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Abstract: In recent years, significant progress has been made in single-image super-resolution with
the advancements of deep convolutional neural networks (CNNs) and transformer-based architectures.
These two techniques have led the way in the field of super-resolution technology research. However,
performance improvements often come at the cost of a substantial increase in the number of parameters,
thereby limiting the practical applications of super-resolution methods. Existing lightweight super-
resolution methods, which primarily focus on single-scale feature extraction, lead to the issue of
missing multi-scale features. This results in incomplete feature acquisition and poor reconstruction
of the image. In response to these challenges, this paper proposed a lightweight multi-scale feature
cooperative enhancement network (MFCEN). The network consists of three parts: shallow feature
extraction, deep feature extraction, and image reconstruction. In the deep feature extraction part,
a novel integrated multi-level feature module was introduced. Compared to existing CNN and
transformer hybrid super-resolution networks, MFCEN significantly reduced the number of parameters
while maintaining performance. This improvement was particularly evident at a scale factor of 3. The
network introduced a novel comprehensive integrated multi-level feature module, leveraging the strong
local perceptual capabilities of CNNs and the superior global information processing of transformers.
It was designed with depthwise separable convolutions for extracting local information and a block-
scale and global feature extraction module based on vision transformers (ViTs). While extracting
the three scales of features, a satisfiability attention mechanism with a feed-forward network that can
control the information was used to keep the network lightweight. Experiments demonstrated that the
proposed model surpasses the reconstruction performance of the 498K-parameter SPAN model with
a mere 488K parameters. Extensive experiments on commonly used image super-resolution datasets
further validated the effectiveness of the network.
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1. Introduction

Single-image super-resolution (SISR) represents a crucial branch in the field of image restoration,
aiming to recover a high-resolution image from a low-resolution counterpart. Widely applicable in
defense [1], military [2], medical imaging [3, 4], and facial recognition domains [5], it not only
enhances image perceptual quality [6–9] but also contributes to improving various machine vision
tasks [10–12]. However, this inherent ill-posed nature of SISR [13], where multiple high-resolution
images correspond to a single low-resolution image, has rendered it challenging over the past
decades. Consequently, there is a growing focus on researching image super-resolution networks with
robustness and high computational speed [14, 15].

Since Harris [16] first introduced the task of super-resolution reconstruction, mainstream methods
can be categorized into three types: interpolation-based, reconstruction-based, and learning-based
approaches [17]. Interpolation-based and reconstruction-based approaches are considered traditional
super-resolution methods. In contrast, learning-based approaches have evolved significantly, leading
to the emergence of many advanced networks. CNN-based and transformer-based methods have
achieved superior reconstruction performance compared to traditional techniques. The application of
convolutional neural networks (CNNs) to image super-resolution reconstruction, exemplified by the
SRCNN network introduced by Dong [18], has not only ensured reconstruction image quality but also
significantly improved reconstruction speed. This shift marked the superiority of CNN-based methods
over traditional techniques such as bicubic interpolation. Subsequently, numerous CNN-based SISR
models emerged, including FSRCNN [19], ESPCN [20], VDSR [21], RRSR [22], RDDAN [23], and
NLSA [24], among others.

In recent years, the introduction of the Swin transformer [25], leveraging a sliding window
mechanism for self-attention, has propelled vision transformers (ViTs) into the limelight in computer
vision tasks [26, 27], achieving state-of-the-art performance in various advanced vision tasks [28].
However, ViTs exhibit certain challenges when applied to image super-resolution tasks. Due to the
primary usage of transformers for sequence modeling, their self-attention mechanism is more adept at
capturing global relations. Yet, in handling image details, the relatively smaller receptive field proves
challenges in effectively capturing high-frequency details [29–31]. Additionally, the self-attention
mechanism computes pairwise token affinities for all spatial positions, leading to high computational
complexity and substantial memory usage for large-scale images [25, 32, 33]. The elevated parameter
count may hinder real-time operation, especially on resource-constrained mobile devices. Thus, there
is an urgent need to develop a method that can address multi-scale feature extraction and fusion while
reducing the computational cost of reconstructing high-quality, high-resolution images.

In response to these challenges, this paper proposes a lightweight multi-scale feature cooperative
enhancement network (MFCEN), with the following key contributions:
• Introduction of a local feature capture module utilizing depth convolution based on depthwise

separable convolutions and a squeeze-and-excitation module (SE) to incorporate CNN-based local
features into the transformer-based global features, enhancing the local perception capability of
the network.
• Design of a block-scale feature extractor module, innovatively proposing a dynamic sparse self-

attention mechanism for more lightweight and flexible feature extraction at the block scale.
• Introduction of an innovative global semantic capture module, incorporating a cross-channel self-
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attention mechanism and a controlled information feed-forward network to effectively capture global
information while reducing computational complexity and parameter count.

