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Abstract: By considering both the single drug dose and the total drug input during the treatment pe-
riod, we propose a new optimal control problem by maximizing the immune cell levels and minimizing
the tumor cell count, as well as the negative effects of the total drug quantity over time. To solve this
problem, the control parameterization technique is employed to approximate the control function by a
piecewise constant function, which gives rise to a sequence of mathematical programming problems.
Then, we derive gradients of the cost function and/or the constraints in the resulting problems. On
the basis of this gradient information, we develop a numerical approach to seek the optimal control
strategy for a discrete drug administration. Finally, numerical simulations are conducted to assess the
impact of the total drug input on the tumor treatment and to evaluate the rationality of the treatment
strategy within the anti-cancer cycle. These results provide a theoretical framework that can guide
clinical trials in immunotherapy.

Keywords: cancer remission; constrained optimal control; control parameterization; nonlinear
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1. Introduction

Cancer is a global health issue, and treating a tumor poses numerous challenges. The selection of
an appropriate treatment scheme, such as surgery and immunotherapy, generally depends on the spe-
cific characteristics of the tumor cells, including their aggressiveness and the location of their growth.
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Immunotherapies are employed to either enhance the body’s natural immune defenses or restore the
immune system functions that have been compromised. Therefore, it is significant to explore im-
munotherapeutic approaches to treat tumors.

In tumor immunotherapies, strategies such as an Adoptive Cellular Immunotherapy (ACI), cy-
tokines, and other antigen-specific and non-specific agents are expolited to stimulate the immune sys-
tem, eliminate abnormally proliferating cells, and enhance the immune system’s ability to defend itself.
ACI involves the injection of in vitro-generated immune cells that are sensitive to the tumor antigens
into the host’s tumorigenic environment. This process strengthens and expands the host’s immune re-
sponse [1]. Interleukin-2 (IL-2) is the primary cytokine responsible for the activation, proliferation,
and differentiation of lymphocytes, and is predominantly produced by CD4+T cells. At various stages
of disease, IL-2 has been shown to enhance the activity of cytotoxic T lymphocytes (CTLs) [2]. ACI
has been shown to reduce the tumor activity in the host and can be combined with high doses of IL-2
to halt the tumor growth until the tumor cells are eliminated [3].

To explore the interactions among tumor cells, immune cells, and their microenvironment, numer-
ous researchers have conducted mathematical modeling of tumor-immune systems; see, for exam-
ple, [4–7]. Nevertheless, the aim of this paper is to investigate tumor-immune cell interactions by
applying the control parameterization strategy. Moreover, numerous researchers have investigated the
applications of the optimal control theory [8–11] to cancer dynamics. Murray [12] studied a mathemat-
ical model of tumor and normal cells, thereby controlling the rate of treatment administration based
on logistic and Gompertzian growth patterns. This approach aimed to minimize the tumor burden
at the end of the treatment period, while the normal cell population was maintained above a certain
threshold to avoid toxicity. Burden et al. [13] applied the optimal control theory with the goal of max-
imizing the effector cell and IL-2 concentrations while minimizing the number of tumor cells. Fister
and Donnelly [14] explored the dynamics between tumor cells, immune effector cells, and IL-2 using
a mathematical model. They identified the conditions under which the tumor could be eliminated and
obtained the optimal control strategy by solving the optimality system. DePillis et al. [15] developed
a mathematical model to analyze the interaction between tumor immunity and chemotherapy, thereby
outlining strategies for an optimal treatment implementation. The dynamics of the model were ana-
lyzed, the optimal control strategies were established, and both quadratic and linear cases were solved.
The optimal control methods related to the drug treatments were identified, and the numerical results
of the optimal strategy were discussed. Based on a tumor palliation model, Chakrabarty and Baner-
jee [16] applied the classical control theory to determine how optimal external treatments with ACI
and IL-2 could more effectively palliate malignant tumors, while minimizing adverse effects on the
immune response. Their findings demonstrated that the combination therapy was the most effective in
reducing the tumor load. Although these treatments led to a reduction in the tumor cell levels, ACI
may be more beneficial than IL-2 if only one treatment option is utilized. Khajanchi and Ghosh [17]
developed a system of nonlinear differential equations to model the interactions between cancer cells
and the immune system. They formulated an optimal control problem aimed at minimizing the total
tumor load and the adverse effects of drugs, while maximizing the total number of effector cells. By
utilizing the deterministic optimal control theory, they evaluated the effectiveness of the optimal treat-
ment strategies for both ACI and IL-2 therapies, thereby exploring the synergistic potential of these
treatments in cancer dynamics. However, the optimal control of tumor models with constraints has not
yet been considered. In particular, analyses and numerical evaluations haven’t fully explored the vari-
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ous constraints associated with drug therapy dosages in cancer dynamics. For the optimization control
methods of tumor models, most scholars provide time-varying input curves when studying, which con-
sider the time-varying input of continuous nonlinear models. The optimal control solution obtained
by this method is the ideal solution under ideal conditions, providing strong data support for practical
treatment. However, due to the limitations of practical conditions, the actual input forms are all dis-
crete, which means that in the actual treatment process, the operability is weak and it is impossible to
make timely adjustments to changes in the input.

