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Abstract: In this paper, a new hybrid singular value thresholding with diagonal-modify algorithm
based on the augmented Lagrange multiplier (ALM) method was proposed for low-rank matrix re-
covery, in which only part singular values were treated by a hybrid threshold operator with diagonal-
update, and which allowed the algorithm to make use of simple arithmetic operation and keep the
computational cost of each iteration low. The new algorithm decreased the complexity of the singular
value decomposition and shortened the computing time. The convergence of the new algorithm was
discussed. Finally, numerical experiments shown that the new algorithm greatly improved the solving
efficiency of a matrix recovery problem and saved the calculation cost, and its effect was obviously
better than that of the other algorithms mentioned in experiments.
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1. Introduction

The low-rank matrix recovery, also known as robust PCA or sparse and low-rank matrix decom-
position, means to find the lowest rank matrices based on fewer linear measurements, arise in many
fields such as collaborative filtering [1–3], machine learning [4], picture alignment [5, 6], signal pro-
cessing [7], quantum state tomography [8] and more.

The problem of a low-rank matrix recovery was first introduced in [9–12], which can be regarded as
a matrix-analogue of compressed sensing [13] refers to automatically identify the corrupted elements
and recover the original matrix when some elements of the matrix were seriously missing. Wright et
al. [14] had proved that the low-rank matrix A can be exactly recovered from matrix D by solving the
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following convex optimization problem,

min
A,E

∥A∥∗ + λ∥E∥1,

s.t. D = A + E, (1.1)

where ∥A∥∗ :=
∑r

k=1 σk(A), σk(A) denotes the k-th largest singular value of A ∈ Rn1×n2 with rank(A) = r,
was called the nuclear norm of A. The sum of the absolute values of the matrix E entries was denoted
as ∥E∥1, and λ was a positive weighting parameter.

As for the solution of the model (1.1), there are a lot of studies both from theoretical and algorithmic
aspects. For example, the iterative threshold (IT) algorithm (see [14]) had been put forward, which used
a soft threshold operator and linear Bremgan iteration to solve model (1.1). The de-capitalize iterative
hard threshold (IHT) algorithm (see [15]) had been proposed based on the influence of hard threshold
operator on compressed sensing. In summary, the accelerated proximal gradient (APG) method (see
[16]), the singular value thresholding (SVT) algorithm (see [17]), the dual algorithm (see [18]), the
augmented Lagrangian multiplier (ALM) algorithm (see [19]), and the hybrid augmented Lagrange
multiplier (HALM) algorithm (see [20]) had been later presented to deal with the convex problem
(1.1). Numerous details and derivations on a low-rank matrix recovery problem can be referred to the
references given therein.

This paper aims mainly at establishing a new hybrid thresholding with a diagonal-modify iterative
algorithm based on the ALM algorithm for recovering a low-rank matrix. By using a diagonal-modify
technique, the sequence matrices generated by the new algorithm were approximated in the true solu-
tion well, which saves significant computational cost.

The rest of the paper was organized as follows: In Section 2, the notations used throughout this
paper and related preliminaries studies were introduced. In Section 3, we presented the proposed
matrix recovery algorithm in detail. The convergence analysis of the new algorithm was given in
Section 4. Then, numerical experiments were shown in Section 5. Finally, we ended the paper with the
concluding remarks in Section 6.

2. Notations and preliminaries

In this position, we provide some basic notations and preliminaries that were used in our anal-
ysis. Rn1×n2 denotes the set of n1 × n2 real matrices; AT is used to express the transpose of a matrix
A. diag(d11, d22, . . . , dnn) stands for a diagonal matrix with the diagonal elements d11, d22, . . . , dnn. ∥A∥1
denotes the sum of the absolute values of matrix A entries. ∥A∥2 represents the spectral norm, the

square root of the maximum eigenvalue of AT A, and the Frobenius norm ∥A∥F =

√
n2∑
j=1

n1∑
i=1

a2
i j. The

tr(A) represents the trace of A, and the standard inner product between two matrices is denoted by
⟨X,Y⟩ = tr(XT Y).