These modules construct a comprehensive multi-level feature module. This compensates for the
limitations of existing transformer architectures in establishing cross-scale attention mechanisms,
utilizing features from local, global, and block-scale enhanced structures. Adhering to the lightweight
design philosophy, this method consistently balances performance with computational complexity.
The proposed approach not only contributes to enhancing the performance of image super-resolution
tasks but also provides an innovative solution for reducing computation costs. The remainder of this
paper is organized as follows: Section 2 reviews related work, discussing existing methods in the field
of the proposed multi-scale feature cooperative enhancement network (MFCEN), including its
network architecture and key components. Section 4 presents experimental results and comparative
analysis, evaluating the performance of MFCEN against existing methods. Finally, Section 5
concludes the paper with a summary of the findings and suggestions for future research.

2. Related works

2.1. CNNs

In recent years, the field of SISR has witnessed significant advancements in improving image
details and enriching texture. Outstanding works appeared such as SRCNN [18], ESPCN [20],
VDSR [21], LapSRN [34], EDSR [35], NLSA [24], and RCAN [36], among others. In comparison to
traditional methods, SRCNN [18] pioneered the introduction of convolutional neural networks to
address image super-resolution. It effectively extracted internal image features with just three
convolutional layers and enhanced super-resolution performance through end-to-end training.
EDSR [35] and DRCN [37], incorporating deeper and wider residual structures, better captured
high-frequency details in images, progressively improving image super-resolution reconstruction
performance through the use of residual blocks. LapSRN [34], MSRN [38], and others achieved
increased resolution by constructing multi-scale features, enhancing the generality and adaptability of
the networks. Despite significant progress in CNN-based image super-resolution, challenges persist,
including insufficient generalization capability, higher computational complexity, and difficulties in
capturing global relationships [39, 40].

2.2. Transformer

The transformer architecture has gained significant attention in the field of image super-resolution,
particularly with the introduction of self-attention mechanisms. In comparison to traditional CNN
and RNN methods, it effectively addresses long-range dependencies and supports parallel
computation [41, 42], thereby enhancing network efficiency. In recent years, several
transformer-based approaches have made noteworthy advancements in this domain. SwinIR [43],
leveraging the Swin transformer architecture with a mobile window mechanism, successfully captures
long-range dependencies and global context information. The texture transformer architecture treats
the transformer as an attention module, improving image super-resolution quality through
texture-aware loss functions.

Nevertheless, ViT structures still face challenges in image super-resolution tasks, such as high
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computational costs and significant GPU memory usage. In response, Lu et al. [44] proposed
the ESRT (efficient SR transformer) to explore the feasibility of using transformers in
lightweight super-resolution tasks. Despite the commendable performance of existing networks,
researchers actively seek efficient, real-time, and lightweight network architectures. This pursuit aims
to optimize network structures, reduce parameters, and improve prediction speed without
compromising performance.

2.3. Multi-scale feature

Despite the rapid development of vision transformers (ViTs) in the field of image super-resolution,
their relatively shallow network architecture limits the effective reconstruction of local details. To
address the shortcomings of the transformer structure, researchers introduce multi-scale feature
extraction to comprehensively capture the spatial structure of images, enhancing the network’s
perception of both details and global context. In recent years, multi-scale features have been widely
applied to various advanced visual tasks, demonstrating their effectiveness in improving model
performance. For instance, CFNet [45] leverages multi-scale feature fusion to obtain the highest-level
semantic features for dense prediction. HRNetV2 [46] cleverly integrates features at different scales,
successfully capturing high-frequency details in images. SMSR [47] achieves adaptive feature
detection and multi-scale feature fusion by effectively utilizing convolutional kernels of different
sizes, thereby capturing high-frequency details in images and achieving high-quality image
reconstruction. DLGSANet [48] introduces multi-head dynamic local self-attention and sparse global
self-attention to dynamically extract local features and provide better self-attention for global feature
exploration. However, most of these methods come at the cost of large parameter sizes and the high
computational complexity associated with obtaining multi-scale features. Therefore, recent research
has begun to explore approaches to obtaining rich feature representations at a smaller cost [49, 50].
The proposed lightweight multi-scale super-resolution method in this paper aims to maintain high
performance while reducing network parameters and computational complexity to meet practical
application constraints on computational resources.

