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Abstract: Algal blooms pose a significant threat to the ecological integrity and biodiversity in aquatic
ecosystems. In lakes, enriched with nutrients, these blooms result in overgrowth of periphyton, leading
to biological clogging, oxygen depletion, and ultimately a decline in ecosystem’s health and water
quality. In this article, we presented a mathematical model centered around the role of aquatic species
(specifically fish population) to alleviate algal blooms. The model analysis revealed significant shifts
in dynamics, shedding light on the effectiveness of fish-mediated sustainability strategies to control
algal proliferation. Notably, our study identified critical thresholds and regime transitions through
the observation of saddle-node bifurcation within the proposed mathematical model. To validate our
analytical findings, we have conducted numerical simulations, which provided robust evidence for the
resilience of the ecosystem under different scenarios.
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1. Introduction

Blue-green algae, or bloom-forming cyanobacteria, poses a continual ecological menace to
aquatic environments, exerting substantial repercussions on the fragile balance of aquatic ecosystems.
This adversely affects water quality, biodiversity, and the overall environmental health [1]. The
proliferation of algae not only disrupts the visual clarity of the water but also gives rise to an intricate
cascade of events leading to anoxic conditions in the deeper realms of water bodies [2].

Algae issues fuel-up, when there is an excess of nutrients, primarily nitrogen and phosphorus,
entering into the water reservoir. These nutrients typically come from run-off sources, such as
fertilized lawns, agricultural fields, pastures, feedlots, septic tanks, etc. [3]. Often nutrients
accumulate in lakes and ponds and increase their susceptibility to algal blooms, which can have
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severe consequences for aquatic ecosystems. After the death of algal cells, their decomposition
consumes large amounts of dissolved oxygen in the water, leading to oxygen depletion and the
subsequent death of aerobic organisms [3, 4]. This depletion of oxygen is particularly detrimental to
fish and other aquatic life that rely on oxygen-rich environments to survive. Furthermore, algal
blooms often result in producing foul odors, and impairing the sensory indicators and scenic values of
water bodies [5]. These changes not only affect the aesthetic and recreational value of water bodies
but also disrupt the natural balance of aquatic ecosystems.

Additionally, the death of certain algal cells can release substantial amounts of algal toxins into
the water. These toxins pose serious threats to the quality of drinking water and can adversely affect
human and animal health, [6]. The presence of these toxins in water sources necessitates more
rigorous and costly water treatment processes to ensure safety. Moreover, algal blooms can impede
water treatment processes by clogging filters and generating disinfection by-products, as described
in [7]. These complications increase operational costs for water treatment plants, further highlighting
the extensive impact of algal blooms on both the environment and human life [8].

To effectively address the challenges posed by algal blooms, researchers have developed various
methods for algae control in aquatic environments, including physical, chemical, biological, and
integrated approaches [9]. These methods, however, often come with their own set of limitations and
drawbacks. For instance, Chen et al. [10] used modified clay to treat algae in Sancha Lake in Sichuan,
China, achieving a 98.5% removal efficiency by the third day through simulated sedimentation.
However, this method resulted in the accumulation of microcystin toxins in the lake, which negatively
impacted the aquatic ecosystem. Liu et al. [11] demonstrates the efficacy of three coagulants
(polyaluminum chloride, ferric chloride, and cationic starch) in mitigating severe cyanobacterial
blooms. However, the significant accumulation of nutrients in sediments following cyanobacterial
sedimentation may lead to severe internal phosphorus pollution, jeopardizing environmental
restoration through submerged plant cultivation. Chemical agents, such as algaecides and herbicides
exhibit some algal control efficacy but pose significant risks to other aquatic organisms, contributing
to secondary pollution concerns and limiting their widespread application [12]. Additionally,
biological methods involving microorganisms, aquatic plants, and aquatic animals for algal removal
entail high environmental impacts and ecosystem disturbances [13, 14].

Biomanipulation techniques, particularly the use of filter-feeding fish and mollusks, have gained
attention as a more ecological approach to managing algal blooms [15, 16]. The utilization of
filter-feeding fish, such as silver carp (Hypophthalmichthys molitrix), and mollusks, exemplified by
Dreissena rostriformis bugensis, has been extensively documented for inducing a top-down effect on
phytoplankton communities [15, 17]. As algae thrive on nutrient-rich environments, the interplay
between fish and these photosynthetic organisms involves complex ecological relationships. Fish act
as natural regulators, exerting control through predation on algae and disrupting the conditions
conducive to their overgrowth. Furthermore, in the intricate web of aquatic ecosystems, fish play a
vital role in the decomposition of detritus, which is a crucial process for sustainability of water clarity
and nutrient cycling. Certain fish species, such as tilapia and grass carp are known for their voracious
appetite for algae. By grazing on algal biomass, these fish help to control algal biomass and limit the
development of blooms, which helps to maintain a balance between nutrient levels and reduces the
likelihood of excessive algal growth.

In this study, we investigate how nutrients, algae, detritus, and fish are interconnected, using a
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mathematical modeling approach. We aim to understand the relationships and interactions between
these variables in an aquatic ecosystem. By developing a mathematical framework, we try to gain
insights into how changes in one variable affect the others, and ultimately, how their dynamics impact
the overall health and sustainability of the aquatic ecosystem.

This paper is structured as follows. Section 2, presents the mathematical model formulation and
provides a comprehensive description of its components, including the underlying assumptions,
parameters, and variables that characterize the system under investigation. In Section 3, we conduct a
thorough model analysis, focusing on the existence of equilibrium points and their local stability
properties. A detailed mathematical treatment is provided to establish the conditions under which
these equilibria exist and to characterize their stability behavior. Section 4, extends our analysis to
explore the bifurcation dynamics of the proposed mathematical model, examining how qualitative
changes in the system’s behavior occur as key parameters vary. Section 5, complements our
theoretical findings with extensive numerical simulations, providing visual verification and deeper
insights into the analytical results obtained in the previous sections. Finally, Section 6 synthesizes the
key findings of our study, discussing their implications and potential applications while suggesting
directions for future research.

2. The mathematical model

Some mathematical models have aimed to quantify and comprehend the intricate dynamics
underlying the relationship between nutrient levels and the proliferation of algae, offering valuable
insights into the ecological ramifications within aquatic environments [18, 19]. Also, through
mathematical modeling, researchers have sought to unravel the interconnected processes that drive the
dynamics of nutrient-algae relationships and shed light on the intricate web of factors that influence
the aquatic ecosystem’s health [20–23].

Yan et al. [24] introduced a hybrid model known as rough set and multidimensional cloud model
to predict the trophic and nutrient status values of the water bodies. The model was tested on 24 major
lakes, and the experimental findings demonstrate that this hybrid approach yields more precise
assessment results compared to other widely used models. Zhang et al. [25] developed a structurally
dynamic model for Lake Mogan, illustrating the hysteresis response of vegetation and water quality to
increasing phosphorous concentration. The model encompassed nine state variables, including
phosphorous in phytoplankton, zooplankton, sediment, sediment pore water, submerged plants,
epiphytes, detritus, soluble reactive phosphate (PO4

2−), and planktivorous fish in the lake. The
findings revealed that within a phosphorous concentration range of 0.16 to 0.25 mg TP l−1 (TP stands
for total phosphorous), the water state transitioned from a fresh to turbid state, inducing significant
alterations in submerged plants. The model accurately predicted shifts from submerged vegetation to
phytoplankton at approximately 0.25 mg TP l−1 phosphorous concentration. Their observation was in
accordance with the observation of [19] . The results led to the conclusion that the restoration of
shallow lakes occurs at a much slower pace than eutrophication, and beyond the threshold
concentration of phosphorous (0.25 mg TP l−1), the restoration of submerged plants may not be
possible.