Definition 1. (Singular Value Decomposition (SVD) [21]) The singular value decomposition (SVD)
of a r-rank matrix A ∈ Rn1×n2 is defined by

A = UΣrVT , Σr = diag(σ1, σ2, . . . , σr),

where U ∈ Rn1×r and V ∈ Rn2×r are both column orthogonal matrices, and σ1 ≥ σ2 ≥ . . . ≥ σr > 0 are
all positive singular values of A. By the way, ∥A∥∗ :=

∑r
k=1 σk(A) denotes the nuclear norm of A.
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Definition 2. For each τ ≥ 0, the soft thresholding (shrinkage) operator (see [17]) S τ was defined
by

S τ[σ] =
{
σ − τ, i f |σ| ≥ τ

0, i f |σ| < τ
,

the hard thresholding operator (see [22]) ητ was defined by

ητ[σ] =
{
σ, i f |σ| ≥ τ
0, i f |σ| < τ

,

where σ ∈ R, and τ is called a thresholding.

Definition 3. (Hybrid Singular Value Thresholding Operator [20]) Let X = UΣrVT ∈ Rn1×n2 be the
SVD of X mentioned above. For each τ ≥ 0, z > 1, the hybrid thresholding operatorHτ,z is defined by

Hτ,z(X) := UHτ,z(Σ)VT , Hτ,z(Σ) =
{
ητ[σi], σi ≥ zτ
S τ[σi], σi < zτ

.

Moreover, S τ(A) := US τ(Σ)VT and ητ(A) := Uητ(Σ)VT based on definition 2.

3. Description of algorithms

In this section, a new fast algorithm was proposed after introducing a related algorithm for
solving the problem (1.1).

3.1. The augmented Lagrange multipliers (ALM) algorithm

It is well-known that the partial augmented Lagrange function of (1.1) is

L(A, E,Y, µ) = ∥A∥∗ + λ∥E∥1 + ⟨Y,D − A − E⟩ +
µ

2
∥D − A − E∥2F ,

where A, E,Y ∈ Rn1×n2 , µ > 0 is the penalty parameter. It is reported that the algorithm of augmented
Lagrange multipliers has been applied to the low-rank matrix recovery problem. It is of much better
numerical behavior, and it is also of much higher accuracy. Then the augmented Lagrange multipliers
algorithm is summarized in the following Algorithm 3.1.

Electronic Research Archive Volume 32, Issue 11, 5926–5942.



5929

For convenience, [Uk,Σk,Vk] = svd(·) denotes the SVD of the corresponding matrix.

Algorithm 3.1. (the ALM algorithm [19])
Step 0: Given a sampled matrix D = A + E, parameters µ0 > 0, ρ > 1. Given also
two initial matrices Y0 = 0, E0 = 0, k := 0;
Step 1: Solve Ak = arg min

A
L(A, Ek,Yk, µk), compute the SVD of the matrix

(D − Ek + µ
−1
k Yk),

[Uk,Σk,Vk] = svd(D − Ek + µ
−1
k Yk);

Step 2: Set
Ak+1 = UkS µ−1

k
(Σk)VT

k .

Solves Ek+1 = arg minL(Ak+1, E,Yk, µk),

Ek+1 = S µ−1
k

(D − Ak+1 + µ
−1
k Yk);

Step 3: If ∥D − Ak+1 − Ek+1∥F/∥D∥F < ϵ1 and µk∥Ek+1 − Ek∥F/∥D∥F < ϵ2,
stop; otherwise, go to next Step;
Step 4: Set Yk+1 = Yk + µk(D − Ak+1 − Ek+1),
If µk∥Ek+1 − Ek∥F/∥D∥F < ϵ2, set µk+1 = ρµk; otherwise, go to Step 1.

3.2. The hybrid augmented Lagrange multiplier algorithm with diagonal-modify

Because the soft thresholding operator compressed the thresholding in a constant way and
maybe lost some effective large thresholdings, while the hard thresholding operator was discontinuous,
which reduced the smoothness of the matrix. To complement the advantages of the two operators, a hy-
brid singular value threshold operator had been designed. Based on the augmented Lagrange multiplier
algorithm, the new algorithm employs the hybrid singular threshold operator with diagonal-modifyH
to deal with the singular value in each iteration.

