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Abstract: Open-world semi-supervised learning (OWSSL) has received significant attention since it
addresses the issue of unlabeled data containing classes not present in the labeled data. Unfortunately,
existing OWSSL methods still rely on a large amount of labeled data from seen classes, overlooking
the reality that a substantial amount of labels is difficult to obtain in real scenarios. In this paper, we
explored a new setting called open-world barely-supervised learning (OWBSL), where only a single
label was provided for each seen class, greatly reducing labeling costs. To tackle the OWBSL task, we
proposed a novel framework that leveraged augmented pseudo-labels generated for the unlabeled data.
Specifically, we first generated initial pseudo-labels for the unlabeled data using visual-language models.
Subsequently, to ensure that the pseudo-labels remained reliable while being updated during model
training, we enhanced them using predictions from weak data augmentation. This way, we obtained
the augmented pseudo-labels. Additionally, to fully exploit the information from unlabeled data, we
incorporated consistency regularization based on strong and weak augmentations into our framework.
Our experimental results on multiple benchmark datasets demonstrated the effectiveness of our method.
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1. Introduction

Semi-supervised learning (SSL) was introduced to address the problem of limited labeled data in
machine learning. SSL uses a small number of labeled samples and tries to utilize a large number of
unlabeled samples to improve the performance of the model. In many fields, such as image classification
[1–3], semantic segmentation [4–6], and object detection [7–9], SSL methods have achieved outstanding
results.
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Regrettably, traditional SSL methods [10, 11] require labeled samples of all classes, which is almost
impossible in real-world scenarios. Open-world SSL (OWSSL) was proposed, assuming that the
unlabeled dataset not only contains the classes of labeled data, but also existing unseen categories that
have never been seen in labeled datasets. The goal of OWSSL is to distinguish seen classes while
also discovering unseen classes. Cao et al. [12] introduced an uncertainty adaptive margin mechanism
to discover novel classes while avoiding bias toward seen classes. NACH [13] exploited pair-wise
similarities between examples to discover unseen classes, while balancing the learning speed of seen
and unseen classes via an adaptive threshold with distribution alignment.

However, existing OWSSL methods do not account for scenarios where the number of labeled
samples in seen classes is extremely limited, which is quite likely to arise in practical applications. This
inspires us to propose a new setting called open-world barely-supervised learning (OWBSL), where
each seen class is represented by only one label. As shown in Figure 1, our OWBSL setting is illustrated
in Figure 1(c). Unlike Figure 1(a), where both labeled and unlabeled data contain the same classes, and
different from Figure 1(b), where seen classes have a large number of labeled samples, our proposed
OWBSL setting features unlabeled samples containing classes not present in the labeled samples, while
each seen class has only one labeled instance.

Labeled data for all classes.

(a) Semi-supervised Learning

Unlabeled data.

(b) Open-world Semi-supervised 
Learning

Labeled data for seen classes.

Unlabeled data containing both 
seen and unseen classes.

(c) Open-world Barely-supervised 
Learning

One labeled instance per seen class.

Unlabeled data containing both 
seen and unseen classes.

Seen class

Unseen class

Figure 1. Comparison of OWBSL with OWSSL and SSL. (a) represents SSL with a small
amount of labeled data and a large amount of unlabeled data, where labeled and unlabeled
data follow the same distribution. (b) represents OWSSL, where the unlabeled data includes
unseen classes not present in the labeled data. (c) represents our OWBSL setting, where each
seen class has only one labeled instance.

Under the OWBSL setting, the standard OWSSL method often fails to work because it cannot obtain
reliable labels. To tackle this challenge, we propose a new framework that incorporates contrastive
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language-image pretraining (CLIP) [14] to provide relatively reliable pseudo-labels for unlabeled data
as prior knowledge. Specifically, we first leverage CLIP’s zero-shot inference capability to generate
pseudo-labels for the unlabeled training data. Then, we enhance these pseudo-labels by incorporating
data augmentation techniques. We use the predictions obtained from the model after applying weak
augmentation to the images as a component of the pseudo-labels, combining them with CLIP’s output
to form the augmented pseudo-labels. Additionally, to improve the model’s robustness and better
distinguish both seen and unseen classes, we apply strong augmentations to the images and enforce
consistency between the outputs of the strong and weak augmentations to guide the model’s learning
process.

