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Abstract: In the paper, a predator-prey model with the Allee effect and harvesting effort was proposed
to explore the interaction mechanism between prey and predator. Under the framework of mathematical
theory deduction, some conditions for the occurrence of transcritical, saddle-node, Hopf, and Bogdanov-
Takens bifurcations were derived with harvesting effort and the Allee effect as key parameters. Under the
framework of bifurcation dynamics numerical simulation, the evolution process of specific bifurcation
dynamics behavior was gradually visualized to reveal the influence mechanism of the Allee effect and
harvesting effort. The research results indicated that the Allee effect and harvesting effort not only
seriously affected the bifurcation dynamics essential characteristics of the model (1.3), but also could
promote the formation of constant steady state and periodic oscillation persistent survival mode of prey
and predator. Furthermore, it is worth noting that appropriate harvesting effort was beneficial for the
formation of a sustainable survival cycle between prey and predator. In summary, we hoped that the
research findings could contribute to the comprehensive promotion of bifurcation dynamics studies in
the predator-prey model.

Keywords: predator-prey system; Allee effet; harvesting effort; persistent survival mode; evolutionary
trend

1. Introduction

As has well known, with the rapid development of the global economy and society, water eutrophica-
tion has become a global water environmental problem [1, 2]. Furthermore, in order to economically
and efficiently assess and respond to natural environmental challenges, theoretical ecologists and mathe-
maticians have delved into complex ecosystems by developing some ecological mathematical models,
so that the interactions between prey and predator have consistently been a focal point of ecological
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research [3].
In the 1920s, Lotka [4] and Volterra [5] introduced the first predator-prey model. Since then, scholars

have investigated the interactions between predator and prey influenced by various ecological factors,
such as environmental pollution, fishing practice, prey refuge, fear, supplementary food sources, and
diseases [6–13], and obtained some excellent research results. The paper [6] examined dynamical
behaviors of a predator-prey system with foraging facilitation and group defense, and found that both
foraging facilitation and group defense mechanisms could play an important role in promoting the
balance and diversity of researchers. The researchers [7] proposed a two-species model of mammalian
prey and mammalian predator, and found that water resources could play a crucial role in shaping
the dynamics between mammalian prey and mammalian predator. Researchers [8] revealed the fact
that some species in the ecosystem suddenly burst back many years after almost being extinct. The
researchers in [9] considered a predator-prey model with fear-induced group defense and Monod-
Haldane functional response, and highlighted the complex interplay of fear effect, group defense, and
anti-predator sensitivity in predator-prey dynamics. The researchers in [10] raised a mathematical model
with Holling type II functional response and nonlinear harvesting, and elucidated the dual impact of
harvesting and the presence of invasive species. The researchers in [11] discussed the dynamics and
optimal harvesting of a prey-predator fishery model by incorporating the nonlinear Michaelis-Menten
type of harvesting in predator, and derived the optimal threshold for the predator harvesting, which
could give maximum financial profit to sustain the fishery resources. The researchers in [12] explored
two kinds of reaction-diffusion predator-prey systems with quadratic intra-predator interaction and
linear prey harvesting, and disclosed that the intra-predator interaction and prey harvesting could have
a significant effect on the spatiotemporal pattern formations. The researchers in [13] constructed a
cross-diffusive predator-prey model with the inclusion of prey refuge, and revealed that the interaction
of both self- and cross-diffusion could play a significant role on the pattern formation.

However, departing from the Lotka-Volterra predator-prey model, forward-thinking mathematicians
refined a predator-prey model, which can result in the enhanced Leslie-Gower ameliorated predator-
prey model [14, 15]. The Leslie-Gower ameliorated predator-prey model typically takes the following
form [16]: ẋ = r1x(1 − x

K ) − f (x)y,
ẏ = r2y(1 − y

hx ),
(1.1)

where f (x) is named a Leslie–Gower term. Clearly, various functional response functions f (x) and
ecological factors exert distinct impacts, which can lead to diverse outcomes. Consequently, numerous
scholars have explored different functional response functions and ecological factors through the
Leslie-Gower predator-prey model, such as these papers [17–26]. The researchers in [17] considered a
predator-prey model with fear effect and inquired into the occurrence of Turing, Hopf and Turing-Hopf
bifurcation. The researchers in [18] formulated a three-species food chain model to investigate the
impact of fear and discovered that the fear effect could transform the system from chaotic dynamics to a
stable state. The researchers in [19] constructed a slow-fast predator-prey system with group defense
of the prey and revealed that some certain species in the ecosystem suddenly burst back many years
after being about extinct. The researchers in [20] discussed a predator-prey model with prey refuge
and explored the local bifurcation and stability of the limit cycle. The researchers in [21] described
a prey-predator system with constant prey refuge and their objective was to maximize the monetary
social benefit through protecting the predator species from extinction. The researchers in [22] examined
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the influence of the Allee effect in a prey-predator interaction model with a generalist predator, and
found that Allee effect could turn the system more structurally stable compared to prey-predator model
with generalist predator. The researchers in [23] investigated the local and global dynamics of the prey-
predator model with emphasis on the impact of strong Allee effect. The researchers in [24] investigated
dynamics of non-autonomous and autonomous systems based on the Leslie–Gower predator-prey model
using the Beddington-DeAngelis functional response. The researchers in [25] proposed a three-species
food chain model to survey the impact of fear and found that fear effect could transform the system
from chaotic dynamics to a stable state. The researchers in [26] constructed an aquatic ecological model
to describe the aggregation effect of Microcystis aeruginosa.

Furthermore, in 1931, the researchers in [27] observed the fluctuations in complex populations and
concluded that when population density fell below a certain threshold, the birth rate decreased while the
mortality rate increased, which was known as the Allee effect. Some researchers [28–32] incorporated
the Allee effect into the predator-prey model, explored the impact of Allee effect on the interaction
between predator and prey, and achieved some excellent research results. The researchers in [28]
considered a Leslie-Gower predator-prey model with the Allee effect in prey and illustrated the impact
in the stability of positive equilibrium point by adding an Allee effect. The researchers in [29] proposed
a Leslie-Gower predator-prey model with the Allee effect and revealed the influence of Allee effect on
the dynamic behaviors. The researchers in [30] established a phytoplankton-zooplankton model with
a strong Allee effect, and pointed out that the Allee threshold for the phytoplankton population could
significantly influence the overall dynamics. The researchers in [31] dealt with an eco-epidemiological
predator-prey model with the Allee effect and noted Allee effect had an important and fundamental
aspect on population growth. The researchers in [32] investigated dynamical behavior of a discrete
logistic equation with the Allee effect, theoretically and numerically investigated some bifurcation
dynamical behaviors, and provided some important dynamic results.

The Beddington-DeAngelis functional response was randomly disturbed by the well-known mean-
reverting Ornstein-Uhlenbeck process [33], and the main difference of this functional response from
other functional responses was that it contained an extra term presenting mutual interference by predators,
meaning that the predator population density seriously affected the predation dynamic mechanism.
Thus, the Beddington-DeAngelis functional response could significantly affect the stability of the
Leslie-Gower predator-prey model. Some researchers [34–36] introduced Beddington-DeAngelis
functional response into the predator-prey model, explored its impact on dynamic behavior, and yielded
some significant results. The researchers in [34] investigated the complex dynamics in a discrete-time
predator-prey model with a Beddington–DeAngelis functional response, and determined that the model
could exhibit rich complexity features such as stable, periodic, and chaotic dynamics. The researchers
in [35] discussed the dynamic complexities of a three-species food chain with Beddington-DeAngelis
functional response and concluded that the model had dynamic properties. The researchers in [36]
developed a predator-prey model with a Beddington-DeAngelis functional response and indicated that
the model could appear in a series of complex phenomenon, such as period-doubling, chaos attractor,
and period-halfing. Based on the above research results, it can be concluded that Beddington-DeAngelis
functional response can cause the predator-prey model to have more diverse dynamic behaviors; we
apply the Beddington-DeAngelis functional response to describe the dynamic relationship between
predator and prey with sufficient accuracy in this paper.

The focus on sustained harvesting effort was crucial in the study of the predator-prey model [37].
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Some researchers in [38–40] investigated how harvesting factors influence the dynamic relationship
between predator and prey, and achieved some important results. The researchers in [38] explored
a predator-prey model to evaluate the impacts of harvesting and summarized that the harvesting of
predators was beneficial and could promote the coexistence of species only when their growth from
other food sources was too much. The researchers in [39] proposed a predator-prey model with constant-
yield prey harvesting and confirmed that the constant-yield prey harvesting could drive both species to
extinction suddenly. The researchers in [40] constructed a predator-prey system with harvesting, and
pointed out that harvesting efforts could generate a region of stability.

Moreover, specific dynamic behavior has always been one of the hot research topics in many fields,
and some good results have been obtained in these papers [41–48]. The researchers in [41] found that
the nonlocal fear effect could enable the system to exhibit Hopf bifurcation and Turing-Hopf bifurcation.
The researchers in [42] provided some discussion of the persistence and extinction of the infective
population and examined the global asymptotic stability of the equilibrium point. The researchers
in [43] indicated that Turing instability could be induced by the negative diffusion coefficients. The
researchers in [44] studied stability and local bifurcation of semi-trivial steady-state solutions. The
researchers in [45] investigated global stability of the disease-free equilibrium point in a diffusion
system. The researchers in [46] analyzed the existence of Hopf bifurcation by analyzing the distribution
of the characteristic values. The researchers in [47] inquired into some threshold dynamical behaviors
for extinction or continuous persistence of disease. The researchers in [48] discussed global stability of
unique endemic equilibrium point by constructing suitable Lyapunov function.

In this paper, we explore a predator-prey model with a Beddington-DeAngelis functional response
functions, the Allee effect, and harvesting effort, namely:

ẋ = rx(1 − x
K )(x − M) − αxy

1+bx+cy
− q1m1e1x,

ẏ = sy(1 − y
hx ) − q2m2e2y.

(1.2)

where x(t) and y(t) represent the population densities of prey and predator respectively, r and s represent
the intrinsic growth rate of prey and predator respectively, K is maximum environmental capacity, M
represents the Allee effect threshold (0 < M < K), α stands for maximum predation rate, b and c are
the half-saturation constant and the functional response constant respectively, q1 is the catchability
co-efficient of prey, m1 represents the part of prey that can be harvested, e1 is the effort value for
the harvest from prey, h is used to measure the food quality of prey in order to transform them into
offspring of predator, q2 is the catchability co-efficient of predator, m2 represents the part of predator
that can be harvested, e2 is the effort value for the harvest from predator. Moreover, it is worthy of
our recognition that the main advantage of the model (1.2) is the introduction of the Allee effect and
harvesting effort, which not only creates a critical threshold for the extinction and persistence of prey
population, but also regulates the persistent survival mode between prey and predator. Furthermore,
it is obvious to know that the unit growth function of the prey population is f (x)) = r(1 − x

K )(x − M),
then we have d f (x)

dx =
r(M+K)−2rx

K . Thus, we can obtain d f (x)
dx |x=0 =

r(M+K)
K > 0, f (0) = −rM < 0 and

f ( M+K
2 ) = r(K−M)2

4K > 0. According to the conditions satisfied by the strong Allee effect, it can be inferred
that the Allee effect introduced in this model is a strong Allee effect.

