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Abstract: In this paper, we investigated a nonlinear continuous-time switched time-delay (NCTSTD)
system for glycerol fed-batch bioconversion to 1,3-propanediol with unknown time-delay and system
parameters. The measured output data was uncertain, while the first moment information about its
distribution was available. Our goal was to identify these unknown quantities under the environment
of uncertain measurement output data. A distributionally robust parameter estimation problem (i.e., a
bi-level parameter estimation (BLPE) problem) subject to the NCTSTD system was presented, where
the expectation of the discrepancy between the output of the NCTSTD system and the uncertain mea-
sured output data with respect to its probability distributions was included in the cost functional. By
applying the duality theory, the BLPE problem was transformed into a single-level parameter esti-
mation (SLPE) problem with non-smooth term approximated by a smoothing technique and its error
analysis was given. Then, the gradients of the cost function of the SLPE problem were derived. A
hybrid optimization algorithm was proposed for solving the SLPE problem. The paper concluded by
presenting the simulation results.
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1. Introduction

Distributionally robust optimization (DRO) is an optimization method designed to address uncer-
tainty, particularly in situations where the underlying probability distribution is not fully known. Un-
like traditional robust optimization, DRO assumes that we only have partial information about the
uncertain probability distribution, rather than complete certainty. By accounting for the worst-case
scenarios, DRO can reduce decision-making risks and enhance the robustness of systems across vari-
ous real-world applications. It has aroused much interest among researchers to develop algorithms to
solve the DRO problems in kernel density estimation [1], data-driven problem [2, 3], portfolio opti-
mization problem [4], decision bounding problem [5], and matrix moment constraint [6]. However, no
dynamical systems are involved in the aforementioned DRO problems. Recently, the DRO problems
involving linear discrete-time systems are discussed in multi-access space-time block coded MIMO
system [7], stochastic model predictive control problem [8], modeling of optimal control problem [9],
constrained stochastic system [10], partially observable linear stochastic system [11], and output feed-
back [12]. However, in these literatures, the dynamical systems involved in the DRO problems are
discrete-time dynamical (DTD) systems. Continuous-time dynamical (CTD) systems are not involved.
There are major difficulties in solving DRO problems governed by CTD systems such as (i) a DRO
problem constrained by a CTD system is fundamentally a bi-level optimization problem, which, unlike
a DTD system, cannot be simplified to a single-level optimization problem with a finite number of
constraints; and (ii) the presence of CTD systems in DRO problems causes the inner-level objective
functional to be expressed as the expectation of a non-convex function. In this paper, we examine a
DRO problem influenced by a nonlinear continuous-time switched time-delay (NCTSTD) system en-
countered in fed-batch production of 1,3-propanediol (1,3-PD). That is to say, we directly address the
DRO problem governed by a CTD system, rather than discretizing the CTD system.

1,3-PD is a key chemical raw material for polymer production because of its unique symmetric
structure [13]. The methods for the production of 1,3-PD can be categorized into two types: mi-
crobial conversion and chemical synthesis [14]. This paper focuses on the first category due to its
eco-friendliness [15]. 1,3-PD microbial conversion process of glycerol can be divided into three cat-
egories [16]: (i) batch culture [17], (ii) continuous culture [18, 19], and (iii) fed-batch culture (see
Figure 1 in [20]). In fed-batch culture, substrate inhibition is dramatically decreased, allowing for
greater consumption of glycerol and alkali, which in turn leads to increased biomass production and
higher concentrations of 1,3-PD. For fed-batch culture, many interesting papers appeared in the exist-
ing literature such as those involving state-dependent impulsive system [21], state-dependent switched
system [22], multistage optimal control [23], optimal control [24], a novel downstream process [25],
and Koopman modeling [26, 27]. However, the references mentioned do not consider the presence of
time delays.

Time delays widely exist in many practical problems, including optimal control problem [28],
predator-prey model [29], perimeter control problem [30], the survey [31], sequential time scaling
transformation [32], non-autonomous time-delayed SIR model [33], multiregion urban traffic network
[34], and sparse optimal control [35]. At the beginning of the fed-batch process, all substrates are
placed into the fermentator. However, the chemical reaction does not trigger immediately [36], but
needs to go through the process in which all substrates need to be well-mixed. Clearly, completing this
process will require a certain amount of time. Thus, this process should be characterized by time-delay
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systems. In the context of fed-batch culture with time-delay, numerous intriguing papers have been
published in the existing literature, such as robust parameter identification [37], multi-objective opti-
mization [38], and optimal control [39]. However, the aforementioned papers assumed that the proba-
bility distribution of the output measurement data is fully available. This assumption is obviously not
realistic. In practical applications, typically only first-order moment information is obtainable. This is
the main motivation for this paper.

This paper examines an NCTSTD system with unknown time-delay and system parameters to char-
acterize the bioconversion process of 1,3-PD in fed-batch culture of glycerol caused by K. pneumoniae.
Furthermore, the uncertain measurement output data is regarded as a stochastic variable and the only
first-order moment information of its distribution is obtainable. Our aim is to identify these unknown
quantities in a setting with uncertain output data measurement. Considering these factors, we propose a
distributionally robust parameter estimation (DRPE) problem governed by the NCTSTD system, where
the objective function contains two levels: (i) the inner-level is to maximize the expectation of the dis-
crepancy between the output of the NCTSTD system and the uncertain output data measurement, and
(ii) the outer-level is to minimize with respect to the unknown quantities. By the duality theory, the
DRPE problem is equivalently translated into a single-level parameter estimation (SLPE) problem with
non-smooth term smoothed by a smoothing function. Its convergence analysis is also given. More-
over, the gradients of the objective function are derived. A hybrid algorithm is proposed for solving
the SLPE problem. Finally, numerical results show the applicability of the NCTSTD system to charac-
terize the process of fed-batch culture and the availability of the proposed hybrid algorithm for solving
the SLPE problem.

The contributions of the paper are threefold:
1) Different from the above literature, the optimal solution of the DRPE problem (OSDRPEP) is

between the optimal solution of the robust parameter estimation problem (OSRPEP) and the optimal
solution of the stochastic parameter estimation problem (OSSPEP). OSDRPEP builds a bridge between
OSRPEP and OSSPEP, neither as conservative as OSRPEP nor as strict as OSSPEP when dealing with
random probability distribution.

2) The DRPE problem subject to the CTD system is actually a bi-level parameter estimation prob-
lem, which cannot be described as an SLPE problem with finitely many equality constraints as the
example of the DTD system. In this paper, a method on the basis of the duality theory is proposed for
solving the DRPE problem governed by the CTD system.

3) The non-smooth term in the objective function is approximated by a smoothing technique. Some
noteworthy theorems are required to prove that the smoothing function can overcome the problem that
the constraint qualification is not satisfied.

The remainder of the paper is structured as follows. A DRPE problem is proposed in Section 2. A
computational method is proposed for solving the DRPE problem in Section 3. Numerical results are
given in Section 4. In Section 5, we draw some concluding remarks and imply some research directions
in the future.

2. Problem formulation

2.1. NCTSTD system

In fed-batch culture, we assume that the conditions given below are satisfied.
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• The concentrations of reactants are uniformly distributed in the reactor. Nonuniform space distri-
bution is ignored.

• In fed-batch culture, the reactor is fed exclusively with glycerol and alkali.