Misra [21] has proposed a dynamical model for a eutrophic water body, incorporating variables,
such as nutrient concentration, algal population density, zooplankton population, detritus, and
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dissolved oxygen concentration. Unlike the approach of Voinov and Tonkikh [18], Misra considered
nutrient input through water run-off from agricultural fields, not limiting it to detritus as the sole
external nutrient source. Their model successfully simulated the eutrophication process, establishing
relationships among the variables. Obtained results indicated that an increase in nutrient supply led to
higher densities of algae. Additionally, a decrease in dissolved oxygen concentration was observed
with an increase in detritus density. Shukla et al. [23] presented a mathematical model for a
eutrophied water body affected by organic pollutants. Model analysis revealed that the simultaneous
impact of water pollution and eutrophication resulted in a more rapid decrease in dissolved oxygen
levels compared to the presence of only one phenomenon.

In the context of model formulation, we focus on an aquatic ecosystem which experiences
eutrophication due to excessive algae growth triggered by the discharge of nutrients from sources,
such as domestic drainage and agricultural run-off. Our model is centered on four dynamical
variables:

– N(t): signifies the cumulative concentration of nutrients (phosphorous, nitrogen, etc.),
– A(t): denotes the density of algae,
– S (t): represents the density of detritus (formed due to the death of algae),
– F(t): signifies the population of fish (both herbivorous and carnivorous), at time t > 0.
For biological relevance, we assume that the initial values of N, A, S , and F are nonnegative.

Therefore, the state space of our proposed model is confined in a subset of R4
+.

Algae found in water bodies comprises a diverse assemblage of some major taxonomic groups.
Various forms within this assemblage have distinct physiological requirements and respond differently
to factors, such as light, temperature, and nutrient concentration. For the model formulation, we omit
the consideration of the effects of light and temperature on algal growth. Further, we assume that the
algal biomass is solely influenced by the availability of nutrients in the water reservoir. Here, we
assume a continuous discharge of nutrients into the water body from various sources, such as
domestic drainage and agricultural run-off, occurring at a constant rate q, and these nutrients naturally
deplete over time at a rate α0. We further contemplate the active absorption of these nutrients by the
algae to facilitate and sustain their growth. The uptake rate of nutrients by algae follows a saturating
curve, meaning that as nutrient concentration increases, the rate of uptake initially rises rapidly but
then levels off as the algae’s nutrient absorption capacity reaches its maximum. This behavior is
described mathematically by the Michaelis-Menten type interaction k1

NA
k12+k11N . The parameter k1 is the

maximum uptake rate of nutrients by the algae when the nutrient concentration is high, while k11 and
k12 are constants related to the affinity of the algae for the nutrients and the half-saturation constant,
respectively. The half-saturation constant k12 (when k11 = 1) is the nutrient concentration at which the
uptake rate is half of the maximum rate, indicating the point at which the algae’s uptake mechanism is
significantly efficient but not yet saturated. This implies that at low nutrient concentrations, the uptake
rate is limited by the availability of nutrients, and the algae can absorb them efficiently. As the
nutrient concentration increases, the algae’s absorption mechanisms become saturated, and the rate of
uptake approaches its maximum capacity. This saturation effect is due to the finite number of nutrient
transport sites on the algal cells, which can become fully occupied at high nutrient levels, preventing
further increase in the uptake rate. As we considered, the density of algae is postulated to rely entirely
on the concentration of nutrients present in the aquatic ecosystem. In this context, the growth of algae
is directly linked to the same Michaelis-Menten type interaction rate at which nutrients are absorbed
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by the algae. This relationship is characterized by a proportionality constant λ1. Thus, the dynamics
of nutrients and algae can be governed by the following set of differential equations.

dN
dt
= q − α0N − k1

NA
k12 + k11N

,

dA
dt
= λ1k1

NA
k12 + k11N

.

(2.1)

Moreover, when algae complete their life-cycle, they naturally diminish, sinking to the bottom of
the water body and accumulating as detritus. This organic material serves as a substrate for bacteria
residing at the lake’s bottom. These bacteria are pivotal in the ecosystem, as they decompose the
detritus, breaking it into simpler compounds. Through this decomposition process, nutrients are
released back into the water, participating in the nutrient cycle of the water body. Ultimately, the
activities of these bacteria profoundly influence the ecological equilibrium and health of the water
body. Thus, the dynamics of nutrients and algae, when algae is converted into detritus and ultimately
into nutrients, is governed by the following equations:

dN
dt
= q − α0N − k1

NA
k12 + k11N

+ π2δS ,

dA
dt
= λ1k1

NA
k12 + k11N

− α1A,

dS
dt
= π1α1A − δS .

(2.2)

Here, the constants α1 and δ, respectively, signify the rates at which algae and detritus naturally
undergo depletion. Furthermore, the transformation of algae into detritus hinges on the natural
depletion of algae, while the conversion of detritus into nutrients relies on the natural decline of
detritus. Hence, π1α1A denotes the rate of algae conversion into detritus, and π2δS represents the rate
of detritus conversion into nutrients. From the second equation of model system (2.2), it is important
to note that the following condition must hold to ensure the model’s feasibility:

λ1k1 − k11α1 > 0. (2.3)

We further consider that fish exhibit growth at a rate r1 due to other sources. Fish also consume algae
at a rate r2 and this contributes to their growth. Moreover, the growth of fish is proportionally related
to algae consumption rate, which is represented by constant λ2. The density of detritus in an aquatic
ecosystem influences oxygen levels, consequently impacting the growth rate of the fish population.
As detritus accumulates, its decomposition consumes oxygen, potentially leading to decreased oxygen
availability for fish. This, in turn, negatively affects the growth and overall health of the fish population
within the ecosystem. This impact of detritus on growth of the fish population is considered by the
term 1

1+mS , where m measures the adverse effect of detritus on the growth of fish population. The
parameter m plays a crucial role in determining the severity of this effect. A larger value of m indicates
a more pronounced negative impact of detritus on fish growth, while a smaller value suggests a more
resilient fish population that can better withstand higher detritus levels. The constant r0 represents the
mortality rate of fish attributed to overcrowding within the aquatic ecosystem. Following the above
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considerations, the dynamics of nutrient and algae along with the fish population in the considered
aquatic ecosystem can be described by the following differential equations:

dN
dt
= q − α0N − k1

NA
k12 + k11N

+ π2δS ,

dA
dt
= λ1k1

NA
k12 + k11N

− α1A − r2AF,

dS
dt
= π1α1A − δS ,

dF
dt
=

(
r1

1 + mS
+
λ2r2A

1 + mS

)
F − r0F2.

(2.4)

Figure 1. Schematic diagram for model system (2.4).

Table 1. Biological description of considered parameters and their units in model system
(2.4).