By performing some straightforward conversions and simplifications, the following transformations
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were given:

x =
x
K
, t = rtK, y =

αy
rK

, m =
M
K
.

Then we transform the model (1.2) into (1.3)ẋ = x(1 − x)(x − m) − xy
1+bx+cy − λ1x,

ẏ = δy(β − y
x ) − λ2y,

(1.3)

where b = bK, c = crK
α
, δ = s

αKh , β =
αh
r , λ1 =

q1m1e1
rK , λ2 =

q2m2e2
rK are positive constants.

The framework of the paper is organized as follows: In Section 1, we introduce the origin and
theoretical basis. In Section 2, the boundedness of the model (1.3) is analyzed. In Sections 3 and 4,
the existence and stability of the equilibrium points of the model (1.3) are discussed. In Section 5, the
transcritical bifurcation, saddle-node bifurcation, Hopf bifurcation, and Bogdanov-Takens bifurcation in
the model (1.3) are studied. In Section 6, numerical simulation experiments are conducted to explore
the dynamic behaviors and expound the biological significance. In Section 7, based on the analysis and
research of the previous six sections, a brief conclusion is given.

2. Boundedness of the solutions

In this section, we first examine the limits of x(t) and y(t) in the model (1.3) to facilitate a subsequent
dynamic analysis.

Theorem 2.1. Under the initial conditions, the solution for the model (1.3) remains positive at all times:
(x(0), y(0)) ∈ Ω =

{
(x, y) ∈ R2 | x > 0, y > 0

}
.

Proof. Based on the model’s conditions, we can perceive the boundary using the equation below:

x(t) = x(0)exp
{∫ t

0
(1 − x(ζ))(x(ζ) − m) −

y(ζ)
1 + bx(ζ) + cy(ζ)

− λ1dζ
}
,

y(t) = y(0)exp
{∫ t

0
δ(β −

y(ζ)
x(ζ)

) − λ2dζ
}
.

Therefore, the model (1.3) typically exhibits its most common boundary
{
(x, y) ∈ R2 | x > 0, y > 0

}
.

Next, we investigate the bounds of x(t) and y(t) through the two equations associated with the model
(1.3), respectively. □

Theorem 2.2. As long as the model (1.3) satisfies λ2 < δβ, the range of x(t) and y(t) in the model (1.3)
can be confined to a positive set:

Ω =

{
(x(t), y(t)) ∈ R2

+ | 0 < x(t) < 1, 0 < y(t) < β −
λ2

δ

}
.

Proof. We pay attention to the first equation of the model (1.3), and give the following scaling form:

ẋ < x(1 − x)(x − m).
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Regarding this equation, we will analyze and discuss three scenarios to determine the approximate
range of x(t):

1) If x(t) > 1, then ẋ < 0.
2) If 0 < x(t) < m, then ẋ < 0.
3) If m < x(t) < 1, then x(t) < 1 − 1

1+C1e(1−m)t , so lim
t→+∞

supx(t) ≤ 1.
The first and second points are self-evident, let us scale it up and down

ẋ < x(1 − x)(1 − m),

then
(
1
x
+

1
1 − x

)dx < (1 − m)dt.

Simplify through integration on both sides, we can get
x

1 − x
< C1e(1−m)t,

then
x < 1 −

1
1 +C1e(1−m)t .

Obviously, if x(t) > 1, then ẋ < 0. If 0 < x(t) < m, then ẋ > 0. If m < x(t) < 1, then
x(t) < 1− 1

1+C1e(1−m)t , so 0 < x(t) < 1 when (x(t), y(t)) ∈ R2
+. Then we pay attention to the second equation

of the model (1.3), give the following scaling form:

ẏ < δy(−y + β −
λ2

δ
).

Regarding this equation, we will analyze and discuss two scenarios to determine the approximate
range of y(t):

1) If y ≥ β − λ2
δ

, then ẏ < 0. This contradicts the positive solution of y(t) in Theorem 2.1.

2) If 0 < y < β − λ2
δ

, then y(t) < β − λ2
δ
−

β−
λ2
δ

1+C2eδ(β−
λ2
δ )t

, so lim
t→+∞

supy(t) ≤ β − λ2
δ

.

The first point is self-evident, so let’s focus on proving the second one:

(
1
y
+

1
β − λ2

δ
− y

)dy < δ(β −
λ2

δ
)dt.

Simplify through integration on both sides, we can get
y

β − λ2
δ
− y

< C2eδ(β−
λ2
δ )t,

then, we can obtain

y < β −
λ2

δ
−

β − λ2
δ

1 +C2eδ(β−
λ2
δ )t
.

By calculation, we can clearly see lim
t→+∞

supy(t) ≤ β − λ2
δ

. Based on the prior discussions regarding
x(t) and y(t), we can infer that the model (1.3) is subject to specific boundaries, and we encapsulate this
conclusion within a set:

Ω =

{
(x(t), y(t)) ∈ R2

+ | 0 < x(t) < 1, 0 < y(t) < β −
λ2

δ

}
.

□
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3. The existence of all possible equilibrium points

The existence of all possible equilibrium points in the model (1.3) is particularly important, which is
the foundation for bifurcation dynamical research and indicates that prey and predator can remain stable
in a certain state. In this section, the existence of all possible equilibrium points in the model (1.3) is
carefully studied.

Based on the prey population equation F(x) and the predator population equation G(x), we convert
the model (1.3) into the equation system (3.1) in order to more effectively expose the dynamical behavior
at the equilibrium point, the equation as following:F(x) = x(1 − x)(x − m) − xy

1+bx+cy − λ1x = 0,

G(x) = δy(β − y
x ) − λ2y = 0.

(3.1)

If (m + 1)2 − 4(m + λ1) > 0 holds, then we can obtain that the model (1.3) has two boundary
equilibrium points, a predator-free equilibrium point E1(x1, 0) and a predator-free equilibrium point
E2(x2, 0), where x1 and x2 are the roots of the equation:

x2 − (m + 1)x + m + λ1 = 0,

solving the above equation, we can obtain x1 and x2 as

x1 =
m + 1 −

√
(m + 1)2 − 4(m + λ1)

2
,

x2 =
m + 1 +

√
(m + 1)2 − 4(m + λ1)

2
.

It is obvious to find that there is only one boundary equilibrium point (m+1
2 , 0) when (m + 1)2 −

4(m + λ1) = 0 holds. However, at this juncture, the absence of an internal equilibrium point in the
model (1.3) renders it unsuitable for our intended study on internal equilibrium points. Consequently,
to ensure the existence of such a point, we must fulfill certain prerequisites which need to satisfy
(m + 1)2 − 4(m + λ1) > 0, where x∗ and y∗ are the roots of the equation:x∗(1 − x∗)(x∗ − m) − x∗y∗

1+bx∗+cy∗ − λ1x∗ = 0,

δy∗(β − y∗

x∗ ) − λ2y∗ = 0.
(3.2)

From the second equation of the equation system (3.2), we can get y = (β − λ2
δ

)x. From section two,
we can get β − λ2

δ
> 0. Integrate the first equation with the second equation, we can get the Eq (3.3):

φx3 + [1 − (m + 1)φ]x2 + [(m + λ1)φ + γ − (m + 1)]x + (m + λ1) = 0. (3.3)

Let

γ = β −
λ2

δ
, φ = b + cγ,
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f (x) = φx3 + [1 − (m + 1)φ]x2 + [(m + λ1)φ + γ − (m + 1)]x + (m + λ1),

g(x) = 3φx2 + 2[1 − (m + 1)φ]x + (m + λ1)φ + γ − (m + 1),

A = [1 − (m + 1)φ]2 − 3φ[(m + λ1)φ + γ − (m + 1)],

B = [1 − (m + 1)φ][(m + λ1)φ + γ − (m + 1)] − 9φ(m + λ1),

C = [(m + λ1)φ + γ − (m + 1)]2 − 3[1 − (m + 1)φ](m + λ1),

∆ = B2 − 4AC.

Theorem 3.1. For the number of positive internal equilibrium points, we have:
(1) If A = B = 0 holds, then the model (1.3) does not have any internal positive equilibrium point.
(2) If ∆ > 0 holds, then the model (1.3) does not have any positive equilibrium point.
(3) If ∆ = 0 holds, then the model (1.3) has a positive equilibrium point E∗1 or E∗2, where x∗1, x

∗
2 are

dual positive roots.
(4) If ∆ < 0 holds, then the model (1.3) has two single positive equilibrium points E∗3 and E∗4 or E∗5

and E∗6.

Proof. For the number of positive internal equilibrium points, we have:
1) When A = B = 0 holds, according to Cardano formula, then Eq (3.3) has a triple real root, and

according to Descartes sign rule, when 1− (m+ 1)φ ⩽ 0 and (m+ λ1)φ+ γ− (m+ 1) ⩽ 0 hold, obtaining
a triple negative root is not helpful for our model research, so it is omitted.

2) When ∆ > 0 holds, according to Cardano formula, then Eq (3.3) has a real root and a pair of
conjugate imaginary roots.

(i) When 1 − (m + 1)φ > 0 and (m + λ1)φ + γ − (m + 1) > 0 hold, according to Descartes sign rule,
then Eq (3.3) has a negative root and not have positive root.

(ii) When 1 − (m + 1)φ < 0 and (m + λ1)φ + γ − (m + 1) > 0 hold, according to Descartes sign rule,
then Eq (3.3) does not have a positive root or has two negative roots, thus the model (1.3) does not have
positive root.

(iii) When 1 − (m + 1)φ > 0 and (m + λ1)φ + γ − (m + 1) < 0 hold, for the same reason (ii), Eq (3.3)
does not have positive internal equilibrium point.

(iv) When 1 − (m + 1)φ < 0 and (m + λ1)φ + γ − (m + 1) < 0 hold, for the same reason (i), Eq (3.3)
does not have positive root. Thus, when ∆ > 0 holds, Eq (3.3) does not have positive root, that is to say,
the model (1.3) does not have any internal positive equilibrium point.

3) When ∆ = 0 holds, according to Cardano formula, then Eq (3.3) has three real roots, including one
double root.

(i) When 1 − (m + 1)φ > 0 and (m + λ1)φ + γ − (m + 1) > 0 hold, according to Descartes sign rule,
then the equation (3.3) has three negative roots, including one double negative root.

(ii) When 1 − (m + 1)φ < 0 and (m + λ1)φ + γ − (m + 1) > 0 hold, according to Descartes sign rule
and Vieta theorem for univariate cubic equations, x1 + x2 + x3 < 0 and x1x2x3 < 0, thus Eq (3.3) has a
double negative root and a single negative root.