Table 1. Nomenclature

Symbol Representation Symbol Representation
R The set of real numbers R+ The set of nonnegative real numbers
N+ The set of positive integers t f The terminal time
Λ1

{
0, 1, 2, ...,N − 1

}
,N ∈ N+ Λ2

{
0, 1, 2, ...,N

}
,N ∈ N+

x1(t) The concentration of biomass at time t ∈ [0, t f ] x2(t) The concentration of glycerol at time t ∈ [0, t f ]
x3(t) The concentration of 1,3-PD at time t ∈ [0, t f ] x4(t) The concentration of acetate at time t ∈ [0, t f ]
x5(t) The concentration of ethanol at time t ∈ [0, t f ] ϕ(·) A given initial function
x0 The initial state In The set {1, 2, . . . , n}, n ∈ N+
AT The transpose of the vector or matrix A r The velocity ratio of feeding alkali and glycerol

q1(t)
The specific growth rate of cells at time t ∈
[0, t f ]

D(t) The dilution rate at time t ∈ [0, t f ]

q2(t)
The specific consumption rate of substrate at
time t ∈ [0, t f ]

qℓ(t), ℓ ∈ {3, 4, 5}
The specific formation rates of product at time
t ∈ [0, t f ]

τ2i+1, i ∈ Λ1

The moments at each of which glycerol is added
and the culture process switches from batch
process to continuous process decided a priori
in the experiment

τ2i+2, i ∈ Λ1

The moments at each of which the flow of glyc-
erol is ended and the culture process jumps
from continuous process into batch process de-
cided a priori in the experiment

Cs0
The concentration of initial feed of substrate in
the medium

V0 The initial volume of solution in the fermentor

k1
The Monod saturation constant for the substrate
(mmol L−1) p2

The maintenance term of substrate consump-
tion (mmol g−1h−1)

p3
The maintenance term of 1,3-PD formation
(mmol g−1h−1) m4

The maintenance term of acetate formation
(mmol g−1h−1)

p4
The maximum biomass growth yield in
(g mmol−1 p5

The maximum extracellular 1,3-PD yield in
(mmol g−1)

Y4 The maximum acetate yield in (mmol g−1) k2
The saturation constants of substrate in the ki-
netic equations with excess terms (mmol L−1)

c1, c1, p8, p9
The parameters for the determination of yield
of ethanol on glycerol k3

The saturation constants of extracellular 1,3-
PD in the kinetic equations with excess terms
(mmol L−1)

k4
The saturation constants of EtOH in the kinetic
equations with excess terms (mmol L−1) p1 The maximum specific growth rate (h−1)

p6
The maximum increment of substrate consump-
tion rate (h−1) p7,∆4

The maximum increments of product formation
rates (h−1)

νℓ ≥ 0 The feeding rate of glycerol in (τℓ−1, τℓ], ℓ ∈
I2N+1

p
j

The lower bound of p j, j ∈ I9

p j The upper bound of p j, j ∈ I9 x j The lower bound of x j(t), t ∈ [0, t f ], j ∈ I5

x j The upper bound of x j(t), t ∈ [0, t f ], j ∈ I5 h The upper bound of h
h The time-delay to be optimizated

Based on [43], the NCTSTD system governing the fed-batch culture can be described as follows:
dx(t)

dt
= f ℓ(x(t), x(t − h), p) ∈ R5,

x(τℓ−1+) = x(τℓ−1), t ∈ (τℓ−1, τℓ], ℓ ∈ I2N+1,

x(0) = x0,

x(t) = ϕ(t), t ≤ 0.

(2.1)
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For t ∈ (τℓ−1, τℓ], ℓ = 2i + 1, i ∈ Λ2, f ℓ(x(t), x(t − h), p) is of the form given by

f 2i+1(x(t), x(t − h), p) := [ f 2i+1
1 (x(t), x(t − h), p), . . . , f 2i+1

5 (x(t), x(t − h), p)]T,

where its components are{
f 2i+1

j (x(t), x(t − h), p) = q j(t)x1(t − h), j ∈ {1, 3, 4, 5},
f 2i+1
2 (x(t), x(t − h), p) = −q2(t)x1(t − h).

(2.2)

On the other hand, for t ∈ (τℓ−1, τℓ], ℓ = 2i + 2, i ∈ Λ1, f ℓ(x(t), x(t − h), p) is of the form given by

f 2i+2(x(t), x(t − h), p) := [ f 2i+2
1 (x(t), x(t − h), p), . . . , f 2i+2

5 (x(t), x(t − h), p)]T,

where its components are
f 2i+2

j (x(t), x(t − h), p) = q j(t)x1(t − h) − D(t)x j(t), j ∈ {1, 3, 4, 5},

f 2i+2
2 (x(t), x(t − h), p) = D(t)

[ Cs0

1 + r
− x2(t)

]
− q2(t)x1(t − h),

(2.3)

with

D(t) =
(1 + r)νℓ

V(t)
, (2.4)

V(t) = V0 +

ℓ−1∑
j=1

(1 + r)ν j(τ j − τ j−1) + (1 + r)νℓ(t − τℓ−1), (2.5)

q1(t) =
p1x2(t)

x2(t) + k1

5∏
ȷ=2

(1 −
x ȷ(t)
x∗ȷ

), (2.6)

q2(t) = p2 + q1(t)p4 +
p6x2(t)

x2(t) + k2
, (2.7)

q3(t) = p3 + q1(t)p5 +
p7x2(t)

x2(t) + k3
, (2.8)

q4(t) = m4 + q1(t)Y4 +
∆4x2(t)

x2(t) + k4
, (2.9)

q5(t) = q2(t)
[ c1

c2 + q1(t)x2(t)
+

p8

p9 + q1(t)x2(t)

]
. (2.10)

The concentrations of substrate and the product of fermentation fluid are restricted to within a set
W defined by

x(t) ∈ W :=
5∏

j=1

[x j, x j] ⊂ R5
+,∀t ∈ [0, t f ]. (2.11)

Based on sensitivity analysis in [43], the time-delay h and the kinetic parameter vector p, the mean-
ings of which are listed in Table 1, are required to be identified. Such analysis allows us to focus our
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optimization efforts on these parameters and reduce unnecessary complexity. Thus, they are treated as
decision variables to be chosen from the sets defined by

h ∈ [0, h], p := (p1, · · · , p9)T ∈ P :=
9∏
ı=1

[p
ı
, pı].

This prior information helps narrow down the parameter space, making the optimization process more
stable.

2.2. Distributionally robust parameter estimation problem

The aim of this section is to present a DRPE problem subject to the NCTSTD system with the
unknown time-delay h and system parameter vector p to be optimized.

Let x(·|h, p) := (x1(·|h, p), ..., x5(·|h, p))T be the solution of system (2.1) (i.e., the system output)
corresponding to each pair (h, p) ∈ [0, h̄] × P. In [20, 37–39], assume that the distributions of output
data are known precisely is an idealistic assumption. In fact, the distributions of the measured output
data are often not available. Thus, the measured output data vector d̃ is regarded as a random vector.
Its first-order moment is defined by

EP[d̃] = z̃, (2.12)

where EP represents the expected value according to the probability distribution P; d̃ :=
((d̃1)T, · · · , (d̃σ)T)T = (d̃1

1, · · · , d̃
1
3, · · · , d̃

σ
1 , · · · , d̃

σ
3 )T ∈ R3σ; d̃υ refers to the output vector recorded at

specific sample times tυ, υ ∈ Iσ subject to 0 ⩽ t1 < · · · < tσ ⩽ t f ; and z̃ := (z̃1
1, · · · , z̃

1
3, · · · , z̃

σ
1 , · · · , z̃

σ
3 )T ∈

R3σ.