3. Proposed method

In this manuscript, we introduce a novel lightweight, multi-scale feature extraction architecture
designed for image super-resolution reconstruction. Multi-scale feature extraction in the deep
feature model empowers models to capture intricate information across diverse levels of detail,
enhancing their ability to reconstruct nuanced image structures and fortifying the resilience of the
super-resolution process.

In Section 3.1, we outline the framework of the lightweight multi-scale super-resolution network,
including shallow feature extraction, deep feature extraction, and image reconstruction. Then, in
Section 3.2, we present the specifics related to the local feature capturer in the integrated multi-level
feature module. Subsequently, in Section 3.3, we introduce the novel dynamic sparse attention
mechanism proposed in the block-scale feature extractor. Finally, in Section 3.4, we provide a
detailed exposition of the core components of the proposed global semantic capturer.
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3.1. Network architecture

Our proposed multi-scale feature cooperative enhance network (MFCEN) is designed for the
efficient upscaling of low-resolution images to their high-resolution counterparts.

Shallow Feature Extraction Deep Feature Extraction

LR Image LRI

...
K

Image Reconstruction

Integrated Multi-level Feature Module

Conv

Pixel

Shuffle

Element-

wise sum

HR Image  HRI

Figure 1. The framework of the lightweight multi-scale feature cooperative enhance network
(MFCEN).

As depicted in Figure 1, MFCEN comprises three components: shallow feature extraction, deep
feature extraction, and image reconstruction. The lower part of Figure 1 illustrates the three levels of
deep feature extraction and their attention mechanisms: local, block-scale, and global feature
extraction. The details of these mechanisms will be explained in the following sections.

To initiate the process, a 3 × 3 convolutional layer HS F is applied to extract shallow features
Fshallow ∈ RH×W×C from a given input low-resolution image (ILR) :

Fshallow = HS F (ILR) , (3.1)

where H, W, and C are the feature height, width, and channels, respectively. This convolution layer
not only efficiently extracts shallow features but also transforms the input from image space into a
higher-dimensional feature space.

Subsequently, a deep feature extraction network is employed, consisting of K stacked integrated
multi-level feature modules and residual connections, facilitating the extraction of profound features
Fshallow. Each integrated multi-level feature module comprises a local feature capturer (LFC),
block-scale feature extractor (BFE), and global semantic capturer (GSC), facilitating local
propagation, multi-scale interactions, and global-scale engagement. This configuration constitutes a
comprehensive aggregation building block. We will delve into the detailed description of each key
element in Sections 3.2 to 3.4.

In essence, this process can be succinctly described as

Fdeep = HDF (Fshallow) , (3.2)

where the shallow and deep features are jointly learned to predict missing high-resolution images
with rich details. The aggregated features are then reconstructed through PixelShuffle. Finally, we
reconstruct the HR image IHR

IHR = HRec

(
Fshallow + Fdeep

)
, (3.3)
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where HRec (·) denotes the reconstruction module containing PixelShuffle which is used to upsample
the fused feature.

3.2. Local feature capturer

In particular, the local feature capturer (LFC) is constructed by stacking depthwise separable
convolutions, interleaved with a squeeze-and-excitation module (SE). This design facilitates the
redistribution of channel attention while further extracting features and reducing computation
complexity. The main goals of this module are to consolidate local contextual information and to
reduce computation complexity. As depicted in Figure 2, the local feature capturer (LFC) is
implemented as a stack of pointwise and depthwise convolutions with a squeeze-and-excitation
module (SE) module between them to adaptively re-weight channel-wise features. This module aims
to aggregate local contextual information as well as to increase the trainability of the network.
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Figure 2. The framework of the local feature capturer.

3.3. Block-scale feature extractor

To address challenges associated with high memory consumption and computational costs, various
strategies have been explored, such as restricting the attention operation to be inside local windows,
axial stripes, or dilated windows. These techniques introduce sparse attention with different
handcrafted modes to alleviate complexity. Sparse attention mechanisms in non-manual modes
typically share a sampled subset of key-value pairs across all queries, which cannot interfere with
each other. As shown in Figure 3, the block-scale feature extractor (BFE) in this paper employs an
innovative dynamic sparse attention mechanism to achieve a more lightweight and flexible feature
extraction at the block scale.

The key aspect of our approach involves filtering out the most irrelevant key-value pairs at the
region level, retaining only a portion of routing regions. Then fine-grained token-to-token attention is
jointly applied within these routing regions. We first construct a region-level association graph,
followed by limiting the connections to the first k that are kept for each node. This effectively reduces
computational complexity within each region. After determining the participating regions, we then
apply token-to-token attention in the subsequent step. The design of this workflow aims to select
regions relevant to the task, enhancing computational efficiency and reducing redundancy in the
information processing flow.
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Figure 3. The framework of the block-scale feature extractor.