(iii) When 1− (m+ 1)φ > 0 and (m+λ1)φ+γ− (m+ 1) < 0 hold, according to Descartes sign rule and
Vieta theorem for univariate cubic equations, x1 + x2 + x3 > 0, x1x2x3 < 0, thus Eq (3.3) has a double
positive root and a negative root, then the model (1.3) has a positive equilibrium point E∗1 = (x∗1, y

∗
1),

where x∗1 is a dual positive root.
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(iv) When 1− (m+ 1)φ < 0 and (m+λ1)φ+γ− (m+ 1) < 0 hold, according to Descartes sign rule and
Vieta theorem for univariate cubic equations, x1 + x2 + x3 > 0, x1x2x3 < 0, thus Eq (3.3) has a double
positive root and a negative root, then the model (1.3) has a positive equilibria point E∗2 = (x∗2, y

∗
2), where

x∗2 is a dual positive root. Thus, when ∆ = 0, the model (1.3) has a positive equilibrium points E∗1 or E∗2
under certain conditions.

4) When ∆ < 0 holds, according to Cardano formula, then Eq (3.3) has two unequal real roots.
(i) When 1 − (m + 1)φ > 0 and (m + λ1)φ + γ − (m + 1) > 0 hold, according to Descartes sign rule

and Vieta theorem for univariate cubic equations, x1 + x2 + x3 < 0, x1x2x3 < 0, thus Eq (3.3) has three
single negative roots.

(ii) When 1 − (m + 1)φ < 0 and (m + λ1)φ + γ − (m + 1) > 0 hold, for the same reason (i), Eq (3.3)
does not have positive root.

(iii) When 1 − (m + 1)φ > 0 and (m + λ1)φ + γ − (m + 1) < 0 hold, according to Descartes sign rule
and Vieta theorem for univariate cubic equations, x1 + x2 + x3 < 0, x1x2x3 > 0, thus Eq (3.3) has two
single positive root and a negative root, then the model (1.3) has two unequal positive equilibrium points
E∗3 = (x∗3, y

∗
3) and E∗4 = (x∗4, y

∗
4), where x∗3, x

∗
4 are all single positive roots and x∗3 < x∗4.

(iv) When 1 − (m + 1)φ < 0 and (m + λ1)φ + γ − (m + 1) < 0 hold, according to Descartes sign
rule and Vieta theorem for univariate cubic equations, x1 + x2 + x3 < 0, x1x2x3 > 0, thus Eq (3.3)
has a negative root and two single positive root, then we can obtain two unequal positive equilibrium
points E∗5 = (x∗5, y

∗
5), E∗6 = (x∗6, y

∗
6) for the model (1.3), where x∗5, x

∗
6 are all single positive roots and

x∗5 < x∗6. Thus, when ∆ < 0 holds, according to Cardano formula, the model (1.3) has two single positive
equilibrium points E∗3 and E∗4 or E∗5 and E∗6 under certain conditions. □

Theorem 3.2. Based on the equilibrium point derived from Theorem 3.1 x∗1, x
∗
2, x
∗
3, x
∗
4, x
∗
5, x
∗
6, we can

establish certain conditions that will facilitate our subsequent research endeavors: (a) g(x∗1) = 0 or
g(x∗2) = 0; (b) g(x∗3) < 0 or g(x∗5) < 0; (c) g(x∗4) > 0 or g(x∗6) > 0.

4. Stability of some equilibrium points

This section delves into the stability analysis of two boundary equilibrium points E1, E2 and some
internal equilibrium points. Typically, the stability of equilibrium point can be ascertained by examining
the signs of the eigenvalues at that particular point. Consequently, we present the Jacobian matrix of the
model (1.3) evaluated at any equilibrium point E(x, y):

J(x, y) =

−3x2 + (2 + 2m)x − m − y+cy2

(1+bx+cy)2 − λ1 −
x(1+bx)

(1+bx+cy)2

δy2

x2 δ(β − 2y
x ) − λ2

 ,
utilizing the Jacobian matrix at any given point, we can formulate the following theorem.

4.1. Stability of the boundary equilibrium point

Theorem 4.1. The stability of the boundary equilibrium point E2(m+1+
√

(m+1)2−4(m+λ1)
2 , 0) is discussed as

follows:
1) If λ2 > δβ holds, then the equilibrium point E2 is a stable node.
2) If λ2 < δβ holds, then the equilibrium point E2 is a saddle.
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3) If λ2 = δβ holds, then the equilibrium point E2 is a attracting saddle-node. In essence, a small
enough area surrounding the equilibrium point E2 is partitioned into two sections by two dividing lines
that traverse its top and bottom, converging towards E2 as the region diminishes. Furthermore, the left
half plane comprises a parabolic sector, whereas the right half plane is comprised of two hyperbolic
sectors.

Proof. We can obtain that the Jacobian matrix of the equilibrium point E2 is:

JE2 =

[
−3x2

2 + (2 + 2m)x2 − m − λ1 −
x2

1+bx2

0 δβ − λ2

]
.

Apparently, JE2 has two eigenvalues µ1 = −3x2
2 + (2 + 2m)x2 − m − λ1 = −2x2

2 + (1 + m)x2 =

−2(m+1+
√

(m+1)2−4(m+λ1)
2 )2 + (1 + m)(m+1+

√
(m+1)2−4(m+λ1)

2 ) = x2(−
√

(m + 1)2 − 4(m + λ1)) < 0 and µ2 =

δβ − λ2. Since µ1 is consistently less than 0, it is imperative to discuss the sign of µ2 in order to assess
stability. We will approach this discussion from three distinct angles: (a) If µ2 = δβ − λ2 < 0, i.e.,
λ2 > δβ, then the boundary point E2 is a stable node. (b) If µ2 = δβ − λ2 > 0, i.e., λ2 < δβ, then the
boundary point E2 is a saddle. (c) If µ2 = δβ − λ2 = 0, i.e., λ2 = δβ, then the model (1.3) has two
eigenvalues are µ1 = x2(−

√
(m + 1)2 − 4(m + λ1)) and µ2 = 0. Determining the stability of scenarios (a)

and (b) is relatively straightforward. Subsequently, our focus will primarily be on scenario (c). We will
shift E2 to the origin by (X,Y) = (x − x2, y) and expand model (1.3) to the third-order using Taylor’s
series, obtaining: 

Ẋ = α10X + α01Y + α11XY + α20X2 + α02Y2 + α30X3

+α21X2Y + α12XY2 + α03Y3 + M1(X,Y),
Ẏ = −δY2 + δXY2 + N1(X,Y),

(4.1)

where α10 = −3x2
2 + 2(1 + m)x2 − (m + λ1), α01 = −

x2(1+bx2)
(1+bx2)2 , α02 =

cx2
(1+bx2)2 , α11 = −

1
(1+bx2)2 ,

α20 = −3x2 + 1 + m, α30 = −1, α03 = −
c2 x2

(1+bx2)3 , α21 =
b

(1+bx2)3 , α12 = −
c(bx2−1)
(1+bx2)3 , and M1(X,Y),

N1(X,Y) are fourth-order infinitesimal quantity.
By the simplistic transformation (

X
Y

)
=

(
1 −

α01
α10

0 1

) (
x
y

)
,

then X = x − α01
α10

y,

Y = y,

where α10 = −3x2
2 + 2(1 + m)x2 − (m + λ1), α01 = −

x2(1+bx2)
(1+bx2)2 .

Thus, the model (4.1) becomes a standard form
ẋ = α10X + α20X2 + h1XY + h2Y2 + h3X3

+h4X2Y + h5XY2 + h6Y3 + M2(X,Y),
ẏ = −δy2 + δxy2 −

α01
α10

y3 + N2(X,Y),

(4.2)

where α10 = −3x2
2+2(1+m)x2−(m+λ1), α01 = −

x2(1+bx2)
(1+bx2)2 , h1 = α20

−2α01
α10
+α11, h2 = α20(α01

α10
)2−

α11α01
α10
+α02,

M2(x, y) and N2(x, y) are fourth-order infinitesimal quantity, and the remaining algorithms of h3, h4, h5, h6
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are the same, so we will not list them one by one here. Since the coefficient of y2 for the second equation

of the model (4.2) is −δ < 0, the key internal point E2(m+1+
√

(m+1)2−4(m+λ1)
2 , 0) is a attracting saddle-node

if λ2 = δβ. Thus we can obtained this results from Theorem 7.1 in Chapter 2 in [49]. □

Furthermore, it is easy to obtain that the boundary equilibrium point E1(m+1−
√

(m+1)2−4(m+λ1)
2 , 0) is a

saddle if λ2 > δβ, is an unstable node if λ2 < δβ, and is a saddle-node if λ2 = δβ.

4.2. Stability of some internal equilibrium points

We will delve into the stability of some internal equilibrium points, echoing the discussions presented
in Section 4.1. Specifically, we will proceed to compute the Jacobian matrix for any given internal
equilibrium point as follows:

JE∗ =

−3x∗2 + (2 + 2m)x∗ − m − (β− λ2
δ )x∗+c((β− λ2

δ )x∗)2

(1+bx∗+c(β− λ2
δ )x∗)2

− λ1 −
x∗(1+bx∗)

(1+bx∗+c(β− λ2
δ )x∗)2

(β − λ2
δ

)2δ λ2 − δβ

 ,
then we get:

Det(JE∗) = (−3x∗2 + (2 + 2m)x∗ − m −
γx∗ + c(γx∗)2

(1 + bx∗ + cγx∗)2 − λ1)(λ2 − δβ) − (−
x∗(1 + bx∗)
(1 + φx∗)2 )(γ2δ)

= −(β −
λ2

δ
)δ(

2φx∗3 + (1 − (1 + m)φ)x∗2 − m − λ1

1 + φx∗
)

= −(β −
λ2

δ
)δ(

T1x∗2 + 2T2x∗ + 3(m + λ1)
1 + φx∗

)

=
(β − λ2

δ
)δx∗

1 + φx∗
(3φx∗2 + 2T1x + T2)

= (β −
λ2

δ
)δx∗(

T1x∗2 + 2T2x∗ + 3(m + λ1)
1 + φx∗

)

=
(β − λ2

δ
)δx∗

1 + φx∗
( f (x∗)

′

),

Tr(JE∗) = −3x∗2 + (2 + 2m)x∗ − m −
(β − λ2

δ
)x∗ + c((β − λ2

δ
)x∗)2

(1 + bx∗ + c(β − λ2
δ

)x∗)2
− λ1 + λ2 − δβ.

4.2.1. Stability of the equilibrium points E∗1 and E∗2

Lemma 4.1. ( [49]). The modelα̇ = β + Aα2 + Bαβ +Cβ2 + M1(α, β),
β̇ = Dα2 + Eαβ + Fβ2 + N1(α, β),

(4.3)

Electronic Research Archive Volume 32, Issue 10, 5682–5716.



5693

where M1(α, β) and N1(α, β) are tired-order infinitesimal quantity, i.e., M1(α, β) = o(|α, β|2), N1(α, β) =
o(|α, β|2), we can transform Eq (4.3) into (4.4)α̇ = β,β̇ = Dα2 + (E + 2F)αβ + o(|α, β|2),

(4.4)

by certain nonsingular transformations in the domain of (0, 0).

