α+(2/n)(α−1)]n/(n−1)dx
)(n−1)/n

≤ C(n)
∫

Dρ̂

|∇vα+(2/n)(α−1)|dx ≤ C(n)
∫

Dρ̂

v(α−1)(1+2/n)∇vdx. (17)

The final inequality sign in the above expression holds because (α − 1)(1 + 2
n ) = α + 2(α−1)

n − 1. Using
the Hölder inequality again,∫

Dρ̂

v(α−1)(1+2/n)|∇v|dx ≤
(∫

Dρ̂

|∇v|αdx
) 1
α
(∫

Dρ̂

vα(1+2/n)|∇v|dx
) α−1

α

. (18)

Therefore, by combining inequalities (16)–(18), we obtain

J ≤ C(n)J
α−1
α

(∫
Dρ̂

v2dx
)1/n(∫

Dρ̂

|∇v|αdx
) 1
α

. (19)

Thus, to estimate J, it suffices to analyze
(∫

Dρ̂
|∇v|αdx

) 1
α

and
(∫

Dρ̂
v2dx

)1/n
and obtain their upper bounds

with respect to u. Notice that the cut-off function ψ(x, t) satisfies 0 ≤ ψ(x, t) ≤ 1 in Q2ρ,2s and
|∇ψ(x, t)| ≤ C 1

ρ
, thus

(∫
Dρ̂

|∇v|αdx
) 1
α

≤
C
ρ̂

(∫
Dρ̂

|u − Iρ(t)|αdx
) 1
α

+

(∫
Dρ̂

|∇u|αdx
) 1
α

. (20)

Applying the Minkowski inequality again, we get(∫
Dρ̂
|u − Iρ(t)|αdx

) 1
α

≤

(∫
Dρ̂
|u − Iρ̂(t)|αdx

) 1
α

+

(∫
Dρ̂
|Iρ̂(t) − Iρ(t)|αdx

) 1
α

≤

(∫
Dρ̂
|u − Iρ̂(t)|αdx

) 1
α

+ |Iρ̂(t) − Iρ(t)| × |Dρ̂|
1
α .

(21)

Further analyzing |Iρ̂(t) − Iρ(t)| × |Dρ̂|
1
α in (21), by Iρ(t), we have

|Iρ̂(t) − Iρ(t)| × |Dρ̂|
1
α ≤ |Dρ̂|

1
α |Dρ|

−1 ×
∫

Dρ
|u − Iρ̂(t)|dx ≤ |Dρ̂|

1
α |Dρ|

−1 ×
∫

Dρ̂
|u − Iρ̂(t)|dx. (22)
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Note that we previously assumed u ∈ Lα(τ − 2s, τ + 2s; W1,p(D2ρ(z))). Thus, combining inequalities
(21) and (22), and using the Sobolev inequality, we obtain(∫

Dρ̂
|u − Iρ(t)|αdx

) 1
α

≤ C(1 + ρn/αρ̂−n)
(∫

Dρ̂
|u − Iρ̂(t)|αdx

) 1
α

≤ Cρ̂
(∫

Dρ̂
|∇u|αdx

) 1
α

. (23)

Here, we have used the conditions α > 1 and ρ̂ > ρ > 0. Substituting (23) into (20), we obtain an

estimate for
(∫

Dρ̂
|∇v|αdx

) 1
α

as

(∫
Dρ̂

|∇v|αdx
) 1
α

≤ C
(∫

Dρ̂

|∇u|αdx
) 1
α

. (24)

First, we analyze
(∫

Dρ̂
v2dx

) 1
n
. By estimating

(∫
Dρ̂
|u − Iρ(t)|2dx

) 1
n

and applying Minkowski’s inequality,
we can derive (∫

Dρ̂

|u − Iρ(t)|2dx
) 1

n

≤

(∫
Dρ̂

|u − Iρ̂(t)|2dx
)2

+

(∫
Dρ̂

|Iρ(t) − Iρ̂(t)|2dx
)2 1

2n

. (25)