Specifically, we first partition the input image X ∈ RH×W×C into S × S different regions, each
containing HW

S 2 feature vectors, transforming X into Xr ∈ RS 2× HW
S 2 ×C. Then, through linear mapping, we

obtain Q,K,V ∈ RS 2× HW
S 2 ×C

Q = XrWq,K = XrWk,V = XrWv, (3.4)

where Wq,Wk, and Wv ∈ RC×C are the projection weights for query, key, and value.
Next, we construct a directed graph to determine the participation of each given region. First, we

compute the average of Q and K within each region, obtaining Qr,Kr ∈ RS 2×C. Then, we calculate the
adjacency matrix of inter-regional correlations between Qr and Kr :

Ar = Qr(Kr)T . (3.5)

We then retain only the top K connections for each region to prune the correlation graph, saving the
indices of the top K connections in the routing index matrix Ir ∈ NS 2×k

Ir = topkIndex (Ar) , (3.6)

where the i-th row of Ir contains the indices of the top K most relevant regions for the i-th region.
For each query token in region i, we focus on all key-value pairs in the union of the K routing

regions with indices Ir
(i,1), Ir

(i,2),. . . ,Ir
(i,k). Specifically, we first gather the tensors for key and value

Kg = gather (K, Ir) ,Vg = gather (V, Ir) , (3.7)

where Kg and Vg are the gathered tensors for key and value. We then apply attention operation to the
gathered K-V pairs and introduce a local context enhancement term LEC (V),

O = Attention (Q,Kg,Vg) + LEC (V) . (3.8)
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Finally, by using patch embedding or patch merging, implicitly encoding relative position
information with a 3 × 3 convolutional layer, and employing an MLP alongside an automatic query
routing attention module, we create a block-scale feature module for feature extraction. This module
is designed for modeling cross-position relationships and embedding position-wise information.

3.4. Global semantic capturer

Although the transformer model addresses the limitations of CNNs in capturing global features,
its computational complexity significantly increases with the growth of spatial resolution. Hence, this
paper introduces a powerful yet computationally efficient feature capturing model at a global scale.
As shown in Figure 4, this module employs a cross-channel self-attention mechanism, coupled with
a selectively forward-propagating network module, to capture global information while controlling
computational complexity and reducing the required training parameters.
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Figure 4. The framework of the global semantic capturer.

3.4.1. Cross-channel self-attention

We observe that the primary computational cost in the transformer arises from the self-attention
operation, with time and memory complexity mainly attributed to the computation of key-query pairs.
However, as spatial resolution increases, the computational complexity grows quadratically, making
the use of spatial attention impractical in high-resolution images. Therefore, this module opts for
cross-channel self-attention, implicitly encoding global contextual information by computing attention
across channels.

Furthermore, before calculating the feature covariance to generate the global attention map, depth-
wise convolution [51] is introduced to emphasize contextual information. Specifically, for an input
image X ∈ RH×W×C, it is first normalized to obtain Y ∈ RH×W×C, followed by the generation of query
(Q), key (K), and value (V). Pixel-level cross-channel context is aggregated using a 1 × 1 point-wise
convolution, followed by encoding channel-level spatial context using a 3 × 3 depth-wise convolution:
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Q = WQ
d WQ

p Y,K = WK
d WK

p Y,

V = WV
d WV

p Y,
(3.9)

where Wp (·) represents the 1 × 1 point-wise convolution, and Wd (·) corresponds to the 3 × 3 depth-
wise convolution.

Subsequently, reshaping is applied to query and key, and a transposed-attention map A ∈ RC×C is
generated through dot-product computation. In summary, this process can be described as

X = WpAttention (Q,K,V) + X,

Attention (Q,K,V) = V · S o f tmax (K·Q/α) ,
(3.10)

α is where a learnable scaling parameter to control the magnitude of the dot product of K and Q.

3.4.2. Controlled information FFN

For transformer features, the feed-forward network (FFN) performs the same operation for each
pixel position. Two 1 × 1 convolutions are employed, one for expanding feature channels (by a factor
of γ) and the other for reducing the channels back to the original input dimensions.

Additionally, a gating mechanism is introduced, choosing one path through element-wise
multiplication and applying GELU non-linear activation. Following this, a depth-wise convolution is
applied to encode information from spatially adjacent pixel positions, restoring the local structure of
the image. Specifically

X = W0
pGating (X) + X,

Gating (X) = ϕ
(
W1

d W1
p (LN (X))

)
⊙W2

d W2
p (LN (X)) ,

(3.11)

where ⊙ denotes element-wise multiplication, ϕ represents the GELU non-linear activation, and LN is
the normalization layer.