Theorem 4.2. If ∆ = 0, 1 − (m + 1)φ > 0 and (m + λ1)φ + γ − (m + 1) < 0 hold, then the model (1.3)
has an internal point E∗1 = (x∗1, y

∗
1), where x∗1 is a dual root, then:

1) If m , −3x∗1
2 + (2 + 2m)x∗1 −

(β− λ2
δ )x∗1+c((β− λ2

δ )x∗1)2

(1+bx∗1+c(β− λ2
δ )x∗1)2

− λ1 + λ2 − δβ and m , 3x∗1 − 1 + β−
λ2
δ

(1+bx∗1+c(β− λ2
δ )x∗1)3

hold, then the internal point E∗1 is a saddle-node.

2) If m = −3x∗1
2 + (2 + 2m)x∗1 −

(β− λ2
δ )x∗1+c((β− λ2

δ )x∗1)2

(1+bx∗1+c(β− λ2
δ )x∗1)2

− λ1 + λ2 − δβ holds, the internal point E∗1 is

a cusp. Further, if m , 3x∗1 − 1 + β−
λ2
δ

(1+bx∗1+c(β− λ2
δ )x∗1)3

and m , 3x∗1 − 1 + (β− λ2
δ )−(β− λ2

δ )bx∗1+(β− λ2
δ )cy∗1

2(1+bx∗1+c(β− λ2
δ )x∗1)3

hold,

then the internal point E∗1 is a cusp with codimension 2. If m = 3x∗1 − 1 + β−
λ2
δ

(1+bx∗1+c(β− λ2
δ )x∗1)3

or m =

3x∗1 − 1 + (β− λ2
δ )−(β− λ2

δ )bx∗1+(β− λ2
δ )cy∗1

2(1+bx∗1+c(β− λ2
δ )x∗1)3

hold, then the internal point E∗1 is a cusp with codimension at least 3.

Proof. Firstly, we utilize the approach outlined in Lemma 4.1 to shift the origin to E∗1 by setting
(X,Y) = (x − x∗1, y − y∗1) and derive a new model (4.5) accordingly:Ẋ = q′10X + q′01Y + q′20X2 + q′11XY + q′02Y2 + M3(X,Y),

Ẏ = p′10X + p′01Y + p′20X2 + p′11XY + p′02Y2 + N3(X,Y),
(4.5)

where

q′10 = −3x∗1
2
+ 2(1 + m)x∗1 − (m + λ1) −

y∗1(1 + cy∗1)
(1 + bx∗1 + cy∗1)2 , q′01 = −

x∗1(1 + bx∗1)
(1 + bx∗1 + cy∗1)2 ,

q′11 = −
1

(1 + bx∗1 + cy∗1)2 −
2bcx∗1y∗1

(1 + bx∗1 + cy∗1)3 , q′20 = −3x∗1 + 1 + m +
by∗1(1 + cy∗1)

(1 + bx∗1 + cy∗1)3 ,

q′02 =
cx∗1(1 + bx∗1)

(1 + bx∗1 + cy∗1)3 , p′10 =
δy∗1

2

x∗1
2 , p′01 = δ(β −

2y∗1
x∗1

) − λ2,

p′11 =
2δy∗1
x∗1

2 , p′20 = −
δy∗1

2

x∗1
3 , p′02 = −

δ

x∗1
,

and M3(X,Y), N3(X,Y) are third-order infinitesimal quantity.

Case 1: m , −3x∗1
2 + (2 + 2m)x∗1 −

(β− λ2
δ )x∗1+c((β− λ2

δ )x∗1)2

(1+bx∗1+c(β− λ2
δ )x∗1)2

− λ1 + λ2 − δβ.

In this scenario, the Jacobian matrix of the model (4.5) is presented as follows:

JE∗1
=

 q′10 −
q′10

β−
λ2
δ

−(β − λ2
δ

)p′01 p′01

 ,
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then we can get that µ1 = 0, µ2 = q′10 + p′01 are two eigenvalues of JE∗1
. By a transformation, we can

transform the model (4.5) into the model (4.6):(
X
Y

)
=

(
q′10 1

δ(β − λ2
δ

)2 β − λ2
δ

) (
x
y

)
.

After that, the model (4.5) becomesẋ = (q′10 + λ2 − δβ)x + w′20x2 + w′11xy + w′02y2 + M4(x, y),
ẏ = z′20x2 + z′11xy + z′02y2 + N4(x, y),

(4.6)

where

w′20 = −
γ5δ2q′02 − p′02δ

2γ4 + γ3δq′10q′11 − p′11q′10δ γ
2 + γq′210q′20 − p′20q′210

γ
(
δγ − q′10

) ,

w′11 = −
2γ4δq′02 + γ

3δq′11 − 2γ3δp′02 − γ
2δp′11 + γ

2q′10q′11 + 2γq′10q′20 − γq′10 p′11 − 2q′10 p′20

γ
(
δγ − q′10

) ,

w′02 = −
γ3q′02 + γ

2q′11 − p′02γ
2 + γq′20 − p′11γ − p′20

γ
(
δγ − q′10

) ,

z′11 =
2γ5δ2q′02 + γ

4δ2q′11 + γ
3δq′10q′11 − 2γ3δq′10 p′02 + 2γ2δq′10q′20 − p′11q′10δ γ

2 − γq′210 p′11 − 2p′20q′210

γ
(
δγ − q′10

) ,

z′20 =
γ6δ3q′02 + γ

4δ2q′10q′11 − γ
4δ2q′10 p′02 + γ

2δq′210q′20 − γ
2δq′210 p′11 − q′310 p′20

γ
(
δγ − q′10

) ,

z′02 =
γ4δq′02 + γ

3δq′11 + γ
2δq′20 − γ

2q′10 p′02 − γq′10 p′11 − q′10 p′20

γ
(
δγ − q′10

) ,

and γ = β − λ2
δ

, M4(x, y), N4(x, y) are third-order infinitesimal quantity.
We introduce a new transformation ι to the model (4.7) by ι = (q′10 + λ2 − δβ)t, and continue to use t

as a substitute for ι, and upon substitution, thus we can obtain the following model (4.7):ẋ = x + r′20x2 + r′11xy + r′02y2 + M5(x, y),
ẏ = s′20x2 + s′11xy + s′02y2 + N5(x, y),

(4.7)

where r′i j =
w′i j

q′10+λ2−δβ
, s′i j =

z′i j

q′10+λ2−δβ
(i + j = 2), M5(x, y), N5(x, y) are third-order infinitesimal quantity.

Then we can obtain

z′02 =
γ4δq′02 + γ

3δq′11 + γ
2δq′20 − γ

2q′10 p′02 − γq′10 p′11 − q′10 p′20

γ
(
δγ − q′10

)
=
γ4δ

cx∗1(1+bx∗1)
T 3

3
+ γ3δ(− 1

T 2
3
−

2bcx∗1y∗1
T 3

3
) + γ2δ(−3x∗1 + 1 + m + by∗1(1+cy∗1)

T 3
3

) − γ2q′10( δ
x∗1
− 2δ

x∗1
+ δ

x∗1
)

γ
(
δγ − (−3x∗1

2 + 2(1 + m)x∗1 − (m + λ1) − y∗1(1+cy∗1)
T 2

3
)
)
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=
γ2δ[γ

2cx∗1+γ
2bcx∗21 −γ

2(1+bx∗1+cy∗1)−2γ2bcx∗21 +γbx∗1+γ
2bcx∗21

T 3
3

− 3x∗1 + 1 + m]

γ
(
δγ − (−3x∗1

2 + 2(1 + m)x∗1 − (m + λ1) − y∗1(1+cy∗1)
T 2

3
)
)

=
γδ(−γ

T 3
3
− 3x∗1 + 1 + m)

δγ − (−3x∗1
2 + 2(1 + m)x∗1 − (m + λ1) − y∗1(1+cy∗1)

T 2
3

)
,

and

s′02 =
z′02

q′10 + λ2 − δβ
.

According to [49] , we can determine that E∗1 is a saddle-node if z′02 , 0 and s′02 , 0. That is, if

γδ(
−γ

T 3
3

− 3x∗1 + 1 + m) , 0,

i.e.,

m , 3x∗1 − 1 +
β − λ2

δ

(1 + bx∗1 + c(β − λ2
δ

)x∗1)3
,

and

δγ − (−3x∗1
2
+ 2(1 + m)x∗1 − (m + λ1) −

y∗1(1 + cy∗1)
T 2

3

) , 0,

i.e.,

m , −3x∗1
2
+ (2 + 2m)x∗1 −

(β − λ2
δ

)x∗1 + c((β − λ2
δ

)x∗1)2

(1 + bx∗1 + c(β − λ2
δ

)x∗1)2
− λ1 + λ2 − δβ.

Case 2: m = −3x∗1
2 + (2 + 2m)x∗1 −

(β− λ2
δ )x∗1+c((β− λ2

δ )x∗1)2

(1+bx∗1+c(β− λ2
δ )x∗1)2

− λ1 + λ2 − δβ.

A new Jacobi matrix of the model (4.5) is

JE∗1
=

 q′10 −
q′10

β−
λ2
δ

(β − λ2
δ

)q′10 −q′10

 ,
then we can get that µ1 = 0, µ2 = 0 are two eigenvalues of JE∗1

. By a transformation, we can transform
the model (4.5) into (4.8) (

X
Y

)
=

(
1 0

β − λ2
δ
−1

) (
x
y

)
.

After that, the model (4.5) becomesẋ = δy + w20x2 + w11xy + w02y2 + M6(x, y),
ẏ = z20x2 + z11xy + z02y2 + N6(x, y),

(4.8)

where
w20 = q′02γ

2 + γq′11 + q′20, w11 = −2γq′02 − q′11, w02 = q′02, z02 = γq′02 − p′02

z11 = 2γp′02 + p′11 − 2q′02γ
2 − γq′11, z20 = γ

3q′02 + γ
2(q′11 − p′02) + γ(q′20 − p′11) − p′20,
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and γ = β − λ2
δ

, M6(x, y), N6(x, y) are third-order infinitesimal quantity.
We introduce a new transformation ι to the model (4.9) by ι = δt, and continue to use t as a substitute

for ι, hence we can obtain the following model (4.9):ẋ = y + r20x2 + r11xy + r02y2 + M7(x, y),
ẏ = s20x2 + s11xy + s02y2 + N7(x, y),

(4.9)

where ri j =
wi j

δ
, si j =

zi j

δ
(i + j = 2), M7(x, y), N7(x, y) are third-order infinitesimal quantity.

According to [49] , we can determine that E∗1 is a cusp. Let us make the next deffnitions

A(x, y) ≜ r20x2 + r11xy + r02y2 + M7(x, y), B(x, y) ≜ s20x2 + s11xy + s02y2 + N7(x, y).

We can get y + A(x, y) = 0 and r20 , 0, and also we can obtain

y = χ(x) = −r20x2 + · · · ,

then we have

ψ(x) ≜ B(x, χ(x)) = S 20x2 + · · · , ω(x) ≜
∂A
∂x

(x, χ(x)) +
∂B
∂y

(x, χ(x)) = (2r20 + s11)x + · · · .