The support set D̃ of d̃ is defined as

D̃ =
{
d̃ ∈ R3σ : dυ

ι
⩽ d̃υι ⩽ d

υ

ι , υ ∈ Iσ, ι ∈ I3

}
, (2.13)

where dυ
ι

and d
υ

ι are, respectively, the lower and the upper limits of d̃υι with dυ
ι
< d

υ

ι .
The ambiguity set P̃ of probability measures of d̃ is defined as

P̃ =
{
P : P(d̃ ∈ D̃) = 1,EP[d̃] = z̃

}
. (2.14)

Definition 1. For a given (h, p) ∈ [0, h̄]×P, the discrepancy between the system output xι(tυ|h, p), tυ ∈
T , ι ∈ I3, υ ∈ Iσ, and the measured output data d̃υι , ι ∈ I3, υ ∈ Iσ, is defined by

Re(h, p, d̃) :=
1

3σ

3∑
ι=1

σ∑
υ=1

{ xι(tυ|h, p) − d̃υι
d
υ

ι

}2
, (2.15)

where T represents the set of specified time points in fed-batch culture, and |T | = σ represents the
number of elements in the set T .

It is assumed that P ∈ P̃. Therefore, the worst-case scenario for Re(h, p, d̃) is defined as
maxP∈P̃ EP[Re(h, p, d̃)]. Considering this, our DRPE problem is stated below:

Problem A : min
(h,p)∈[0,h̄]×P

{
max
P∈P̃

EP[Re(h, p, d̃)]
}
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s.t. P(d̃ ∈ D̃) = 1,
EP[d̃] = z̃,

g j(x(t|h, p)) ⩽ 0,∀t ∈ [0, t f ], j ∈ I10,

where g j(x(t|h, p)) = −x j(t|h, p), g j+5(x(t|h, p)) = x j(t|h, p) − x̄ j, j ∈ I5.

3. Solution approaches

This section presents a numerical approach for solving Problem A. Figure 1 summarizes the approx-
imation and transformation process of solving Problem A. A thorough discussion is given in Section
3.1. Based on Theorems 3 and 4, the aim of Theorem 3 is to calculate the gradients of JH

ρ,ϵ(h, p, ψ, ζ) in
Problem H. Theorems 1 and 2 are applied to carry out the error analysis. Algorithm 1 is employed to
solve Problem H.

Figure 1. Solution process for Problem A.

3.1. Single-level parameter estimation problem

Problem A is a bi-level parameter estimation problem subject to the NCTSTD system. In this
subsection, Problem A is converted into a deterministic single-level parameter estimation problem.

The inner-level problem of Problem A can be expressed as given below.

Problem B : max
P∈P̃

EP[Re(h, p, d̃)]

s.t. P(d̃ ∈ D̃) = 1,
EP[d̃] = z̃.
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For ease of use, the expectation of the measured output data vector d̃ is expressed using the Lebesgue
integral. Then, Problem B is reformulated as:

Problem C : max
P∈P̃

∫
D̃

Re(h, p, d̃)dP

s.t.
∫
D̃

1(d̃∈D̃)dP = 1,∫
D̃

d̃dP = z̃.

Problem C is difficult to solve since it is a parameter estimation problem with respect to P ∈ P̃ on D̃.
Considering this, in view of the duality theory [42], Problem C can be converted into its dual problem
(i.e., Problem D), which can be solved easier than Problem C. Through the application of the duality
theory [42], we obtain the duality of Problem C as follows:

Problem D : min
ζ∈R3σ,ψ∈R

ψ + z̃Tζ

s.t. ψ + dTζ ⩾ Re(h, p, d̃),∀d ∈ D̃, (3.1)

where ζ := (ζ1
1 , · · · , ζ

1
3 , · · · , ζ

σ
1 , · · · , ζ

σ
3 )T ∈ R3σ, ψ is the dual variable, and Re(h, p, d̃) is as defined in

(2.15).
Based on the definition of Re(h, p, d̃) in (2.15) and max, we have

(3.1) ⇐⇒
3∑
ι=1

σ∑
υ=1

(
dυι
d
υ

ι

)2 −

3∑
ι=1

σ∑
υ=1

(2
xι(tυ|h, p)

d
υ

ι

+ ζυι )
dυι
d
υ

ι

− ψ +

3∑
ι=1

σ∑
υ=1

(
xι(tυ|h, p)

d
υ

ι

)2 ⩽ 0,∀d ∈ D̃

⇐⇒ max
d∈D̃

{ 3∑
ι=1

σ∑
υ=1

[
(
dυι
d
υ

ι

)2 − (2
xι(tυ|h, p)

d
υ

ι

+ ζυι )
dυι
d
υ

ι

+ (
xι(tυ|h, p)

d
υ

ι

)2
]}
− ψ ⩽ 0. (3.2)

Based on the separability of the variables dυι , ι ∈ I3, υ ∈ Iσ, constraint (3.2) is equivalent to constraint
(3.3).

(3.2) ⇐⇒
3∑
ι=1

σ∑
υ=1

max
dυι ∈[dυι ,d

υ
ι ]

{[
(
dυι
d
υ

ι

)2 − (2
xι(tυ|h, p)

d
υ

ι

+ ζυι )
dυι
d
υ

ι

+ (
xι(tυ|h, p)

d
υ

ι

)2
]}
− ψ ⩽ 0. (3.3)

From the properties of quadratic functions, it follows that constraint (3.3)⇔ constraint (3.4).

(3.3) ⇐⇒
3∑
ι=1

σ∑
υ=1

max
{

(
dυ
ι

d
υ

ι

)2 − (2
xι(tυ|h, p)

d
υ

ι

+ ζυι )
dυ
ι

d
υ

ι

+ (
xι(tυ|h, p)

d
υ

ι

)2,

1 − (2
xι(tυ|h, p)

d
υ

ι

+ ζυι ) + (
xι(tυ|h, p)

d
υ

ι

)2
}
− ψ ⩽ 0. (3.4)

Since max
{
a1, a2

}
=

a1 + a2

2
+
|a1 − a2|

2
, constraint (3.4) is equivalent to constraint (3.5).

(3.4) ⇐⇒
1
2

3∑
ι=1

σ∑
υ=1

{
(
dυ
ι

d
υ

ι

)2 + 1 − (2
xι(tυ|h, p)

d
υ

ι

+ ζυι )(
dυ
ι

d
υ

ι

+ 1) + 2(
xι(tυ|h, p)

d
υ

ι

)2 +
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5897∣∣∣∣(dυ
ι

d
υ

ι

− 1)(
dυ
ι

d
υ

ι

+ 1 − 2
xι(tυ|h, p)

d
υ

ι

− ζυι )
∣∣∣∣} − ψ ⩽ 0. (3.5)

Letting αυι (x(tυ|h, p), ζ) := (
dυ
ι

d
υ

ι

)2 + 1 − (2
xι(tυ|h, p)

d
υ

ι

+ ζυι )(
dυ
ι

d
υ

ι

+ 1) + 2(
xι(tυ|h, p)

d
υ

ι

)2; βυι (x(tυ|h, p), ζ) :=

(
dυ
ι

d
υ

ι

− 1)(
dυ
ι

d
υ

ι

+ 1 − 2
xι(tυ|h, p)

d
υ

ι

− ζυι ). Based on max
{
a1, a2

}
=

a1 + a2

2
+
|a1 − a2|

2
, we have

(3.5) ⇐⇒
1
2

3∑
ι=1

σ∑
υ=1

{
αυι (x(tυ|h, p), ζ) + 2 max

{
βυι (x(tυ|h, p), ζ), 0

}
− βυι (x(tυ|h, p), ζ)

}
− ψ ⩽ 0

⇐⇒ max
{
Λ(h, p, ζ, ψ), 0

}
= 0, (3.6)

where Λ(h, p, ζ, ψ) :=
1
2

3∑
ι=1

σ∑
υ=1

{
αυι (x(tυ|h, p), ζ) + 2 max

{
βυι (x(tυ|h, p), ζ), 0

}
− βυι (x(tυ|h, p), ζ)

}
− ψ.