A set of valid comparison criteria was established to be used for the comparison of local collocation
and control parameterization in [18, 19]. Then, the numerical mechanisms behind both methods were
examined and analyzed according to these criteria. The purpose of [20] was to extend the control
parameterization methods to solve problems with both control-dependent and discrete delay arguments.
Recently, Teo et al. [21] summarized the latest advancements in the control parameterization technique.
They outlined methods to address the optimal control problems, both with and without constraints, and
highlighted that these problems could be effectively solved by using MISER3, which is an optimal
control software that utilizes control parameterization techniques. Here, the optimal control problems
were approximated by the optimal parameter selection problems using control parameterization, which
can be regarded as finite-dimensional optimization problems, where the control heights and switching
times of the piece-wise constant function were taken as the decision variables [22]. To the best of
our knowledge, most researchers have used piecewise continuous functions to approximate the control
function in their models, while few have provided the discrete dosage forms for multiple variables. On
the contrary, it is notably important to study the optimal control of unconstrained, piecewise continuous
tumor models; see, for example [16, 17, 23–25]. Control parameterization discretizes the control and
provides the optimal solution for the most effective control problem, leaving a certain buffer time
for the next period of control changes, making the control input more accurate [26–30]. In addition,
the optimal control problem using this method has the form of continuous state and discrete control.
Compared to discrete states, this method obtains better optimal solutions. Compared to continuous
control, this method has lower limitations on physical devices and stronger operability when applied
in clinical treatment. Based on changes in the number of tumor cells in the body, drug control is more
accurate.

In this paper, we apply the optimal control theory to derive the discrete drug dosing strategies for
constrained optimal control problems, thereby focusing on two treatment modalities. Specifically, we
aim to minimize the number of tumor cells and the drug’s toxicity to the body, maximize the number
of effector cells, and consider a variety of realistic scenarios. These include constraints on the quantity
of a single drug dose and the total amount of the drug input, thus reflecting the body’s tolerance to drug
exposure.

The organization of this paper is as follows: in Section 2, we briefly describe the nonlinear system
of ordinary differential equations that model the tumor-immune cell interactions; Section 3 presents
the optimal control problem, which includes both equality and inequality constraints; in Section 4, we
derive the gradient formulas and develop a numerical approach to seek the optimal control strategies;
Section 5 provides numerical simulations, both with and without constraints, thereby illustrating the
drug injection doses based on piece-wise constant forms; and finally, we provide the corresponding
conclusions in Section 6.
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2. Tumor-immune model

In this section, we will briefly introduce the interaction model for the initial cancer dynamics as
proposed by Kuznetsov et al. [31]. The immune response to tumors is usually dominated by cytotoxic
T lymphocytes (CTLs) and natural killer cells (NKs). The interaction between effector cells (EC) and
tumor cells (TC) in vitro can be described by a kinetic scheme (Figure 1). where EC, TC, C, EC∗,

Figure 1. Interaction between tumor cells and effector cells.

and TC∗ are the local concentrations of effector cells, tumor cells, effector cell-tumor cell conjugates,
inactivated effector cells, and "lethally hit" TC cells, respectively. The parameters k1, k−1, k2, and k3 are
nonnegative kinetic constants: k1 and k−1 describe the rates of binding of EC to TC and detachment of
EC from TC without damaging cells; k2 is the rate at which EC−TC interactions irreversibly program
TC for lysis; and k3 is the rate at which EC − TC interactions inactivate EC.