The details of the so-called hybrid singular value threshold operator: keep some large singular val-
ues unchanged, compress some middle size singular values in a constant way, and take some small
singular values as 0. This operator can make up for the deficiency of a single soft or hard thresh-
old operator, and improve the accuracy of the recovered matrix partially. Further, a diagonal-modify
W(A) = AW was used to improve its recovery efficiency at the kth iteration, where the diagonal matrix
Wk = diag(w11

(k),w
22
(k), . . . ,w

nn
(k)) ∈ R

n×n can be obtained by

Wk = arg min ∥A − AkWk∥F . (3.1)

In fact, Eq (3.1) is easy to compute since it is so simple just some arithmetic operation required, without
extra cost. In fact, the exact solution of (3.1) is given by

w j j
(k) =

⟨A(:, j), Ak(:, j)⟩
⟨Ak(:, j), Ak(:, j)⟩

, j = 1, . . . , n.
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The new algorithm can be designed as follows:

Algorithm 3.2. (Hybrid augmented Lagrange multiplier algorithm with
diagonal-modify, denoted by D-HALM)
Step 0: Given a sampled matrix D = A + E. Set parameters k > 0, ρ > 1, ϵ1, ϵ2, the
initial matrices Y0 = 0, E0 = 0, k := 0;
Step 1: Solve Ak = arg min

A
L(A, Ek,Yk, µk), compute the SVD of the matrix (D −

Ek + µ
−1
k Yk),

[Uk,Σk,Vk] = svd(D − Ek + µ
−1
k Yk);

Step 2: Set

Ãk+1 = UkHµ−1
k ,z

(Σk)VT
k , Wk = arg min ∥A − Ãk+1Wk∥F

Step 3: Set
Ak+1 = Ak+1Wk.

Solves Ek+1 = arg minL(Ak+1, E,Yk, µk),

Ek+1 = Hµ−1
k ,z

(D − Ak+1 + µ
−1
k Yk);

Step 4: If ∥D − Ak+1 − Ek+1∥F/∥D∥F < ϵ1 and µk∥Ek+1 − Ek∥F/∥D∥F < ϵ2, stop,
otherwise, go to next step;
Step 5: Set Yk+1 = Yk + µk(D − Ak+1 − Ek+1), if µk∥Ek+1 − Ek∥F/∥D∥F < ϵ2, set
µk+1 = ρµk,
otherwise, go to Step 1.

The difference with the classical ALM algorithm focuses on Steps 2 and 3. Moreover, Agorithm
3.2 includes the HALM algorithm in [20] as a special case when W = I.

4. Convergence analysis

In this section, we presented briefly the convergence of Algorithm 3.2 by analyzing the properties
of the sequences {Ak}, {Ek}, and {Yk}. Since the D-HALM algorithm was a progression of the classical
ALM algorithm, its proof is a trivial generalization. For details of proofs and techniques, one can refer
to [19] and references given therein.

Lemma 4.1. (see [17]) Let A ∈ Rn1×n2 be a matrix and UΣVT be its SVD. Then the subgradients
set of the nuclear norm of A is given by

∂∥Ak∥∗ = {UVT +W : W ∈ Rn1×n2 ,UT W = 0,WV = 0, ∥W∥2 ≤ 1}.

Lemma 4.2. (see [19])

∥Ek+1 − E∗∥2F + µ
−2
k ∥Yk+1 − Y∗∥2F

=∥Ek − E∗∥2F + µ
−2
k ∥Yk − Y∗∥2F − ∥Ek+1 − Ek∥

2
F − µ

−2
k ∥Yk+1 − Yk∥

2
F

−2µ−1
k (⟨Yk+1 − Yk, Ek+1 − Ek⟩ + ⟨Ak+1 − A∗, Ȳk+1 − Y∗⟩ + ⟨Ek+1 − E∗,Yk+1 − Y∗⟩),
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where (A∗, E∗) and Y∗ are the optimal solutions to the problem (1) and its dual problem, respectively.
Lemma 4.3. Let Yk = Yk−1 + µ(D − Ak − Ek−1), then the sequences {Yk} and {Yk} are bounded.

Proof. Let Ak+1 = UkDµ−1
k

(Σ)VT
k , we have

∂AL(Ak+1, Ek,Yk, µk) = ∂∥Ak+1∥∗ − Yk − µk(D − Ak+1 − Ek)

= ∂∥Ak+1∥∗ − Yk − µk(D − Ak+1 − Ek) + µk(Ak+1 − Ak+1)

= µk(Ak+1 − Ak+1)

= τµkUkV
T
k

= UkV
T
k .

Thus,
Yk+1 = ∂∥Ak+1∥∗ − ∂AL(Ak+1, Ek,Yk, µk).

Now we can obtain the following result:

∥Yk+1∥2 ≤ ∥∂∥Ak+1∥∗∥2 − ∥∂AL(Ak+1, Ek,Yk, µk)∥2 ≤ 2.