According to Lemma 4.1, we can transform the model (4.9) into (4.10)ẋ = y,

ẏ = s20x2 + (s11 + 2r20)xy + N8(x, y),
(4.10)

where N8(x, y) is third-order infinitesimal quantity.
Then we can obtain

s20 =
z20

δ
=
γ3q′02 + γ

2(q′11 − p′02) + γ(q′20 − p′11) − p′20

δ

=
γ

δ

γ2(
wx∗1(1 + px∗1)

T 3
3

) + γ(−
1

T 2
3

−
2bcx∗1y∗1

T 3
3

+
δ

x∗1
) − 3x∗1 + 1 + m +

by∗1(1 + cy∗1)

T 3
3

−
2δy∗1
x∗1

2 +
δγ

x∗1


=
γ

δ

[
−γ

T 3
3

− 3x∗1 + 1 + m
]
,

s11 =
z11

δ
=

2γp′02 + p′11 − 2q′02γ
2 − γq′11

δ

=
γ

δ

[
−2

δ

x∗1
+

2δ
x∗1
− 2

cx∗1(1 + bx∗1)

T 3
3

γ − (−
1

T 2
3

−
2bcx∗1y∗1

T 3
3

)
]

=
γ

δ

[
1 + bx∗1 − cγx∗1

T 3
3

]
,

r20 =
w20

δ
=

q′02γ
2 + γq′11 + q′20

δ

=
1
δ

[
cx∗1(1 + bx∗1)

T 3
3

γ2 + γ(−
1

T 2
3

−
2bcx∗1y∗1

T 3
3

) − 3x∗1 + 1 + m +
by∗1(1 + cy∗1)

T 3
3

]
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=
1
δ

[
−γ

T 3
3

− 3x∗1 + 1 + m
]
,

where T3 = 1 + bx∗1 + cy∗1. Therefore, according to [49], we can determine that E∗1 is a cusp when
k = 2h, h = 1, q2m = s20,N = 1, BN = 2r20 + s11. Furthermore, if s20 , 0 and s11 + 2r20 , 0, then the
internal point E∗1 is a cusp with codimension 2. If s02 = 0 or s11 + 2r20 = 0, then the internal point E∗1 is
a cusp with codimension at least 3. That is

s11 + 2r20 =
γ3q′02 + γ

2(q′11 − p′02) + γ(q′20 − p′11) − p′20

δ
+

2(q′02γ
2 + γq′11 + q′20)

δ

=
γ

δ
(
1 + bx∗1 − cγx∗1

T 3
3

) +
2
δ

(
−γ

T 3
3

− 3x∗1 + 1 + m)

=
1
δ

(
−γ − γbx∗1 − γcy∗1 − 2γbcx∗1y∗1 + 2by∗1 + 2bcy∗21

T 3
3

− 6x∗1 + 2 + 2m)

=
1
δ

(
−γ + γbx∗1 − γcy∗1

T 3
3

− 6x∗1 + 2 + 2m) , 0,

i.e.,

m , 3x∗1 − 1 +
(β − λ2

δ
) − (β − λ2

δ
)bx∗1 + (β − λ2

δ
)cy∗1

2(1 + bx∗1 + c(β − λ2
δ

)x∗1)3
.

□

Otherwise, when ∆ = 0, 1 − (m + 1)φ < 0 and (m + λ1)φ + γ − (m + 1) < 0 hold, the stability
investigation of the internal point E∗2 is similar to the discussion of stability of the equilibrium point E∗1,
so we simply ignore it.

4.2.2. Stability of the equilibrium point E∗i
If the conditions for the existence of equilibrium points E∗i (i = 3, 4, 5, 6,) are satisfied, the values of

Det(JE∗3
) and Det(JE∗5

) are consistently negative,

Det(JE∗) =
(β − λ2

δ
)δx∗

1 + φx∗
( f (x∗)

′

).

Therefore, as their determinants are consistently less than 0 by Theorem 3.2, the equilibrium points
E∗3 and E∗5 are classified as saddle. Pursuant to Theorem 3.2, it is ascertainable that the values of
Det(JE∗4

) and Det(JE∗6
) remain positive at all times. Subsequently, our discussion shall encompass three

perspectives: (a) If Tr(JE∗i ) > 0, it is a source. (b) If Tr(JE∗i ) = 0, it is a center. (c) If Tr(JE∗i ) < 0, it is a
sink.

Hence, we can consolidate the aforementioned analysis and gain the following theorem.

Theorem 4.3. Pursuant to Theorem 3.2, it is ascertainable that the values of Det(JE∗4
) and Det(JE∗6

)
remain positive at all times. Subsequently, our discussion shall encompass three perspectives: (a) If
Tr(JE∗i ) > 0, it is a source. (b) If Tr(JE∗i ) = 0, it is a center. (c) If Tr(JE∗i ) < 0, it is a sink.

Theorem 4.4. Therefore, as their determinants are consistently less than 0 by Theorem 3.2, the
equilibrium points E∗3 and E∗5 are classified as saddle.

Electronic Research Archive Volume 32, Issue 10, 5682–5716.



5698

5. Bifurcation analysis

To investigate the impact of Allee effect and harvesting effort on the dynamic behavior of the model
(1.3), we chose λ2 and m as bifurcation control parameters and encompassed transcritical bifurcation,
saddle-node bifurcation, Hopf bifurcation, and Bogdanov-Takens bifurcation of the model (1.3).

5.1. Transcritical bifurcation

Theorem 5.1. The model (1.3) can undergo a transcritical bifurcation when λ2 = λTC = βδ.

Proof. When λ2 = λTC = βδ, we can get the Jacobian matrix from Theorem 4.1:

JE2 =

(
x2(−2x2 + 1 + m) − x2

1+bx2

0 0

)
.

Next, we demonstrate the occurrence of transcritical bifurcation by the Sotomayor’s theorem.
Assuming that U represents the eigenvector of JE2 pertaining to 0, and V corresponds to the eigenvector
of JT

E2
pertaining to 0, we present the following exposition:

U =
(

u1

u2

)
=

( x2
1+bx2

x2(−2x2 + 1 + m)

)
, V =

(
v1

v2

)
=

(
0
1

)
.

Then we can get

Fλ2(E2; λTC) =
(

0
−y

)
(E2;λTC)

=

(
0
0

)
,

DFλ2(E2; λTC)U =
(
0 0
0 −1

) ( x2
1+bx2

x2(−2x2 + 1 + m)

)
=

(
0

x2(2x2 − 1 − m)

)
,

D2Fλ2(E2; λTC)(U,U) =

 ∂2F1
∂x2 u1u1 + 2∂2F1

∂x∂y u1u2 +
∂2F1
∂y2 u2u2

∂2F2
∂x2 u1u1 + 2∂2F2

∂x∂y u1u2 +
∂2F2
∂y2 u2u2


(E2;λTC)

=

(
(−4x2 + m + 1)( x2

1+bx2
)2 + 1

(1+bx2)2 x2(−2x2 + 1 + m) x2
1+bx2

−2δ
x2

[x2(−2x2 + 1 + m)]2

)

=

(
−4bx4

2 + (bm + b − 6)x3
2 + 2(m + 1)x2

2
−2δ

x2
[x2(−2x2 + 1 + m)]2

)
.

Therefore, we can get
VT Fλ2(E2; λTC) = 0,

VT [DFλ2(E2; λTC)U] = x2(2x2 − 1 − m) , 0,

VT [D2Fλ2(E2; λTC)(U,U)] = −2δ
x2

[x2(−2x2 + 1 + m)]2 , 0.
Therefore, the model (1.3) can undergo a transcritical bifurcation when λ2 = λTC = βδ. □
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5.2. Saddle-node bifurcation

According to the Theorem 3.1 Case 3, we can get a bifurcation surface for saddle-node:

S N =
{
(m, b, c, β, δ, λ1, λ2) : β −

λ2

δ
> 0,∆ = 0,T1 < 0,T2 > 0

}
,

where T1 = 1 − (m + 1)[b + c(β − λ2
δ

)] and T2 = (m + λ1)[b + c(β − λ2
δ

)] + β − λ2
δ
− (m + 1).

We can observe that the sign of ∆ can be altered by λ2, during which process the number of
equilibrium points transforms from 0 to 1 and then to 2. Consequently, to ascertain whether the model
(1.3) is capable of undergoing a saddle-node bifurcation, we proceed with the following derivation.

Theorem 5.2. Under the condition of:
1) β − λ2

δ
> 0,

2) 1 − (m + 1)[b + c(β − λ2
δ

)] < 0,
3) (m + λ1)[b + c(β − λ2

δ
)] + β − λ2

δ
− (m + 1) > 0,

when ∆ = 0, i.e., λ2 = λS N , the model (1.3) can undergo a saddle-node bifurcation.

Proof. Now, we demonstrate the occurrence of transcritical bifurcation by the Sotomayor’s theorem,
the Jacobian matrix at E∗1 is:

JE∗1
=

−3x∗1
2 + (2 + 2m)x∗1 − m − (β− λ2

δ )x∗1+c((β− λ2
δ )x∗1)2

(1+bx∗1+c(β− λ2
δ )x∗1)2

− λ1 −
x∗1(1+bx∗1)

(1+bx∗1+c(β− λ2
δ )x∗1)2

(β − λ2
δ

)2δ λ2 − δβ

 .
If λ2 = λS N , the Jacobian matrix at E∗1 can be written in the following form:

JE∗1
=

(
−e12γ e12

δγ2 −δγ

)
,

where γ = β − λS N
δ

, e12 = −
x∗1(1+bx∗1)

(1+bx∗1+c(β− λ2
δ ))2

.

Zero is one of the eigenvalues, then we can assume that U represents the eigenvector of JE∗1
pertaining

to 0, and V corresponds to the eigenvector of JT
E∗1

pertaining to 0, we present the following exposition:

U =
(

u1

u2

)
=

(
1
γ

)
, V =

(
v1

v2

)
=

( δγ

a12

1

)
.

Therefore, we can obtain

Fλ2(E
∗
1; λS N) =

(
0
−y

)
(E∗1;λS N )

=

(
0
−y∗1

)
,

D2F(E∗1; λS N)(U,U) =

 ∂2F1
∂x2 u1u1 + 2∂2F1

∂x∂y u1u2 +
∂2F1
∂y2 u2u2

∂2F2
∂x2 u1u1 + 2∂2F2

∂x∂y u1u2 +
∂2F2
∂y2 u2u2


(E∗1;λS N )

=

 −4x∗1 + 1 + m − 1
[b+c(β− λ2

δ )]3

0

 .
Finally, we can get
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VT Fλ2(E
∗
1; λS N) = −y∗1 , 0,

VT [D2F(E∗1; λS N)(U,U)] =
2δγ
e12

−4x∗1 + 1 + m −
1

[b + c(β − λ2
δ

)]3

 , 0.