In summary, this module prioritizes cross-channel features, emphasizing spatial local context, while
addressing channel-wise global information. It effectively controls information flow among layers,
enabling each layer to focus on complementary fine details. The module, consisting of cross-channel
self-attention and this mechanism, forms the core of the global attention module. It achieves efficient
and precise global information capture while balancing computational requirements, thereby realizing
lightweight image super-resolution reconstruction.

4. Experiment

In this section, we perform quantitative and qualitative evaluations to demonstrate the effectiveness
of the proposed MFCEN on benchmarks.

4.1. Datasets

We have chosen DIV2K [52] as our training dataset, consisting of 800 high-resolution images.
Serving as a benchmark in the field of image super-resolution, DIV2K provides a comparable
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foundation for experiments, allowing direct comparisons with other state-of-the-art methods. Due to
its inclusion of high-resolution images spanning various themes and scenes, DIV2K facilitates the
learning of complex image structures by our model, offering comprehensive testing for the model’s
generalization performance in diverse scenarios.

For our test set, we considered Set5 [53], Set14 [54], B100 [55], Urban100 [56], and
Manga109 [57], encompassing different domains and scenes, with three distinct upscaling factors (x2,
x3, and x4). This selection ensures that our model undergoes thorough testing on diverse images
while allowing our experimental results to be standardized for comparisons with other methodologies
in the image super-resolution domain. To generate degraded data that simulates real-world image
degradation, we employed a bicubic interpolation and a blur scale degradation model. This
comprehensive dataset selection robustly supports our experiments, enabling our method to adapt
effectively to various real-world scenarios.

4.2. Metrics

Our evaluation strategy encompasses a comprehensive set of robust metrics to assess the
effectiveness of the proposed MFCEN model [35, 36, 58]. The chosen metrics offer a holistic
understanding of the model’s performance across various scales, ensuring an in-depth analysis.

We initiate with peak signal-to-noise ratio (PSNR), a classical metric for image fidelity. Applying
PSNR at different scales allows us to evaluate the model’s effectiveness in preserving image details.
The structural similarity index (SSIM) serves as another pivotal metric, considering the structural
information of images. Evaluating SSIM across different scales reveals the model’s capability to
maintain the integrity of image structures. Efficiency assessment generally involves scrutinizing the
model parameters (Params). Comparative analysis across different scales ensures the model’s
adaptability to varying complexities and scenarios. Floating point operations per second (Flops)
address the computational complexity of the model, especially crucial for lightweight models.
Cross-scale evaluation of Flops enables an understanding of the model’s execution efficiency under
diverse resource constraints.

In summary, this comprehensive set of metrics provides a nuanced understanding of the proposed
model’s performance, ensuring its effectiveness in handling different scales and practical applications.

Furthermore, we optimize models by minimizing the L1 loss through the Adam optimizer (β1 = 0.9,
β2 = 0.99). Our model is implemented based on Pytorch with 1 RTX 3090 (24 GB) GPU.

4.3. Comparison with state-of-the-art methods

4.3.1. Quantitative comparison

To validate the effectiveness of the methodology of this paper, we conducted a comparative
analysis with several advanced lightweight algorithms and some classical algorithms. These
algorithms were selected for their ability to maintain minimal parameter count and memory usage
while striving to achieve high-quality super-resolution, aligning closely with the objectives of our
model. The comparison includes SRCNN [18], VDSR [21], LapSRN [34], CRAN [59],
SRMDNF [60], IMDN [61], PAN [62], RFDN [63], MAMNet [64], ShuffleMixer [65], RLFN [40],
SPAN [67], and Hit-SIR [68].

The best results are bold and the second-best are underlined. As shown in Table 1, concerning the
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PSNR metric, our proposed algorithm achieves better results at a scaling factor of x3 on most datasets,
only slightly trailing behind the performance of another network on specific datasets. It is noteworthy
that the reconstruction performance of our algorithm on the test set is still at a high level, despite the
fact that it exhibits higher efficiency in terms of the number of parameters. This can be attributed to
the straightforward and efficient structure adopted by our network, enabling comparable performance
under relatively fewer parameters. Although our parameters increase slightly compared to SPAN at x2
magnification, we still achieve superior performance. Taking x4 super-resolution on the Urban100
dataset as an illustration, our algorithm demonstrates a parameter reduction of approximately 325 K
compared to LapSRN, and around 227 K compared to IMDN. In terms of Flops, the number of Flops
in MFCEN, the method proposed in this paper, is much smaller than networks such as ShuffleMixer.
Subsequently, more specific experiments were conducted, which used scaling factors 2, 3, and 4 under
equal conditions on five test sets, namely Set5, Set14, BSD100, Urban100, and Manga109, and the
optimal results have been marked in Table 1. In terms of the SSIM metric, our algorithm excels on the
test sets at various scaling factors, with particularly notable performance on the x3 scale test set. For
instance, at a scaling factor of x3 on the Urban100 dataset, our algorithm outperforms MAMNet with
a larger number of parameters and the latest HiT-SR.