Parameter Description Unit Parameter
value

q Influx rate of nutrients into considered water body µg liter−1day−1 4
α0 Natural depletion rate of nutrients day−1 0.04
k1 The maximum rate at which algae can uptake nutrients from the

water body
day−1 0.4

k12 Half saturation constant of nutrients µg liter−1 0.6
k11 Proportionality constant describing Mechalis- Menton interaction − 1
λ1 Growth rate constant of algae due to nutrients uptake − 0.5
α1 The rate at which algae experience natural mortality and predation

by species at higher trophic levels.
day−1 0.4

π1 Conversion rate of algae into detritus − 0.05
δ Natural depletion rate of detritus day−1 0.04
π2 Conversion rate of detritus into nutrients − 0.1
r1 Growth rate of fish population due to other sources day−1 0.4
r2 Consumption rate of algae by fish population fish−1day−1 0.1
λ2 Growth rate of fish due to consumption of algae fish µg liter−1 0.3
m Rate of dverse effect of detritus on the growth of fish population µg liter−1 0.5
r0 Death rate of fish due to crowding fish−1day−1 0.12

The schematic diagram for model system (2.4) is depicted in Figure 1, and a detailed description
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of parameters and their units are provided in Table 1.
The region of attraction, which encompasses all solutions starting within the positive orthant, is

contained in

Ω =

{
(N, A, S , F) : 0 < N + A + S ≤

q
Pm
, 0 ≤ F ≤ r1 +

λ2r2q
r0Pm

}
, (2.5)

where Pm = min
{
α0, α1(1 − π1), δ(1 − π2)

}
.

3. Model analysis

Due to the intrinsic nonlinearity embedded in the system described by (2.4), direct analysis of the
model encounters significant challenges. Consequently, in this section, we adopt the qualitative
analysis of model system (2.4). Our strategy involves utilizing the stability theory of differential
equations. To achieve this objective, we initially showcase the feasibility of equilibrium points and
subsequently explore their stability properties.

3.1. Equilibrium analysis

Model system (2.4) exhibits four nonnegative equilibria, which are stated as follows:

(i) Algae and fish-free equilibrium point E0

(
q
α0
, 0, 0, 0

)
. In this scenario, the aquatic environment

contains nutrients, while fish, algae and detritus are conspicuously absent.

(ii) Algae-free equilibrium point E∗
(

q
α0
, 0, 0, r1

r0

)
. In this state of equilibrium point, the ecosystem

encompasses the simultaneous presence of nutrients and fish population with the absence of both
algae and detritus.

(iii) Fish-free equilibrium point E∗∗ (N∗∗, A∗∗, S ∗∗, 0), where N∗∗ = k12α1
λ1k1−k11α1

,

A∗∗ =
α0

(
q
α0
−N∗∗

)
(k12+k11N∗∗)

(k1N∗∗−π1π2α1) , and
S ∗∗ = π1α1A∗∗

δ
, this equilibrium point is feasible provided k1N∗∗ > π1π2α1. This equilibrium point

exemplifies a situation in the aquatic system where algae and, consequently, detritus are present,
while the population of fish is notably absent.

(iv) Coexisting equilibrium point E∗i (N∗i , A
∗
i , S

∗
i , F

∗
i ). This equilibrium point unfolds the scenario,

where nutrients, algae, detritus, and fish population coexist within the considered aquatic
ecosystem.

The existence of equilibria E0, E∗, and E∗∗ are apparent, thus we have not delved into a discussion
regarding their existence here. Moreover, we establish the viability of the coexisting equilibrium point
E∗i in the following discussion. Equilibrium point E∗i can be obtained by analyzing the following
equations:

q − α0N − k1
NA

k12 + k11N
+ π2δS = 0, (3.1)

λ1k1
N

k12 + k11N
− α1 − r2F = 0, (3.2)
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π1α1A − δS = 0, (3.3)
r1

1 + mS
+
λ2r2A

1 + mS
− r0F = 0. (3.4)

Substituting S = π1α1A
δ

from Eq (3.3) in Eq (3.1), we get an equation in variable N and A, i.e.,

q − α0N − k1
NA

k12 + k11N
+ π1π2α1A = 0. (3.5)

From Eq (3.5), it is apparent that

(i) N = π1π2k12α1
k1−π1π2k11α1

is an asymptote,

(ii) if A = 0, we have N = q
α0

,

(iii) if N = 0, we have A = − q
π1π2α1

, and dN
dA = −α0

(
q
α0
− N

) / [
A

(
α0 +

k1k12A
(k12+k11N)2

)]
< 0 as N < q

α0
.

Moreover, substituting S = π1α1A
δ

from Eq (3.3) in Eq (3.4), we obtain

F =
δ (r1 + λ2r2A)

r0 (δ + mπ1α1A)
. (3.6)

Substituting the value of F from Eq (3.6) in Eq (3.2), we obtain another equation in variable N and A,
i.e.,

λ1k1
N

k12 + k11N
− α1 −

r2δ (r1 + λ2r2A)
r0 (δ + mπ1α1A)

= 0. (3.7)

From above Eq (3.7), it is apparent that

(i) N = δ(k1r0α1+r2
2λ2)

r0mπ1α1(λ1k1−k11α1) is an asymptote,

(ii) dN
dA =

r2
r0
·

(k12+k11N)2

λ1k1k12
·
δ(λ2r2δ−r1mπ1α1)

(δ+mπ1α1A)2 ,

(iii) if A = 0, we have N = r0α1k12+r1r2
r0(λ1k1−α1k11) > 0,

(iv) for N = 0, we have A = − δ(r0α1+r1r2)
r2

2λ2δ+r0mπ1α
2
1
.

Hence, based on the preceding analysis, it can be inferred that the isoclines (3.5) and (3.7) intersect
at a single point when λ2 >

r1mπ1α1
r2δ

= λ∗2 (Figure 2(a)). In contrast, these two isoclines may intersect
at two, one, or no point(s) if λ2 <

r1mπ1α1
r2δ

= λ∗2 within the positive quadrant (Figures 2(b)–(d)). As a
result, model system (2.4) may exhibit one, two, or no coexisting equilibrium point(s) depending on
the value of λ2.
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Figure 2. Intersection scenarios of isoclines (3.5) (red color) and (3.7) (blue color) for model
system (2.4). (a) when λ2 > λ

∗
2, where λ1 = 1.55, λ2 = 1.8 and r0 = 0.5. When λ2 < λ

∗
2

where λ1 = 1.9, r2 = 0.43, π1 = 0.3, δ = 0.04 and m = 0.8 (b) λ2 = 0.3 (c) λ2 = 0.3415. (The
rest of the parameter values are the same as mentioned in Table 1).

3.2. Local stability analysis

In this section, we delve into a comprehensive analysis of the stability behavior of obtained
equilibria. This exploration is crucial for providing insights into the dynamical behavior of the model
system (2.4). The Jacobian matrix of the proposed model system (2.4) is represented as follows:

J =


−α0 −

k1k12A
(k12+k11N)2 −

k1N
k12+k11N π2δ 0

λ1k1k12A
(k12+k11N)2

λ1k1N
k12+k11N − α1 − r2F 0 −r2A

0 π1α1 −δ 0
0 λ2r2F

(1+mS ) −
m(−r1+λ2r2A)F

(1+mS )2
r1+λ2r2A
(1+mS ) − 2r0F

 .
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Stability of algae and fish-free equilibrium point E0

(
q
α0
, 0, 0, 0

)
: The Jacobian matrix for model

system (2.4) at E0 is

J0 =


−α0 −

k1q
α0k12+qk11

π2δ 0
0 λ1k1q

α0k12+k11q − α1 0 0
0 π1α1 −δ 0
0 0 0 r1


with eigenvalues Φ1 = −α0, Φ2 = −δ, Φ3 =

λ1k1q
α0k12+qk11

− α1 and Φ4 = r1 > 0. Here, eigenvalues Φ1 and
Φ2 consistently exhibit negativity, while Φ3 may be positive or negative depending on parameter
values. In contrast, Φ4 consistently retains a positive sign. Consequently, it can be deduced that algae
and fish-free equilibrium point E0 is invariably unstable, whenever it exists.