Problem A is equivalently transformed into the following SLPE problem:

Problem E : min
ζ∈R3σ,ψ∈R,h∈[0,h̄],p∈P

JE(h, p, ψ, ζ) := ψ + z̃Tζ

s.t. g j(x(t|h, p)) ⩽ 0,∀t ∈ [0, t f ], j ∈ I10, (3.7)
Λ(h, p, ζ, ψ) ⩽ 0.

3.2. Constraint transcription technique

Problem E involves an infinite number of constraints (i.e., constraint (3.8) that restricts the state
variables at each point in [0, t f ]). Therefore, Problem E can be regarded as a semi-infinite programming
problem [46]. Based on the constraint transformation method involving the definition of max{·, ·} [46],
Problem E is equivalently transformed into Problem Ec.

Problem Ec : min
ζ∈R3σ,ψ∈R,h∈[0,h̄],p∈P

JE(h, p, ψ, ζ) := ψ + z̃Tζ

s.t.
10∑
j=1

∫ t f

0
max
{
g j(x(t|h, p)), 0

}
= 0, (3.8)

max
{
Λ(h, p, ζ, ψ), 0

}
= 0.

In view of the penalty function method [45, 46], Problem Ec can be approximated by Problem F.

Problem F : min
ζ∈R3σ,ψ∈R,h∈[0,h̄],p∈P

JF
ρ (h, p, ψ, ζ) := JE(h, p, ψ, ζ) + ρ

10∑
j=1

∫ t f

0
max
{
g j(x(t|h, p)), 0

}
dt

+ρmax
{
Λ(h, p, ζ, ψ), 0

}
. (3.9)

Remark 1. It can be demonstrated that if the penalty parameter ρ is sufficiently increased, then any
minimizer of Problem F within the region ζ ∈ R3σ, ψ ∈ R, h ∈ [0, h̄], p ∈ P will be feasible for Problem
Ec. Therefore, a solution to Problem Ec can be achieved by minimizing Problem F with appropriately
chosen values for the penalty parameter ρ.
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3.3. Smoothing technique and error analysis

3.3.1. Smoothing technique

One of the main hardships to solve Problem F numerically is that the second and the third terms
in (3.9) are non-smooth, with respect to h and p, due to the existence of the function max{·, 0}. To
surmount this hardship, the function max{·, 0} is approximated by the smoothing technique [44] as
follows.

γϵ,ρ,κ[η] =


0, if η ≤ −

ϵ

κρ
,

κρ

2ϵ
η2 + η +

ϵ

2κρ
, if −

ϵ

κρ
≤ η ≤ 0,

η +
ϵ

2κρ
, if η > 0,

(3.10)

where η is a continuous inequality constraint; ρ is a penalty factor, κ is the number of continuous
inequality constraints, and ϵ > 0 is called the smoothing parameter.

Approximate the non-smooth terms in Problem F using the function (3.10), and we get

Problem H : min
ζ∈R3σ,ψ∈R,h∈[0,h̄],p∈P

JH
ρ,ϵ(h, p, ψ, ζ) := JE(h, p, ψ, ζ) + ρ

10∑
j=1

∫ t f

0
γϵ,ρ,10[g j(x(t|h, p))]dt

+ργϵ,ρ,1[Λϵ(h, p, ζ, ψ)],

where Λϵ(h, p, ζ, ψ) :=
1
2

3∑
ι=1

σ∑
υ=1

{
αυι (x(tυ|h, p), ζ) + 2γϵ,ρ,3σ[βυι (x(tυ|h, p), ζ)] − βυι (x(tυ|h, p), ζ)

}
− ψ.

3.3.2. Error analysis

Since the functions involved with Problem H are smooth, it can be addressed using the gradient-
based nonlinear programming (NLP) algorithm. It is evident that the difference between the solution
of Problem H and the solution of Problem E is of importance. This section conducts an error analysis
comparing Problem H, Problem F, and Problem E. With this in mind, Lemmas 1 and 2 are needed in
the process of error analysis.

Lemma 1. For any ϵ > 0, the function γϵ,ρ,κ[η] has the following properties:

0 ⩽ γϵ,ρ,10[g j(x(t|h, p))] −max
{
g j(x(t|h, p)), 0

}
⩽

ϵ

20ρ
, (3.11)

0 ⩽ γϵ,ρ,3σ[βυι (x(tυ|h, p), ζ)] −max
{
βυι (x(tυ|h, p), ζ), 0

}
⩽

ϵ

6σρ
, (3.12)

0 ⩽ γϵ,ρ,1[Λϵ(h, p, ζ, ψ)] −max
{
Λ(h, p, ζ, ψ), 0

}
⩽
ϵ

ρ
. (3.13)

Proof. In view of Theorem 3.2.1 in [44], it is easy to prove the validity of (3.11) and (3.12) and

0 ⩽ γϵ,ρ,1[Λϵ(h, p, ζ, ψ)] −max
{
Λϵ(h, p, ζ, ψ), 0

}
⩽

ϵ

2ρ
. (3.14)

Now, we will prove (3.13). Based on (3.12), we have

0 ⩽ Λϵ(h, p, ζ, ψ) − Λ(h, p, ζ, ψ) =
3∑
ι=1

σ∑
υ=1

{
γϵ,ρ,3σ[β(xι(tυ|h, p), ζυι )] −max

{
β(xι(tυ|h, p), ζυι ), 0

}}
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⩽
ϵ

2ρ
, (3.15)

which implies

0 ⩽ max
{
Λϵ(h, p, ζ, ψ), 0

}
−max

{
Λ(h, p, ζ, ψ), 0

}
⩽ Λϵ(h, p, ζ, ψ) − Λ(h, p, ζ, ψ) ⩽

ϵ

2ρ
. (3.16)

According to (3.14) and (3.16), it follows that

0 ⩽ γϵ,ρ,1[Λϵ(h, p, ζ, ψ)] −max
{
Λ(h, p, ζ, ψ), 0

}
= γϵ,ρ,1[Λϵ(h, p, ζ, ψ)] −max

{
Λϵ(h, p, ζ, ψ), 0

}
+max

{
Λϵ(h, p, ζ, ψ), 0

}
−max

{
Λ(h, p, ζ, ψ), 0

}
⩽

ϵ

ρ
, (3.17)

which completes the proof. ■ □

Lemma 2. For ρ > 0 and ϵ > 0, it holds that

0 ⩽ JH
ρ,ϵ(h, p, ψ, ζ) − JF

ρ (h, p, ψ, ζ) ⩽ ϵ(1 +
t f

2
).

Proof. Based on Lemma 1, we have

0 ⩽ JH
ρ,ϵ(h, p, ψ, ζ) − JF

ρ (h, p, ψ, ζ)

= ρ

10∑
j=1

∫ t f

0

{
γϵ,ρ,10[g j(x(t|h, p))] −max

{
g j(x(t|h, p)), 0

}}
dt

+ρ

{
γϵ,ρ,1[Λϵ(h, p, ζ, ψ)] −max

{
Λ(h, p, ζ, ψ), 0

}}
⩽ ϵ(1 +

t f

2
). (3.18)

The proof is complete. ■ □

Using Lemmas 1 and 2 as a foundation, we now proceed with the error analysis comparing Problem
H, Problem F, and Problem E.