Table 1. Quantitative comparisons with other SR methods.

Methods Scale Params (↓) Flops (↓)
Set5 Set14 BSD100 Urban100 Manga109
PSNR (↑) SSIM (↑) PSNR (↑) SSIM (↑) PSNR (↑) SSIM (↑) PSNR (↑) SSIM (↑) PSNR (Datasets ↑) SSIM (↑)

SRCNN ×2 57 K 52.7 G 36.66 0.9299 32.45 0.9607 31.36 0.8879 29.50 0.8946 35.60 0.9663
VDSR ×2 665 K 613 G 37.53 0.9587 33.13 0.9124 31.90 0.8960 30.76 0.9140 37.22 0.9729
LapSRN ×2 251 K 29.9 G 37.52 0.9591 32.99 0.9124 31.80 0.8952 30.41 0.9103 37.27 0.9740
CRAN ×2 1592 K 394 G 37.76 0.9590 33.52 0.9166 32.09 0.8978 31.92 0.9256 38.36 0.9765
SRMDNF ×2 1511 K - 37.79 0.9601 33.32 0.9159 32.05 0.8985 31.33 0.9204 - -
IMDN ×2 694 K 159 G 38.00 0.9605 33.63 0.9177 32.19 0.8996 32.17 0.9283 38.88 0.9774
PAN ×2 261 K 70.5 G 38.00 0.9605 33.59 0.9181 32.18 0.8997 32.01 0.9273 38.70 0.9773
RFDN ×2 534 K 95.0 G 38.05 0.9606 33.72 0.9187 32.22 0.9000 32.33 0.9299 38.88 0.9773
MAMNet ×2 942 K - 38.10 0.9601 33.90 0.9199 32.30 0.9007 32.94 0.9352 39.15 0.9772
ShuffleMixer ×2 394 K 91 G 38.01 0.9606 33.63 0.9180 32.17 0.8995 31.89 0.9257 - -
RLFN ×2 527 K 115.4 G 38.07 0.9607 33.72 0.9187 32.22 0.9000 32.33 0.9299 - -
SPAN ×2 431 K - 38.08 0.9608 33.71 0.9183 32.22 0.9002 32.24 0.9294 38.94 0.9777
HiT-SIR ×2 772 K 209.9 G 38.22 0.9613 33.91 0.9213 32.35 0.9019 33.02 0.9365 39.38 0.9782
MFCEN (Ours) ×2 532 K 1.68 G 38.04 0.9621 33.48 0.9203 32.23 0.9033 32.18 0.9298 38.82 0.9771
SRCNN ×3 57 K 52.7 G 32.75 0.9090 29.30 0.8215 28.41 0.7863 26.24 0.7989 30.48 0.9117
VDSR ×3 665 K 613 G 33.66 0.9213 29.77 0.8314 28.82 0.7976 27.14 0.8279 32.01 0.9310
LapSRN ×3 - - 33.82 0.9226 29.87 0.8320 28.82 0.7974 27.07 0.8281 32.21 0.9352
CRAN ×3 1592 K 119 G 34.29 0.9255 30.29 0.8407 29.06 0.8034 28.06 0.8493 33.50 0.9440
SRMDNF ×3 1528 K - 34.12 0.9254 30.04 0.8382 28.97 0.8025 27.57 0.8398 33.57 0.9442
IMDN ×3 703 K 72 G 34.36 0.9270 30.32 0.8417 29.09 0.8046 28.17 0.8519 33.61 0.9445
PAN ×3 261 K 39.0 G 34.40 0.9271 30.36 0.8423 29.11 0.8050 28.11 0.8511 33.61 0.9448
RFDN ×3 541 K 42.2 G 34.41 0.9273 30.34 0.8420 29.09 0.8050 28.21 0.8525 33.67 0.9449
MAMNet ×3 1127 K - 34.61 0.9281 30.54 0.8459 29.25 0.8082 28.82 0.8648 34.14 0.9472