Stability of algae-free equilibrium point E∗
(

q
α0
, 0, 0, r1

r0

)
: The Jacobian matrix for model system (2.4)

around the equilibrium point E∗ is

J∗ =


−α0 −

k1q
α0k12+qk11

π2δ 0
0 λ1k1q

α0k12+k11q − α1 −
r1r2
r0

0 0
0 π1α1 −δ 0

0 λ2r1r2
r0

−
r2

1m
r0
−r1


with eigenvalues Φ∗1 = −α0, Φ∗2 = −δ, Φ

∗
3 = −r1 and Φ∗4 =

λ1k1q
α0k12+k11q − α1 −

r1r2
r0

. Here, the first three
eigenvalues consistently exhibit negativity and the fourth eigenvalue is negative when
λ1k1q

α0k12+k11q < α1 +
r1r2
r0

and positive when λ1k1q
α0k12+k11q > α1 +

r1r2
r0

. Therefore, it can be concluded that the
algae-free equilibrium point E∗ is unstable when λ1k1q

α0k12+k11q > α1 +
r1r2
r0

and stable when
λ1k1q

α0k12+k11q < α1 +
r1r2
r0

.

Stability of fish-free equilibrium point E∗∗ (N∗∗, A∗∗, S ∗∗, 0): The Jacobian of model system (2.4)
around the equilibrium point E∗∗ is

J∗∗ =


−α0 −

k1k12A∗∗

(k12+k11N∗∗)2 −
k1N∗∗

k12+k11N∗∗ π2δ 0
λ1k1k12A∗∗

(k12+k11N∗∗)2
λ1k1N∗∗

k12+k11N∗∗ − α1 0 −r2A∗∗

0 π1α1 −δ 0
0 0 0 r1+λ2r2A∗∗

(1+mS ∗∗)

 .
The matrix J∗∗ has one eigenvalue Φ∗∗1 =

r1+λ2r2A∗∗

(1+mS ∗∗) and the rest of the three eigenvalues can be obtained
by solving the following cubic equation

Φ∗∗
3
+ B1Φ

∗∗2 + B2Φ
∗∗ + B3 = 0,

where

B1 = α0 + α1 + δ +
k1k12A∗∗

(k12 + k11N∗∗)2 −
λ1k1N∗∗

k12 + k11N∗∗
,

B2 = −

(
α0 +

k1k12A∗∗

(k12 + k11N∗∗)2

) (
λ1k1N∗∗

k12 + k11N∗∗
− λ1

)
+
λ1k2

1k12N∗∗A∗∗

(k12 + k11N∗∗)3 + δ

(α0 +
k1k12A∗∗

(k12 + k11N∗∗)2

)
−

(
λ1k1N∗∗

k12 + k11N∗∗
− λ1

) ,
B3 = δ

− (
α0 +

k1k12A∗∗

(k12 + k11N∗∗)2

) (
λ1k1N∗∗

k12 + k11N∗∗
− λ1

)
+
λ1k2

1k12N∗∗A∗∗

(k12 + k11N∗∗)3

 − π1π2α1δ
λ1k1k12A∗∗

(k12 + k11N∗∗)2 .
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Here, it is noteworthy that eigenvalue Φ∗∗1 consistently maintains a positive sign. Consequently, it can
be asserted that the fish-free equilibrium point, whenever it exists is unstable.

Stability of coexisting equilibrium point E∗i
(
N∗i , A

∗
i , S

∗
i , F

∗
i

)
: The Jacobian matrix for model system

(2.4) at equilibrium point E∗i can be written as

J∗i =


−α0 −

k1k12A∗i
(k12+k11N∗i )2 −

k1N∗i
k12+k11N∗i

π2δ 0
λ1k1k12A∗i

(k12+k11N∗i )2 0 0 −r2A∗i
0 π1α1 −δ 0

0 λ2r2F∗i
(1+mS ∗i ) −

r0mF∗i
2

(1+mS ∗i ) −r0F∗i


.

The characteristic equation of matrix J∗i is obtained as follows:

Φ̃4 + C1Φ̃
3 + C2Φ̃

2 + C3Φ̃ + C4 = 0,

where

C1 = α0 + δ + r0F∗i +
k1k12A∗i

(k12 + k11N∗i )2 ,

C2 = r0δF∗i +
(
δ + r0F∗i r0

) α0 +
k1k12A∗i

(k12 + k11N∗i )2

 − r0r2λ2F∗i
2(

1 + mS ∗i
) + λ1k2

1k12N∗i A∗i(
k12 + k11N∗i

)3 ,

C3 = r0δF∗i δ

α0 +
k1k12A∗i

(k12 + k11N∗i )2

 − r0F∗i

− r0mπ1α1F∗i
2(

1 + mS ∗i
) + r2δλ2F∗i(

1 + mS ∗i
) + r2λ2F∗i(

1 + mS ∗i
) · α0 +

k1k12A∗i
(k12 + k11N∗i )2




+
λ1k1k12A∗i(

k12 + k11N∗i
)2 ·

−π1π2α1δ +
δk1N∗i(

k12 + k11N∗i
)
 + r0F∗i ·

λ1k2
1k12A∗i N∗i(

k12 + k11N∗i
)3 ,

C4 = r0F∗i

α0 +
k1k12A∗i

(k12 + k11N∗i )2


− r0mπ1α1F∗i

2(
1 + mS ∗i

) + r2δλ2F∗i(
1 + mS ∗i

)
 + r0F∗i ·

λ1k1k12A∗i(
k12 + k11N∗i

)2 ·

−π1π2α1δ +
δk1N∗i(

k12 + k11N∗i
)
 .

Here, C1 > 0 and further using the Routh Hurwitz criterion, we can say that equilibrium point E∗i is
stable if C3 > 0, C4 > 0 and C3 (C1C2 − C3) − C2

1C4 > 0.

4. Bifurcation analysis

In this section, we derive the conditions that determine whether the model system (2.4)
undergoes a saddle-node bifurcation or a transcritical bifurcation. Through this exploration, we aim to
elucidate the intricate dynamics and critical thresholds that govern the system’s behavior during these
two distinct types of bifurcations.

4.1. Saddle-node bifurcation

The equilibrium point analysis reveals the existence of two coexisting equilibria for model
system (2.4), depending on the parameter values. This suggests the possibility of a saddle-node
bifurcation occurring around equilibrium point E∗i . Here, we assume that there exists a λ1 = λ1b, such
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that C4

∣∣∣
(λ1=λ1b)

= 0. Consequently, Jacobian matrix J∗i has eigenvalue 0 with algebraic multiplicity 1.
Let U =

[
u1 u2 u3 u4

]⊤ and W =
[
w1 w2 w3 w4

]
, sequentially represent the right and left eigenvectors

of matrix J∗i corresponding to the 0 eigenvalue, where

u1 =
r2A∗i

r0δF∗i

 r2δλ2F∗i(
1 + mS ∗i

) − r0mπ1α1F∗i(
1 + mS ∗i

)
 , u2 =

λ1bk1k12A∗i(
k12 + k11N∗i

)2 , u3 =
π1α1

δ
·

k1N∗i(
k12 + k11N∗i

) ,
u4 =

(
δλ2r2F∗i − π1α1r0mF∗i

)
δr0F∗i

(
1 + mS ∗i

) ·
λ1bk1k12A∗i(

k12 + k11N∗i
)2 , w1 =

k1N∗i
k12 + k11N∗i

1(
α0 +

k1k12A∗i
(k12+k11N∗i )2

) , w2 = 1,

w3 =
λ1bπ2k1k12A∗i
(k12 + k11N∗i )2

1(
α0 +

k1k12A∗i
(k12+k11N∗i )2

) − mr2A∗i
δ
(
1 + mS ∗i

) , w4 = −
r2A∗i
r0F∗i
.