Theorem 1. Let (h∗, p∗, ψ∗, ζ∗) and (h∗∗, p∗∗, ζ∗∗, ψ∗∗) be the solutions of Problems F and H, respec-
tively. Then,

0 ⩽ JH
ρ,ϵ(h

∗∗, p∗∗, ζ∗∗, ψ∗∗) − JF
ρ (h∗, p∗, ψ∗, ζ∗) ⩽ ϵ(1 +

t f

2
).

Proof. In view of Lemma 2,

0 ⩽ JH
ρ,ϵ(h

∗∗, p∗∗, ζ∗∗, ψ∗∗) − JF
ρ (h∗∗, p∗∗, ζ∗∗, ψ∗∗) ⩽ ϵ(1 +

t f

2
), (3.19)

0 ⩽ JH
ρ,ϵ(h

∗, p∗, ψ∗, ζ∗) − JF
ρ (h∗, p∗, ψ∗, ζ∗) ⩽ ϵ(1 +

t f

2
). (3.20)
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Because (h∗, p∗, ψ∗, ζ∗) is the solution of Problem F, we have

−JF
ρ (h∗∗, p∗∗, ζ∗∗, ψ∗∗) ⩽ −JF

ρ (h∗, p∗, ψ∗, ζ∗),

which is equivalent to

JH
ρ,ϵ(h

∗∗, p∗∗, ζ∗∗, ψ∗∗) − JF
ρ (h∗∗, p∗∗, ζ∗∗, ψ∗∗) ⩽ JH

ρ,ϵ(h
∗∗, p∗∗, ζ∗∗, ψ∗∗) − JF

ρ (h∗, p∗, ζ∗, ψ∗). (3.21)

As (τ∗∗, p∗∗, θ∗∗, η∗∗) is the solution of Problem SLI2, it is clear that

JH
ρ,ϵ(h

∗∗, p∗∗, ζ∗∗, ψ∗∗) ⩽ JH
ρ,ϵ(h

∗, p∗, ζ∗, ψ∗),

which is equivalent to

JH
ρ,ϵ(h

∗∗, p∗∗, ζ∗∗, ψ∗∗) − JF
ρ (h∗, p∗, ζ∗, ψ∗) ⩽ JH

ρ,ϵ(h
∗, p∗, ζ∗, ψ∗) − JF

ρ (h∗, p∗, ζ∗, ψ∗). (3.22)

Thus, it follows from (3.19)–(3.22) that

0 ⩽ JH
ρ,ϵ(h

∗∗, p∗∗, ζ∗∗, ψ∗∗) − JF
ρ (h∗∗, p∗∗, ζ∗∗, ψ∗∗)

⩽ JH
ρ,ϵ(h

∗∗, p∗∗, ζ∗∗, ψ∗∗) − JF
ρ (h∗, p∗, ζ∗, ψ∗)

⩽ JH
ρ,ϵ(h

∗, p∗, ζ∗, ψ∗) − JF
ρ (h∗, p∗, ζ∗, ψ∗)

⩽ ϵ(1 +
t f

2
).

The proof is complete. ■ □

Definition 2. If g j(x(t|hϵ , pϵ)) ⩽ ϵ, j ∈ I10;Λ(hϵ , pϵ , ψϵ , ζϵ) ⩽ ϵ, then the set of decision variables
(hϵ , pϵ , ψϵ , ζϵ) is called ϵ−feasible to Problem E.

Theorem 2. Let (h∗, p∗, ψ∗, ζ∗) and (h∗∗, p∗∗, ζ∗∗, ψ∗∗) be the solution of Problems F and H, respec-
tively. Furthermore, suppose that (h∗, p∗, ψ∗, ζ∗) is feasible to Problem E and that (h∗∗, p∗∗, ζ∗∗, ψ∗∗) is
ϵ−feasible to Problem E. Then,

−
ϵ[20ρt f + t f + 2ρ + 2]

2
⩽ JE(h∗∗, p∗∗, ψ∗∗, ζ∗∗) − JE(h∗, p∗, ψ∗, ζ∗) ⩽ ϵ(1 +

t f

2
).

Proof. Due to the feasibility of (h∗, p∗, ζ∗, ψ∗) in Problem E, we get

max
{
Λ(h∗, p∗, ζ∗, ψ∗), 0

}
= 0, max

{
g j(x(t|h∗, p∗)), 0

}
dt = 0, j ∈ I10. (3.23)

From the ϵ−feasibility of (h∗∗, p∗∗, ζ∗∗, ψ∗∗) in Problem E, it follows that

g j(x(t|h∗∗, p∗∗)) ⩽ ϵ, j ∈ I10, (3.24)
Λ(h∗∗, p∗∗, ζ∗∗, ψ∗∗) ⩽ ϵ. (3.25)

Based on (3.15) and (3.25), we obtain

Λϵ(h∗∗, p∗∗, ζ∗∗, ψ∗∗) ⩽ Λ(h∗∗, p∗∗, ζ∗∗, ψ∗∗) +
ϵ

2ρ
⩽ ϵ +

ϵ

2ρ
. (3.26)

Electronic Research Archive Volume 32, Issue 10, 5889–5913.



5901

From (3.24), (3.26), and the monotonicity of the γϵ,ρ,κ[η] in (3.10), it follows that

0 ⩽ γϵ,ρ,10[g j(x(t|h∗∗, p∗∗))] ⩽ ϵ +
ϵ

20ρ
, j ∈ I10; 0 ⩽ γϵ,ρ,1[Λϵ(h∗∗, p∗∗, ζ∗∗, ψ∗∗)] ⩽ ϵ +

ϵ

ρ
,

which implies

0 ⩽ ρ
10∑
j=1

∫ t f

0
γϵ,ρ,10[g j(x(t|h∗∗, p∗∗))]dt + ργϵ,ρ,1[Λϵ(h∗∗, p∗∗, ζ∗∗, ψ∗∗)] ⩽

ϵ[20ρt f + t f + 2ρ + 2]
2

.(3.27)

This can be rearranged to yield

−
ϵ[20ρt f + t f + 2ρ + 2]

2
⩽ −ρ

10∑
j=1

∫ t f

0
γϵ,ρ,10[g j(x(t|h∗∗, p∗∗))]dt − ργϵ,ρ,1[Λϵ(h∗∗, p∗∗, ζ∗∗, ψ∗∗)]

⩽ 0. (3.28)

It is clear from Theorem 1 that

0 ⩽ JE(h∗∗, p∗∗, ψ∗∗, ζ∗∗) + ρ
10∑
j=1

∫ t f

0
γϵ,ρ,10[g j(x(t|h∗∗, p∗∗))]dt + ργϵ,ρ,1[Λϵ(h∗∗, p∗∗, ψ∗∗, ζ∗∗)]

−JE(h∗, p∗, ζ∗, ψ∗) − ρ
10∑
j=1

∫ t f

0
max
{
g j(x(t|h∗, p∗)), 0

}
dt − ρmax

{
Λ(h∗, p∗, ζ∗, ψ∗), 0

}
⩽ ϵ(1 +

t f

2
).

Combining (3.23) and (3.27) gives

−
ϵ[20ρt f + t f + 2ρ + 2]

2
⩽ JE(h∗∗, p∗∗, ψ∗∗, ζ∗∗) − JE(h∗, p∗, ψ∗, ζ∗) ⩽ ϵ(1 +

t f

2
).