Therefore, the model (1.3) can undergo a saddle-node bifurcation when λ2 = λS N = βδ. □

5.3. Hopf bifurcation

From Theorem 4.4, E∗3 and E∗5 are always saddle whenever they exist. From Theorem 4.3, E∗4 and E∗6
may be a source or a sink or a center. Therefore, only E∗4 and E∗6 are potentially susceptible to Hopf
bifurcation. Given the similarity in properties between E∗6 and E∗4, we shall focus our discussion on the
prototypical internal equilibrium point E∗4. We designate λ2 as the variable of interest, which is derived
from the condition where the trace equals zero Tr(JE∗4

) = 0. As λ2 varies and surpasses the threshold λH,
the stability of E∗4 is disrupted. Subsequently, we will furnish a rigorous proof to support this assertion.

Theorem 5.3. Unstable limit cycles will occur near E∗4 when the first Lyapunov coefficient l1 > 0,
and furthermore, the internal equilibrium point E∗4 will also lose its stability due to subcritical Hopf
bifurcation when λ2 = λH.

Proof. We also know Det(JE∗4
) > 0 and Tr(JE∗4

) = 0 when λ2 = λH. Then,

d
dλ2

Tr(JE∗4
)

∣∣∣∣∣∣
λ2=λH

=
d

dλ2

[
−3x∗4

2
+ 2(1 + m)x∗4 − (m + λ1) −

y∗4(1 + y∗4)
(1 + bx∗4 + cy∗4)2 + δ(β −

2y∗4
x∗4

) − λ2

] ∣∣∣∣∣∣
λ2=λH

,

then
d

dλ2
Tr(JE∗4

)

∣∣∣∣∣∣
λ2=λH

, 0.

The internal equilibrium point E∗4 will also lose its stability due to subcritical Hopf bifurcation when
λ2 = λH.

Furthermore, to assess the stability and direction of the limit cycle formed by this point E∗4, we need
to calculate its first Lyapunov number. This can be achieved by employing a transformation, specifically,
q = x − x∗4, w = y − y∗4, we can shift E∗4 to the origin, and gain:

q̇ = a10q + a01w + a11qw + a20q2 + a02w2 + a30q3

+a21q2w + a12qw2 + a03w3 + M1(q,w),
ẇ = b10q + b01w + b11qw + b20q2 + b02w2 + b30q3

+b21q2w + b12qw2 + b03w3 + N1(q,w),

where

a10 = −3x∗4
2
+ 2(1 + m)x∗4 − (m + λ1) −

y∗4(1 + cy∗4)
(1 + bx∗4 + cy∗4)2 , a01 = −

x∗4(1 + bx∗4)
(1 + bx∗4 + cy∗4)2 ,

a11 = −
1

(1 + bx∗4 + cy∗4)2 −
2bcx∗4y∗4

(1 + bx∗4 + cy∗4)3 , a20 = −3x∗4 + 1 + m +
by∗4(1 + cy∗4)

(1 + bx∗4 + cy∗4)3 ,
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a30 = −1 −
b2y∗4(1 + cy∗4)

(1 + bx∗4 + cy∗4)4 , a03 = −
c2x∗4(1 + bx∗4)

(1 + bx∗4 + cy∗4)4 , a02 =
cx∗4(1 + bx∗4)

(1 + bx∗4 + cy∗4)3 ,

a21 = −
b(cy∗4 − 1)

(1 + bx∗4 + cy∗4)3 +
3b2cx∗4y∗4

(1 + bx∗4 + cy∗4)4 , a12 = −
c(bx∗4 − 1)

(1 + bx∗4 + cy∗4)3 +
3c2bx∗4y∗4

(1 + bx∗4 + cy∗4)4 ,

b10 =
δy∗4

2

x∗4
2 , b01 = δ(β −

2y∗4
x∗4

) − λ2, b11 =
2δy∗4
x∗4

2 , b20 = −
δy∗4

2

x∗4
3 ,

b02 = −
δ

x∗4
, b30 =

δ(β − λ2
δ

)2

x∗24

, b21 =
2(λ2 − δβ)

x∗24

, b12 =
δ

x∗24

, b03 = 0,

and M1(q,w), N1(q,w) are fourth-order infinitesimal quantity.
The first Lyapunov coefficient l1 is

l1 =
−3π

2a01Det
3
2

{[
a10b10(a2

11 + a11b02 + a02b11) + a10a01(b2
11 + a20b11 + a11b02)

+ b2
10(a11a02 + 2a02b02) − 2a10b10(b2

02 − a20a02)
− 2a10a01(a2

20 − b20b02) − a2
01(2a20b20 + b11b20)

+(a01b10 − 2a2
10)(b11b02 − a11a20)

]
−(a2

10 + a01b10) [3(b10b03 − a01a30) + 2a10(a21 + b12) + (a12b10 − a01b21)]
}
.

In [49], the dynamic relationship between Lyapunov coefficients and Hopf bifurcation was referred
to. The literature indicates that stable limit cycle will emerge near E∗4 when the first Lyapunov coefficient
l1 < 0. Additionally, due to supercritical Hopf bifurcation, the internal equilibrium point E∗4 will lose its
stability. Unstable limit cycles will occur near E∗4 when the first Lyapunov coefficient l1 > 0, and the
internal equilibrium point E∗4 will also lose its stability due to subcritical Hopf bifurcation. □

5.4. Bogdanov-Takens bifurcation

In the previous three sections, we discussed the bifurcation of the codimension-one branch of the
model (1.3). Next, we will prove the occurrence of the codimension-two Bogdanov-Takens bifurcation.
According to Theorem 4.2, we conclude that E∗1 is a codimension-two cusp when the following
conditions meet ∆ = 0, 1 − (m + 1)φ > 0, (m + λ1)φ + γ − (m + 1) < 0,m = −3x∗1

2 + (2 + 2m)x∗1 −
(β− λ2

δ )x∗1+c(β− λ2
δ )2 x∗1

2

(1+bx∗1+c(β− λ2
δ )x∗1)2

− λ1 + λ2 − δβ and Det(JE∗1
) , 0. Next, we study the Bogdanov-Takens bifurcation

with parameters λ2 and m.

Theorem 5.4. If we choose λ2 and m as bifurcation parameters, then the model (1.3) can generate
a Bogdanov-Takens bifurcation around E∗1 with changing parameters (λ2,m) near (λBT ,mBT ) for ∆ =

0, 1− (m+1)φ > 0, (m+λ1)φ+γ− (m+1) < 0,m = −3x∗1
2+ (2+2m)x∗1−

(β− λ2
δ )x∗1+c(β− λ2

δ )2 x∗1
2

(1+bx∗1+c(β− λ2
δ )x∗1)2

−λ1+λ2−δβ

and Det(JE∗1
) , 0, where (λBT ,mBT ) denotes the bifurcation threshold value i.e.,

Tr(JE∗1
) |(λBT ,mBT )= 0,Det(JE∗1

) |(λBT ,mBT )= 0.
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Proof. To derive precise expressions for saddle points, Hopf, and homoclinic bifurcation curves within
a small vicinity around the Bogdanov-Takens point, we convert the model (1.3) into the canonical
form of Bogdanov-Takens bifurcation. Subsequently, we introduce a parameter vector (ϵ1, ϵ2) that is
infinitely close to (0, 0). By applying a minor perturbation, we gradually bring λ2 and m closer to
λ2 = λBT + ϵ1 and m = mBT + ϵ2 ,respectively. Incorporating the perturbation arising from these new
parameter variables into the model (1.3), we getẋ = x(1 − x)[x − (m + ϵ1)] − xy

1+bx+cy − λ1x,

ẏ = δy(β − y
x ) − (λ2 + ϵ2)y.

(5.1)

This can be achieved by employing a transformation, specifically, ζ1 = x − x∗1, ζ2 = y − y∗1, to shift E∗1
to the origin, and proceeding accordingly:dζ1

dt = m00(ϵ) + m10(ϵ)ζ1 + m01(ϵ)ζ2 + m20(ϵ)ζ2
1 + m11(ϵ)ζ1ζ2 + m02(ϵ)ζ2

2 + M1(ζ1, ζ2, ϵ),
dζ2
dt = n00(ϵ) + n10(ϵ)ζ1 + n01(ϵ)ζ2 + n20(ϵ)ζ2

1 + n11(ϵ)ζ1ζ2 + n02(ϵ)ζ2
2 + N1(ζ1, ζ2, ϵ),

(5.2)

where

m00(ϵ) = x∗1(1 − x∗1)[x∗1 − (m + ϵ1)] −
x∗1y∗1

1 + bx∗1 + cy∗1
− λ1x∗1,

m10(ϵ) = −3x∗1
2
+ 2(1 + m + ϵ1)x∗1 − (m + λ1 + ϵ1) −

y∗1(1 + cy∗1)
(1 + bx∗1 + cy∗1)2 ,

m01(ϵ) = −
x∗1(1 + bx∗1)

(1 + bx∗1 + cy∗1)2 , m11(ϵ) = −
1 + bx∗1 + cy∗1 + 2bcx∗1y∗1

(1 + bx∗1 + cy∗1)3 ,

m20(ϵ) = −3x∗1 + 1 + m + ϵ1 +
by∗1(1 + cy∗1)

(1 + bx∗1 + cy∗1)3 , m02(ϵ) = −
cx∗1(1 + bx∗1)

(1 + bx∗1 + cy∗1)3 ,

n00(ϵ) = −ϵ2y∗1, n10(ϵ) = δ(β −
λ2

δ
)2, n01(ϵ) = λ2 − δβ − ϵ2,

n11(ϵ) =
2(βδ)

x∗1
, n20(ϵ) = −

δ(β − λ2
δ

)2

x∗1
, n02(ϵ) = −

δ

x∗1
,

and M1(ζ1, ζ2, ε), N1(ζ1, ζ2, ϵ) are third-order infinitesimal quantity.
Then we will perform the transformation

X = ζ1, Y = m10(ϵ)ζ1 + m01(ϵ)ζ2,

shift the model (5.2) to the model (5.3) dX
dt = r00(ϵ) + Y + r20(ϵ)X2 + r11(ϵ)XY + r02(ϵ)Y2 + M1(X,Y, ϵ),
dY
dt = s00(ϵ) + s10(ϵ)X + s01(ϵ)Y + s20(ϵ)X2 + s11(ϵ)XY + s02(ϵ)Y2 + N1(X,Y, ϵ),

(5.3)

where

r00(ϵ) = m00(ϵ), r11(ϵ) =
m01(ϵ)m11(ϵ) − 2m02(ϵ)m10(ϵ)

m01(ϵ)2 , r02(ϵ) =
m02(ϵ)