Suppose, Q =
[
q1, q2, q3, q4

]⊤, where q1, q2, q3 and q4 are sequentially the righthand side of dN/dt,
dA/dt, dS/dt, and dF/dt in model system (2.4). Thus,

B1 = W ·
∂Q

∂λ1

∣∣∣∣∣(E∗i ,λ1=λ1b)
=

k1N∗i A∗i
k12 + k11N∗i

> 0,

B2 = W
[
D2
Q

(
U,U

)] ∣∣∣∣∣(E∗i ,λ1=λ1b)

=
2r0k11

k12 + k11N∗i
u2

1w1 −
2k1k12(

k12 + k11N∗i
)2 u1u2w1 −

2λ2r2mA∗i(
1 + mS ∗i

)2 u2u4w4.

Thus, according to the Sotomayor’s theorem, the conditions required for the existence of a saddle-node
bifurcation are satisfied when B2 , 0. Consequently, we can state the following theorem concerning
the existence of saddle-node bifurcation for model system (2.4).

Theorem 1. For the existence of saddle-node bifurcation around the coexisting equilibrium point E∗i ,
there exists a λ1 = λ1b, such that B2 , 0.

Remark 1. When growth rate of algae, driven by nutrient uptake (i.e., λ1) surpasses the threshold
λ1b, such that B2 , 0, model system (2.4) undergoes a qualitative change in its dynamical behavior.
Specifically, a saddle-node bifurcation indicates the point at which two equilibrium points of the system
collide and annihilate each other. Ecologically, this means that if the nutrient uptake rate by algae
increases to a critical value, the algae density can rapidly shift from low to high density, potentially
leading to an algal bloom. This bifurcation serves as a warning signal for environmental management,
indicating that a small increase in uptake rate of nutrients by algae can lead to a dramatic change in
algal growth, thereby necessitating proactive measures to prevent the onset of algal blooms.

4.2. Transcritical bifurcation

Through the stability analysis of the obtained equilibria, it is evident that Jacobian matrix J∗

exhibits one eigenvalue that can be positive, negative, or zero depending on the specific values of
the model parameters and the remaining three eigenvalues are negative. This suggests the possible
occurrence of a transcritical bifurcation around the equilibrium point E∗. Thus, in this section, we
discuss the existence of a transcritical bifurcation for model system (2.4) around the equilibrium point
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E∗. To investigate this, we designate λ1 as the bifurcation parameter. Suppose there exists a λ1 = λ1 p,

such that eigenvalue Φ∗4 = 0, which gives λ1 p =

(
α0k12+k11q

k1q

) (
α1 +

r1r2
r0

)
. Thus, we apply the center

manifold theorem [26] at E∗. We first introduce N = y1, A = y2, S = y3 and F = y4, thus model system
(2.4) can be written as

dy1

dt
=q − α0y1 − k1

y1y2

k12 + k11y1
+ π2δy3 := f1,

dy2

dt
=λ1k1

y1y2

k12 + k11y1
− α1y2 − r2y2y4 := f2,

dy3

dt
=π1α1y2 − δy3 := f3,

dy4

dt
=

r1y4

1 + my3
+
λ2r2y2y4

1 + my3
− r0y2

4 := f4.

The linearized matrix for system (2.4) around the equilibrium point E∗ at λ1 = λ1 p is

J∗
∣∣∣∣∣
λ1=λ1 p

=


−α0 −

k1q
α0k12+qk11

π2δ 0
0 0 0 0
0 π1α1 −δ 0

0 λ2r1r2
r0

−
r2

1m
r0
−r1

 .
Thus, the right eigenvector (U) and left eigenvector (W) associated with eigenvalue 0 are represented
as follows

U =


u1

u2

u3

u4

 =


1
α0

(
π1π2δ −

α0k12+qk11
k1q

)
1
π1α1
δ

λ2r2
r0
−

r1mπ1α1
r0δ


andW =


w1

w2

w3

w4


T

=


0
1
0
0


T

.

The coefficients a and b of Theorem 4.1 in [26] for system (2.4) are written as

a =
4∑

k,i, j=1

wkuiu j
∂2 fk

∂yi∂y j
(E∗, λ1 p), and b =

4∑
k,i=1

wkui
∂2 fk

∂yi∂λ
(E∗, λ1 p).

Here, we obtained the value of a and b for model system (2.4) as follows:

a =
2λ1 pk1k12α0

α0k12 + qk11

(
k1q

α0k12 + qk11
− π1π2α1

)
+

2r2

r0

(
r2λ2 −

r1mπ1α1

δ

)
,

b =
k1q

α0k12 + qk11
.

Here, b > 0 and manipulating the expression for a, we get a threshold quantity for λ2 (i.e., λ2c),
which determines the direction of transcritical bifurcation. Thus, we summarize the results regarding
direction of transcritical bifurcation in the following theorem.
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Theorem 2. For λ1 = λ1 p, the direction of transcritical bifurcation of model system (2.4) is forward if
λ2 > λ2c and backward if λ2 < λ2c, where

λ2c =
r0

r2
2

·
λ1 pk1k12α0

α0k12 + qk11

(
π1π2α1 −

k1q
α0k12 + qk11

)
+

r1mπ1α1

r2δ
,

with

λ1 p =

(
α0k12 + k11q

k1q

) (
α1 +

r1r2

r0

)
.

Remark 2. If the growth rate of fish due to consumption of algae (i.e., λ2) exceeds its threshold
quantity (i.e.,λ2c), the bifurcation is forward, indicating a persistent presence of algae in the water
ecosystem when λ1 beyond λ1 p. In this scenario, the algal population establishes itself and maintains
a continuous presence in the aquatic environment. Conversely, when λ1 falls below λ1 p, we observe a
mitigation of algal density, suggesting that under these conditions, the ecosystem can naturally reduce
algal concentrations. However, the system dynamics become more intricate when λ2 is less than λ2c.
In this case, the bifurcation is backward, leading to a persistent algal presence for values of λ1 greater
than λ1 p. Interestingly, this scenario also presents the possibility of algal persistence even when λ1 is
below λ1 p, a phenomenon that is contingent upon the initial algae density in the water body.

5. Numerical simulations

In this section, we conduct numerical simulations for the proposed model system (2.4). Despite
the crucial importance of clean water on Earth, there remains a paucity of quantitative data on water
pollution. Consequently, validating the model and its outcomes with real-world field data presents
challenges. Nonetheless, to visualize and analytically validate the obtained results and derive insights
from them, we utilize the parameter values specified in Table 1 until otherwise mentioned. The
parameter values mentioned in Table 1 for q, α0, k1, k11, k12, π2, λ1, π1, and α1 are comparable to those
used in previous research, particularly the study of An et al. [27] and Shukla et al. [23]. The
remaining parameters are unique to our model. Notably, the simulation results we obtained in this
sections align well with the findings reported in [23, 27], lending credence to our parameter choices
and model formulation.