The proof is complete. ■ □

3.4. State variation

In the process of the numerical optimization, the gradient formulae of JH
ρ,ϵ(h, p, ψ, ζ) of Problem

H with respect to h, p, ψ, and ζ are required. With these gradient formulae, a gradient-based NLP
algorithm can be employed for solving Problem H. Therefore, this section is dedicated to deriving the
gradient formulas.

3.4.1. State variation with respect to time-delay h

The partial derivative of x(t|·, p) with respect to h is known as the state variation with respect to h.

Lemma 3. For each pair (h, p) ∈ [0, h̄] × P, it holds that

∂x(t|h, p)
∂h

= ϖ(t|h, p) = (ϖ1(t|h, p), . . . , ϖ5(t|h, p))T, t ∈ (τℓ−1, τℓ], ℓ ∈ I2N+1, (3.29)
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where ϖ(t|h, p) ∈ R5 is the solution of the following variational system:

ϖ̇(t) =
∂ f ℓ(x(t), x(t − h), p)

∂x(t)
ϖ(t) +

∂ f ℓ(x(t), x(t − h), p)
∂x(t − h)

ϖ(t − h) +
∂ f ℓ(x(t), x(t − h), p)

∂x(t − h)
χ(t − h),

t ∈ (τℓ−1, τℓ], ℓ ∈ I2N+1,

ϖ(τℓ−1+) = ϖ(τℓ), ℓ ∈ I2N+1,

ϖ(t) = 0, t ⩽ 0,

χ(t) =


dϕ(t)

dt
, t ⩽ 0,

f ℓ(x(t), x(t − h), p), t ∈ (τℓ−1, τℓ], ℓ ∈ I2N+1.
(3.30)

Proof. This theorem can be proven in a manner similar to that used for Theorem 5 in [43]. ■ □

3.4.2. The state variation with respect to pı, ı ∈ I9

To solve Problem H, we also require the information of the state variation with respect to pı, ı ∈ I9.

Lemma 4. For each pair (h, p) ∈ [0, h̄] × P, it holds that

∂x(t|h, p)
∂pı

= πı(t|h, p) = (π1
ı (t|h, p), . . . , π5

ı (t|h, p))T, t ∈ (τℓ−1, τℓ], ℓ ∈ I2N+1, ı ∈ I9, (3.31)

where πı(t|h, p) ∈ R5, ı ∈ I9, is the solution to the following variational system:
π̇ı(t) =

∂ f ℓ(x(t), x(t − h), p)
∂x(t)

πı(t) +
∂ f ℓ(x(t), x(t − h), p)

∂x(t − h)
πı(t − h) +

∂ f ℓ(x(t), x(t − h), p)
∂pı

,

t ∈ (τℓ−1, τℓ], ℓ ∈ I2N+1, ı ∈ I9,

πı(τℓ−1+) = πı(τℓ), ℓ ∈ I2N+1, ı ∈ I9,

πı(t) = 0, t ⩽ 0, ı ∈ I9.
(3.32)

Proof. This theorem can be proven in a manner similar to that used for Theorem 5 in [43]. ■ □

3.5. Gradient formulas

The state variation with respect to h and pı, ı ∈ I9 can be computed through solving system (2.1)
together with systems (3.30) and (3.32) forward in time. Then, the gradient formulae of JH

ρ,ϵ(h, p, ψ, ζ)
of Problem H with respect to h, p, ψ, and ζ can be easily obtained. By Lemmas 3 and 4 and the chain
rule, we have

Theorem 3. The gradients of the cost function JH
ρ,ϵ(h, p, ψ, ζ) with respect to λ ∈

{
h; pı, ı ∈ I9;ψ; ζυι , ι ∈

I3, υ ∈ Iσ
}

are given by

∂JH
ρ,ϵ(h, p, ψ, ζ)

∂λ
=

∂JE(h, p, ψ, ζ)
∂λ

+ ρ
{ 10∑

j=1

∫ t f

0

∂γϵ,ρ,10[g j(x(t|h, p))]
∂λ

dt +
∂γϵ,ρ,1[Λϵ(h, p, ζ, ψ)]

∂λ

}
,
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where

∂JE(h, p, ψ, ζ)
∂h

= 0;
∂JE(h, p, ψ, ζ)

∂pı
= 0, ı ∈ I9;

∂JE(h, p, ψ, ζ)
∂ψ

= 1;
∂JE(h, p, ψ, ζ)

∂ζυι
= z̃υι , ι ∈ I3, υ ∈ Iσ;

∂γϵ,ρ,10[g j(x(t|h, p))]
∂ψ

= 0;
∂γϵ,ρ,10[g j(x(t|h, p))]

∂ζυι
= 0, ι ∈ I3, υ ∈ Iσ;

∂γϵ,ρ,10[g j(x(t|h, p))]
∂h

=
∂γϵ,ρ,10[g j(x(t|h, p))]

∂g j(x(t|h, p))
∂g j(x(t|h, p))
∂x(t|h, p))

ϖ(t|h, p)), j ∈ I10;

∂γϵ,ρ,10[g j(x(t|h, p))]
∂pı

=
∂γϵ,ρ,10[g j(x(t|h, p))]

∂g j(x(t|h, p))
∂g j(x(t|h, p))
∂x(t|h, p))

πı(t|h, p)), j ∈ I10, ı ∈ I9;

∂γϵ,ρ,1[Λϵ(h, p, ζ, ψ)]
∂h

=
∂γϵ,ρ,1[Λϵ(h, p, ζ, ψ)]

∂Λϵ(h, p, ζ, ψ)
∂Λϵ(h, p, ζ, ψ)

∂h
;

∂γϵ,ρ,1[Λϵ(h, p, ζ, ψ)]
∂pı

=
∂γϵ,ρ,1[Λϵ(h, p, ζ, ψ)]

∂Λϵ(h, p, ζ, ψ)
∂Λϵ(h, p, ζ, ψ)

∂pı
, ı ∈ I9;

∂γϵ,ρ,1[Λϵ(h, p, ζ, ψ)]
∂ζυι

=
∂γϵ,ρ,1[Λϵ(h, p, ζ, ψ)]

∂Λϵ(h, p, ζ, ψ)
∂Λϵ(h, p, ζ, ψ)

∂ζυι
, ι ∈ I3, υ ∈ Iσ;

∂γϵ,ρ,1[Λϵ(h, p, ζ, ψ)]
∂ψ

= −
∂γϵ,ρ,1[Λϵ(h, p, ζ, ψ)]

∂Λϵ(h, p, ζ, ψ)
;

∂Λϵ(h, p, ζ, ψ)
∂h

=
1
2

3∑
ι=1

σ∑
υ=1

{
∂
αυι (x(tυ|h, p), ζ)
∂x(tυ|h, p)

ϖ(tυ|h, p) −
∂βυι (x(tυ|h, p), ζ)
∂x(tυ|h, p)

ϖ(tυ|h, p) +

2
∂γϵ,ρ,3σ[βυι (x(tυ|h, p), ζ)]

∂βυι (x(tυ|h, p), ζ)
∂βυι (x(tυ|h, p), ζ)
∂x(tυ|h, p)

ϖ(tυ|h, p)
}

;

∂Λϵ(h, p, ζ, ψ)
∂pı

=
1
2

3∑
ι=1

σ∑
υ=1

{
∂
αυι (x(tυ|h, p), ζ)
∂x(tυ|h, p)

πı(tυ|h, p) −
∂βυι (x(tυ|h, p), ζ)
∂x(tυ|h, p)

πı(tυ|h, p) +

2
∂γϵ,ρ,3σ[βυι (x(tυ|h, p), ζ)]

∂βυι (x(tυ|h, p), ζ)
∂βυι (x(tυ|h, p), ζ)
∂x(tυ|h, p)

πı(tυ|h, p)
}
, ı ∈ I9;

∂Λϵ(h, p, ζ, ψ)
∂ζυι

=
1
2

{
∂αυι (x(tυ|h, p), ζ)

∂ζυι
−
∂βυι (x(tυ|h, p), ζ)

∂ζυι
+ 2

∂γϵ,ρ,3σ[βυι (x(tυ|h, p), ζ)]
∂βυι (x(tυ|h, p), ζ)

∂βυι (x(tυ|h, p), ζ)
∂ζυι

}
;

∂αυι (x(tυ|h, p), ζ)
∂ζυι

= −(
dυ
ι

d
υ

ι

+ 1),
∂βυι (x(tυ|h, p), ζ)

∂ζυι
= −(

dυ
ι

d
υ

ι

− 1).