We summarize our contributions as follows:

• We propose a new OWBSL setting where there is only one label for each seen class. In this setting,
only a minimal number of labeled samples from the seen class are required to classify between
seen and unseen classes.
• We propose a new framework that can provide reliable pseudo-labeling for unseen classes. We

combine the zero-shot inference capability of vision-language models (VLMs) with data aug-
mentation techniques to generate augmented pseudo-labels. Additionally, we incorporate data
augmentation and consistency regularization techniques to help the model learn representations.
• Experimental results on four benchmark datasets demonstrate the effectiveness of our method.

2. Related work

2.1. Semi-supervised learning

Pseudo-labeling [15–19] and consistency regularization [20–23] are two trends of SSL. The core idea
of pseudo-labeling is to use the model’s prediction to label the unlabeled data, and then train the model
using these pseudo-labels alongside the original labeled data. Consistency regularization is a technique
that enforces consistency constraints on different perturbed versions of unlabeled data. FixMatch [24]
proposed a simple framework which achieves excellent performance by unifying these two methods. It
uses the model’s high confidence predictions of weak data augmentation as pseudo-labels, forcing the
model to learn consistency between the strong and weak augmentation of the data.

FlexMatch [25] used adaptive thresholds for each class, and, similarly, MarginMatch [10] and
FreeMatch [11] have also designed different threshold selection strategies. PROTOCON [26] refined
pseudo-labels through clustering by utilizing information from the sample’s nearest neighbors. Chen
et al. [27] argued that pseudo-labeling strategies based on threshold selection overlooked unlabeled
data. To address this, they introduced entropy meaning loss and adaptive negative learning techniques
to more effectively utilize unlabeled data. Robust SSL aims to improve the performance of models
in the presence of noisy or inaccurate labels. Park et al. [28] effectively identified out-of-class data
by assigning soft labels to out-of-class unlabeled data using self-supervised contrastive learning. Mo
et al. [29] improved the generalization ability of the model by calibrating predictions through density
modeling in the representation space.

Thomas et al. [30] proposed the method which is based on self-supervised clustering and selects
pseudo-labels by utilizing historical predictions of samples and class-dependent thresholds. Gui et
al. [31] posited that insufficient labels result in inadequate learning of discriminative information.
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To address this, it proposes constructing super-classes and using the similarity between samples and
super-classes to enhance the learning of discriminative information.

2.2. Open-world semi-supervised learning

Although the above SSL methods have achieved excellent results, they still have the limitation
of requiring labeled data for all categories. To address this, a new scenario called OWSSL has been
proposed, where the unlabeled data includes classes that are not present in the labeled data.

OpenCon [32] combined contrastive learning and proposed a prototype-based algorithm that could
discover new classes through clustering without knowing the number of classes. Rizve et al. [33]
utilized prior knowledge of class distributions to generate reliable class distribution aware pseudo-labels
for unlabeled data. Taxonomic context priors discovering and aligning (TIDA) [34] exploited multi-
granularity semantic concepts as prior knowledge to enhance representation learning and improve the
quality of pseudo-labels.

Vaze et al. [35] used contrastive representation learning and clustering to directly provide class labels.
Wen et al. [36] proposed a parameter classification method that benefits from entropy regularization,
which achieved excellent performance. Zhao et al. [37] proposed an alternating learning framework that
retrieves cluster assignments for unlabeled instances by identifying their nearest prototypes.

2.3. Vision-language models

VLMs integrate visual and textual information to enable comprehensive understanding and generation
across modalities.