From the model analysis, we have demonstrated that the proposed model system (2.4) has either
one, two, or no coexisting equilibrium points, contingent on the value of λ2. To visualize the specific
region, where exactly one coexisting equilibrium point exists or there may be two, one, or no
coexisting equilibrium point, we generate a curve, where λ2 = λ

∗
2 (depicted as a black curve) in the

r1 − λ2 parametric plane (Figure 3). In this figure, the red region represents the area where exactly one
coexisting equilibrium point exists, while the blue region illustrates the region where model system
(2.4) may have either one, two, or no coexisting equilibrium point.

Further, we choose some important parameters of model system (2.4), to see their impact on the
equilibrium level of algae density and fish population in the considered aquatic ecosystem. To achieve
this objective, we select λ1, λ2, and k1 to analyze the behavior of the system’s variables by varying two
parameters simultaneously and integrating up to t = 100 days. By varying k1 and λ1, we observe that
the maximum uptake rate of nutrients by algae and the growth rate of algae through nutrients uptake
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have a positive impact on algae density and fish population (Figure 4). This implies that for large values
of k1 and λ1, the equilibrium levels of both algae density and fish population are high, while for small
values of k1 and λ1, the equilibrium levels of algae density and fish population are low. Moreover, by
varying λ1 and λ2, we generate surface plots illustrating the equilibrium levels of algae density and fish
population, shown in Figure 5. From Figure 5(a), we observe that for high values of λ1 and λ2, the
fish population is high, while the density of algae is high for a low value of λ2 and a high value of λ1

(Figure 5(b)).
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Figure 3. Plot for λ∗2 in r1−λ2 plane, to visualize the region for number of equilibrium points
exhibit by model system (2.4). (a) The blue-shaded area represents the region, where model
system (2.4) may exhibit one two or no equilibrium point(s). The red-shaded region indicates
the presence of exactly one equilibrium point.
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Figure 4. (a)–(b) Surface plots for A and F by varying k1 and λ1.
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Figure 5. (a)–(b) Surface plots for A and F by varying λ1 and λ2.

By applying the center manifold theorem, we have established that model system (2.4) undergoes
a transcritical bifurcation at λ1 = λ1 p. Theorem 2 further establishes a connection between the direction
of the transcritical bifurcation and the parameter λ2, which represents the growth rate of fish due to
algae uptake. For the given parameter values in Table 1, the value of λ1 p is determined to be 1.8443,
leading to λ2c ≈ 0.9998. Consequently, for λ2 > 0.9998, the transcritical bifurcation occurs in the
forward direction, whereas if λ2 < 0.9998, its direction is backward at λ1 p = 1.8443. Additionally, we
generate a plot for λ2c by varying the value of r2, as shown in Figure 6. In this plot, the black curve
represents the values of λ2 where λ2 = λ2c, which divide the whole r2 − λ2 parametric plane into two
regions. The green color represents the region for forward transcritical bifurcation where λ2 > λ2c, and
the maroon color represents the region for backward transcritical bifurcation, where λ2 < λ2c.
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Figure 6. Plot for λ2c with respect to r1, showing the region of forward and backward
transcritical bifurcation.
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Figure 7. (a) Equilibrium curve in λ1−A plane for λ2 = 1.9, showing transcritical bifurcation
in forward direction. Time-series plot for algae density for (b) λ1 = 1 (c) λ1 = 2.8.

Furthermore, the equilibrium curve is generated in the λ1 − A plane for a fixed value of
λ2 = 1.9 > λ2c = 0.9998 (Figure 7(a)). Analysis of this figure reveals that at λ1 = 1.8443 (denoted as
bifurcation point (“BP”)), model system (2.4) undergoes a transcritical bifurcation in the forward
direction. This observation signifies that for λ1 > 1.8443, the proposed system exhibits a coexisting
equilibrium, whereas there is no coexisting equilibrium for λ1 < 1.8443. Additionally, at the BP, the
algae-free equilibrium point transfers its stability to the coexisting equilibrium point as the bifurcation
parameter λ1 crosses its critical threshold λ1 p = 1.8443. This phenomenon of forward transcritical
bifurcation indicates that the density of algae in the considered aquatic ecosystem vanishes if
λ1 < 1.8443, while it consistently exists for λ1 > 1.8443. To show this stability transfer between the
algae-free and coexisting equilibrium point, we generate the variation plots in Figures 7(b),(c) for
algae density in the aquatic ecosystem with respect to time “t”. Figure 7(b) is generated for
λ1 = 1 < 1.8443, which depicts that all the solution trajectories approach the algae-free equilibrium
point. Therefore, whatever be the density of algae in the considered aquatic ecosystem initially, as
time t → ∞, it will approach to 0. Biologically, this implies that if λ1 < λp = 1.8443, the algae
completely mitigates from the aquatic ecosystem. Moreover, for λ1 = 2.8 > 1.8443, the variation plot
for algae density with respect to time “t” is shown in Figure 7(c). This figure demonstrates that as
time t → ∞, all solution trajectories converge toward the coexisting equilibrium point. From a
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biological standpoint, this phenomenon illustrates that algae persists consistently in the aquatic
ecosystem and reaches to its coexisting equilibrium point level for λ1 > λ1 p.
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Figure 8. (a) Equilibrium curve in λ1−A plane for λ2 = 0.3, showing transcritical bifurcation
in backward direction. Time-series plot for algae density for (b) λ1 = 1.519 (c) λ1 = 1.85 (d)
λ1 = 1.4

For λ2 = 0.3 < λ2c = 0.9998, the proposed system exhibits the phenomenon of transcritical
bifurcation in the backward direction as shown in Figure 8(a). This figure illustrates that the
equilibrium curve bends at the “SN” point (where λ1 = λ1b ≈ 1.482), indicating the occurrence of a
saddle-node bifurcation for model system (2.4). At this “SN” point, two coexisting equilibria collide
and annihilate each other with one being stable and the other unstable in nature. This scenario
delineates that model system (2.4) has one coexisting equilibrium point for λ1 > λ1 p = 1.8443, no
coexisting equilibrium point for λ1 < λ1b and two coexisting equilibria when
λ1 ∈ (λ1b = 1.482, λ1 p = 1.8443). Further, we generate the variation plots for algae density for
λ1 = 1.519 ∈ (λ1b, λ1 p) (blue curves), λ1 = 1.85 > λ1 p (green curves) and λ1 = 1.4 < λ1b (red curves)
as shown in Figures 8(b)–(d). From Figure 8(b), we can see that all the solution trajectories either
gravitate toward the stable coexisting equilibrium point or stable algae-free equilibrium point. This
implies that algae in the considered aquatic ecosystem mitigates or persists wholly depending on the
initial density of the algae. Figure 8(c) illustrates that the algae density in the water reservoir always
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persists and attains its equilibrium level as t → ∞. Moreover, Figure 8(d) demonstrates that the algae
is completely mitigated from the considered water reservoir as t → ∞.