They established a complex nonlinear tumor model that involved a system of ordinary differential
equations to describe the tumor-immune cell interactions as follows:

dEC

dt
= s + F (C,TC) − d1EC − k1EC · TC + (k−1 + k2) C,

dTC

dt
= aTC (1 − bTCtol) C − k1EC · TC + (k−1 + k3) C,

dC

dt
= k1EC · TC − (k−1 + k2 + k3) C,

dEC∗

dt
= k3C − d2EC∗,

dTC∗

dt
= k2C − d3TC∗,

(2.1)

where EC, TC, and C represent the numbers of unbound EC, unbound TC, and EC − TC complexes
at the tumor site, respectively; EC∗ and TC∗ indicate the number of inactivated EC and lethally hit
TC at the tumor site, respectively. The total number of unhit TC cells at the tumor site is denoted as
TCtol = TC + C. The parameter s represents the standard rate at which mature EC cells enter the TC
locus, which is independent of any enhancement due to the presence of TCs. The parameters d1, d2

and d3 are positive constants that represent the rates of elimination for the EC, EC∗, and TC∗ cells,
respectively, because of their destruction or migration from the TC locus. It is assumed that the tumor
is not metastatic, and therefore, there is no migration of TCs or EC − TC complexes from the primary
site. The parameter a represents the maximum growth rate of the TC population, which encompasses
both proliferation and death of these cells. The parameter b is the maximum carrying capacity of the
biological environment for the TC population. The function F(C,TC) characterises the rate at which
the cytotoxic effector cells accumulate in the localized region of the TC because of the existence of
tumors.
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Based on [16], model (2.1) can be simplified as follows:
dEC(t)

dt
= su1(t) +

pEC(t) · TC(t)

g + TC(t)
− dEC(t) − mEC(t) · TC(t),

dTC(t)

dt
= aTC(t) (1 − bTC(t)) − nEC(t) · TC(t) − u2(t) · TC(t),

(2.2)

where the function u1(t) serves as an input function for IL-2. The external administration of IL-2 is
modeled by the control function u1(t), which facilitates the influx of effector cells and boosts the activity
of the immune cells. The function u2(t) acts as an input function for ACI. The external administration
of ACI is represented by the control function u2(t), which inhibits tumor production and directly targets
the tumor cells at the tumor site. When u1(t) = 1 and u2(t) = 0, model (2.2) is a simplified model of
the tumor without treatment.

3. Optimal control problem

In this section, an objective function is defined for treating a tumor over a fixed treatment cycle.
The therapeutic goal is to minimize the number of tumor cells and reduce the drug toxicity in terms of
the side effects for the patient, while maximizing the benefit for the immune effector cells. Here, we
explore the impact of controlling IL-2 (u1(t)) and ACI (u2(t)) treatments on the dynamics of the state
equation (2.2) during tumor treatments.

Thus, the cost function for the optimal control problem is defined as follows:

J (u1, u2) =
∫ t f

0

[
EC (t) − TC (t) −

1
2

(
B1u2

1 (t) + B2u2
2 (t)
)]

dt, (3.1)

where the constants B1 and B2 represent the costs associated with drug administration, which are also
known as the weighting factors of the control. These primarily reflect the level of drug toxicity to the
body. Given that drugs such as ACI and IL-2 can exhibit high toxicities, a lower toxicity is preferable.
This reasoning underlies the use of a positive coefficient for the quadratic terms of the control in the
objective function, as it aims to minimize the negative impact of drug toxicity.

Now, the following optimal control problem subject to system (2.2) is stated.
Problem P1: Given system (2.2), choose the optimal controls u1 and u2 such that the cost function

(3.1) is minimized.
In the treatment process, considerations such as the patient’s drug tolerance and the severity of the

toxicity side effects were not taken into account. In contrast, a study by Goedegebuure et al. [32] in-
volved 16 valuable patients who experienced varying levels of toxicity. This study demonstrated that
different drug dosages can lead to a range of side effects, including, but not limited to, flu-like symp-
toms (fever, nausea, vomiting, and diarrhea), capillary leak syndrome, oliguria, transient confusion,
elevated liver and kidney function, thrombocytopenia, headache, hallucinations, erythema rash, and
other drug-related side effects. This indicates that even moderate drug concentrations can cause signif-
icant side effects in patients undergoing anti-cancer treatments, yet this may be considered a reasonable
trade-off. Additionally, the study highlighted that the anti-tumor effects of combination drugs are sig-
nificant when the dosage of each drug is kept below the maximum tolerated dose (MTD) for either
drug [33]. This suggests that limitations on the drug input, including the amount administered per unit
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of time and the total amount administered during the treatment cycle, should be carefully considered
in the patient treatment plans.