CLIP is trained on a massive amount of image-text pairs. Its core idea is to promote the correct
pairing of images and texts through contrastive learning. CLIP demonstrates strong zero-shot learning
capabilities. Context optimization (CoOp) [38] is based on CLIP and optimizes the context of the
prompt word to make the model perform better in specific tasks. Conditional context optimization
(CoCoOp) [39] argued that CoOp’s generalization is insufficient and addresses this by generating
input-conditional vectors for each image, enabling the model to generalize to unseen classes. CLIP
Adapter [40] achieves better fine-tuning performance than CoOp by inserting the adapter module into
CLIP’s text encoder and image encoder. Tip-Adapter [41] leveraged the knowledge of few-shot samples
by constructing a key-value cache model, enabling CLIP to adapt to few-shot classification tasks without
requiring any parameter learning.

3. Methodology

3.1. Problem setting

Our OWBSL is defined as follows. The training dateset D contains two parts: labeled dataset
Dl = {xi, yi}

n
i=1 and unlabeled dataset Du =

{
u j

}m
j=1

. Typically, m ≫ n. x ∈ Rd , where d is the feature

dimension. y ∈ Yl = {ci}
kl
i=1 , where kl is the number of labeled classes. We useYall = {ci}

kall
i=1 to represent

all categories in the training set, Yseen represents the seen classes, and Yunseen represents the unseen
classes. Specifically, Yl = Yseen ⊂ Yall, Yunseen = Yall \ Yseen and kall > kl. Also, Yseen ∩ Yunseen = ∅.
In our setting, the number of labeled training data n is equal to the number of seen classes, that is, there
is only one labeled example for each seen class.

Electronic Research Archive Volume 32, Issue 10, 5804–5818.



5808

3.2. Architecture

Overview As shown in Figure 2, our method mainly consists of two parts: supervised learning with
labeled data and unsupervised learning with unlabeled data. The unsupervised part includes two main
technologies: augmented pseudo-labeling and consistency regularization.

Seen
classes 

Unseen
classes

“ a photo of a {category}”

Strongly augmented

CLIP 
Image

Encoder

Weakly augmented

Augmented PL

LAPL

Pseudo Label

Lu

❆

CLIP 
Text

Encoder

❆

❆ Frozen

Text embeddings

Image embeddings

Linear predictor

Similarity calculation
Add

Unlabeled data 

CLIP 
Image

Encoder
Labels

❆

Ls

Labeled data 

Figure 2. The overall architecture of our methods. Our approach mainly consists of two parts:
supervised and unsupervised. The image and text encoders of CLIP are fixed, and ”a photo of
a [category]” is used as the text template. The overall loss of the model consists of supervised
loss Ls and unsupervised losses LAPL and Lu.

Augmented pseudo-labels In this paper, we designed a pseudo-label enhancement method. Specifi-
cally, we introduce CLIP into OWBSL and use the prediction of CLIP as a component of pseudo-label.
To fully leverage CLIP’s zero-shot inference capability, we enhance the pseudo-labels using weak data
augmentation techniques. These two components together form the augmented pseudo-labels.

Consistency regularization Consistency regularization leverages unlabeled data based on the as-
sumption that the model should produce similar predictions when given different perturbations of the
same image [24]. Therefore, to improve the model’s stability, we continue to incorporate consistency
regularization as a important component of our approach.

Supervised learning of labeled data For the labeled data Dl, we use the cross-entropy loss between
the model’s predicted probabilities and the true labels for training. Specifically, the cross-entropy loss
function measures the difference between the model’s predicted probability distribution and the actual
label distribution, guiding the model to adjust its parameters to reduce prediction errors.
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3.3. Augmented pseudo-labels

In this section, we explain how to generate augmented pseudo-labels for unlabeled data. Specifically,
augmented pseudo-labels consist of two components: predictions from CLIP and predictions from
weakly augmented data.