5.1. Sensitivity analysis

Sensitivity analysis is a valuable technique for examining the relationship between parameters
and the solution of a system. The semi-relative sensitivity of a variable V with respect to a parameter
p is given by the expression p∂V

∂p . This analysis provides insights into how the solution changes when
the parameter is doubled. The choice to double parameters in sensitivity analysis offers a balance
between simplicity and insight. This approach provides clear, comparable results across parameters
and serves as an efficient initial screening method. It’s computationally manageable and easily
interpretable, revealing the direction and magnitude of the system’s response to parameter changes.
We perform the basic sensitivity analysis for the parameters q, k1 and λ2. These three parameters are
important; therefore, we performed both bifurcation and sensitivity analysis of these parameters. The
parameters q, k1, and λ2 are critical for sensitivity analysis in this aquatic ecosystem model due to
their significant roles in system dynamics. The parameter q represents the rate of nutrient input,
directly affecting the nutrient concentration that drives the entire system. Parameter k1, the maximum
nutrient uptake rate by algae is a key parameter, which determines both nutrient absorption and algal
growth rates. The parameter λ2 is a the proportionality constant for fish growth due to algae
consumption and directly influences the fish population dynamics. Changes in these parameters can
have far-reaching effects on the ecosystem’s balance, from nutrient levels to algal growth and fish
populations. Analyzing the model’s sensitivity to these parameters provides crucial insights into how
the ecosystem responds to variations in nutrient loading, algal uptake efficiency, and energy transfer in
the food chain, which is valuable for understanding and managing aquatic ecosystems under different
conditions. The differential systems of sensitivity corresponding to system (2.4) with respect to q, k1

and λ2 are written as follows:

dNq

dt
=1 − α0Nq −

k1k12NqA
(k12 + k11N)2 −

k1NAq

(k12 + k11N)
+ π2δS q

dAq

dt
=
λ1k1k12NqA

(k12 + k11N)2 +
λ1k1NAq

(k12 + k11N)
− α1Aq − r2AFq − r2AqF,

dS q

dt
=π1α1Aq − δS q,

dFq

dt
=

(
r1

1 + mS
+
λ2r2A

1 + mS

)
Fq −

r1mS qF
(1 + mS )2 −

λ2r2mAS qF
(1 + mS )2 +

λ2r2FAq

(1 + mS )
− 2r0FFq.

(5.1)



dNk1

dt
= − α0Nk1 −

NA
k12 + k11N

−
k1k12Nk1 A

(k12 + k11N)2 −
k1NAk1

(k12 + k11N)
+ π2δS k1 ,

dAk1

dt
=
λ1NA

k12 + k11N
+
λ1k1k12Nk1 A
(k12 + k11N)2 +

λ1k1NAk1

(k12 + k11N)
− α1Ak1 − r2Ak1 F − r2AFk1 ,

dS k1

dt
=π1α1Ak1 − δS k1 ,

dFk1

dt
=

(
r1

1 + mS
+
λ2r2A

1 + mS

)
Fk1 −

r1mS k1 F
(1 + mS )2 −

λ2r2mAS k1 F
(1 + mS )2 +

λ2r2FAk1

(1 + mS )
− 2r0FFk1 .

(5.2)
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

dNλ2

dt
= − α0Nλ2 −

NA
k12 + k11N

−
k1k12Nλ2 A

(k12 + k11N)2 −
k1NAk1

(k12 + k11N)
+ π2δS λ2

dAλ2

dt
=
λ1NA

k12 + k11N
+
λ1k1k12Nλ2 A
(k12 + k11N)2 +

λ1k1NAλ2

(k12 + k11N)
− α1Aλ2 − r2Aλ2 F − r2AFλ2 ,

dS λ2

dt
=π1α1Aλ2 − δS λ2 ,

dFλ2

dt
=

(
r1

(1 + mS )
+
λ2r2A

1 + mS

)
Fλ2 −

r1mS λ2 F
(1 + mS )2 +

r2AF
(1 + mS )

+
λ2r2Aλ2 F
(1 + mS )

−
λ2r2mAS λ2 F

(1 + mS )2 − 2r0FFλ2 .

(5.3)

To perform a semi-relative sensitivity analysis, we have chosen the parameters q = 4, k1 = 0.4,
and λ2 = 1.8. We have calculated the semi-relative sensitivity solutions to determine the impact of
these parameters on the dynamic variables. As shown in Figure 9, doubling the parameter q results in
increases in the values of the dynamic variables N, A, S , and F by 22.43, 3.86, 0.3784, and 0.4474,
respectively. Similarly, doubling the parameter k1 leads to a decrease in the value of the dynamic
variable N by 63.31, while the values of A, S and F increase by 24.39, 2.386, and 2.785, respectively.
Moreover, doubling the parameter λ2 increases the values of N and F by 9.391 and 0.6307, respectively,
whereas the values of A and S decrease by 5.687 and 0.534, respectively.
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Figure 9. Semi-relative sensitivity plot of variables N(t), A(t) S (t), and F(t) with respect to
q, k1, and λ2.
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Moreover, other parameters such as δ1, r1, and r0 have shown considerable influence on the
model’s behavior, with notable changes in solutions observed when their values were doubled. Thus,
we have also conducted sensitivity analysis for proposed model (2.4) with respect to δ1, r1, and r0 .
The remaining parameters in the proposed model are either proportionality constants or demonstrated
a less substantial impact when their values were doubled. The differential systems of sensitivity
corresponding to system (2.4) with respect to δ1, r1 and r0 are written as follows:

dNδ
dt
= − α0Nδ −

k1k12NδA
(k12 + k11N)2 −

k1NAδ
(k12 + k11N)

+ π2δS δ + π2S

dAδ
dt
=
λ1k1k12NδA

(k12 + k11N)2 +
λ1k1NAδ

(k12 + k11N)
− α1Aδ − r2AFδ − r2AδF,

dS δ
dt
=π1α1Aδ − δS δ − S ,

dFδ
dt
=

(
r1

1 + mS
+
λ2r2A

1 + mS

)
Fδ −

r1mS δF
(1 + mS )2 −

λ2r2mAS δF
(1 + mS )2 +

λ2r2FAδ
(1 + mS )

− 2r0FFδ.

(5.4)



dNr1

dt
= − α0Nr1 −

k1k12Nr1 A
(k12 + k11N)2 −

k1NAr1

(k12 + k11N)
+ π2δS r1

dAr1

dt
=
λ1k1k12Nr1 A
(k12 + k11N)2 +

λ1k1NAr1

(k12 + k11N)
− α1Ar1 − r2AFr1 − r2Ar1 F,

dS r1

dt
=π1α1Ar1 − δS r1 ,

dFr1

dt
=

(
r1

1 + mS
+
λ2r2A

1 + mS

)
Fr1 +

F
1 + mS

−
r1mS r1 F

(1 + mS )2 −
λ2r2mAS r1 F
(1 + mS )2 +

λ2r2FAr1

(1 + mS )
− 2r0FFr1 .

(5.5)



dNr0

dt
= − α0Nr0 −

k1k12Nr0 A
(k12 + k11N)2 −

k1NAr0

(k12 + k11N)
+ π2δS r0

dAr0

dt
=
λ1k1k12Nr0 A
(k12 + k11N)2 +

λ1k1NAr0

(k12 + k11N)
− α1Ar0 − r2AFr0 − r2Ar0 F,

dS r0

dt
=π1α1Ar0 − δS r0 ,

dFr0

dt
=

(
r1

1 + mS
+
λ2r2A

1 + mS

)
Fr0 −

r1mS r0 F
(1 + mS )2 −

λ2r2mAS r0 F
(1 + mS )2 +

λ2r2FAr0

(1 + mS )
− 2r0FFr0 − F2.