ShuffleMixer ×3 415 K 43 G 34.40 0.9272 30.37 0.8423 29.12 0.8051 28.08 0.8498 33.69 0.9448
RLFN ×3 - - 34.42 0.9278 30.33 0.8419 29.10 0.8051 28.21 0.8525 - -
HiT-SR ×3 780 K 94.2 G 34.72 0.9298 30.62 0.8474 29.27 0.8101 28.93 0.8673 34.40 0.9496
MFCEN (Ours) ×3 596 K 1.86 G 34.39 0.9298 30.08 0.8439 29.14 0.8112 32.98 0.9368 33.57 0.9438
SRCNN ×4 57 K 52.7 G 30.48 0.8628 27.49 0.7503 26.90 0.7101 24.52 0.7221 27.66 0.8505
VDSR ×4 665 K 613 G 31.35 0.8838 28.01 0.7674 27.29 0.7251 25.18 0.7524 28.83 0.8809
LapSRN ×4 813 K 149.4 G 31.54 0.8852 28.09 0.7700 27.32 0.7275 25.21 0.7562 29.09 0.8900
CRAN ×4 1592 K 91 G 32.13 0.8937 28.60 0.7806 27.58 0.7349 26.07 0.7837 30.47 0.9084
SRMDNF ×4 1552 K - 31.96 0.8925 28.35 0.7787 27.49 0.7337 25.68 0.7331 30.09 0.9024
IMDN ×4 715 K 41 G 32.21 0.8948 28.58 0.7811 27.56 0.7353 26.04 0.7838 30.45 0.9075
PAN ×4 272 K 28.2 G 32.13 0.8948 28.61 0.7822 27.59 0.7363 26.11 0.7854 30.51 0.9095
RFDN ×4 550 K 23.9 G 32.24 0.8952 28.61 0.7819 27.57 0.7360 26.11 0.7858 30.58 0.9089
MAMNet ×4 1090 K - 32.42 0.8972 28.77 0.7854 27.70 0.7406 26.59 0.8013 30.94 0.9142
ShuffleMixer ×4 411 K 28 G 32.21 0.8953 28.66 0.7827 27.61 0.7366 26.08 0.7835 30.65 0.9093
RLFN ×4 543 K 29.8 G 32.24 0.8952 28.62 0.7813 27.60 0.7364 26.17 0.7877 - -
SPAN ×4 498 K - 32.20 0.8953 28.66 0.7834 27.62 0.7374 26.18 0.7879 30.66 0.9103
HiT-SR ×4 772 K 53.8 G 32.51 0.8991 28.84 0.7873 27.73 0.7424 26.71 0.8045 31.23 0.9176
MFCEN (Ours) ×4 488 K 1.92 G 32.12 0.8974 28.31 0.7875 27.61 0.744 26.07 0.7867 30.42 0.9081
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We can intuitively see that MFCEN has good results on all scaling factors. The main reason for
this is that while using the integrated multi-level feature module to provide the network with a rich
representation of feature information, the extraction of key feature information in the features
outperforms the existing mainstream models in terms of performance. In summary, MFCEN not only
exhibits superior performance at different scales but also features fewer network parameters and
low Flops.