First, we will limit the dosages of the anticancer drugs ACI and IL-2, denoted as u(t) := [u1(t), u2(t)],
administered per unit of time, i.e.,

0 ≤ u(t) ≤ umax, t ∈ [0,T ], (3.2)

where umax := [umax
1 , umax

2 ] are positive constants, which represent the maximum allowable dosages
for each drug in a combination therapy with each maximum value. This ensures that the dosages are
within a range that patients can tolerate in terms of the side effects from a single administration of the
drugs.

Second, another measure of drug toxicity considers the product of drug concentration and the du-
ration of administration, which can be mathematically represented as the integral of the drug concen-
tration over a designated period. When this period encompasses either the entire treatment course or
a treatment cycle, the primary concern becomes the total cumulative toxicity. This approach accounts
for the overlap of side effects experienced by the patient at any given time and the overall bodily mech-
anisms that may be adversely impacted by a prolonged exposure to side effects. When determining the
total dosage of a specific drug administered, we have the following:∫ T

0
u(t)dt = us f ixed, (3.3)

where usfixed are positive constants, which represent the total dosage of the drug inputs over a time
period T .

Thus, the constrained optimal control problem subject to system (2.2) can be defined as follows.
Problem P2: Given system (2.2), choose the optimal controls u1 and u2 such that the cost function

(3.1) is minimized subject to the constraints (3.2) and (3.3).

4. Control parametrization

As is well-known, optimal control problems can be efficiently solved by the control parameteri-
zation technique, in which the control function is approximated by a piece-wise constant or linear
functions [21].

The controls u1(t) and u2(t) can be approximated by the following:

uk(t) ≈
M∑
j=0

h j
kχ[t j,t j+1)(t), (4.1)

where

χ[t j,t j+1)(t) =

1, t ∈
[
t j, t j+1

)
,

0, otherwise.

and the new decision variables h j
k, k ∈ {1, 2}, j ∈ {0, 1, . . . ,M} satisfy the following constraint:

0 ≤ h j
k ≤ umax

k , k ∈ {1, 2}, j ∈ {0, 1, . . . ,M}. (4.2)
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Let t0 = 0, tM+1 = T. The given switching times t j, j ∈ {0, 1, . . . ,M}, satisfy the following:

0 ≤ t1 ≤ t2 ≤ · · · ≤ tM ≤ T.

Let
h =
[(

h0
)⊤
,
(
h1
)T
, . . . ,

(
hM
)T ]⊤
∈ R2(M+1),

where
h j =

[
h j

1, h
j
2

]⊤
∈ R2, j ∈ {0, 1, . . . ,M}.

The corresponding cost function (3.1) becomes the following:

J (h1, h2) =
M−1∑
j=0

∫ t j+1

t j

[
TC(t) +

1
2

(
B1

(
h j

1χ[t j,t j+1)(t)
)2
+ B2

(
h j

2χ[t j,t j+1)(t)
)2)
− EC(t)

]
dt

+

∫ T

tM

[
TC(t) +

1
2

(
B1

(
hM

1 (t)
)2
+ B2

(
hM

2 (t)
)2)
− EC(t)

]
dt.

(4.3)

Furthermore, system (2.2) changes to the following form:

dEC
dt
= s

M∑
j=0

h j
1χ[t j,t j+1)(t) +

pEC · TC
g + TC

− mEC · TC − dEC

dTC
dt
= aTC(1 − bTC) − nEC · TC −

M∑
j=0

h j
2χ[t j,t j+1)(t)TC

(4.4)

with the initial condition
EC(t) = EC0, TC(t) = TC0. (4.5)

With these in mind, Problem P1 can be approximated by the following problem.
Problem PP1: Given system (4.4) with initial condition (4.5), choose an optimal h j

k, k ∈ {1, 2}, j ∈
{0, 1, . . . ,M} such that the cost function (4.3) is minimized.

5. Gradient computation

In essence, problem (PP1) is a mathematical programming problem. It is well known that gradient-
based optimization techniques are highly effective in solving such a problem. For this, the gradients of
the cost function (4.3) are needed. In this section, we will present these required gradients.