From Ek+1, as shown in Algorithm 3.2, we can obtain

∂EL(Ak+1, Ek+1,Yk, µk) = ∂(∥λEk+1∥1) − Yk − µk(D − Ak+1 − Ek+1) = 0.

Hence,
Yk+1 ∈ ∂(∥λEk+1∥1).

The boundness of the sequences {Yk} and {Yk} is obtained.
Lemma 4.4. (see [19]) The subgradient of a convex function is a monotone operator. Namely,

⟨x1 − x2, y1 − y2⟩ ≥ 0, ∀yi ∈ ∂ f (xi), i = 1, 2

under f is a convex function.
Lemma 4.5. (see [19]) The terms of the series

∞∑
k=1

µ−1
k (⟨Yk+1 − Yk, Ek+1 − Ek⟩ + ⟨Ak+1 − A∗, Ȳk+1 − Y∗⟩ + ⟨Ek+1 − E∗,Yk+1 − Y∗⟩)

is nonnegative, and the series is convergent provided that µk is nondecreasing.
In Algorithm 3.2, we do not have to solve the sub-problem

(Ak, Ek) = arg min
A,E
L(A, Ek,Yk, µk)

exactly. Rather, updating them once when solving this sub-problem is sufficient for Ak and Ek to
convergence the local optimal solution of the problem (1). And this leads to an inexact ALM with
diagonal-modify, similar to the IALM introduced in [19]. After the analysis on Ak, Ek, and Yk via these
Lemmas above, the validity and optimality of Algorithm 3.2 are guaranteed by the following theorem
(see [19]).
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Theorem 4.1 Suppose that µk is nondecreasing and the series
∞∑

i=1
µ−1

k diverges, then the sequence

{(Ak, Ek)} converges to the optimal solution (A∗, E∗) of problem (1.1).
Proof. Because of Y∗ ∈ ∂∥A∗∥∗, Y∗ ∈ ∂(∥λE∗∥1), Yk+1 ∈ ∂(∥λEk+1∥1), and Yk+1 = ∂∥Ak+1∥∗ −

∂AL(Ak+1, Ek,Yk, µk), we have
⟨Yk+1 − Y∗, Ek+1 − E∗⟩ ≥ 0,

⟨Ek+1 − Ek,Yk+1 − Yk⟩ ≥ 0.

By analysis, we obtain

⟨Ak+1 − A∗,Yk+1 − Y∗⟩ = ⟨Ak+1 − A∗, ∂∥Ak+1∥∗ − ∂∥A∗∥∗ + UkV
T
k ⟩

= ⟨Ak+1 − A∗, ∂∥Ak+1∥∗ − ∂∥A∗∥∗⟩ + ⟨Ak+1 − A∗,UkV
T
k ⟩.

Obviously, we can obtain

⟨Ak+1 − A∗, ∂∥Ak+1∥∗ − ∂∥A∗∥∗⟩ ≥ 0,

⟨Ak+1 − A∗,UkV
T
k ⟩ ≥ 0.

Thus, ∥Ek − E∗∥2 + µ−2
k ∥Yk − Y∗∥2 is non-increasing, as shown in [19]. From the Theorem 2 in

[19], it holds

lim
k→∞

Ak = A∗, lim
k→∞

Ek = E∗,

we obtain that (A∗, E∗) is the solution of the low-rank matrix recovery problem (1.1), which completes
the proof.

5. Numerical experiments

In this section, some random data and video sequences were used to demonstrate the proposed
algorithm was feasible and effective to solve a low-rank matrix recovery problem (1.1). All the
experiments are performed under Windows 11 and MATLAB R2019a running on a DELL laptop.

5.1. Random data

Some original results of four algorithms (APG, ALM, HALM, and D-HALM) were provided for
the n×n matrices with different ranks for the problem (1.1). We conduct numerical experiments on the
same workstation. By analyzing and comparing iteration numbers (denoted by IT), computing time in
seconds (denoted by CPU(s)), and deviation (Error 1, Error 2), defined by

Error 1 =
∥A − A∗∥F
∥A∗∥F

, Error 2 =
∥E − E∗∥F
∥E∗∥F

.