Remark 2. There exist two steps to calculate the gradients of the cost function JH
ρ,ϵ(h, p, ψ, ζ) with

respect to λ ∈
{
h; pı, ı ∈ I9;ψ; ζυι , ι ∈ I3, υ ∈ Iσ

}
: (i) solve systems (2.1), (3.30), and (3.32) using

a numerical differential scheme, progressing forward in time to obtain their respective solutions; (ii)
compute the gradients based on Theorem 3. When these gradients are derived, a gradient-based NLP
method can be applied to solve Problem H.

3.6. Hybrid optimization algorithm

The numerical techniques for solving Problem H can be divided into two main categories: deter-
ministic methods and intelligent methods [46]. Deterministic methods rely on known information,
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such as gradients, to solve Problem H, and are recognized for their fast convergence. In contrast, in-
telligent methods often employ probabilistic strategies that are more effective for global optimization.
While stochastic methods excel at exploring the global search space, they depend on random search
processes, which can be time-consuming.

Typically, gradient-based methods [46] are applied to local optimization problems, as they are well-
suited for refining solutions near the initial starting point. To address issues like getting stuck in local
optima and premature convergence, a particle swarm optimization (PSO) algorithm, an example of an
intelligent method, has been introduced [41].

To achieve a balance between local refinement and global exploration, a hybrid optimization al-
gorithm, referred to as Algorithm 1, has been developed to effectively address Problem H. In this
algorithm, the modified PSO method [41] is employed for the exploration phase, while gradient-based
techniques are used for local exploitation, as noted in Line 3 of Algorithm 1. This hybrid approach
combines the advantages of the PSO algorithm with the efficiency of gradient-based methods, which
leverage the gradient information of the objective function in Problem H.

Let Msup be a sufficiently large number. Let ρsup be a predefined parameter used to ensure the
termination of the penalty approach. Let ρ0 and ϵ0 be the initial values of ρ and ϵ, respectively. Let ϵ
be a predefined parameter used to ensure the termination of Algorithm 1. Let EJ be the convergence
tolerance of the cost function. Let Ψρ,ϵ := (h, pT, ψ, ζT)T. Let Ψ0

ρ,ϵ be the initial value of Ψρ,ϵ .

Algorithm 1 Solving Problem H.
1: Choose initial values of Ψ0

ρ,ϵ , ρ
0, ϵ0,Msup, EJ, ρsup, ϵ

min.

2: Set Jbe f ore := Msup, ρ := ρ0, ϵ := ϵ0.

3: Solving Problem H with the cost function JH
ρ,ϵ(Ψ

0
ρ,ϵ) using the hybrid algorithm designed through

the combination of PSO [41] and the gradient-based method [46] developed based on Theorem 3
to obtain the optimal solution, denoted by Ψ∗ρ,ϵ

4: Set Jpresent := JH
ρ,ϵ(Ψ

∗
ρ,ϵ).

5: if |Jpresent − Jbe f ore| < EJ then
6: return Ψ∗ρ,ϵ;
7: else
8: Jbe f ore := Jpresent, ρ := 10ρ.
9: if ρ < ρsup then

10: Set Ψ0
ρ,ϵ := Ψ∗ρ,ϵ and go to 3;

11: else
12: Jbe f ore := Jpresent, ρ := ρ0; ϵ := 0.1ϵ.
13: if ϵ > ϵmin then
14: Set Ψ0

ρ,ϵ := Ψ∗ρ,ϵ and go to 3;
15: else
16: return Ψ∗ρ,ϵ .
17: end if
18: end if
19: end if

Remark 3. Essentially, the goals of Algorithm 1 are for decreasing the value of ϵ to approximate the
max function and increase the value of ρ to ensure that |Jpresent − Jbe f ore| < EJ is satisfied.
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The convergence of Algorithm 1 is assured as stated in the following. (i) Theorem 1 guarantees that
if the smoothing parameter ϵ is small enough, the solution of Problem H is an approximate solution of
Problem F; (ii) by virtue of the fundamental principles of the penalty function, when ρ is large enough,
any solution to Problem F is a feasible solution to Problem E [40, 45]. Note that in Section 3.1,
Problem A can be converted into Problem E.

The selection of hyperparameters is often based on a combination of experience, experimentation,
and evaluation metrics. For example, inertia weight (w): typically chosen between 0.4 and 0.9; accel-
eration factors (c1, c2): generally set between 1.5 and 2; population size: usually ranges from 20 to
50.

4. Numerical results

4.1. Experiment design

All computations are performed using MATLAB R2016a on a computer equipped with a 3.70 GHz
Intel Core i9-10900K CPU and 32.0 GB of RAM. In the numerical computation, the cultivation con-
ditions have been studied in [16]. During the fed-batch culture, alkali, which is intermittently put in
the fermentor to maintain its pH value at approximately 7.0, can cause a chemical reaction with acetic
acid. This operation significantly affects the correctness of the extracellular concentrations of acetic
acid and ethanol. Therefore, in this paper, the focus is on the discrepancy between the measured output
data and the system output for the first three substances. The fed-batch culture evolves starting from
the initial states x0.

The feeding process starts at τ1 = 5.33 (h). The feeding time starts at τ2i+1, i ∈ Λ2 and stops at
τ2i+2, i ∈ Λ1. They were determined through the experiment reported in [43]. To obtain the value of the
cost function (3.9) in Problem F, system (2.1) needs to be solved numerically. Thus, the computational
load is rather large. Therefore, for saving the calculation time, the process of the fed-batch culture
reported in [47] is grouped into ten stages (i.e., Batch Stage and Stages II–X). In each of Stages II–X,
the time duration for each batch stage is 100s minus the duration of the feeding process. The feeding
processes in Stages II–X last for 5, 7, 8, 7, 6, 4, 3, 2, 1, 2, and 1 seconds out of every 100 seconds,
leaving 95, 93, 92, 93, 96, 97, 98, 99, 98, and 99 seconds for batch processes, respectively.