Define

f (t, x(t), h) =


dEC

dt
dTC

dt

 , x(t) =
[

EC(t)
TC(t)

]
.

For t ∈ [tl, tl+1) , l ∈ { j, . . . ,M}, j ∈ {0, 1, . . . ,M}, k ∈ {1, 2}, consider the following auxiliary dynamic
systems

dψ j
k(t)

dt
=

n∑
l=1

∂ fk (t, x(t), h)
∂xl

ψ
j
l (t) + δ

l
k
∂ fk(t, x(t), h)

∂k j
k

, (5.1)
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with the initial condition

ψ
j
k(t) = 0, t ∈

[
0, t j

)
, j ∈ {0, 1, . . . ,M}, k ∈ {1, 2}, (5.2)

where

δl
k =

1, k = l

0, otherwise.

Theorem 1. The gradients of the cost function (4.3) are as follows:
∂J (h1, h2)

∂h j
1

∂J (h1, h2)

∂h j
2

 =
M−1∑
l=0

∫ tl+1

tl

[
−ψ

j
1(t)

ψ
j
2(t)

]
dt +
∫ T

tM

[
−1
1

]
dt

+


∫ t j+1

t j

 B1h j
1χ[t j,t j+1)(t)

B2h j
2χ[t j,t j+1)(t)

 dt,
[
t j, t j+1

)
⊂ [0, tM] .

∫ T

tM

 B1h j
1χ[t j,t j+1)(t)

B2h j
2χ[t j,t j+1)(t)

 dt,
[
t j, t j+1

]
= [tM,T ] .

(5.3)

Proof. The proof of Theorem 1 is similar to the proof of Theorem 7.2.2 in [21]. □

Define

[g1(h), g2(h)] =
∫ T

0
[

M∑
j=0

h j
1χ[t j,t j+1)(t),

M∑
j=0

h j
2χ[t j,t j+1)(t)]dt − us f ixed = 0. (5.4)

Then, Problem P2 can be approximated by the following problem.
Problem PP2: Given system (2.2), choose h j

k, k ∈ {1, 2}, j ∈ {0, 1, . . . ,M}, such that the cost func-
tion (3.1) is minimized subject to the constraints (4.2) and (5.4).

In addition, the gradients of the constraints in Problem P2 are given as follows.

Theorem 2. The gradients of the constraints (5.4) are as follows:
∂g1(h)

∂h j
1

∂g1(h)

∂h j
2

∂g2(h)

∂h j
1

∂g2(h)

∂h j
2

 =

∫ t j+1

t j

 1 0
0 1

 dt,
[
t j, t j+1

]
⊂ [0, tM] .

∫ T

tM

 1 0
0 1

 dt,
[
t j, t j+1

]
= [tM,T ] .

(5.5)

Proof. The proof of Theorem 2 is obtained based on the chain rule. □

Generally, to maintain consistency in the time intervals before and after, we default to using the
same time interval as previously mentioned when calculating the gradient of the constraints, based on
the time interval of the cost function. This approach yields the gradients of the constraints, which can
be solved using a standard nonlinear programming algorithm.
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6. Numerical simulation

We will now conduct numerical simulations of Problems PP1 and PP2 to validate the analytical
gradient results presented in the previous sections. To demonstrate the accuracy of our numerical sim-
ulations, we have selected parameter sets from both the tumor model and the optimal control problem.
These parameters are listed in Table 1.

Table 1. Numerical simulation parameter set [17, 31].

Parameters Description Numerical values
s Entry rate of effector cells 1.3×104

p Maximum rate of proliferation of effector cells 0.1245
g Semi-saturated constant cells 2.019×107

m Effector cell inactivation rate due to tumor cells 3.422×10−10

d Natural mortality of effector cells 0.0412
a Maximum proliferation rate of tumor cells 0.18
b b−1is the maximum carrying capacity of the cell 2.0×10−9

n Tumor cell inactivation rate due to effector cells 1.101×10−7

B1 Cost of IL-2 drugs 107

B2 Cost of ACI drugs 107

First, we obtain the numerical solution for system (2.2) using the fourth-order Runge-Kutta algo-
rithm. Then, an algorithm based on the control parameterization is developed as follows:

Step1: Obtain ψ j
k(t) by solving system (5.1) with the initial constraint (5.2).

Step2: Compute the solution of systems (4.4) and (4.5) by solving system (4.4) forward in time
from t = 0 to t = T with the initial condition (4.5).