4.3.2. Visual comparison

For the analysis of the visual effect of the final reconstruction of the model, figures in the test set
Urban100 were selected for the experiments, and a comparison of the effects presented after MFCEN
super-resolution reconstruction is shown in Figure 5.

From the final reconstruction effect, it can be seen that many models are unable to reconstruct
the details, which may ignore the changes of local details, and it may appear that the image is too
smooth and has lost the original details and texture information. When the image magnification is
high, some algorithms show jagged lines in the edge part of the image. In contrast, MFCEN can
accurately reconstruct a relatively clear super-resolution image, taking into account the details of the
image texture while focusing on the overall effect, even if the scale factor increases. The lightweight
model MFCEN proposed in this paper has an advantage in the visual effect.

4.4. Ablation studies

In this section, ablation experiments are carried out to validate the effectiveness of the different
modules proposed in the algorithm of this paper and to determine whether it is necessary to use all
three modules simultaneously to show the best performance. In this case, the network without the
addition of the LFC, BFE, and GSC modules is taken as the baseline network Baseline. F(a) is the
baseline model, and F(b)–F(d) are the network models obtained after the addition of the BFE with
GSC, LFC with GSC, and LFC with BFE modules to the baseline structure, respectively.

As can be seen from the results in Table 2, the reconstruction performance is significantly
improved when the LFC module is used instead of the regular convolution for local feature extraction
and combined with the BFE module for block-scale feature extraction. In addition, the introduction of
the squeeze-and-excitation (SE) module [66] with the dynamic sparse attention mechanism effectively
reduces the number of parameters in the network. Compared to the baseline structure, the average
PSNR metric of our algorithm is improved by 0.0758 dB, indicating that our method is more effective
in local and block-scale information extraction. The application of LFC and BFE modules also leads
to an improvement in the SSIM metric of the algorithm by 0.0029. In addition, the number of
parameters is decreased from 756 K to 530 K, which achieves the lightweight quality of the algorithm
while maintaining its reconstruction performance.
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Urban100：img_001

LapSRN IMDN MobileSR PAN

RFDN RLFN SRMDNF MFCEN

Urban100：img_002

LapSRN IMDN MobileSR PAN

RFDN RLFN SRMDNF MFCEN

LapSRN IMDN MobileSR PAN

RFDN RLFN SRMDNF MFCEN

Urban100：img_005

LapSRN IMDN MobileSR PAN

RFDN RLFN SRMDNF MFCEN

Urban100：img_014

Urban100：img_003

LapSRN IMDN MobileSR PAN

RFDN RLFN SRMDNF MFCEN

Figure 5. Results of the experiment on Urban100.
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Table 2. Ablation study of MFCEN.

LFC BFE GSC Params Flops PSNR SSIM
F(a) 756 K 5.68 G 26.0194 0.7844
F(b) ✓ ✓ 688 K 5.36 G 26.0952 0.7873
F(c) ✓ ✓ 692 K 4.36 G 26.1346 0.7901
F(d) ✓ ✓ 530 K 3.38 G 26.2346 0.7912

When the BFE and GSC modules are introduced, the PSNR metric of the algorithm is significantly
improved by 0.1969 dB concerning the baseline model. The cross-channel self-attention mechanism
in the GSC module can accurately extract the global channel information and merge it with the
block-scale features extracted by the BFE module to adaptively adjust the feature maps to reconstruct
the relevant features while blocking the irrelevant reconstructed features. Moreover, the number of
parameters of the algorithm is reduced by the controlled information forward feedback network in
GSC with dynamic sparse self-attention in BFE.

Compared to the baseline network, the PSNR of the algorithm is significantly improved
by 0.2152 dB with the introduction of the LFC and GSC modules, and the number of parameters of
the model is significantly reduced by using the depthwise separable convolution. In addition, the
excellent local feature capture ability based on CNN and the powerful global semantic information
capture ability based on ViTs structure make the reconstruction results significantly improved. The
data shows that the SSIM of the model is also improved. Therefore, the LFC and GSC modules can
improve the reconstruction performance without increasing the number of parameters.

The use of the LFC and BFE modules significantly reduces the number of parameters. The GSC
module, through its cross-channel self-attention mechanism and controlled information forward
feedback network, accurately extracts and integrates global semantic information. When the GSC
module is combined with the LFC and BFE modules, the algorithm shows a significant improvement
in PSNR and SSIM, ensuring that the model remains lightweight while still delivering excellent
reconstruction performance.

5. Conclusions

We have proposed a lightweight multi-scale feature cooperative enhancement network (MFCEN)
specifically designed for single-image super-resolution. The network is composed of integrated
multi-scale feature modules (IMFMs), each consisting of a local feature capturer, block-Scale feature
extractor, and global semantic capturer. In the domain of local feature extraction, we enhance the
efficiency of capturing local features by fusing deep convolution with a channel attention mechanism.
The introduction of dynamic sparse attention effectively filters feature information at the block scale,
improving computational efficiency. Additionally, incorporating cross-channel attention and a
controlled information feed-forward network enhances the extraction of global semantic information.
Compared to existing image super-resolution reconstruction methods, our network conducts
multi-scale extraction in three dimensions, which captures useful information more comprehensively
for subsequent high-resolution (HR) image reconstruction. Experimental results demonstrate that
MFCEN successfully reconstructs higher-quality HR images and significantly reduces parameter
count and computational complexity, showcasing the feasibility of SR networks in real-life
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applications. This research achieves a significant breakthrough in single-image super-resolution,
providing an efficient and viable solution for practical applications.

Despite these advancements, the multi-scale feature cooperative enhancement network (MFCEN)
still exhibits some limitations. For instance, its performance in cross-domain applications has not yet
met expectations. Experimental results indicate that, particularly when applied to remote sensing and
underwater images, the model may require targeted adjustments and optimizations to enhance its
performance. To improve MFCEN’s effectiveness in these specific areas, future research should
focus on further refining the model, ensuring better adaptability and robustness across various
real-world scenarios.
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