To start, we generate initial pseudo-labels using CLIP’s zero-shot inference capabilities. CLIP is
a multimodal model consisting of an image encoder f I(·) and a text encoder f T (·). For CLIP’s text
encoder, we use the template ”a photo of a [category]” as the text description, where [category] is the
name of the class. For one unlabeled sample ui with a k-classification task, f T

c is the text feature for
the c-th class extracted from pretrained text encoder and f I(ui) is the image feature extracted from
pretrained image encoder. Therefore, the probability of ui in the c-th class is:

pc
i =

exp(< f T
c , f I(ui) > /τ)∑k

j=1 exp(< f T
j , f I(ui) > /τ)

(3.1)

where < · > represents cosine similarity, and τ represents the temperature parameter. Meanwhile, we can
obtain the prediction probability vector PCLIP

i = [p1
i , p

2
i , ..., p

k
i ]. Then, we can obtain the pseudo-label ŷi

of ui from CLIP:
ŷi = so f tmax(pCLIP

i ) (3.2)

Despite using Eqs (3.1) and (3.2), we can already obtain relatively reliable pseudo-labels, as relying
solely on the pseudo-labels generated by CLIP has its limitations. This is because f I(·) and f T (·) from
CLIP are frozen, which means that the generated pseudo-labels are fixed and cannot be updated. To
address this issue, we incorporate weakly augmented predictions to refine the pseudo-labels.

Recognizing the substantial benefits of data augmentation technology in model training, we have
implemented it in our approach. Let uw

i and us
i represent the weak augmentation and strong augmentation

views of the same image ui, and g(·) to denote the output of the fully connected layer. For an unlabeled
image with random weak augmentation uw

i , the prediction is:

pFC
i = g( f I(uw

i )) (3.3)

From Eqs (3.2) and (3.3), we obtain the final augmented pseudo-labels:

APLi = argmax(ŷi + so f tmax(pFC
i )) (3.4)

3.4. Training objective

For a batch containing n labeled instances and m unlabeled instances, our loss function is divided
into three parts: supervised loss Ls, unsupervised loss LAPL based on our augmented pseudo-labels, and
unsupervised loss Lu based on consistency regularization.

The supervised loss for labeled data is:

Ls =
1
n

n∑
i=1

H(yi, g( f I(xi))) (3.5)

where H(·) refers to cross-entropy loss.
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The loss between the weakly augmentation output and the augmented pseudo-label is:

LAPL =
1
m

m∑
i=1

H(APLi, g( f I(uw
i ))) (3.6)

The unsupervised loss introduced by the threshold-based consistency regularization is:

Lu =
1
m

m∑
i=1

1(max(g( f I(uw
i ))) > τ)H(argmax(g( f I(uw

i ))), g( f I(us
i ))) (3.7)

where τ is used to filter the pseudo-labels. Following FixMatch, we set τ as 0.95.
In summary, the overall training objective is:

L = Ls + LAPL + Lu (3.8)

4. Experiments

4.1. Experimental setup

Dataset We evaluated our proposed approach on both generic image classification (CIFAR-100 [42],
Tiny-ImageNet [43], Caltech-101 [44]) and fine-grained datasets (Food-101 [45]). For each dataset, we
select 50, 20 and 80% of the classes as seen classes, with the remaining classes considered unseen. That
is, the divisions between seen and unseen classes are 5/5, 2/8, and 8/2, respectively. In seen classes, each
class randomly selects one sample to form the labeled training set, while the remaining samples, along
with all samples from unseen classes, form the unlabeled training set. In particular, for the Caltech-101
dataset, we follow CoOp’s approach by excluding the ’BACKGROUND Google’ and ’Faces easy’
classes. We present the specific details of the datasets in Table 1, including the number of classes, the
amount of training and testing data, and the text templates used for each dataset.

Table 1. The details of datasets used for evaluations.