Step3: Compute the corresponding value of gi(h) via (5.4) and compute the gradient value of the
constraints (5.4) via (5.5).

Step4: Find the optimal value by using the gradient formulae from Theorems 1 and 2 in conjunction
with the nonlinear programming software–Optimization Toolbox in MATLAB.

Finally, we simulate the tumor treatment process over a specified time period. To gain multiple
perspectives on what is actually occurring throughout the process, we present the following simulations
of the scenario.

6.1. First scenario: no treatment

We simulate a scenario where the effector and tumor cells naturally engage in a conflict without
any treatment applied. This simulation provides a geometric visualization that helps us understand
the behavior of the tumor system, thus leading to insights into potential optimal control strategies.
Figure 2 illustrates the dynamics of this untreated scenario. Within a fixed time horizon from 0 to 200,
the effector cells oscillate, and similarly, the tumor cells fluctuate in a pattern of ebb and flow. This
demonstrates that the cancer does not remit on its own without intervention.
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Figure 2. The numerical solution of the untreated state system (1) with the initial conditions
used are EC0 = 1.70811 × 106,TC0 = 8.28638 × 106.
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(b) Control variable IL-2 input change
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Figure 3. Numerical solution of the state system and the discrete inputs of the two drugs
over 200 days when no limits are placed on the total amount of drugs.
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6.2. Second scenario: the effect of unconstrained combination therapy

We now explore the interaction between the effector and tumor cells under the influence of two
combined drugs, regardless of the total dosage administered. In the treated scenario, the number of tu-
mor cells reaches a therapeutic plateau around day 50, thus indicating a significant reduction compared
to the untreated case. Figure 2 clearly shows that the combination of ACI and IL-2 markedly reduces
the tumor cell and effectively suppresses their proliferation, as indicated by the yellow solid line in
the first graph of Figure 3, as compared to the second graph of Figure 2. Additionally, the number of
effector cells decreases due to the side effects of the drugs, as shown by the blue solid line in the first
graph of Figure 3. Furthermore, the tumor cells exhibit a slight increase towards the end of the cycle
noted by the upward trend at the end of the yellow solid line in the first graph of Figure 3, suggesting
that the initial therapeutic effectiveness diminishes over time without controlling the total drug dosage.
This reduction in drug efficacy is primarily attributed to the tumor cells developing resistance to the
drugs as the treatment progresses.

6.3. Third scenario: adding a fixed total amount of drug injection

In this section, we explore the drug toxicity by providing numerical examples from five scenarios to
illustrate how the total drug input affects the number of tumor cells and immune effector cells during
the treatment when two drugs are combined, thereby highlighting the accumulation of drug toxicity.
We focus on the impact of the total drug amount on the tumor treatment, with the dosage of each
individual drug contingent upon the constraints set by the total drug input.

Based on numerical calculations of the total drug amount, we will present a range of corresponding
single drug inputs. This approach underscores that individual drug dosages also significantly affect the
patient treatment outcomes.

First case: when total IL-2 and total ACI are the same, both are large

Consider the following case:

∫ 200

0
u1 (t) dt = 100,

∫ 200

0
u2 (t) dt = 100, 0 ≤ u1 (t) ≤ 1, 0 ≤ u2 (t) ≤ 1.

We now examine the outcomes when the total dosage of both drugs is maintained at high levels
throughout the treatment cycle. The number of tumor cells was significantly reduced when high con-
centrations of IL-2 and ACI were administered, compared to scenarios where the total drug dosage was
unrestricted. Specifically, the number of tumor cells effectively converged to zero from the first day of
drug administration until about day 40, as shown by the yellow solid line in the first graph of Figure 4.
Simultaneously, the number of state cells bound to tumor cells decreased, thus showing an exposure to
drug toxicity, but at a relatively steady rate illustrated by the blue solid line in the first graph of Figure
4.
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(c) Control variable ACI input change
Figure 4. Numerical solution of the state system and the two drug inputs over 200 days when
the total IL-2 is 100 and the total ACI is 100.