In the experiments, p = m
n2 represents the sampling density, where m is the number of observed

entries. We denote the optimal solution by the ordered pair (A∗, E∗), and the output by (A, E). For
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Algorithm 3.2 (D-HALM), we choose a fixed weighting parameter λ = 1
√

n , set Y0 =
D

J(D) (J(D) =
max(∥D∥2, λ−1∥D∥∞) [19], and we empirically set the parameter µ0 =

1.25
∥D∥2
, τ0 = 0.5∥D∥2, ϵ1 = 1 ×

10−8, ϵ2 = 1 × 10−7, z = 1.4. By the way, the ALM, HALM, and D-HALM algorithms share the same
parameters.

Tests were conducted for n1 = n2, p ∈ {0.1, 0.2, 0.3, 0.4}, and the rank of the underlying matrix
to be reconstructed, r = 0.005n. The specific comparison results were shown in Tables 1–4, and the
compared curve of the computing time for different algorithms was mapped in Figures 1 and 2.

Figure 1. Compared curve of CPU(s) time of four algorithms when n ≤ 104.
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Figure 2. Compared curve of CPU(s) time of four algorithms when n ≥ 104.
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Table 1. Compared results of four algorithms for p = 0.1.

Size n r(A) Algorithm IT Error 1 Error 2 CPU(s) SP

APG 120 4.91e-7 2.03e-5 135.06 3.9
2000 10 ALM 33 8.57e-10 1.25e-7 53.56 1.5

HALM 33 2.01e-9 1.99e-7 44.10 1.3
D-HALM 32 1.52e-9 1.91e-7 34.90 1
APG 120 5.24e-7 2.63e-5 250.30 4.0

3000 15 ALM 33 1.20e-9 1.90e-7 129.75 2.1
HALM 32 2.09e-9 1.85e-7 96.51 1.5
D-HALM 32 1.13e-9 1.79e-7 62.96 1
APG 119 5.32e-7 3.76e-5 1431.28 3.7

6000 30 ALM 33 1.15e-9 2.63e-7 608.93 1.6
HALM 34 1.13e-9 2.39e-7 420.77 1.1
D-HALM 31 1.11e-9 2.51e-7 385.50 1
APG 120 6.56e-7 6.11e-5 3530.34 4.3

10,000 50 ALM 33 1.23e-9 3.34e-7 2160.80 2.6
HALM 33 1.32e-9 3.92e-9 951.68 1.2
D-HALM 31 1.02e-9 2.98e-7 821.62 1
APG 119 5.32e-7 6.19e-5 9932.01 3.0

16,000 80 ALM 34 1.52e-9 5.68e-7 7293.78 2.2
HALM 34 1.49e-9 5.56e-7 4404.62 1.3
D-HALM 32 1.09e-9 4.96e-7 3363.61 1
APG 117 6.83e-7 9.43e-5 19,800.99 5.2

22,000 110 ALM 35 9.22e-10 4.04e-7 17,623.04 4.6
HALM 34 8.70e-10 3.63e-7 4212.63 1.1
D-HALM 33 8.97e-10 3.93e-7 3795.17 1
APG 117 6.81e-7 1.10e-4 50,699.09 4.5

30,000 150 ALM 34 9.51e-10 4.86e-7 44,212.62 3.9
HALM 33 8.76e-10 4.49e-7 15,920.68 1.4
D-HALM 32 6.76e-10 3.69e-7 11,382.12 1
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Table 2. Compared results of four algorithms for p = 0.2.

Size n r(A) Algorithm IT Error 1 Error 2 CPU(s) SP

APG 122 4.26e-7 1.60e-5 129.65 4.2
2000 10 ALM 33 1.30e-9 8.41e-8 55.65 1.8

HALM 32 1.39e-9 1.55e-7 44.15 1.4
D-HALM 31 1.46e-9 1.21e-7 30.57 1
APG 123 3.84e-7 1.75e-5 238.86 4.0

3000 15 ALM 33 1.69e-9 1.74e-7 135.97 2.3
HALM 33 1.62e-9 1.33e-7 96.55 1.6
D-HALM 30 1.47e-9 1.58e-7 59.22 1
APG 122 4.26e-7 2.75e-5 1469.07 5.0

6000 30 ALM 34 9.77e-10 1.45e-7 639.15 2.3
HALM 33 8.99e-10 1.99e-7 335.54 1.2
D-HALM 32 1.01e-9 1.52e-7 283.67 1
APG 120 4.46e-7 4.13e-5 3525.37 4