By utilizing the inequality (a + b)
1
2n ≤ (2n)2n(a

1
2n + b

1
2n ), the estimate for

(∫
Dρ̂
|u − Iρ(t)|2dx

) 1
n

can be
reformulated as(∫

Dρ̂

|u − Iρ(t)|2dx
) 1

n

≤ (2n)2n

(∫
Dρ̂

|u − Iρ̂(t)|2dx
) 1

n

+

(∫
Dρ̂

|Iρ(t) − Iρ̂(t)|2dx
) 1

n
 . (26)

Furthermore, by the definition of Iρ(t), we obtain(∫
Dρ̂

|Iρ(t) − Iρ̂(t)|2dx
) 1

n

= |Iρ̂(t) − Iρ(t)|
2
n × |Dρ̂|

1
n ≤ Cρn/2ρ̂−n

(∫
Dρ̂

|u − Iρ̂(t)|2dx
) 1

n

. (27)

Thus, by combining inequalities (17) and (18), we derive(∫
Dρ̂

|u − Iρ(t)|2dx
) 1

n

≤ Cρn/2ρ̂−n

(∫
Dρ̂

|u − Iρ̂(t)|2dx
) 1

n

. (28)

The truncation function ψ(x, t) fulfills 0 ≤ ψ(x, t) ≤ 1 in Q2ρ,2s, thereby yielding an estimate for(∫
Dρ̂

v2dx
) 1

n
denoted as

(∫
Dρ̂

v2dx
) 1

n

≤

(∫
Dρ̂

|u − Iρ(t)|2dx
) 1

n

≤ Cρn/2ρ̂−n

(∫
Dρ̂

|u − Iρ̂(t)|2dx
) 1

n

. (29)

In summary, by substituting the results from (24) and (29) into Eq (19), we obtain

J ≤ C(n)J
α−1
α Cρn/2ρ̂−n

(∫
Dρ̂

|u − Iρ̂(t)|2dx
) 1

n

C
(∫

Dρ̂

|∇u|αdx
) 1
α

.

It is readily seen that
∫

Dρ
|u(x, t) − Iρ(t)|α(1+2/n)dx ≤ J, and thus we obtain the result of Theorem 3.1. □
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4. Inverse Hölder inequality

This section presents an inverse Hölder inequality result. Before that, we introduce a Caccioppoli
inequality, which is utilized in the proof.

Lemma 4.1 (Caccioppoli’s Inequality) Suppose u is a solution to the variational inequality (1).
Then, for any non-negative constant λ , we have

sup
t∈Iρ

∫
Dρ

(u − λ)2dx +
∫ ∫

Qρ,s

u|∇u|pdxdt ≤
C
s

∫ ∫
Q2ρ,2s

(u − λ)2dxdt +
C
ρp

∫ ∫
Q2ρ,2s

(u − λ)pdxdt.

Proof Note that from (1), it can be easily deduced that Lu ≤ 0 in Q2ρ,2s. Let us choose a test function
ϕ = ψ2 × (u − λ)+, and then integrate ϕ × Lu ≤ 0 over Q2ρ,2s, resulting in∫ ∫

Q2ρ,2s
∂tu · ψ2(u − λ)dxdt +

∫ ∫
Q2ρ,2s
|∇u|p−2∇u · ∇[ψ2(u − λ)]dxdt

+(1 − γ)
∫ ∫

Q2ρ,2s
ψ2(u − λ)+|∇u|pdxdt = 0.

(30)

First, let us analyze
∫ ∫

Q2ρ,2s
∂tu × ψ2(u − λ)+dxdt by employing the method of integration by parts,

yielding∫ ∫
Q2ρ,2s

∂t[ψ2(u − λ)+
2]dxdt =

∫ ∫
Q2ρ,2s

∂tu · ψ2(u − λ)+dxdt + 2
∫ ∫

Q2ρ,2s

ψψ′(u − λ)+
2dxdt, (31)

and ∫ ∫
Q2ρ,2s

u|∇u|p−2∇u · ∇[ψ2(u − λ)+]dxdt

=
∫ ∫

Q2ρ,2s
ψ2u|∇u|pdxdt + 2

∫ ∫
Q2ρ,2s

ψ∇ψ × u|∇u|p−2∇u × (u − λ)+dxdt.
(32)