In this scenario, the higher single-drug dosages imply that patients with a lower tolerance for side
effects can still employ this aggressive treatment strategy to quickly control the tumor progression.
Initially, the ACI dosage was high, thus leading to a significant reduction in the number of tumor cell.
Then, once effective, the dosage of ACI was adjusted downward, as depicted in the third graph of
Figure 4. Meanwhile, the single dosage of IL-2 decreased more gradually, as shown in the second
graph of Figure 4. This strategy highlights the tailored adjustment of drug dosages in response to the
tumor dynamics and the patient response.
Second case: when total IL-2 and total ACI are the same, both are small

Consider the following case:∫ 200

0
u1 (t) dt = 10,

∫ 200

0
u2 (t) dt = 10, 0 ≤ u1 (t) ≤ 0.1, 0 ≤ u2 (t) ≤ 1.

We examine a scenario where both drugs are administered at lower total dosages. Compared to the
unrestricted drug treatment, administering low levels of IL-2 and ACI initially led to a fluctuation in
the tumor cell count, rising and then falling from the first day of drug administration to around day
110, with an overall upward trend during this period. Subsequently, the number of tumor cells linearly
decreased from day 110 to day 160 as the concentrations of IL-2 and ACI were increased. However,
even at their lowest, the tumor cell counts remained above 100,000, and a rapid rebound occurred
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thereafter as seen by the significant curvature at the end of the solid yellow line in the first graph of
Figure 5, compared to the end of the solid yellow line in Figure 3.
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(b) Control variable IL-2 input change
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(c) Control variable ACI input change
Figure 5. Numerical solution of the state system and the two drug inputs over 200 days when
the total IL-2 is 10 and the total ACI is 10.

In the earlier stages, when the total amount of administered drug was low, the impact on the state
cells was minimal, both for the single and the total drug inputs. However, after the single dosage of
ACI was increased, the number of state cells significantly declined, which is a side effect that indicates
that higher drug concentrations lead to more pronounced adverse effects. Importantly, the extent of
these side effects varies from person to person.
Third case: when the total IL-2 is high and the total ACI is low

Consider the following case:∫ 200

0
u1 (t) dt = 100,

∫ 200

0
u2 (t) dt = 10, 0 ≤ u1 (t) ≤ 1, 0 ≤ u2 (t) ≤ 1.

In this scenario, we examine the effects when the total input of IL-2 is high and that of ACI is
low. This scenario displayed a distinctive pattern in a tumor cell count increase, then decrease, then
increase upon administering high IL-2 and low ACI. Initially, the number of tumor cells increased
alongside the IL-2 input from the first day of drug administration up to about 50 days. After this period,
despite the continued high intake of IL-2, the decline in the number of tumor cell was very gradual,
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thus highlighting a delayed response to the drug treatment and illustrating that the delay effects vary
between different drugs.

Post 100 days, there was a rapid decrease in the number of tumor cells reaching a minimum, which
was sustained over approximately 40 days, thus suggesting the combined effectiveness of the drugs,
particularly as the ACI therapy was introduced, thereby enhancing the suppression of tumor growth
while also resulting in a decrease in the effector cells. However, beyond 180 days, when the drug
inputs were reduced to their lowest, the tumor rebounded sharply (as depicted by the distinct curvature
at the end of the solid yellow line in the first graph of Figure 6), thereby surpassing the initial tumor
count within 20 days. This suggests that the effectiveness of the treatment was compromised by a
inadequate drug input, although this point is not the central focus of our current discussion.
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(b) Control variable IL-2 input change
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(c) Control variable ACI input change
Figure 6. Numerical solution of the state system and the two drug inputs over 200 days when
the total IL-2 is 100 and the total ACI is 10.

Fourth case: low total IL-2 and high total ACI
Consider the following case:∫ 200

0
u1 (t) dt = 10,

∫ 200

0
u2 (t) dt = 100, 0 ≤ u1 (t) ≤ 0.1, 0 ≤ u2 (t) ≤ 1.

In this scenario, we explored a treatment regimen characterized by a low overall intake of IL-2 and
a high overall input of ACI. We observed that the effects of such a treatment were largely similar to
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those in the first scenario, with a notable difference being a significantly higher count of state cells in
this case. Biologically, this can be mainly attributed to the higher input of IL-2 in the second scenario,
which was able to boost the number of state cells within the first 40 days when low concentrations of
IL-2 and high concentrations of ACI were administered, as depicted in Figure 7.