Dataset Classes Train Test Prompt
CIFAR-100 100 50,000 10,000 ”a photo of a [CLASS].”
Tiny-ImageNet 200 100,000 10,000 ”a photo of a [CLASS].”
Caltech-101 100 5769 2473 ”a photo of a [CLASS].”
Food-101 101 75,750 25,250 ”a photo of a [CLASS], a type of food.”

Implementation details For every experiment, we use the CLIP’s image encoder as feature extractor,
and ViT-L/14 as the backbone of CLIP’s image encoder. We set the batch size to 256 for every dataset.
Besides, we employ AdamW [46] as the optimizer with weight decay 0.05 and the learning rate is set
as 1e-3. For all experiments, we set the number of epochs to 50. For data augmentation, we employ
horizontal flipping and random cropping as weak augmentations, while using methods that involve more
substantial modifications, such as RandAugment [47] and Cutout [48], as strong augmentations.
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Comparison methods To demonstrate the effectiveness of our method from multiple perspectives,
we compared it with various approaches, including the CLIP baseline [14], CLIP-based methods [14],
and representative methods of OWSSL. The specific introductions are as follows:

• CLIP baseline [14]. The CLIP baseline methods include CLIP zero-shot classification and CLIP
linear probe. For CLIP’s zero-shot classification, we used only the test set for evaluation, while
CLIP linear probes trained on all available training data.
• CLIP-based methods [14]. We conducted experiments across multiple dimensions of CLIP.

First, we define three methods based on CLIP linear probe (CLIP LP): CLIP one-shot LP (CLIP
OLP), CLIP partial-classes LP (CLIP PLP), and CLIP one-shot partial-classes LP (CLIP OPLP).
Specifically, CLIP OLP uses a randomly selected sample from each class to train the linear probe,
CLIP PLP uses all the training data from the seen classes to train the linear probe, and CLIP OPLP
uses only one sample from each seen class to train the linear probe.
• Open-world semi-supervised methods. We compared our approach with the state-of-the-art

OWSSL methods, ORCA [12], and NACH [13]. To ensure fairness in the experiments, we
maintained consistent settings during the comparison. Specifically, we use CLIP’s image encoder
as the feature extractor for ORCA [12] and NACH [13].

Table 2. Accuracy comparison results across four benchmarks with 5/5 splits between seen
and unseen classes.

CIFAR-100 Food-101 Caltech-101 Tiny-ImageNet

Methods All Seen Unseen All Seen Unseen All Seen Unseen All Seen Unseen
CLIP baseline

CLIP ZERO-SHOT 76.37 77.64 75.10 92.53 92.90 92.17 91.75 87.37 96.53 73.73 75.40 72.06
CLIP LP 85.80 86.38 85.22 94.72 94.55 94.90 98.95 99.27 98.69 85.18 85.20 85.17

CLIP-based methods

CLIP OLP 39.86 42.56 37.16 60.32 58.55 62.05 79.90 79.81 80.00 42.61 43.52 41.70
CLIP PLP 45.93 91.06 - 47.66 96.28 - 51.67 98.99 - 44.98 89.96 -
CLIP OPLP 25.99 51.92 - 31.73 64.09 - 43.83 83.97 - 25.60 51.14 -

Open-world semi-supervised methods

ORCA 41.71 40.94 49.34 10.70 8.99 17.18 16.05 11.03 20.59 17.48 23.62 19.48
NACH 51.83 45.14 54.30 9.79 6.30 16.29 26.85 23.94 28.95 28.43 19.74 34.74
OURS 80.56 81.66 79.50 93.86 93.78 93.93 95.59 94.27 97.07 78.89 81.46 76.32

4.2. Comparison with state-of-the-arts

In this section, we present a comparison between our method and other state-of-the-art methods to
demonstrate the effectiveness of our approach. The specific results of our experiments are shown in
Tables 2–4. Table 2 shows the results with 50% of the classes used as seen classes. Table 3 presents the
results with 20% of the classes as seen classes. Table 4 displays the results with 80% of the classes as
seen classes.
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Table 3. Accuracy comparison results across four benchmarks with 2/8 splits between seen
and unseen classes.