(m01(ϵ))2 ,
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r20(ϵ) =
m01(ϵ)2m20(ϵ) − m11(ϵ)m10(ϵ)m01(ϵ) + m02(ϵ)m10(ϵ)2

m01(ϵ)2 , s00(ϵ) = m00(ϵ)m10(ϵ) + n00(ϵ)m01(ϵ),

s01(ϵ) = m10(ϵ) + n01(ϵ), s10(ϵ) = n10(ϵ)m01(ϵ) − n01(ϵ)m10(ϵ),

s02(ϵ) =
n02(ϵ)m01(ϵ) + m02(ϵ)m10(ϵ)

m01(ϵ)2 ,

s11(ϵ) =
m01(ϵ)2n11(ϵ) + m11(ϵ)m10(ϵ)m01(ϵ) − 2m01(ϵ)m10(ϵ)n02(ϵ) − 2m02(ϵ)m10(ϵ)2

m01(ϵ)2 ,

s20(ϵ) =
m01(ϵ)3n20(ϵ) − m01(ϵ)m10(ϵ)2m11(ϵ) + m01(ϵ)m10(ϵ)2n02(ϵ) + m02(ϵ)m10(ϵ)3

m01(ϵ)2 + m10(ϵ)m20(ϵ)

− m10(ϵ)n11(ϵ),

and M1(X,Y, ϵ) and N1(X,Y, ϵ) are third-order infinitesimal quantity.
So we can add the next change:

h1 = X, h2 = r00(ϵ) + Y + r20(ϵ)X2 + r11(ϵ)XY + r02(ϵ)Y2 + N2(X,Y, ϵ),

shift the model (5.3) to (5.4) dh1
dt = h2,

dh2
dt = f00(ϵ) + f10(ϵ)h1 + f01(ϵ)h2 + f20(ϵ)h2

1 + f11(ϵ)h1h2 + f02(ϵ)h2
2 + N3(h1, h2, ϵ),

(5.4)

where

f00(ϵ) = s00(ϵ) − r00(ϵ)s01(ϵ) + r00(ϵ)2s02(ϵ) − 2r00(ϵ)r02(ϵ)s00(ϵ) + · · · ,
f10(ϵ) = s10(ϵ) + r11(ϵ)s00(ϵ) − r00(ϵ)s11(ϵ) − 2r00(ϵ)r02(ϵ)s10(ϵ) + · · · ,
f01(ϵ) = s01(ϵ) + 2r02(ϵ)s00(ϵ) − 2r00(ϵ)s02(ϵ) − r00(ϵ)r11(ϵ) − 4r00(ϵ)r02(ϵ)s01(ϵ) + · · · ,
f20(ϵ) = s20(ϵ) − r20(ϵ)s01(ϵ) + r11(ϵ)s10(ϵ) − 2r02(ϵ)r20(ϵ)s00(ϵ) + 2r00(ϵ)r20(ϵ)s02(ϵ)

− 2r00(ϵ)r02(ϵ)s20(ϵ) + · · · ,
f11(ϵ) = s11(ϵ) + 2r20(ϵ) + 2r02(ϵ)s10(ϵ) − 2r02(ϵ)r11(ϵ)s00(ϵ) + 2r00(ϵ)r11(ϵ)s02(ϵ)+

r00(ϵ)r11(ϵ)2 − 4r00(ϵ)r02(ϵ)s11(ϵ) + · · · ,
f02(ϵ) = s02(ϵ) + r11(ϵ) + 2r02(ϵ)s01(ϵ) + · · · ,

and N3(h1, h2, ϵ) is third-order infinitesimal quantity.
Employing a fresh variable τ by dt = (1 − f02(ϵ)h1)dτ, then we get dh1

dτ = h2(1 − f02(ϵ)h1),
dh2
dτ = (1 − f02(ϵ)h1)

[
f00(ϵ) + f10(ϵ)h1 + f01(ϵ)h2 + f20(ϵ)h2

1 + f11(ϵ)h1h2 + f02(ϵ)h2
2 + N4(h1, h2, ϵ)

]
.

(5.5)
Let

z1 = h1, z2 = h2(1 − f02(ϵ)h1),

then we can shift the model (5.5) to the model (5.6) dz1
dτ = z2,
dz2
dτ = k00(ϵ) + k10(ϵ)z1 + k01(ϵ)z2 + k20(ϵ)z2

1 + k11(ϵ)z1z2 + N5(z1, z2, ϵ),
(5.6)
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where

k00(ϵ) = f00(ϵ), k01(ϵ) = f01(ϵ), k10(ϵ) = f10(ϵ) − 2 f00(ϵ) f02(ϵ),
k11(ϵ) = f11(ϵ) − f01(ϵ) f02(ϵ), k20(ϵ) = f20(ϵ) + f00(ϵ) f02(ϵ)2 − 2 f02(ϵ) f10(ϵ),

and N4(v1, v2, ϵ) is third-order infinitesimal quantity.
We can observe that h20(ϵ) is an extremely intricate number, rendering it difficult to ascertain the sign

of h20(ϵ) when ϵ1 and ϵ2 are small enough. Consequently, to proceed with the subsequent transformation,
it is imperative for us to delve into the following two scenarios.
Case 1: For ϵ1 and ϵ2 that are small enough, if k20(ϵ) is greater than 0, we proceed to the next
transformation:

e1 = z1, e2 =
z2

√
k20(ϵ)

, T =
√

k20(ϵ)τ.

We can get  de1
dT = e2,
de2
dT = R00(ϵ) + R10(ϵ)e1 + R01(ϵ)e2 + e2

1 + R11(ϵ)e1e2 + Q5(e1, e2, ϵ),
(5.7)

where
R00(ϵ) =

k00(ϵ)
k20(ϵ)

, R10(ϵ) =
k10(ϵ)
k20(ϵ)

, R01(ϵ) =
k01(ϵ)
√

k20(ϵ)
, R11(ϵ) =

k11(ϵ)
√

k20(ϵ)
,

and Q5(e1, e2, ϵ) is third-order infinitesimal quantity.
Let

j1 = e1 +
R10(ϵ)

2
, j2 = e2,

then we have  d j1
dT = j2,
d j2
dT = H00(ϵ) + H01(ϵ) j2 + j2

1 + H11(ϵ) j1 j2 + Q6( j1, j2, ϵ),
(5.8)

where

H00(ϵ) = R00(ϵ) −
1
4

R2
10(ϵ), H01(ϵ) = R01(ϵ) −

1
2

R10(ϵ)R11(ϵ), H11(ϵ) = R11(ϵ),

and Q6( j1, j2, ϵ) is third-order infinitesimal quantity.
In case of k11(ϵ) , 0, then we have H11(ϵ) = R11(ϵ) = k11(ϵ)

√
k20(ϵ)
, 0, and give the next transformation:

X = H2
11(ϵ) j1, Y = H3

11(ϵ) j2, t =
1

H11(ϵ)
T,

then we have  dX
dt = Y,
dY
dt = ξ1(ϵ) + ξ2(ϵ)Y + X2 + XY + Q7(X,Y, ϵ),

(5.9)

where

ξ1(ϵ) = H00(ϵ)H11(ϵ)4, ξ2(ϵ) = H01(ϵ)H11(ϵ),
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and Q7(X,Y, ϵ) is third-order infinitesimal quantity.
Case 2: For ϵ1 and ϵ2 that are small enough, if k20(ϵ) is smaller than 0, we proceed to the next
transformation:

e′1 = z1, e′2 =
z2

√
−k20(ϵ)

, T ′ =
√
−k20(ϵ)τ.

We can get 
de′1
dT ′ = e′2,
de′2
dT ′ = R′00(ϵ) + R′10(ϵ)e′1 + R′01(ϵ)e′2 + e′1

2 + R′11(ϵ)e′1e′2 + Q′5(e′1, e
′
2, ϵ),

(5.10)

where

R′00(ϵ) = −
k00(ϵ)
k20(ϵ)

, R′10(ϵ) = −
k10(ϵ)
k20(ϵ)

, R′01(ϵ) =
k01(ϵ)
√
−k20(ϵ)

, R′11(ϵ) =
k11(ϵ)
√
−k20(ϵ)

,

and Q′5(e′1, e
′
2, ϵ) is third-order infinitesimal quantity.

Let

j′1 = e′1 −
R′10(ϵ)

2
, j′2 = e′2,

we have 
d j′1
dT ′ = j′2,
d j′2
dT ′ = H′00(ϵ) + H′01(ϵ) j′2 + j′1

2 + H′11(ϵ) j′1 j′2 + Q′6( j′1, j′2, ϵ),
(5.11)

where

H′00(ϵ) = R′00(ϵ) −
1
4

R′10(ϵ)2, H′01(ϵ) = R′01(ϵ) −
1
2

R′10(ϵ)R′11(ϵ), H′11(ϵ) = R′11(ϵ),

and Q6( j′1, j′2, ϵ) is third-order infinitesimal quantity.
In case of k11(ϵ) , 0, then we have H′11(ϵ) = R′11(ϵ) = k11(ϵ)

√
−k20(ϵ)

, 0, and go on the next transformation:

X′ = H′11(ϵ)2 j′1, Y ′ = H′11(ϵ)2 j′2, t′ =
1

H′11(ϵ)
T ′,

we have  dX′
dt′ = Y ′,
dY′
dt′ = ξ

′
1(ϵ) + ξ′2(ϵ)Y ′ + X′2 + X′Y ′ + Q′7(X′,Y ′, ϵ),

(5.12)

where

ξ′1(ϵ) = H′00(ϵ)H′11(ϵ)4, ξ′2(ϵ) = H′01(ϵ)H′11(ϵ),

and Q′7(X′,Y ′, ϵ) is third-order infinitesimal quantity.
To reduce the number of cases to be taken into account, we will retain ξ1(ϵ) and ξ2(ϵ) to stand for ξ′1(ϵ)

and ξ′2(ϵ) in (5.12). When the matrix
∣∣∣∣∂(ξ1,ξ2)
∂(ϵ1,ϵ2)

∣∣∣∣ is nonsingular, then the transformation is a homeomorphism
in a adequately small domain of the (0, 0). Moreover, based on the above conditions, it is evident that ξ1,
ξ2 are two independent variables. From the conclusions in [49], it is obvious that B-T bifurcation is
formed when ϵ = (ϵ1, ϵ2) is in a fully small domain of the (0,0). Accordingly, the local formulas near the

Electronic Research Archive Volume 32, Issue 10, 5682–5716.



5706

origin of bifurcation curves can be written as (“+” expresses k20(ϵ) > 0 and “-” expresses k20(ϵ) < 0):
1) The saddle-node bifurcation curve can be written as
S N = {(ϵ1, ϵ2) : ξ1(ϵ1, ϵ2) = 0, ξ2(ϵ1, ϵ2) , 0}.
2) The Hopf bifurcation curve can be written as
H =

{
(ϵ1, ϵ2) : ξ2(ϵ1, ϵ2) = ±

√
−ξ1(ϵ1, ϵ2), ξ1(ϵ1, ϵ2) < 0

}
.