Substituting Eqs (31) and (32) into Eq (30), we obtain∫ ∫
Qs

R
∂t[ψ2(u − λ)+

2]dxdt − 2
∫ ∫

Qs
R
ψψ′(u − λ)+

2dxdt

+
∫ ∫

Qs
R
ψ2|∇u|pdxdt + 2

∫ ∫
Qs

R
ψ∇ψ × |∇u|p−2∇u × (u − λ)+dxdt = 0,

that is ∫
BR
ψ2(u − λ)+

2dx|t=s +
∫ ∫

Qs
R
ψ2|∇u|pdxdt

= 2
∫ ∫

Qs
R
ψψ′(u − λ)+

2dxdt − 2
∫ ∫

Qs
R
ψ∇ψ × |∇u|p−2∇u × (u − λ)+dxdt.

(33)

Based on [11, 12], by applying the Hölder’s inequality and Young’s inequality to Eq (4), we have

sup
t∈Iρ

∫
Dρ

(u − λ)+
2dx+

∫ ∫
Qρ,s

u|∇u|pdxdt ≤
C
s

∫ ∫
Q2ρ,2s

(u − λ)2dxdt+
C
ρp

∫ ∫
Q2ρ,2s

(u − λ)pdxdt. (34)

Moreover, by selecting ϕ = ψ2(u − λ)− and repeating the proof process of Eqs (30)–(34), we can easily
obtain

sup
t∈Iρ

∫
Dρ

(u − λ)+
2dx+

∫ ∫
Qρ,s

u|∇u|pdxdt ≤
C
s

∫ ∫
Q2ρ,2s

(u − λ)2dxdt+
C
ρp

∫ ∫
Q2ρ,2s

(u − λ)pdxdt. (35)

By combining Eqs (34) and (35), the theorem is proven.□
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Theorem 4.1 Define q = max{p − 1, pn/(n + 2)} and let u be a solution to the variational inequality
(1). Then, we have ∫ ∫

Qρ,s

u|∇u|pdxdt ≤
(∫ ∫

Q2ρ,2s

|∇u|qdxdt
) q

p

.

Proof It is important to note that I2ρ(t) is not a constant over Q2ρ,2s, and thus, we choose

λ = a(Q2ρ,2s) =
1

|Q2ρ,2s|

∫ ∫
Q2ρ,2s

u dxdt

in the Caccioppoli inequality, resulting in∫ ∫
Qρ,s

u|∇u|pdxdt ≤
C
s

∫ ∫
Q2ρ,2s

|u − a(Q2ρ,2s)|2dxdt +
C
ρp

∫ ∫
Q2ρ,2s

|u − a(Q2ρ,2s)|pdxdt. (36)

By utilizing the Hölder and Young inequalities, we can obtain
C
s

∫ ∫
Q2ρ,2s
|u − a(Q2ρ,2s)|2dxdt

≤ C
s |Q2ρ,2s|

p−2
p

(∫ ∫
Q2ρ,2s
|u − a(Q2ρ,2s)|pdxdt

) 2
p
≤ C(p)|Qs

R|
(
ρ2

s

) p
p−2
+ 1

ρp

∫ ∫
Q2ρ,2s
|u − a(Q2ρ,2s)|pdxdt.

(37)
Combining Eqs (36) and (37), we can estimate

∫ ∫
Qρ,s

u|∇u|pdxdt by analyzing only∫ ∫
Q2ρ,2s
|u − a(Q2ρ,2s)|pdxdt. Using the Minkowski inequality, we have

C
pρp

∫ ∫
Q2ρ,2s
|u − a(Q2ρ,2s)|pdxdt

≤ Cρ−p
∫ ∫

Q2ρ,2s
|u − I2ρ(t)|pdxdt +Cρ−p|Q2ρ| ess sup

t∈(τ−s,τ+s)
|I2ρ(t) − a(Q2ρ,2s)|p. (38)