CIFAR-100 Food-101 Caltech-101 Tiny-ImageNet

Methods All Seen Unseen All Seen Unseen All Seen Unseen All Seen Unseen
CLIP baseline

CLIP ZERO-SHOT 76.37 80.80 75.26 92.53 92.52 92.54 91.75 94.59 90.78 73.73 75.70 73.24
CLIP LP 85.80 87.25 85.44 94.72 93.96 94.91 98.95 99.50 98.77 85.18 84.30 85.40

CLIP-based methods

CLIP OLP 39.86 36.35 40.74 60.32 60.66 60.24 79.90 85.41 78.13 42.61 45.60 42.28
CLIP PLP 19.05 95.25 - 19.22 97.08 - 25.35 99.68 - 18.78 93.90 -
CLIP OPLP 10.75 53.75 - 14.33 72.36 - 23.66 93.00 - 11.39 56.95 -

Open-world semi-supervised methods

ORCA 40.32 26.75 42.53 8.36 15.48 9.41 20.29 45.11 15.94 16.08 21.35 16.79
NACH 51.37 8.35 54.45 8.96 16.16 10.38 24.87 50.41 18.82 26.70 14.25 29.96
OURS 80.17 84.10 79.19 93.77 93.68 93.80 95.15 98.25 94.09 78.53 82.55 77.53

Table 4. Accuracy comparison results across four benchmarks with 8/2 splits between seen
and unseen classes.

CIFAR-100 Food-101 Caltech-101 Tiny-ImageNet

Methods All Seen Unseen All Seen Unseen All Seen Unseen All Seen Unseen

CLIP baseline

CLIP ZERO-SHOT 76.37 75.80 78.65 92.53 93.09 91.31 91.75 90.30 97.57 73.73 74.28 71.55
CLIP LP 85.80 85.29 87.85 94.72 94.86 94.23 98.95 99.08 98.29 85.18 85.19 85.15

CLIP-based methods

CLIP OLP 39.86 40.11 38.85 60.32 60.39 60.08 79.90 78.37 87.59 42.61 43.35 39.65
CLIP PLP 69.45 86.81 - 75.87 95.78 - 82.25 98.64 - 69.54 86.93 -
CLIP OPLP 34.21 42.76 - 49.17 62.08 - 71.05 85.21 - 35.87 44.84 -

Open-world semi-supervised methods

ORCA 46.97 48.20 61.45 10.30 5.24 21.58 19.61 13.14 32.36 18.42 16.45 22.70
NACH 54.98 52.10 72.20 10.47 5.59 25.52 32.35 21.39 40.63 30.86 23.65 43.55
OURS 80.30 80.02 81.40 93.75 93.91 93.12 95.67 95.29 97.57 79.29 80.28 75.40

The comparison results show that our method achieves the best performance across all four datasets.
To begin, it can be observed that our method outperforms CLIP’s zero-shot classification across all
datasets and shows only a small gap compared to fully supervised CLIP linear probes. Additionally,
for CLIP-based methods such as CLIP OLP, CLIP PLP, and CLIP OPLP, our method significantly
outperforms them. This also demonstrates that when the amount of data is very limited or the training
data classes are incomplete, relying solely on the encoder and linear layers is insufficient. Finally, the
experimental results clearly show that the drastic reduction in the number of labeled samples leads to a
catastrophic decline in accuracy for ORCA [12] and NACH [13]. For example, as shown in Table 2, our
method achieves the highest improvement of over 80% for all classes and seen classes, and the highest
improvement of over 70% for unseen classes (Food-101). The significant gap between their results and
ours further demonstrates the critical importance of semantic information.
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4.3. Comparison of different split ratios

As previously mentioned, our experiments were conducted with different partition ratios between
seen and unseen classes. Experimental results show that, for our method, as the proportion of seen
classes increases, the accuracy across all classes also rises or remains relatively stable. Overall, despite
varying partition ratios, our method maintains stability.