10,000 50 ALM 34 1.09e-9 2.10e-7 2178.51 2.5
HALM 34 1.14e-9 2.20e-7 1022.68 1.2
D-HALM 31 1.04e-9 2.11e-7 872.03 1
APG 124 3.80e-7 3.60e-5 11,914.50 4.0

16,000 80 ALM 34 1.75e-9 3.16e-7 11,673.95 3.9
HALM 34 1.28e-9 3.12e-7 3316.21 1.1
D-HALM 32 1.03e-9 2.02e-7 3001.70 1
APG 120 5.48e-7 6.88e-5 17,883.42 5.6

22,000 110 ALM 36 1.37e-9 3.91e-7 18,003.14 5.7
HALM 35 1.55e-9 3.12e-7 4312.69 1.4
D-HALM 33 1.07e-9 2.41e-7 3172.79 1
APG 120 5.50e-7 8.07e-5 56,540.07 6.1

30,000 150 ALM 35 1.50e-9 5.00e-7 44,925.23 4.8
HALM 35 7.43e-10 2.48e-7 15,920.68 1.7
D-HALM 31 2.43e-10 1.08e-7 9287.39 1
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Table 3. Compared results of four algorithms for p = 0.3.

Size n r(A) Algorithm IT Error 1 Error 2 CPU(s) SP

APG 124 3.71e-7 1.26e-5 142.08 4.6
2000 10 ALM 34 9.14e-10 5.39e-8 58.00 1.9

HALM 34 8.22e-10 5.66e-7 42.1 1.4
D-HALM 31 2.06e-10 3.77e-8 30.90 1
APG 124 3.75e-7 1.56e-5 269.70 4.0

3000 15 ALM 34 1.20e-9 9.53e-8 139.49 2.1
HALM 34 2.11e-9 9.77e-8 90.36 1.4
D-HALM 31 1.09e-9 6.18e-8 66.81 1
APG 124 3.75e-7 2.22e-5 1363.39 5.1

6000 30 ALM 34 1.41e-9 1.55e-7 648.55 2.4
HALM 33 2.33e-9 3.65e-7 385.87 1.4
D-HALM 33 1.07e-9 1.10e-7 269.28 1
APG 124 4.27e-7 3.29e-5 2937.07 2.9

10,000 50 ALM 34 1.54e-9 2.19e-7 2209.08 2.1
HALM 34 1.32e-9 2.18e-7 1224.68 1.2
D-HALM 31 1.02e-9 2.11e-7 1024.10 1
APG 124 3.80e-7 3.60e-5 11,914.50 4.0

16,000 80 ALM 34 1.75e-9 3.16e-7 11,673.95 3.9
HALM 33 1.75e-9 3.12e-7 3316.5 1.1
D-HALM 32 1.03e-9 2.02e-7 3001.70 1
APG 122 4.91e-7 5.61e-5 18,187.18 4.2

22,000 110 ALM 34 1.02e-9 2.15e-7 25,549.05 5.9
HALM 34 1.11e-9 2.20e-7 4855.6 1.1
D-HALM 30 1.02e-9 1.15e-7 4354.47 1
APG 122 4.71e-7 6.53e-5 46,154.80 3.8

30,000 150 ALM 34 1.10e-9 2.73e-7 66,690.46 5.5
HALM 34 8.55e-10 2.31e-7 15,920.68 1.3
D-HALM 31 5.98e-10 2.08e-7 12,095.16 1
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Table 4. Compared results of four algorithms for p = 0.4.

Size n r(A) Algorithm IT Error 1 Error 2 CPU(s) SP

APG 124 3.36e-7 1.04e-5 129.32 4.7
2000 10 ALM 33 1.14e-9 5.29e-8 57.46 2.1

HALM 33 1.39e-9 4.88e-7 42.1 1.6
D-HALM 32 1.02e-9 2.81e-8 27.83 1
APG 126 3.36e-7 1.29e-5 253.08 3.9

3000 15 ALM 34 1.44e-9 8.37e-8 143.15 2.2
HALM 33 1.48e-9 8.12e-8 90.40 1.4
D-HALM 33 1.57e-9 7.58e-8 65.77 1
APG 126 3.38e-7 1.81e-5 1593.19 7.3

6000 30 ALM 34 1.83e-9 1.57e-7 654.36 3.0
HALM 33 1.77e-9 1.98e-7 385.45 1.8
D-HALM 31 1.09e-9 1.54e-7 218.02 1
APG 124 4.21e-7 2.96e-5 3527.02 3.9