3) The homoclinic bifurcation curve can be written as
HL =

{
(ϵ1, ϵ2) : ξ2(ϵ1, ϵ2) = ±5

7

√
−ξ1(ϵ1, ϵ2), ξ1(ϵ1, ϵ2) < 0

}
. □

Based on mathematical theory derivation, we obtained threshold conditions for inducing transcritical
bifurcation, saddle-node bifurcation, Hopf bifurcation, and Bogdanov-Takens bifurcation in the model
(1.3). These conditions can serve as the theoretical basis for subsequent numerical simulations, and
directly indicate that the values of some key parameters can seriously affect the bifurcation dynamics
evolution process of the model (1.3). Moreover, according to the theoretical derivation process, it is
worth emphasizing that the size of the predator and prey harvesting behavior can alter the intrinsic
dynamic characteristics of the model (1.3).
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Figure 1. A transcritical bifurcation occurs based on the change of λ2. (a)–(c) show the
stability of boundary equilibrium point E1 and E2: (a) unstable node E1 and unstable saddle
E2; (b) non attracting saddle-node E1 and attracting saddle-node E2; (c) unstable saddle E1 and
globally asymptotically stable node E2; (d) A locally enlarged view of the entire transcritical
bifurcation process.
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6. Simulation analysis and results

To verify the effectiveness of theoretical derivation and explore the bifurcation dynamics evolution
process of the model (1.3), we conduct relevant bifurcation dynamics numerical simulations on the
model (1.3).

According to Theorem 5.1, we can choose m = 0.05, b = 0.2, c = 0.2, β = 2, s = 0.3, λ1 = 0.1, and
we can directly calculate λTC = 0.6; thus, we can numerically simulate the dynamic evolution process
of the model (1.3) undergoing transcritical bifurcation, and the detailed results can be seen in Figure
1. When the value of λ2 is 0.4, the model (1.3) has two boundary equilibrium points E1 and E2, the
boundary equilibrium point E1 is an unstable node and the boundary equilibrium point E2 is a saddle
(see Figure 1(a)). When the value of λ2 is equal to 0.6, the boundary equilibrium points E1 and E2 are
saddle-node (see Figure 1(b)). When the value of λ2 is greater to 0.6, the model (1.3) has a saddle E1

and a stable node E2 (see Figure 1(c)). Therefore, this numerical simulation result not only points out
the feasibility of Theorem 5.1, but also indicates that excessive harvesting of predator can lead to the
extinction of predator population.
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Figure 2. A saddle-node bifurcation occurs based on the change of λ2.(a) the model (1.3)
has no internal equilibria when the value of λ2 is smaller than 0.5761948068; (b) unique
equilibrium point E∗1, which is a saddle-node; (c) two internal equilibria E∗3 and E∗4, a saddle
and a node; (d)a locally enlarged view of the entire saddle-node bifurcation process.
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Based on the condition of Theorem 5.2, we can take m = 0.05, b = 0.2, c = 0.2, β = 0.3, δ =
2, λ1 = 0.22 thus, we obtain λS N = 0.5761948068, which means that the model (1.3) will experience a
saddle-node bifurcation as λ2 varies around λS N . Furthermore, it is worth noting from Figure 2 that the
model (1.3) has no internal equilibrium point when λ2 = 0.575, has an internal equilibrium point E∗1
when λ2 = 0.5761948068, and has two internal equilibrium points E∗3 and E∗4 when λ2 = 0.5781948068.
Furthermore, it is worth emphasizing that the internal equilibrium point E∗3 is a saddle and the internal
equilibrium point E∗4 is a stable node. Hence, it not only proves that Theorem 5.2 is valid, but also infers
that prey and predator can form a constant steady state persistent survival mode, which implies that
harvesting predator reasonably can be beneficial for the sustainable survival of prey and predator.
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Figure 3. A Hopf bifurcation occurs based on the change of λ2. (a) an unstable focus E∗4;
(b) unstable limit cycles around the center E∗4; (c)a stable focus E∗4; (d) the Hopf bifurcation
diagram represents the center E∗4 and unstable limit cycles with different λ2 values.

Based on Theorem 5.3, we take m = 0.05, b = 0.2, c = 0.2, β = 2, δ = 0.3, λ1 = 0.16, then we
can obtain λH = 0.55600668. It is obvious to find from Figure 3 that the model (1.3) has an unstable
limit cycle when λ2 = 0.55575668 < 0.55600668. This is because the corresponding first Lyapunov
number l1 = 669.843133π > 0, which indicates that the limit cycle is unstable, then the unstable focus
E∗4 transforms into the center when λ2 = 0.55600668, and the internal equilibrium point E∗4 turns into a
stable focus from the center when λ2 = 0.556666668 > 0.55600668. Furthermore, it is worth pointing
out from Figure 3(d) that the model (1.3) visually displays a Hopf bifurcation process as the parameter
λ2 value increases, and if the parameter λ2 value increases, the amplitude of the limit cycle will also
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increase. Therefore, it is necessary to clarify that the model (1.3) has undergone a subcritical Hopf
bifurcation, which can induce the formation of periodic oscillation persistent survival mode between
prey and predator.
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Figure 4. The dynamic evolution process of B-T bifurcation of the model (5.1). (a)
A cusp with codimension 2 when (ϵ1, ϵ2) = (0, 0); (b) no equilibrium point when
(ϵ1, ϵ2) = (0.000189226; 0.0002); (c) unstable saddle and an unstable focus when (ϵ1, ϵ2) =
(0.000189226; 0.0000886); (d) unstable limit cycles revolve around a center and a saddle when
(ϵ1, ϵ2) = (0.000189226; 0.0000934); (e) a stable focus surrounded by an unstable homoclinic
orbit and a saddle when (ϵ1, ϵ2) = (0.000189226; 0.0001066); and (f) a saddle and a stable
focus when (ϵ1, ϵ2) = (0.000189226; 0.000166666).
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Based on Theorem 5.4, we take m = 0.050810774, b = 0.2, c = 0.2, β = 2, δ = 0.3, λ1 = 0.16; hence,
we can deduce mBT = 0.050810774 and λBT = 0.5562939, and conduct relevant numerical simulations
on Bogdanov-Takens bifurcation, the detailed numerical simulation results are shown in Figure 4. It is
must be worth emphasizing from Figure 4 that if there are slight changes in the values of key parameters
m and λ2 near the key values mBT = 0.050810774 and λBT = 0.5562939, the dynamic behavior of the
model (5.1) will undergo fundamental changes, which contains that the persistent survival model of
prey and predators have undergone dynamic changes. Therefore, it is easy to see from Figure 4 that the
persistent survival mode of prey and predator may exhibit constant steady state or periodic oscillation
under the disturbance of key parameter m and λ2 values, which also directly indicates that the value of
key parameters m and λ2 can synergistically affect the persistent survival mode of prey and predator.
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Figure 5. (a)–(f’) The time series chart of prey and predator with different parameter λ1

values.

To explore how the harvesting effort of prey affects the dynamic behavior of the model (1.3) and
persistent survival mode between prey and predator, we will select parameter λ1 as a control parameter
to simulate the relevant dynamic behavior, the detailed simulation results are shown in Figure 5. It is
obvious to know that the model (1.3) has a stable internal equilibrium point when λ1 is 0, 0.05 and 0.1
respectively, which means that prey and predator can coexist in a constant steady state. Furthermore,
it is worth pointing out that the model (1.3) has a limit cycle when λ1 is 0.15, which means that prey
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and predator can coexist in periodic oscillation. Moreover, it is easy to see that the model (1.3) has a
chaotic attractor when λ1 is 0.160004, which means that prey and predator can coexist in an irregular
state. However, it must also be emphasized that prey and predator will gradually become extinct when
λ1 is 0.162. Therefore, it is worth summarizing that prey and predator are prone to persistent survival
when the parameter λ1 values are relatively small, that si to say, if we want to maintain the sustainable
survival of predatory ecosystems, we cannot over capture prey population.

The above numerical simulation results not only verify the feasibility and effectiveness of the
theoretical derivation, but also dynamically display the specific dynamic evolution process of the model
(1.3), and intuitively demonstrate the persistent survival mode of prey and predator, especially constant
steady state mode and periodic oscillation mode, which are particularly beneficial for the long-term and
sustainable cyclic development of predatory ecosystems.

7. Conclusions

As is well known, the Allee effect and harvesting effort can seriously affect the dynamic behaviors of
predator-prey model. Thus, we introduce the Allee effect and harvesting effort to construct a predator-
prey model, the main purpose is to explore how they affect the bifurcation dynamics evolution process of
the model (1.3), and reveal the persistent survival mode of prey and predator and its driving mechanisms.
Mathematical theoretical work mainly investigate the existence and stability of some equilibrium points,
as well as the triggering conditions of specific bifurcation dynamics, such as transcritical bifurcation,
saddle-node bifurcation, Hopf bifurcation, and Bogdanov-Takens bifurcation, which can provide a
theoretical basis for elucidating the driving mechanisms behind the formation of specific persistent
survival mode between prey and predator. The numerical simulation work show the evolution process
of the specific bifurcation dynamics behavior of the model (1.3), which can visualize the persistent
survival mode and the dynamic variation characteristics of population density.

Based on mathematical theory and numerical simulation results, it is worth emphasizing that
Allee effect and harvesting effort seriously affect the dynamic behavior of the model (1.3), especially
bifurcation dynamics. Furthermore, it must be pointed out that the magnitude of harvesting efforts
on predator can trigger the formation of transcritical bifurcation, saddle-node bifurcation and Hopf
bifurcation. The saddle-node bifurcation can cause the model (1.3) to generate a stable internal
equilibrium point, which can lead to the formation of a constant steady state persistent survival mode
between prey and predator. The Hopf bifurcation can induce the occurrence of periodic solution in the
model (1.3), which can result in the formation of a periodic oscillation persistent survival mode between
prey and predator. Therefore, it is an important discovery that the saddle-node bifurcation and Hopf
bifurcation are intrinsic driving force behind the formation of specific persistent survival mode between
prey and predator. Moreover, it is worth clarifying that Allee effect in prey and harvesting effort in
predator are able to collaboratively drive the model (1.3) through Bogdanov-Takens bifurcation, which
implies that prey and predator can switch back and forth between constant steady state persistent survival
mode and periodic oscillation persistent survival mode under small perturbations in key parameter values.
Furthermore, it is necessary to emphasize that appropriate harvesting effort on the prey population can
also enable prey and predator to coexist persistently in constant steady state, periodic oscillation, and
irregularity state.

One innovation of this research is the introduction of harvesting effort for prey and predator in the
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ecological modeling process, which not only makes the ecological model (1.3) more controllable, but
also enhances its applicability. Another innovation of this research is to reveal the persistent survival
mode and underlying driving mechanism from the perspective of bifurcation dynamics evolution,
which directly elucidates the impact mechanism of Allee effect and harvesting effort on the bifurcation
dynamics of ecological model (1.3). Furthermore, it is worth comparing and explaining that the
introduction of harvesting effort in the original model can form a periodic oscillation persistent survival
mode between predator and prey, which directly indicates that regulatory measures can prevent the
outbreak of algal bloom. Furthermore, it is worth noting that the introduction of Allee effect in the
original model can synergistically enrich the dynamic behavior with other key parameters.

Although we obtained some theoretical and numerical results, there is much work to be studied,
such as the spatial interaction characteristics between prey and predator, the prey substitutability in
predator population, and the controllability problem based on state feedback. However, it is hoped
that the research findings of this paper can contribute to the rapid development of predator-prey model
dynamics research.
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