4.2. Parameters setting

Based on [43], the experiment parameters used in the calculation of the solution of system (2.1)
are, respectively, x0 = (0.1115 gL−1, 495 mmolL−1, 0, 0, 0)T, x = (0.0001, 0.1, 0, 0, 0)T, x =
(15, 2039, 939.5, 1026, 360.9)T, r = 0.75, Cs0 = 10, 762 mmolL−1, V0 = 5 L, t f = 26.8 (h),N =
783, h = 12 (hour), p = (0.438, 0.5,−7.35435, 0.0039, 33.845, 5.945445, 8.8648, 2.59, 10.225)T, p =
(1.314, 3.3,−2.45145, 0.0117, 101.535, 17.836335, 26.5944, 7.77, 90.675)T, σ = |T | = 16,T =

{0, 2, 4, 5.83, 7.83, 9.83, 11.83, 13.83, 15.83, 17.83, 19.83, 21.83, 23.83, 24.83, 25.83, 26.83}.
Euler method is used to solve system (2.1) with a step size of 1/3600. In Algorithm 1, the value

of ρ0, ϵ0,Msup, EJ, ρsup, ϵ
min are, respectively, 1, 10, 107, 10−2, 106, 10−6. In addition, the value of Ψ0

ρ,ϵ is
selected in its feasible region. The initial function ϕ(t) is obtained through the use of the cubic spline
method to interpolate the experimental data [40].
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Remark 4. Practitioners of numerical approximation are most concerned with truncation error,
which in a numerical method is an error that is caused by using simple approximations to repre-
sent exact mathematical formulas. We seek information about errors on both a local and global scale.
Local truncation error is the amount of truncation error that occurs in one step of a numerical ap-
proximation. Global truncation error is the amount of truncation error that occurs in the use of a
numerical approximation to solve a problem.

We obtain the global truncation error at step n in any numerical approximation of (2.1) by

En+1 = [1 + ∆t f ℓx (x(t), x(t − h), p)]En −
(∆t)2

2
ẍ(τ), where τ∈[0, t f ],∆t = tn+1 − tn.

The local truncation error for Euler’s method is − (∆t)2

2 ẍ(τ). The local truncation error has two
factors of ∆t, and we say that it is O((∆t)2). Based on [48], we have

|En| ≤
M
2K

(eKtn − 1)∆t,

where
K = max

(t,x(t),x(t−h),p)∈[0,t f ]×W×W×P
| f ℓx (x(t), x(t − h), p)| < ∞,

M = max
(t,x(t),x(t−h),p)∈[0,t f ]×W×W×P

|( f ℓt + f ℓ f ℓx )(x(t), x(t − h), p)| < ∞.

We can see from the above description that the error vanishes as ∆t → 0. Therefore, it is appropriate
to use the Euler method for solving differential equations with ∆t = 1/3600 (hour), which is small
enough for the requirement of microbial fermentation simulation.

4.3. Results and analysis

By virtue of Algorithm 1, the obtained optimal values of time-delay and system parameters are,
respectively, h∗ = 0.824237042558447 and p∗ = (1.142666910517339, 0.500218711380598,
− 3.629735870518227, 0.005853192577210, 99.392558636711343, 6.427113527307207,
8.869263769688454, 2.659555099094625, 80.975777396140828)T.

The optimal time delay in literature [43] was obtained using precise experimental data. In con-
trast, the optimal time delay presented in this paper is derived under the worst-case distribution of
experimental data. Therefore, the optimal time delays obtained in the two cases differ.

The relative errors between the computed values xι(tυ|h∗, p∗), tυ ∈ T , ι ∈ I3, υ ∈ Iσ, and the ex-
perimental data yι(tυ), tυ ∈ T , ι ∈ I3, υ ∈ Iσ, obtained with and without (denoted by “C” and “B”,
respectively) and taking into consideration of the worst-case probability distribution of the experimen-
tal data (WCPDED) are listed in Table 2, where the relative errors are defined by

eι :=

σ∑
υ=1

|xι(tυ|h∗, p∗) − yι(tυ)|

σ∑
υ=1

|yι(tυ)|

, ι ∈ I3.
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Here, x(tυ|h∗, p∗) := (x1(tυ|h∗, p∗), · · · , x5(tυ|h∗, p∗))T ∈ R5
+ denotes the solution of system (2.1) corre-

sponding to the obtained optimal time-delay h∗ and system parameters p∗ with the initial concentration
x0, and y(tυ) = (y1(tυ), · · · , y3(tυ))T ∈ R3

+ is the experiment data at the time point tυ ∈ T .
Table 2 reveals that the relative error of ‘C’ exceeds that of ‘B’. This discrepancy can be attributed

to the fact that the relative error for ‘C’ is calculated based on the WCPDED. This WCPDED reflects
greater variability and uncertainty of the distribution of the experimental data in the measurements for
‘C’, which naturally leads to a higher relative error. In contrast, surrounding ‘B’ without taking into
consideration of the WCPDED contributes to its comparatively lower relative error. Understanding
these distinctions is crucial for accurately interpreting the reliability of our findings.

Table 2. Relative errors between B and C.

Relative error e1(%) e2(%) e3(%)
B 10.7042322473258 14.8532582883951 5.64026160583546
C 12.1565939669873 23.4868141782757 5.79013674616066

Under the obtained h∗ and p∗, the curve of the concentration of the first three substances are drawn
in Figures 2–4 (the horizontal axis stands for time; the vertical axis stands for the concentrations of
biomass, glycerol, and 1,3-PD, respectively; A: experimental data; B: the concentration change curve
of biomass, glycerol, and 1,3-PD without considering the WCPDED, respectively; C: the concentration
change curve of biomass, glycerol, and 1,3-PD that takes into account the WCPDED, respectively).
The analysis presented in Figures 2–4 illustrates a reasonable alignment between the computed values
and the experimental data under the WCPDED framework. To facilitate comparison, we determined
the relative errors between the computed concentrations of biomass, glycerol, and 1,3-PD against the
experimental results, utilizing the optimal time-delay and system parameters outlined in [43]. It is
important to note that, unlike the optimization problem discussed in [43], our approach to parameter
estimation relies solely on the first-order moment of the experimental data, thereby simplifying the
process. Moreover, Algorithm 1 is designed to operate effectively without requiring precise knowledge
of the distribution of the experimental data. The entire calculation process took approximately 15,653
seconds.

Figures 2–4 demonstrate that the NCTSTD system, utilizing the parameters h∗ and p∗, effectively
captures the dynamics of the fed-batch culture process, even within the constraints of the WCPDED.
This suggests that our model not only aligns well with observed behaviors but also provides a robust
framework for understanding the intricacies of the cultivation process. The ability of the NCTSTD sys-
tem to maintain accuracy under these conditions highlights its potential for applications in optimizing
bioprocesses.

Note that our method is under the assumption that the first-order moment information of the ex-
perimental data can be accurately obtained. Obviously, it will be practically important to extend this
method to cases where moment information is also uncertain. This will be an interesting further re-
search direction.
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Figure 2. Comparison of experimental data and computed values of biomass concentrations
under the value of h∗ and p∗.
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Figure 3. Comparison of experimental data and computed values of glycerol concentrations
under the value of h∗ and p∗.
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Figure 4. Comparison of experimental data and computed values of 1,3-PD concentrations
under the the value of h∗ and p∗.
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5. Discussion

This paper studies an NCTSTD with unknown quantities, in which the measured output data is
uncertain. The focus is to identify these unknown quantities. For this, we formulate the problem
as a DRPE problem subject to the NCTSTD system. A hybrid algorithm is presented to solve the
DRPE problem. Finally, numerical results are obtained, which demonstrate the validity of the designed
algorithm.

On the other hand, it is important to note that the designed algorithm is based on the assumption
that the first-order moment information of the measured output data with respect to its probability
distribution is available, highlighting the need to extend the algorithm to cases where this moment
information is uncertain. This would be an interesting further research area.

In summary, the designed algorithm provides a promising method to optimally identify time-delay
and system parameters in the fed-batch culture process of glycerol bioconversion to 1,3-PD under the
environment of uncertain measured output data. The potential extension of this algorithm to more
general cases would enhance its scope of applications.
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