(5.6)

To perform a semi-relative sensitivity analysis, we have chosen the parameters δ = 0.5, r1 = 0.8,
and r0 = 0.4. We have calculated the semi-relative sensitivity solutions to determine the impact of
these parameters on the dynamic variables. As shown in Figure 10, doubling the parameter δ results in
increase in the values of the dynamic variables N and F by 2.216 and 0.01154, respectively, whereas
a decrease in the dynamic variables A and S by 0.8 and 0.2, respectively. Similarly, doubling the
parameter r1 leads to an increase in the value of the dynamic variable N and F by 0.27 and 1.02,
respectively while the values of A and S decrease by 2.316 and 0.085, respectively. Moreover, doubling
the parameter r0 decreases the values of N and F by 8.279 and 1.5, respectively, whereas the values of
A and S increase by 3.956 and 0.15, respectively.
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Figure 10. Semi-relative sensitivity plot of variables N(t), A(t) S (t), and F(t) with respect to
δ, r1, and r0.

6. Discussion

In this study, the analysis using the center manifold theorem indicates that when the growth rate
of the fish population attributed to the uptake of algae, exceeding a threshold value λ2c, the bifurcation
proceeds in a forward direction at λ1 = λ1 p (threshold value of growth rate of algae due to uptake of
nutrients). Conversely, if λ2 < λ2c, the bifurcation takes a backward direction at λ1 = λ1 p. The
transcritical bifurcation in forward direction elucidates that as the growth rate of algae, propelled by
nutrients uptake, surpasses a critical threshold λ1 p, the equilibrium point undergoes a significant shift.
At low growth rate of algae due to nutrients uptake, the algae biomass encounters challenges in
flourishing within the aquatic ecosystem. However, with an increase in the growth rate of algae due to
nutrients uptake, the algae biomass experiences heightened growth, rendering the coexisting
equilibrium point feasible, while destabilizing the previously stable algae-free equilibrium point.
Biologically, this phenomenon describes that if the growth rate of fish population propelled by the
algae uptake is grater than its threshold value λ2c, the algae biomass can be totally removed from the
water reservoir if λ1 < λ1 p and always persist in the water reservoir when λ1 > λ1 p. Further, the
noteworthy phenomenon of backward transcritical bifurcation manifests when the growth rate of fish
due to algae uptake is lower than the threshold quantity λ2c. In this scenario, two coexisting equilibria
emerge even though the growth rate of the algae biomass due to nutrients uptake is below the
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threshold quantity λ1 p. From the emerged two equilibria, the equilibrium point with high algae
density is stable, while equilibrium point with low algae density is unstable. These two equilibria
collide and disappear by experiencing a saddle-node bifurcation at λ1 = λ1b. From a biological
perspective, this phenomenon elucidates that despite the low growth rate of algae fueled by nutrients
uptake, the presence of algae biomass in the water reservoir can persist for λ1 ∈ (λ1b, λ1 p). This
persistence occurs because of low growth of the fish population driven by algae uptake and initial
density of algae in the water body. The occurrence of backward bifurcation highlights that if the
growth rate of the fish population, attributed to algae consumption, falls below a critical threshold
value λ2c, then complete removal of algae biomass from the water reservoir is only achievable if the
growth rate of algae, driven by nutrients uptake, is below its threshold quantity λ1b. This ecological
insight underscores the complex interplay between nutrient-driven algae dynamics and fish population
growth in shaping the equilibrium points of the aquatic ecosystem.

This study distinguishes itself in the field of algal bloom modeling by emphasizing the crucial
role of fish populations in aquatic ecosystem dynamics. Unlike earlier research that focused primarily
on nutrient-phytoplankton interactions, such as O’Brien’s 1974 study [28] or Huppert et al.’s 2005
work [29], this study explicitly incorporates fish population growth rates as a key factor influencing
algal bloom dynamics.

This research identifies critical thresholds for both algae and fish growth rates, demonstrating how
fish consumption of algae can potentially control or exacerbate algal blooms under various conditions.
This approach provides a more nuanced understanding compared to studies, like Chen et al.’s model
[30] or Shukla et al.’s [23] work, which focused more on environmental factors and nutrient inflow
respectively.

Moreover, a notable finding is the phenomenon of backward bifurcation when fish population
growth falls below a critical threshold. This insight is not explored in studies, like Zhao et al.’s [31]
on stochastic factors but reveals how low fish growth rates can contribute to algae persistence even
under low nutrient conditions. While sharing some conceptual ground with recent works, like An
et al.’s resource-based models [27], this study’s focus on immediate fish-algae interactions offers a
unique perspective. By explicitly modeling the fish population’s role, it provides valuable insights for
ecosystem management, particularly in using fish populations as a potential tool for mitigating algal
bloom risks.

Although, our model provides valuable insights into algal bloom dynamics, several limitations
warrant consideration. The use of hypothetical parameters, while allowing theoretical exploration,
limits direct applicability to specific ecosystems. More critically, the omission of light and
temperature effects, which are significant factors in algal growth impacts the model’s ecological
realism. Incorporating these factors could introduce seasonal variations in bloom patterns, potentially
altering equilibrium stability throughout the year and leading to additional bifurcations. Fish-algae
interactions would likely vary with temperature, affecting grazing rates and bloom control.
Furthermore, light-dependent growth could introduce depth-based variations, necessitating a spatially
explicit approach. Including seasonal effects could inform optimal timing for management
interventions, while temperature considerations could elucidate system resilience to climate change.
Despite these limitations, our model provides a foundational framework for understanding
nutrient-algae-fish dynamics, offering valuable theoretical insights and a basis for more
comprehensive future studies.
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Moreover, future iterations of the model incorporating factors, like temperature and light
dependent fish-algae growth would enhance its predictive power for real-world scenarios. Exploring
temperature-dependent fish-algae interactions may provide a more nuanced understanding of grazing
rates and bloom control mechanisms. Also, developing a spatially explicit model to account for
depth-based variations in light-dependent algal growth would offer a more comprehensive view of
bloom dynamics in stratified water bodies. These enhancements could inform optimal timing for
management interventions and elucidate the system’s resilience to climate change. While these
additions would increase model complexity, they would also greatly enhance its relevance for
real-world scenarios and ecosystem management strategies.

7. Conclusions

The complex interplay among nutrients, algae, and fish within the aquatic ecosystem is crucial
for shaping the dynamics of the aquatic ecosystem. Nutrients, specifically nitrogen and phosphorus,
act as vital components for the sustainable growth of algae. When there is an excess of nutrient input
from agricultural run-off or household discharges, it can result in an overgrowth of algae, leading to
algal blooms. This relationship between nutrients and algae has direct implications on fish
populations, as their sustenance relies on the availability of dissolved oxygen in the aquatic
ecosystem. Fish play a significant role in the ecosystem by regulating algae levels through grazing,
thereby contributing to maintaining a balance. Conversely, the abundance of algae directly influences
the growth of fish populations as it impacts their primary food source. This intricate web of
interactions emphasizes the fragile equilibrium necessary for a healthy aquatic ecosystem.
Disruptions, whether caused by nutrient imbalances or other environmental factors, can have
cascading effects, affecting the overall stability and biodiversity of the aquatic ecosystem. Therefore,
it is imperative to comprehend and manage the nutrient-algae-fish relationship for sustainable aquatic
ecosystem management and conservation efforts. In this article, we have formulated a
four-dimensional mathematical model designed to govern the dispersion of algae in water bodies with
dynamical variables including nutrients, algae, detritus, and fish. First, we have identified the feasible
equilibria of the proposed mathematical model. Subsequently, utilizing the stability theory of
differential equations, we have assessed the stability of obtained equilibria. Furthermore, our
investigation has revealed that the proposed mathematical model undergoes transcritical bifurcation
and saddle-node bifurcation. To illuminate the direction of the transcritical bifurcation, we have
employed the center manifold theorem. Additionally, to show the existence of saddle-node
bifurcation, Sotomayor’s theorem has been applied.
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