0 20 40 60 80 100 120 140 160 180 200

Days

0

2

4

6

8

10

12

14

16

18

St
ate

s

10
6

Effector cells

Tumor cells

(a) Changes in the number of effector cells and tumor cells

0 20 40 60 80 100 120 140 160 180 200

Days

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

O
p
ti
m

a
l 
c
o
n
tr

o
l 
(I

L
-2

)

(b) Control variable IL-2 input change
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(c) Control variable ACI input change
Figure 7. Numerical solution of the state system and the two drug inputs over 200 days when
the total IL-2 is 10 and the total ACI is 100.

This finding suggests that clinically, to minimize drug side effects, the input of IL-2 can be appro-
priately reduced while using higher concentrations of ACI to achieve an enhanced therapeutic effect.
Additionally, it indicates that different drugs have varying tolerance ranges, and exceeding the upper
limit of the input, while yielding consistent therapeutic effects, can cause additional harm that may not
justify the benefits.

6.4. Fourth scenario: involves adjusting a specific drug concentration and executing a gradual
administration of another drug

The primary goal of this scenario is to evaluate the impact of maintaining a fixed concentration of
one drug while continuously adjusting the dosage of another on the tumor-immune microenvironment
within the patient. The drug can effectively function by administering the correct dose to achieve a peak
blood concentration. In this context, the ensuing numerical simulations not only identify the primary
and secondary roles of the drugs during the treatment cycle, but also demonstrate the combined effect
of both drugs more accurately, as depicted in Figures 8 and 9.
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Figure 8. State and tumor cells undergo changes over 200 days while maintaining a total
ACI of 35 and administering a gradient to IL-2.
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Figure 9. State and tumor cells over 200 days when keeping the total amount of IL-2 at 15
and administering a gradient to ACI.

.
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First case: maintaining the concentration of IL-2
ACI is given in increments of 10, 30, 40, 50 and 100.
The dynamics of the effector and tumor cells in Figure 8 demonstrate significant variations when

the IL-2 concentration is maintained and ACI is administered in a gradient. These figures clearly show
that the number of cancer cells significantly vary at different ACI concentrations. Initially, when ACI
doses are limited to 30, 40, and 50, there is little variation; however, more variation becomes apparent
towards the end of the cycle.
Second case: maintain the ACI concentration while administering IL-2 at doses of 10, 30, 40, 50
and 100.

Figure 9 illustrates the changing ratio of effector cells to tumor cells when the ACI concentration is
maintained constant and IL-2 is administered in varying doses. Throughout the course of the treatment,
there is a gradual decline in the number of effector cell, while the reduction in tumor cells is more
pronounced. At this level of ACI, the drug’s effectiveness remains relatively stable during the initial
phases of treatment. However, with lower doses of IL-2, there is a quicker resurgence in cancer cell
proliferation.

7. Conclusions

In this study, we addressed the optimal control problem with the goal of maximizing the popula-
tion of effector immune cells, minimizing the tumor cell counts, and reducing the drug toxicity. The
objective of this paper was to deepen our understanding of tumor dynamics by analyzing interactions
between immune effector cells, tumor cells, and their microenvironment, given a fixed total drug in-
put. To assess the cumulative toxicity of the treatment, we introduced two external drugs (ACI and
IL-2) administered over the total cycle time. The primary contribution of this work includes setting
a constraint on the total drug input and establishing a discrete dosing sequence to represent the ad-
ministration of anti-cancer drugs. Initially, we defined the optimal control problems, with and without
constraints, based on a specified tumor model. Theoretically, we enhanced the model’s descriptive
power by incorporating an auxiliary system that provided gradient information for the state equations
using variational and chain rule methods, thereby deriving a gradient formulation for the objective
function analyzed in this paper. Subsequently, we converted the equation constraint into a standard
form suitable for optimal control problems. Then, we derived the gradient formulation for the specific
constraints imposed. Numerically, we explored the dynamics of the tumor system under various sce-
narios, including the effects of a combined ACI and IL-2 treatment in unconstrained settings and under
different constraints, among other considerations.

Some research directions are outlined as follows:
1). Given the delay between drug administration and its action within the patient’s specific microen-

vironment, we could explore this by incorporating a time-delay in the state equations.
2). Stochastic factors will be involved in the tumor-immune system to account for unpredictable

scenarios that might emerge during the course of treatment.
3). Implementing secondary control measures will be considered during the drug treatment, particu-

larly when a drug is well-tolerated or when the patient’s internal environment becomes more complex.
This involves selecting the optimal timing and appropriate drug for a second round of control treatment.
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