Next, we analyze the
∫ ∫

Q2ρ,2s
|u − I2ρ(t)|pdxdt and |I2ρ(t)− a(Q2ρ,2s)|p in Eq (38). By the definition of

Iρ(t) and Lemma 3.1, we have

|I2ρ(t) − a(Q2ρ,2s)|p ≤ (4s)−p
(∫ τ+2s

τ−2s
|I2ρ(t) − I2ρ(ξ)|dξ

)p
≤ Cρ−p

(∮ ∮
Q2ρ,2s
|∇u|p−1dxdt

)p
. (39)

Therefore, by utilizing the Hölder and Young inequalities, we can estimate the second term on the
right-hand side of Eq (38) as follows:

|I2ρ(t) − a(Q2ρ,2s)|p ≤ Cρ−p|Q2ρ,2s|
1
p

(∮ ∮
Q2ρ,2s

|∇u|pdxdt
) p−1

p

. (40)

Now, let us estimate the first term on the right-hand side of Eq (38). By considering Theorem 3.1, we
have∫ ∫

Q2ρ,2s

|u(x, t) − I2ρ(t)|pdxdt ≤ C
(∫ ∫

Q2ρ,2s

|∇u|qdxdt
) (

ess sup
t∈(τ−4s, τ+4s)

∫
D4ρ

|u − I4ρ(t)|2dx
) q

n

. (41)

Furthermore, by utilizing the Sobolev inequality on D4ρ, we obtain∫
D4ρ
|u − I4ρ(t)|2dx ≤ Cρ2

∫
D4ρ
|∇u|2dx

≤ Cρ2
(∫

D4ρ
|∇u|pdx

)2/p
|D4ρ|

(p−2)/p = Cρ2
(∮

D4ρ
|∇u|pdx

)2/p
|D4ρ|.

(42)
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By substituting (42) into (41) and combining it with (40), we obtain∫ ∫
Qρ,s

u|∇u|pdxdt

≤ C(p)|Qs
R|
(
ρ2

s

) p
p−2
+Cρ−p

(
cρ2|D4ρ|

) q
n
(∫ ∫

Q2ρ,2s
|∇u|qdxdt

)
+Cρ−2p|Q2ρ,2s|

1−p
(∫ ∫

Q2ρ,2s
|∇u|p−1dxdt

)p
.

Here, we make use of the fundamental result ∇u ∈ Lp(Ω), which is detailed in (8). With this, the proof
of Theorem 4.1 is complete. □

5. Discussion and conclusions

This study considers a type of variational inequality problem involving a non-divergence parabolic
operator, as shown in (1) and (2). In other words, the Sobolev estimates and inverse Hölder estimates
are examined for the solutions of variational inequality (1). First, we define the averaging operator of
the variational inequality (1) on the local spatial region Dρ as Iρ(t) and prove the uniform continuity
of the mean inequality Iρ(t) with respect to time t. Second, we establish a Sobolev inequality for the
averaging operator Iρ(t), which serves as the cornerstone for proving the inverse Hölder estimates, as
stated in Theorem 3.1. Finally, we examine the inverse Hölder estimate problem in local cylindrical
regions. The proof relies on Lemma 4.1 and Theorem 3.1, as well as commonly used amplification
techniques such as Minkowski inequality, Young’s inequality, and Hölder’s inequality.

There are still some areas for improvement in the proofs presented in this paper. It is important to
note that we make use of the condition γ ∈ (0, 1) , as when γ > 1 holds, Eqs (6), (9), and (30) cannot be
used as they are in this paper. In such cases, 1−γ < 0, and we cannot eliminate the non-negative terms
containing 1 − γ. Furthermore, in [8], the existence of weak solutions to similar problems is discussed
under the condition γ ∈ (0, 1), which we also continue to adopt here. On the other hand, in order to
employ Young’s inequality and Hölder’s inequality, we also restrict p ≥ 2. It is worth noting that in
the study of regularity theory for parabolic equations, the literature has considered the case p ∈ (1, 2),
and we also aim to explore this limitation in our future research.
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