10,000 50 ALM 34 2.04e-9 2.24e-7 2168.58 2.4
HALM 34 2.08e-9 2.24e-7 1004.68 1.1
D-HALM 32 2.06e-9 2.16e-7 908.74 1
APG 126 3.38e-7 2.97e-5 9472.75 4.2

16,000 80 ALM 35 1.24e-9 1.72e-7 10,515.76 4.7
HALM 35 1.25e-9 1.74e-7 2636.23 1.2
D-HALM 33 1.25e-9 1.74e-7 2236.69 1
APG 123 4.96e-7 5.05e-5 20,905.17 4.2

22,000 110 ALM 39 1.37e-9 2.24e-7 24,175.33 4.8
HALM 38 1.38e-9 2.36e-7 5855.87 1.2
D-HALM 34 1.36e-9 2.23e-7 5000.01 1
APG 124 4.38e-7 5.32e-5 48,635.34 4.3

30,000 150 ALM 35 1.46e-9 2.79e-7 56,912.09 5.0
HALM 35 1.43e-9 2.63e-7 12,920.68 1.2
D-HALM 35 1.30e-9 2.50e-7 11,302.13 1

From Figures 1 and 2, it can be seen that the time of the D-HALM algorithm was always less than
other algorithms. The larger the matrix scale, the more obvious the effect.

As can be shown in Tables 1–4, the proposed algorithm, ALM, and HALM algorithms achieve
almost the same iterations and relative errors. However, we can see the CPU of our algorithm was
obviously less than that of APG, ALM, and HALM algorithms.

By introducing the speed-up (denoted by SP) as follows,

SP =
time of the other algorithm

time of the D-HALM algorithm
,

it is noted that the maximum SP values of APG, ALM and HALM algorithms were approximately
7.3, 2.6, and 1.6 when the matrix size n ≤ 10000; however, those of them were approximately 6.1,
5.9 and 1.7. The computational cost of the proposed algorithm was significantly lower than the other
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Figure 3. Experiment results of ALM method on videos 1-4, respectively.

Figure 4. Experiment results of HALM algorithm on videos 1–4, respectively.

algorithms.

5.2. Video sequences

In this subsection, we use four surveillance video sequences (video 1: Hall of a business building;
video 2: Mall; video 3: Bootstrap; video 4: Fountain) with different resolutions, respectively, to
compare the separated effects of three ADMM algorithms (ALM, HALM, and D-HALM). One of 200
images of four video sequences was randomly selected for testing. Figures 3–5 shown the results of
foreground and background separation of four surveillance video sequences under the D = A + E
model. The error and running time were reported in Table 5, where

Error =
∥A + E − D∥F
∥D∥F

.
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Figure 5. Experiment results of D-HALM algorithm on videos 1–4, respectively.

Table 5. Background foreground separation experiment randomly extracts of a graph.

Video Resolution Item ALM HALM D-HALM
Hall 144×176 Error 8.83e-8 6.90e-8 6.42e-8

CPU(s) 334.35 198.23 108.85
Mall 256×320 Error 8.52e-8 8.23e-8 8.07e-8

CPU(s) 1038.13 231.88 191.09
Bootstrap 120×160 Error 9.17e-8 8.06e-8 7.31e-8

CPU(s) 275.68 112.36 98.57
Fountain 128×160 Error 8.58e-8 7.05e-8 6.45e-8

CPU(s) 304.14 135.33 99.30

From Table 5, it can be seen that three algorithms shared similar separation accuracy while the
running time of D-HALM was cost-effective.

6. Conclusions

To solve the low-rank matrix recovery problem, we have proposed a hybrid singular value thresh-
olding algorithm with diagonal-modify (D-HALM) based on the classical ALM algorithm. In the
proposed algorithm, a hybrid singular value thresholding was used and a diagonal-modify was carried
out in each iteration. The iterative sequence generated by Algorithm 3.2 for solving the optimization
models converges to the optimal solution, which can be guaranteed by the traditional convergence the-
ory. In experiments, compared with APG, ALM, and HALM algorithms introduced in the past three
years. The experiments based on randomly numerical simulation data and video sequence separation
have shown both that the proposed algorithm in this paper takes less time and gets more precision for
solving the low-rank matrix recovery problem. It was found that the D-HALM algorithm was more
efficient for solving low-rank matrix recovery problems than the other algorithms. In addition, it is
worth mentioning that the new algorithm can further develop to solve the tensor completion problems.
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