For the CLIP baseline method and CLIP OLP, since they use all categories during training, the
differences in performance between seen and unseen classes are determined by the characteristics of
the dataset itself. The accuracy of CLIP OLP and CLIP OPLP across all classes increases with the
proportion of seen classes.

It can also be observed that OWSSL methods are significantly impacted by the proportion of seen
classes. For instance, comparing Tables 3 and 4, we observe that NACH exhibits a discrepancy of over
40% in the accuracy of seen classes on CIFAR-100 when the seen/unseen class spilts are 2/8 and 8/2.

4.4. AUROC results

Area under the receiver operating characteristic curve (AUROC) is a commonly used open-set
evaluation metric [49] to assess a model’s performance across different thresholds. In our experimental
setup, we treat seen classes as positive samples and unseen classes as negative samples. The results
of our method and the comparison methods on the CIFAR-100 and Caltech-101 dataset are shown in
Table 5 where we set the split of seen/unseen classes to 5/5. From the results, it can be observed that
our method achieves excellent results, only slightly lower than the CLIP linear probe trained with all
training samples. This indicates that our method effectively separates the seen and unseen classes.

Table 5. AUROC results on CIFAR-100 and Caltech-101 with 5/5 splits between seen and
unseen classes.

Methods CIFAR-100 Caltech-101
CLIP ZERO-SHOT 88.49 97.73
CLIP LP 98.48 99.98
CLIP OLP 78.65 96.41
CLIP PLP 87.01 97.82
CLIP OPLP 64.23 71.02
ORCA 74.68 51.26
NACH 82.32 60.07
OURS 97.22 99.87

4.5. Ablation study

To demonstrate the effectiveness of our method, we performed ablation experiments on the CIFAR-
100 dataset. As can be seen from the Table 6, our method achieved the highest accuracy. It is evident
that the results when only using CLIP prediction are the lowest, as the pseudo-labels are fixed and
the model cannot learn from iterations. Integrating outputs from the weak augmentation branch and
consistency regularization both enhance the model’s accuracy, with the weak augmentation providing
greater benefits. When all components are combined, as in our proposed method, the best results are
achieved. Compared to the lowest results, our proposed method improves accuracy by 2.49% for all
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classes, 2.6% for seen classes, and 2.86% for unseen classes.

Table 6. Ablation study results on CIFAR-100. Here, ✓ indicates that the corresponding
component is included in the current experiment.

CLIP Prediction Weakly Augmented Prediction Consistency Regularization All Seen Unseen

✓ 78.07 79.06 77.06
✓ ✓ 79.43 80.38 78.48
✓ ✓ 78.81 80.98 76.64
✓ ✓ ✓ 80.56 81.66 79.50

Additionally, we conducted experiments on the backbone of the CLIP image encoder to further
validate the effectiveness of our method. As shown in Table 7, our experiments were performed on
the Caltech-101 dataset. Even when using ViT-B/32 and ViT-B/16 as the backbones, our method still
achieved results superior to zero-shot performance.

Table 7. Comparison experiments of backbone networks on the Caltech-101 dataset.

Backbone CLIP ZERO-SHOT All Seen Unseen
ViT-B/32 88.52 90.29 90.84 89.71
ViT-B/16 88.96 92.52 94.21 90.71

5. Conclusions

In this paper, we propose a new setting called OWBSL, where there is only one labeled data per
seen class. At the same time, we propose a novel framework to solve this problem. We introduce CLIP
in OWBSL to help generate augmented pseudo-labels. In order to enhance the discriminability of the
model, we also utilize consistency regularization. Experimental results demonstrate that our method can
effectively reduce the dependence on labeled data.
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